1
|
Neurauter M, Vinzelj JM, Strobl SFA, Kappacher C, Schlappack T, Badzoka J, Podmirseg SM, Huck CW, Rainer M. Application of MALDI TOF and DART mass spectrometry as novel tools for classification of anaerobic gut fungi strains. Anal Bioanal Chem 2025:10.1007/s00216-025-05846-8. [PMID: 40133646 DOI: 10.1007/s00216-025-05846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Anaerobic gut fungi (AGF) have emerged as promising candidates for optimized biogas and biofuel production due to their unique repertoire of potent lignocellulose-degrading enzymes. However, identifying AGF strains through standard fungal DNA barcodes still poses challenges due to their distinct genomic features. This study explored the applicability of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI) and direct analysis in real-time (DART) mass spectrometry (MS) as alternative methods for AGF identification. Further, the capability of the methods to differentiate strains from different growth phases was investigated. The study found that both MALDI and DART were viable methods for AGF strain identification. MALDI proved to be a precise and robust technique for strain discrimination with prediction accuracies of 94% for unknown standard samples. Even at longer growth times (>3 weeks) MALDI achieved good prediction accuracies with 84%; however, younger cultures (72 h) were only predicted with 63% accuracy. The fast on-target lysis with minimal chemical demand yielded suitable spectra for strain differentiation. DART MS, while effective with prediction accuracies of samples with the same age of up to 93%, exhibited lower prediction accuracies for cultures of different ages, with 14% for young (72 h) and 71% for old (>3 weeks) samples. Further research could enhance the capabilities of these mass spectrometry methods for AGF identification and broaden their application to species-level discrimination and a wider range of AGF genera.
Collapse
Affiliation(s)
- Markus Neurauter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Julia M Vinzelj
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Sophia F A Strobl
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Christoph Kappacher
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Tobias Schlappack
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Jovan Badzoka
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Sabine M Podmirseg
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Christian W Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Matthias Rainer
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Pan J, Li C, Liu J, Jiao Z, Zhang Q, Lv Z, Yang W, Chen D, Liu H. Polysaccharide-Based Packaging Coatings and Films with Phenolic Compounds in Preservation of Fruits and Vegetables-A Review. Foods 2024; 13:3896. [PMID: 39682968 DOI: 10.3390/foods13233896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable interest has emerged in developing biodegradable food packaging materials derived from polysaccharides. Phenolic compounds serve as natural bioactive substances with a range of functional properties. Various phenolic compounds have been incorporated into polysaccharide-based films and coatings for food packaging, thereby enhancing product shelf life by mitigating quality degradation due to oxidation and microbial growth. This review offers a comprehensive overview of the current state of polysaccharide-based active films and coatings enriched with phenolic compounds for preserving fruits and vegetables. The different approaches for the addition of phenols to polysaccharides-based packaging materials are discussed. The modifications in film properties resulting from incorporating polyphenols are systematically characterized. Then, the application of these composite materials as protectants and intelligent packaging in fruit and vegetables preservation is highlighted. In future, several points, such as the preservative mechanism, safety evaluation, and combination with other techniques along the whole supply chain could be considered to design polyphenol-polysaccharides packaging more in line with actual production needs.
