1
|
Ciurlă L, Enache IM, Buțerchi I, Mihalache G, Lipșa FD, Patraș A. A New Approach to Recover Bioactive Compounds from Apple Pomace: Healthy Jelly Candies. Foods 2024; 14:39. [PMID: 39796329 PMCID: PMC11720155 DOI: 10.3390/foods14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Rich in bioactive compounds, carbohydrates, fibers, minerals, and trace elements, apple pomace (AP) is a significant agro-industrial by-product, which pollutes and brings high management costs. The current study investigates the possibility of using an aqueous AP extract (APE) as the main ingredient in a jelly candy recipe, replacing artificial colors and flavors and improving its nutritional value. APE and formulated jelly candies were analyzed in terms of their phytochemical profile, antioxidant capacity, and color parameters. In addition, the microbiological and sensory properties of the jelly candies, as well as their behavior during storage, were analyzed. An HPLC analysis of AP revealed the presence of 9 individual phenolic compounds, with a high content of protocatechuic (375.21 ± 18.76 µg/g DW) and p-hydroxybenzoic (164.96 ± 13.83 µg/g DW) acids. The results of this study prove the presence of bioactive compounds with antioxidant and antidiabetic properties in both APE and its candies. Investigation on jelly candies with APE revealed an antioxidant capacity of 142.03 ± 1.08 mmol TE/g DW and a total polyphenolic content of 8.25 ± 0.17 mg GAE/g DW. Additionally, a sensory analysis highly appreciated the proposed jelly with APE, with scores higher than 4.70/5.00 for all evaluated attributes. Thus, this study succeeded in developing a new approach to recovering bioactive compounds from AP, demonstrating the potential of this by-product to improve jelly candies' attributes while promoting sustainability through waste reduction and the effective use of natural resources.
Collapse
Affiliation(s)
- Liliana Ciurlă
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Iuliana-Maria Enache
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Ioana Buțerchi
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Gabriela Mihalache
- Faculty of Agriculture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania
- Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Florin Daniel Lipșa
- Faculty of Agriculture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania
| | - Antoanela Patraș
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| |
Collapse
|
2
|
Modi R, Sahota P. Lactic acid bacteria as an adjunct starter culture in the development of metabiotic functional turmeric ( Curcuma longa Linn.) beverage. FOOD SCI TECHNOL INT 2024; 30:646-659. [PMID: 37128125 DOI: 10.1177/10820132231173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Turmeric (Curcuma longa) is a highly nutritious rhizomatous herbaceous plant with remarkable chemical composition and biologically active compounds. This study aimed to evaluate the turmeric, ginger and lemon blend as a fermentable substrate by lactic acid bacteria to develop a fermented nondairy beverage. Results showed that turmeric blend (turmeric 2% w/v, ginger 1.5% v/v, 5% v/v) was an excellent matrix for lactic acid bacteria growth and fermentation dramatically increased total phenolic, flavonoid content and antioxidants capacities impacting the color and sensory properties. Moreover, the formulated fermented turmeric blend was stable for more than 90 days at 4 °C with a healthy bacterial population and nutraceutical stability. Turmeric beverage also inhibited the growth of Caco-2 and MOLT 4 cancerous cell lines in a dosage and time-reliant manner. This way, lactic acid fermentation can be considered as an appropriate tool for developing turmeric based novel bio-intervention with enhanced bioactivity and antagonistic efficacy against recurring food-borne pathogen in this post-antibiotic era.