Collapse
Affiliation(s)
- Junkun Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengheng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhenzhen Lv
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenbo Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dalei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
3
|
Das M, Ojha AK, Sarmah P, Gogoi D, Dolma KG, Majumdar T, Hazarika SC, Modi D, Chowdhury G, Konwar C, Nath R, Das S, Ramamurthy T. Ethnic foods of Northeast India: insight into the light of food safety. BMC Public Health 2024; 24:3258. [PMID: 39580394 PMCID: PMC11585955 DOI: 10.1186/s12889-024-20672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Traditional and fermented foods are widely consumed by the ethnic population of Northeast India. These foods are not only very nutritious, easily available, and reasonably priced, but also boost immunity and protect from various seasonal infections and have been reported through several investigations. However, pathogens transmitted by these foods have never been reported. The process of preparation and preservation of fermented traditional foods involves various steps that can prompt contamination risks. Using the Indian Council of Medical Research (ICMR)-FoodNet surveillance data, we report the profile of enteric bacteria and mycotoxin-producing fungal pathogens identified in traditional and fermented food items and their importance in public health. METHODS Food samples were collected from rural areas of Assam, Arunachal Pradesh, Tripura, and Sikkim. Bacterial and fungal pathogens were tested as per the standard operating procedure at respective ICMR-FoodNet laboratories and MycoNet laboratory at Assam. Samples were collected under six broad categories: milk products, edible insects, non-vegetarian, legumes/cereals, veggies, and alcoholic beverages. Data compilation was done centrally through a digital data portal. Quality assurance was done by the ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata. RESULT A total of 1227 samples were collected, among which 78 samples (6.8%) were positive for enteric pathogens, with Bacillus cereus being the most prevalent one (n = 59). Furthermore, 71 fungal isolates were detected from different food categories. The most common mycotoxin-producing fungal genera include Aspergillus [A. fumigatus (n = 7)], Rhizopus [R. arrhizus (n = 13)], and Penicillium (n = 2). CONCLUSION Traditional foods have immense social, and cultural value and popularity among locals. However, processing, fermentation, and preservation of these foods without any preservatives and refrigerators, increases the possibility of contamination and growth by pathogenic organisms. It is crucial to understand the contamination risk involved during preparation so that the safety of these traditional foods can be ensured and local delicacies can be relished without any fear of foodborne infections and outbreaks, particularly when consumed by masses during festivals.
Collapse
Affiliation(s)
- Madhuchhanda Das
- Division of Development Research, Department of Health Research (Ministry of Health & Family Welfare), Indian Council of Medical Research, Ansari Nagar East, New Delhi, 110029, India.
| | - Anup Kumar Ojha
- Division of Development Research, Department of Health Research (Ministry of Health & Family Welfare), Indian Council of Medical Research, Ansari Nagar East, New Delhi, 110029, India
| | | | | | - Karma G Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim, India
| | | | | | - Dilem Modi
- BPGH, Pasighat, Arunachal Pradesh, India
| | | | | | | | | | | |
Collapse
|
4
|
Zhao N, Guo W, Li J, Wang H, Guo X. Rapid and accurate identification of yeast subspecies by MALDI-MS combined with a cell membrane disruption reagent. Food Chem 2024; 457:140102. [PMID: 38905823 DOI: 10.1016/j.foodchem.2024.140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Guo
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiarui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
6
|
Zeng X, Wang Y, Shen X, Wang H, Xu ZL. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Identification of Foodborne Pathogens: Current Developments and Future Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22001-22014. [PMID: 39344132 DOI: 10.1021/acs.jafc.4c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Foodborne pathogens have gained sustained public attention, exerted significant pressure on food manufacturers, and posed serious health risks to human. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been employed for quick and accurate identification of microorganisms in the prevention of foodborne epidemics in recent years. Herein, we first summarize the principle of MALDI and its workflow for foodborne pathogens. Subsequently, we review the recent progress and applications of MALDI-TOF MS in foodborne pathogen determination. Additionally, we outline the expanded utilization of MALDI-based techniques for the identification of closely related species. We also assess the current gaps and propose possible solutions to address the existing challenges. MALDI-TOF MS is a promising biotool for rapid and accurate identification of foodborne microbes at the species and genus level in food samples. Database expansion and direct quantification of spoilage microbes are two promising areas for future progress in MALDI-TOF MS applications.
Collapse
Affiliation(s)
- Xi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Elmaghrabi MM, Alharbi NS, Alobaidi AS, Abdulmanea AA, Kadaikunnan S, Ramadan AA, Khaled JM. Iron-tannic acid nano-coating: A promising treatment approach for enhancing Lactococcus lactis antibiotic resistance. Saudi Pharm J 2024; 32:102052. [PMID: 38590610 PMCID: PMC10999874 DOI: 10.1016/j.jsps.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
The objective of this study was to explore a novel methodology for the synthesis of nanocoated probiotics following their collection and cultivation under optimized conditions, in light of their significant contribution to human health. Probiotics are instrumental in sustaining immune health by modulating the gastrointestinal microbiota and facilitating digestion. However, the equilibrium they maintain can be adversely affected by antibiotic treatments. It is critical to investigate the vulnerability of probiotics to antibiotics, considering the potential implications. This research aimed to assess whether nanoparticle coating could augment the probiotics' resistance to antibiotic influence. A strain of Lactococcus lactis (L. lactis) was isolated, cultured, and comprehensively characterized utilizing state-of-the-art methodologies, including the VITEK® 2 compact system, VITEK® MS, and 16S rRNA gene sequencing. The nanoparticle coating was performed using iron (III) chloride hexahydrate and tannic acid, followed by an evaluation of the probiotics' resistance to a range of antibiotics. The analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a partial nanoparticle coating of the probiotics, which was further supported by UV/Vis spectroscopy findings, suggesting enhanced resistance to standard antibiotics. The results revealed that this strain possesses a unique protein profile and is genetically similar to strains identified in various other countries. Moreover, nano-encapsulation notably increased the strain's resistance to a spectrum of standard antibiotics, including Benzylpenicillin, Teicoplanin, Oxacillin, Vancomycin, Tetracycline, Rifampicin, Erythromycin, and Clindamycin. These findings imply that nanoparticle-coated probiotics may effectively counteract the detrimental effects of extended antibiotic therapy, thus preserving their viability and beneficial influence on gastrointestinal health.
Collapse
Affiliation(s)
- Marwa M. Elmaghrabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed S. Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adel A. Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Jamal M. Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
da Silva RNA, Magalhães-Guedes KT, de Oliveira Alves RM, Souza AC, Schwan RF, Umsza-Guez MA. Yeast Diversity in Honey and Pollen Samples from Stingless Bees in the State of Bahia, Brazil: Use of the MALDI-TOF MS/Genbank Proteomic Technique. Microorganisms 2024; 12:678. [PMID: 38674622 PMCID: PMC11052259 DOI: 10.3390/microorganisms12040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: The identification of microorganisms includes traditional biochemical methods, molecular biology methods evaluating the conserved regions of rRNA, and the molecular biology of proteins (proteomics), such as MALDI-TOF MS mass spectrometry. This work aimed to identify the biodiversity of yeasts associated with stingless bee species' honey and pollen, Melipona scutellaris, Nannotrigona testaceicornes, and Tetragonisca angustula, from the region of São Gonçalo dos Campos-Bahia (BA) state, Brazil. (2) Methods: Cellular proteins were extracted from 2837 microbial isolates (pollen and honey) and identified via MALDI-TOF MS. The identified yeast species were also compared to the mass spectra of taxonomically well-characterized reference strains, available from the National Center of Biotechnology Information (NCBI) database. (3) Results: Nine yeast species were identified: Candida maltosa, Candida norvegica, Kazachstania telluris, Schizosaccharomyces pombe, Scheffersomyces insectosus, Meyerozyma guilliermondii, Brettanomyces bruxellensis, Kazachstania exigua, and Starmerella lactis-condensi. Nannotrigona testaceicornes pollen had the highest number of yeast colonies. The yeasts Brettanomyces bruxellensis and Kazachstania telluris showed high populations in the samples of Nannotrigona testaceicornes and Melipona scutellaris, respectively. This work shows that there is some sharing of the same species of yeast between honey and pollen from the same beehive. (4) Conclusions: A total of 71.84% of the identified species present a high level of confidence at the species level. Eight yeast species (Candida maltosa, Candida norvegica, Kazachstania telluris, Schizosaccharomyces pombe, Scheffersomyces insectosus, Meyerozyma guilliermondii, Kazachstania exigua, and Starmerella lactis-condensi) were found for the first time in the samples that the authors inspected. This contributes to the construction of new knowledge about the diversity of yeasts associated with stingless bee products, as well as to the possibility of the biotechnological application of some yeast species.