Collapse
Affiliation(s)
- Ritika Modi
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - ParamPal Sahota
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
5
|
Piasecka I, Brzezińska R, Kalisz S, Wiktor A, Górska A. Response Surface Methodology for Optimization of Ultrasound-Assisted Antioxidants Extraction from Blackberry, Chokeberry and Raspberry Pomaces. PLANTS (BASEL, SWITZERLAND) 2024; 13:1120. [PMID: 38674528 PMCID: PMC11053409 DOI: 10.3390/plants13081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
An investigation of the ultrasound-assisted extraction (UAE) of polyphenol-rich aqueous extracts from blackberry, chokeberry and raspberry pomaces was carried out. The aim of the study was to choose optimal conditions for UAE in order to obtain extracts rich in phenolic compounds. The optimization was carried out based on response surface methodology. The variable conditions were amplitude of ultrasound wave and extraction time, whereas responses were total polyphenol content and antioxidant capacity. Based on the ANOVA analysis, mathematical models were fitted and verified. The most effective conditions of amplitude and time were 98% and 5.00 min, 78% and 10.32 min and 90% and 11.56 min for blackberry pomace, chokeberry pomace and raspberry pomace, respectively. The actual results obtained in optimized conditions were comparable to the results predicted by the models. Additionally, the anthocyanin content in extracts was determined in the high-performance liquid chromatography assay. It was proven that response surface methodology could be a useful tool in the optimization of UAE processes for obtaining polyphenol-rich extracts from berry fruit pomaces.
Collapse
Affiliation(s)
- Iga Piasecka
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska Street, 02-787 Warsaw, Poland; (R.B.); (A.G.)
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska Street, 02-787 Warsaw, Poland; (R.B.); (A.G.)
| | - Stanisław Kalisz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska Street, 02-787 Warsaw, Poland;
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska Street, 02-787 Warsaw, Poland;
| | - Agata Górska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska Street, 02-787 Warsaw, Poland; (R.B.); (A.G.)
| |
Collapse
|
6
|
Mohammadi N, Guo Y, Wang K, Granato D. Macroporous resin purification of phenolics from Irish apple pomace: Chemical characterization, and cellular antioxidant and anti-inflammatory activities. Food Chem 2024; 437:137815. [PMID: 37918156 DOI: 10.1016/j.foodchem.2023.137815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Apple pomace (AP) is a highly prevalent waste product worldwide in the fruit processing sector. This study compared the chemical profile, antioxidant, and anti-inflammatory activities of crude (CE) and an extract purified using XAD-7 resin (PE). The purification process increased the total phenolic content, flavonoids, and tannins by 3.35, 40.31, and 8.87-fold, respectively. The main phenolic compounds identified in PE were phlorizin (20.54 mg/g), chlorogenic acid (10.01 mg/g), and hyperoside (2.77 mg/g). No difference was found between CE and PE in protecting human plasma against oxidation. In human erythrocytes, both CE and PE decreased the reactive oxygen species (ROS) generation and decreased lipoperoxidation. However, PE had stronger anti-inflammatory effects than CE by promoting HO-1 gene expression, suppressing NO production, and inhibiting IL-1β, IL-6, and IL-10 mRNA expression in lipopolysaccharide-challenged RAW.264.7 macrophages. Therefore, purifying apple pomace crude extract is a promising approach to boosting valuable antioxidants and anti-inflammatory phenolics.
Collapse
Affiliation(s)
- Nima Mohammadi
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Yuyang Guo
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland; Bernal Institute. University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
7
|
Sha SP, Modak D, Sarkar S, Roy SK, Sah SP, Ghatani K, Bhattacharjee S. Fruit waste: a current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front Microbiol 2023; 14:1260071. [PMID: 37942074 PMCID: PMC10628478 DOI: 10.3389/fmicb.2023.1260071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Fruits are crucial components of a balanced diet and a good source of natural antioxidants, that have proven efficacy in various chronic illnesses. Various kinds of waste generated from fruit industries are considered a global concern. By utilizing this fruit waste, the international goal of "zero waste" can be achieved by sustainable utilization of these waste materials as a rich source of secondary metabolites. Moreover, to overcome this waste burden, research have focused on recovering the bioactive compounds from fruit industries and obtaining a new strategy to combat certain chronic diseases. The separation of high-value substances from fruit waste, including phytochemicals, dietary fibers, and polysaccharides which can then be used as functional ingredients for long-term health benefits. Several novel extraction technologies like ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) could provide an alternative approach for successful extraction of the valuable bioactives from the fruit waste for their utilization as nutraceuticals, therapeutics, and value-added products. Most of these waste-derived secondary metabolites comprise polyphenols, which have been reported to have anti-inflammatory, insulin resistance-treating, cardiovascular disease-maintaining, probiotics-enhancing, or even anti-microbial and anti-viral capabilities. This review summarizes the current knowledge of fruit waste by-products in pharmacological, biological, and probiotic applications and highlights several methods for identifying efficacious bioactive compounds from fruit wastes.
Collapse
Affiliation(s)
- Shankar Prasad Sha
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sumit Prasad Sah
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Kriti Ghatani
- Food Microbiology Laboratory, Department of Food Technology, University of North Bengal, Raja Rammohunpur, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
8
|
Pageau G, Levasseur M, Paniconi T, Jubinville E, Goulet-Beaulieu V, Boivin G, Jean J. The possibility of spreading herpes simplex virus type 1 via food handling and sharing. J Appl Microbiol 2023; 134:lxad224. [PMID: 37827542 DOI: 10.1093/jambio/lxad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
AIMS Herpes simplex virus type 1 (HSV-1) is an enveloped virus that causes recurrent and incurable diseases in 67% of the world population. Although it is not listed as a foodborne virus, some studies have shown that it can be recovered from surfaces as well as food. METHODS AND RESULTS We investigated its persistence at -20°C, 4°C, 20°C, or 37°C for up to 7 days on stainless steel, aluminum, glass, polypropylene, cheddar cheese, sliced almond, and apple skin and in cola soft drink, orange juice, coffee, and milk, as well as its transferability from stainless steel to dry or moistened nitrile or latex gloves over time at typical ambient temperatures. Based on the plaque assay on Vero cells, HSV-1 persisted at least 24 h on all surfaces and at least 1 h on food matrices but was inactivated quickly in cola soft drink. Temperature and pH affected HSV-1 infectivity. Transfer of HSV-1 at a contact pressure of 1 kg cm2-1 for 10 s occurred only on latex, especially moistened. CONCLUSIONS Our data on the persistence of HSV-1 on food-related surfaces suggest that some risk may be associated with sharing foods with infected carriers.
Collapse
Affiliation(s)
- Gabrielle Pageau
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Marianne Levasseur
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Teresa Paniconi
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Quebec City, Quebec G1V 4G2, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| |
Collapse
|
9
|
Liu J, Yin J, Huang X, Liu C, Hu L, Huang Y, Geng F, Nie S. Anthraquinone Removal from Cassia obtusifolia Seed Water Extract Using Baking, Stir-Frying, and Adsorption Treatments: Effects on the Chemical Composition, Physicochemical Properties of Polysaccharides, and Antioxidant Activities of the Water Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5721-5732. [PMID: 36971230 DOI: 10.1021/acs.jafc.3c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Safety issues of the controversial anthraquinones from Cassia obtusifolia seed water extracts (CWEs) limit its application. This work aimed to remove the anthraquinones of CWEs by baking treatment (BT), stir-frying treatment (ST), and adsorption treatment (AT). Effects of these treatments on the chemical composition, physicochemical properties of polysaccharides, and antioxidant activities of CWEs were analyzed and compared. Results indicated that AT exhibited the best removal effect on the total anthraquinone among the three treatments. After AT, the contents of rhein, emodin, aloe-emodin, and aurantio-obtusin of the CWE were below the limit of detection. In addition, AT increased the contents of neutral sugars in CWEs in comparison to BT and ST. None of the treatments had an obvious influence on the structural characteristics of polysaccharides. However, AT decreased the antioxidant activity of CWEs due to their lower anthraquinone content. In summary, AT was considered as an efficient and simple method to remove anthraquinones, while retaining the features of polysaccharides.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cencen Liu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | - Liuyun Hu
- Infinitus (China) Co. Ltd, Guangzhou 510263, China
| | | | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi 330047, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
10
|
Cossignani L, Ianni F, Blasi F, Pollini L, Di Michele A, Pagano C, Ricci M, Perioli L. Effect of Different Drying Treatments and Sieving on Royal Gala Apple Pomace, a Thickening Agent with Antioxidant Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:906. [PMID: 36840253 PMCID: PMC9967744 DOI: 10.3390/plants12040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is an increasing interest in the search of natural derived materials as valuable substitutes for microplastics. One of the categories investigated, represented by thickening agents deriving from agri-food waste and apple pomace (AP), was considered of interest. In this study AP was submitted to three different treatments and drying conditions (oven drying at 55 °C for 12 h; homogenization and oven drying at 55 °C for 12 h; homogenization and