Collapse
Affiliation(s)
| | | | | | - Angélica Cristina Souza
- Department of Biology, Microbiology Sector, Federal University of Lavras, Lavras 37200-900, Brazil; (A.C.S.); (R.F.S.)
| | - Rosane Freitas Schwan
- Department of Biology, Microbiology Sector, Federal University of Lavras, Lavras 37200-900, Brazil; (A.C.S.); (R.F.S.)
| | - Marcelo Andrés Umsza-Guez
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil;
- Biotechnology Department, Federal University of Bahia, Salvador 40110-902, Brazil
| |
Collapse
|
9
|
Moura-Mendes J, Cazal-Martínez CC, Rojas C, Ferreira F, Pérez-Estigarribia P, Dias N, Godoy P, Costa J, Santos C, Arrua A. Species Identification and Mycotoxigenic Potential of Aspergillus Section Flavi Isolated from Maize Marketed in the Metropolitan Region of Asunción, Paraguay. Microorganisms 2023; 11:1879. [PMID: 37630439 PMCID: PMC10458825 DOI: 10.3390/microorganisms11081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Zea mays var. amylacea and Zea mays var. indurata are maize ecotypes from Paraguay. Aspergillus section Flavi is the main spoilage fungus of maize under storage conditions. Due to its large intraspecific genetic variability, the accurate identification of this fungal taxonomic group is difficult. In the present study, potential mycotoxigenic strains of Aspergillus section Flavi isolated from Z. mays var. indurata and Z. mays var. amylacea that are marketed in the metropolitan region of Asunción were identified by a polyphasic approach. Based on morphological characters, 211 isolates were confirmed to belong to Aspergillus section Flavi. A subset of 92 strains was identified as Aspergillus flavus by mass spectrometry MALDI-TOF and the strains were classified by MALDI-TOF MS into chemotypes based on their aflatoxins and cyclopiazonic acid production. According to the partial sequencing of ITS and CaM genes, a representative subset of 38 A. flavus strains was confirmed. Overall, 75 A. flavus strains (86%) were characterized as producers of aflatoxins. The co-occurrence of at least two mycotoxins (AF/ZEA, FUM/ZEA, and AF/ZEA/FUM) was detected for five of the Z. mays samples (63%). Considering the high mycological bioburden and mycotoxin contamination, maize marketed in the metropolitan region of Asunción constitutes a potential risk to food safety and public health and requires control measures.
Collapse
Affiliation(s)
- Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
| | - Cinthia C. Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Cinthia Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Francisco Ferreira
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Pastor Pérez-Estigarribia
- Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
- Facultad de Medicina, Universidad Sudamericana, Pedro Juan Caballero 130112, Paraguay
| | - Nathalia Dias
- BIOREN-UFRO Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patrício Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrea Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
10
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023; 160:116962. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
13
|
Liu T, Kang L, Xu J, Wang J, Gao S, Li Y, Li J, Yuan Y, Yuan B, Wang J, Zhao B, Xin W. PVBase: A MALDI-TOF MS Database for Fast Identification and Characterization of Potentially Pathogenic Vibrio Species From Multiple Regions of China. Front Microbiol 2022; 13:872825. [PMID: 35656002 PMCID: PMC9152771 DOI: 10.3389/fmicb.2022.872825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
The potentially pathogenic species of the genus Vibrio pose a threat to both humans and animals, creating medical burdens and economic losses to the mariculture industry. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can provide rapid diagnosis and has been widely used in the identification of Vibrio spp. The main weakness of this technology is the limited number of strains and species of Vibrio in the existing commercial database. Here, we develop a new in-house database named PVBase containing 790 main spectra projections (MSP) of ten Vibrio species that come from various regions of China and include abundant clinical and environmental strains. PVBase was validated through a blind test of 65 Vibrio strains. The identification accuracy and scoring of Vibrio strains was greatly improved through the addition of PVBase. Identification accuracy increased from 73.4 to 100%. The number of strains with identification scores above 2.2 increased from 53.1% to 96.9% and 53.1% of strains had an identification score above 2.59. Moreover, perfect discrimination was obtained when using all of the MSPs created for the Vibrio species, even for very closely related species such as V. cholerae, V. albensis, and V. mimicus or V. alginolyticus, V. parahaemolyticus, and V. harveyi. In addition, we used phyloproteomic analysis to study whether there are differences in protein fingerprints of different regions or pathogenic strains. We found that MSP characteristics of Vibrio species were not related to their region or source. With the construction of PVBase, the identification efficiency of potentially pathogenic Vibrio species has been greatly improved, which is an important advance for epidemic prevention and control, and aquaculture disease detection.