freeze-drying), and then grinded and sieved obtaining three different dimensional fractions (>400 µm, 250-400 µm and <250 µm). The hydroalcoholic extracts of these fractions, obtained by ultrasound-assisted extraction, were analyzed to compare their total phenol content (TPC), antioxidant properties, and phenol profile. Correlation studies between the above-indicated parameters were also carried out. The highest values of TPC, antioxidant capacity, and phenol content (determined by liquid chromatography) were found for oven dried AP (250-400 μm) or homogenized and freeze-dried (>400 μm) samples. Both samples were most suitable to form stable hydrogels and the sample obtained after drying at 55 °C showed the best performances in terms of ability to form a stable hydrogel. Among the studied treatments and drying conditions, the oven dried AP was demonstrated to be an interesting stabilizing material with potential applications in many fields (such as food, cosmetics, and nutraceuticals) showing both antioxidant activity and thickening capacity.
Collapse
Affiliation(s)
- Lina Cossignani
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Federica Ianni
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Blasi
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Luna Pollini
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | | | - Cinzia Pagano
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Maurizio Ricci
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Luana Perioli
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
11
|
Gumul D, Kruczek M, Ivanišová E, Słupski J, Kowalski S. Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds. Foods 2023; 12:foods12040804. [PMID: 36832879 PMCID: PMC9957340 DOI: 10.3390/foods12040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The global overproduction of apples is associated with large amounts of post-production waste, for which new forms of utilization should be sought. Therefore, we aimed to enrich wheat pasta with apple pomace in various percentages (10, 20, 30 and 50%). The content of total polyphenols, individual polyphenols (using UPLC-PDA-MS/MS methods) and dietary fibre, chemical composition and physical properties of the resulting pasta were determined. The addition of apple pomace to pasta resulted in increased levels of pro-health compounds: total polyphenols, phenolic acids, quercetin derivatives, flavon-3-ols and dihydrochalcones as well as dietary fibre. Decreases in hardness and maximum cutting energy were also observed in pasta supplemented with apple pomace compared to control pasta. Water absorption capacity was not influenced by the addition of apple pomace, with the exception of pasta made with 50% apple pomace.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Marek Kruczek
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Eva Ivanišová
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jacek Słupski
- Department of Plant Products Technology and Hygiene Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Stanisław Kowalski
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
- Correspondence:
| |
Collapse
|
12
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
13
|
Hobbi P, Okoro OV, Hajiabbas M, Hamidi M, Nie L, Megalizzi V, Musonge P, Dodi G, Shavandi A. Chemical Composition, Antioxidant Activity and Cytocompatibility of Polyphenolic Compounds Extracted from Food Industry Apple Waste: Potential in Biomedical Application. Molecules 2023; 28:675. [PMID: 36677733 PMCID: PMC9864418 DOI: 10.3390/molecules28020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Apple pomace (AP) from the food industry is a mixture of different fractions containing bioactive polyphenolic compounds. This study provides a systematic approach toward the recovery and evaluation of the physiochemical and biological properties of polyphenolic compounds from AP. We studied subcritical water extraction (SCW) and solvent extraction with ethanol from four different AP fractions of pulp, peel, seed, core, and stem (A), peel (B), seed and core (C), and pulp and peel (D). The subcritical water method at the optimum condition resulted in total polyphenolic compounds (TPC) of 39.08 ± 1.10 mg GAE per g of AP on a dry basis compared to the ethanol extraction with TPC content of 10.78 ± 0.94 mg GAE/g db. Phloridzin, chlorogenic acid, and quercetin were the main identified polyphenolics in the AP fractions using HPLC. DPPH radical scavenging activity of fraction B and subcritical water (SW) extracts showed comparable activity to ascorbic acid while all ethanolic extracts were cytocompatible toward human fibroblast (3T3-L1) and salivary gland acinar cells (NS-SV-AC). Our results indicated that AP is a rich source of polyphenolics with the potential for biomedical applications.
Collapse
Affiliation(s)
- Parinaz Hobbi
- École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, B-1050 Brussels, Belgium
| | - Oseweuba Valentine Okoro
- École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, B-1050 Brussels, Belgium
| | - Maryam Hajiabbas
- École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, B-1050 Brussels, Belgium
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium
| | - Masoud Hamidi
- École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, B-1050 Brussels, Belgium
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
| | - Véronique Megalizzi
- Pharmacognosy, Bioanalysis & Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Paul Musonge
- Institute of Systems Science, Durban University of Technology, Durban 4000, South Africa
- Faculty of Engineering, Mangosuthu University of Technology, Durban 4000, South Africa
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Amin Shavandi
- École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, B-1050 Brussels, Belgium
| |
Collapse
|
14
|
Dermengiu NE, Milea ȘA, Burada BP, Stanciu S, Cîrciumaru A, Râpeanu G, Stănciuc N. A dark purple multifunctional ingredient from blueberry pomace enhanced with lactic acid bacteria for various applications. J Food Sci 2022; 87:4725-4737. [PMID: 36124384 DOI: 10.1111/1750-3841.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
Nowadays, large quantities of berries are still being dumped or used for composting and animal feeding. The objective of this study was to customize a technological design for appropriate valorization of blueberry pomace into a shelf-life-stable, dark purple multifunctional ingredient, containing lactic acid bacteria (Lactobacillus casei), by freeze-drying. The main anthocyanins in blueberries freeze-dried inoculated pomace are malvidin 3-O-glucoside, peonidin 3-O-glucoside, and cyanidin 3-O-glucoside. A viable cells content of 4.75×108 CFU/g DW was found after freeze-drying and the ability of the freeze-dried powder to inhibit the DPPH radical was 171.98 ± 1.73 mMol Trolox/g DW. The results obtained from CIElab analysis show a tendency to red and blue, characteristic of blueberry anthocyanins. The bioaccesibility of anthocyanins from blueberry powder was 37.8% and the probiotic survival rate after passing through the digestion process was 49.56%. The inhibitory potential of the obtained powder on α-amylase, pancreatic lipase, and α-glucosidase and tyrosinase was assessed. A significant antidiabetic potential of the powder was found, with IC50 values for α-amylase of 2.61 ± 0.24 mg/ml and for α-glucosidase of 1.37 ± 0.01 mg/ml, significantly lower when compared to corresponding drugs used in current practices. The powder also showed a significant potential to inhibit tyrosinase, supporting the hypothesis that the pomace resulting from juice and wine manufacturing may be successfully used to develop multifunctional ingredients with significant health benefits. PRACTICAL APPLICATION: Nowadays, food scientists and industry are seeking technological alternatives to obtain functional ingredients, due to the global interest in translating and applying scientific knowledge to address consumers' health issues. In our study, a freeze-drying customized design involving the use of the blueberry pomace, pectin, and Lactobacillus casei was applied to develop an ingredient with multiple functions. Besides a remarkable color, the powder showed good antioxidant activity, in vitro cells viability, and inhibitory activity against some metabolic syndrome-associated enzymes.