Collapse
Affiliation(s)
- Tingting Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
14
|
OUP accepted manuscript. Med Mycol 2022; 60:6561619. [DOI: 10.1093/mmy/myac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
|
15
|
Li Z, Yang Q, Du H, Wu W. Advances Of Pulsed Electric Field For Foodborne Pathogen Sterilization. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Han Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
16
|
de Souza T, Evangelista S, Passamani F, Bertechini R, de Abreu L, Batista L. Mycobiota of Minas artisanal cheese: Safety and quality. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
18
|
Lau AF. Matrix-Assisted Laser Desorption Ionization Time-of-Flight for Fungal Identification. Clin Lab Med 2021; 41:267-283. [PMID: 34020763 DOI: 10.1016/j.cll.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies have shown successful performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid yeast and mold identification, yet few laboratories have chosen to apply this technology into their routine clinical mycology workflow. This review provides an overview of the current status of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fungal identification, including key findings in the literature, processing and database considerations, updates in technology, and exciting future prospects. Significant advances toward standardization have taken place recently; thus, accurate species-level identification of yeasts and molds should be highly attainable, achievable, and practical in most clinical laboratories.
Collapse
Affiliation(s)
- Anna F Lau
- Sterility Testing Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, 10 Center Drive, Room 2C306, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Penland M, Falentin H, Parayre S, Pawtowski A, Maillard MB, Thierry A, Mounier J, Coton M, Deutsch SM. Linking Pélardon artisanal goat cheese microbial communities to aroma compounds during cheese-making and ripening. Int J Food Microbiol 2021; 345:109130. [PMID: 33735781 DOI: 10.1016/j.ijfoodmicro.2021.109130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Pélardon is an artisanal French raw goat's milk cheese, produced using natural whey as a backslop. The aim of this study was to identify key microbial players involved in the acidification and aroma production of this Protected Designation of Origin cheese. Microbial diversity of samples, collected from the raw milk to 3-month cheese ripening, was determined by culture-dependent (MALDI-TOF analysis of 2877 isolates) and -independent (ITS2 and 16S metabarcoding) approaches and linked to changes in biochemical profiles (volatile compounds and acids). In parallel, potential dominant autochthonous microorganism reservoirs were also investigated by sampling the cheese-factory environment. Complex and increasing microbial diversity was observed by both approaches during ripening although major discrepancies were observed regarding Lactococcus lactis and Lacticaseibacillus paracasei fate. By correlating microbial shifts to biochemical changes, Lactococcus lactis was identified as the main acidifying bacterium, while L. mesenteroides and Geotrichum candidum were prevalent and associated with amino acids catabolism after the acidification step. The three species were dominant in the whey (backslop). In contrast, L. paracasei, Enterococcus faecalis, Penicillium commune and Scopulariopsis brevicaulis, which dominated during ripening, likely originated from the cheese-making environment. All these four species were positively correlated to major volatile compounds responsible for the goaty and earthy Pélardon cheese aroma. Overall, this work highlighted the power of MALDI-TOF and molecular techniques combined with volatilome analyses to dynamically follow and identify microbial communities during cheese-making and successively identify the key-players involved in aroma production and contributing to the typicity of Pélardon cheese.
Collapse
Affiliation(s)
- Marine Penland
- STLO, INRAE, Institut Agro, 35042 Rennes, France; Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | | | | - Audrey Pawtowski
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | | - Anne Thierry
- STLO, INRAE, Institut Agro, 35042 Rennes, France
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | |
Collapse
|
20
|
Cen YK, Lin JG, Wang YL, Wang JY, Liu ZQ, Zheng YG. The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Front Bioeng Biotechnol 2020; 8:232. [PMID: 32292777 PMCID: PMC7118215 DOI: 10.3389/fbioe.2020.00232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, there has been a noticeable increase in research interests on the Fusarium species, which includes prevalent plant pathogens and human pathogens, common microbial food contaminants and industrial microbes. Taken the advantage of gibberellin synthesis, Fusarium fujikuroi succeed in being a prevalent plant pathogen. At the meanwhile, F. fujikuroi was utilized for industrial production of gibberellins, a group of extensively applied phytohormone. F. fujikuroi has been known for its outstanding performance in gibberellin production for almost 100 years. Research activities relate to this species has lasted for a very long period. The slow development in biological investigation of F. fujikuroi is largely due to the lack of efficient research technologies and molecular tools. During the past decade, technologies to analyze the molecular basis of host-pathogen interactions and metabolic regulations have been developed rapidly, especially on the aspects of genetic manipulation. At the meanwhile, the industrial fermentation technologies kept sustained development. In this article, we reviewed the currently available research tools/methods for F. fujikuroi research, focusing on the topics about genetic engineering and gibberellin production.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Guang Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - You-Liang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jun-You Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Redondo-Blanco S, Fernández J, López-Ibáñez S, Miguélez EM, Villar CJ, Lombó F. Plant Phytochemicals in Food Preservation: Antifungal Bioactivity: A Review. J Food Prot 2020; 83:163-171. [PMID: 31860394 DOI: 10.4315/0362-028x.jfp-19-163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic food additives generate a negative perception in consumers. This fact generates an important pressure on food manufacturers, searching for safer natural alternatives. Phytochemicals (such as polyphenols and thiols) and plant essential oils (terpenoids) possess antimicrobial activities that are able to prevent food spoilage due to fungi (e.g., Aspergillus, Penicillium) and intoxications (due to mycotoxins), both of which are important economic and health problems worldwide. This review summarizes industrially interesting antifungal bioactivities from the three main types of plant nutraceuticals: terpenoids (as thymol), polyphenols (as resveratrol) and thiols (as allicin) as well as some of the mechanisms of action. These phytochemicals are widely distributed in fruits and vegetables and are very useful in food preservation as they inhibit growth of important spoilage and pathogenic fungi, affecting especially mycelial growth and germination. Terpenoids and essential oils are the most abundant group of secondary metabolites found in plant extracts, especially in common aromatic plants, but polyphenols are a more remarkable group of bioactive compounds as they show a broad array of bioactivities.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| | - Javier Fernández
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| | - Sara López-Ibáñez
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| | - Elisa M Miguélez
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| | - Claudio J Villar
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| | - Felipe Lombó
- Research Group Biotechnology of Nutraceuticals and Bioactive Compounds (BIONUC), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, 33006 Oviedo, Principality of Asturias, Spain; and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain
| |
Collapse
|
22
|
Rapid Detection of Microbial Mass Spectra VITEK-MS for Campylobacter jejuni and Listeria monocytogenes. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01663-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Lv J, Li C, Li S, Liang H, Ji C, Zhu B, Lin X. Effects of temperature on microbial succession and quality of sour meat during fermentation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
|
25
|
Quéro L, Courault P, Cellière B, Lorber S, Jany JL, Puel O, Girard V, Vasseur V, Nodet P, Mounier J. Application of MALDI-TOF MS to species complex differentiation and strain typing of food related fungi: Case studies with Aspergillus section Flavi species and Penicillium roqueforti isolates. Food Microbiol 2019; 86:103311. [PMID: 31703856 DOI: 10.1016/j.fm.2019.103311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
Filamentous fungi are one of the main causes of food losses worldwide and their ability to produce mycotoxins represents a hazard for human health. Their correct and rapid identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as a rapid and reliable tool for fungi identification and was applied to typing of bacteria and yeasts, but few studies focused on filamentous fungal species complex differentiation and typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species and integrated into a database for which cross-validation led to more than 99% of correctly attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step calibration procedure was applied before database construction. Cross-validation and external validation respectively led to 94% and 95% of spectra attributed to the right population. Results obtained here suggested very good agreement between spectral and genetic data analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF applicability as a fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.
Collapse
Affiliation(s)
- Laura Quéro
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France; BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Priscillia Courault
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Beatrice Cellière
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Jean-Luc Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Victoria Girard
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Valérie Vasseur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Patrice Nodet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| |
Collapse
|
26
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
27
|
Wigmann ÉF, Behr J, Vogel RF, Niessen L. MALDI-TOF MS fingerprinting for identification and differentiation of species within the Fusarium fujikuroi species complex. Appl Microbiol Biotechnol 2019; 103:5323-5337. [DOI: 10.1007/s00253-019-09794-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
|