Collapse
Affiliation(s)
| | - Ștefania Adelina Milea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Bogdan Păcularu Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Silvius Stanciu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Adrian Cîrciumaru
- Cross-Border Faculty, Dunarea de Jos University of Galati, Galați, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Galati, Romania
| |
Collapse
|
15
|
Benvenutti L, Bortolini DG, Fischer TE, Zardo DM, Nogueira A, Zielinski AAF, Alberti A. Bioactive compounds recovered from apple pomace as ingredient in cider processing: monitoring of compounds during fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3349-3358. [PMID: 35875229 PMCID: PMC9304537 DOI: 10.1007/s13197-021-05318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
The apple pomace-industrial residue of apple beverages manufacture-presents 42-58% of the phenolic content of fresh fruit. As the phenolic composition influences the quality of ciders, it is very relevant to monitor the evolution of these compounds during the industrial process. Therefore, this research aim was to monitor the cider composition with the addition of phenolic extract from apple pomace during the fermentation. Two treatments, S1 (without extract) and S2 (with added extract), were evaluated during 15 days of fermentation. After 15 fermentation days, the sample S2 presented an increase of 23% in total phenolic compounds and 40% in flavonoids without harm to the fermentation kinetics. Concerning the evolution of monomeric phenolic compounds, the phenolic acids in S1 and S2 presented a similar trend during the fermentation period. Enzymatic hydrolysis reactions resulted in the chlorogenic acid content decreasing, in line with increased levels of caffeic acid. Phloridzin and quercetin glycosides content showed the greatest increase in S2. The final product S2 presented higher antioxidant activity and some sensorial characteristics (astringency, bitterness and colour) were accentuated. This work shows that phenolic compounds added were maintained during the process and it did not prejudice the fermentation reactions. Therefore, this is a good alternative to valorize apple pomace and improve the functional and sensorial quality of the cider.
Collapse
Affiliation(s)
- Laís Benvenutti
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| | - Débora Gonçalves Bortolini
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| | - Thaís Estéfane Fischer
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| | - Danianni Marinho Zardo
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| | - Alessandro Nogueira
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| | | | - Aline Alberti
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Ponta Grossa, PR 84030-900 Brazil
| |
Collapse
|
16
|
Deniz S, Ünlü AE, Takaç S. Ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from apple pomace. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Selin Deniz
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| | - Ayşe Ezgi Ünlü
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| | - Serpil Takaç
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| |
Collapse
|
17
|
Fotirić Akšić M, Nešović M, Ćirić I, Tešić Ž, Pezo L, Tosti T, Gašić U, Dojčinović B, Lončar B, Meland M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front Nutr 2022; 9:941487. [PMID: 35845808 PMCID: PMC9280294 DOI: 10.3389/fnut.2022.941487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Using modern analytical techniques, a comprehensive study of the chemical composition of fruits from apple cultivars grown in Western Norway during 2019 and 2020 was done. Metals, sugars, organic acids, antioxidant tests, and polyphenol content have been observed. In all investigated samples, the most dominant sugars were glucose, fructose, and sucrose. Among 11 tested organic acids, the dominant was malic acid, followed by citric and maleic acid. The most common metal was potassium, followed by magnesium and zinc. The quantification of polyphenols showed that among the 11 quantified polyphenols, chlorogenic acid, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin, and phlorizin were the most abundant. A detailed study of the polyphenolic profile of nine investigated apple samples provided 30 identified polyphenolic compounds from the class of hydroxybenzoic and hydroxycinnamic acids, flavonoids, and dihydrochalcones. In addition to the identified 3-O-caffeoylquinic acid, its two isomers of 5-O-caffeoylquinic acid and three esters were also found. Present polyphenols of the tested apples provided significant data on the quality of Norwegian apples, and they contribute to the distinguishing of these apple samples.
Collapse
Affiliation(s)
| | - Milica Nešović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Ivanka Ćirić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Belgrade, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Lončar
- University of Novi Sad-Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Mekjell Meland
- Department of Horticulture, NIBIO Ullensvang, Norwegian Institute of Bioeconomy Research, Lofthus, Norway
- *Correspondence: Mekjell Meland
| |
Collapse
|
18
|
Vieira TM, Alves VD, Moldão Martins M. Application of an Eco-Friendly Antifungal Active Package to Extend the Shelf Life of Fresh Red Raspberry ( Rubus idaeus L. cv. 'Kweli'). Foods 2022; 11:1805. [PMID: 35742002 PMCID: PMC9222906 DOI: 10.3390/foods11121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022] Open
Abstract
The main objective of this study was to extend the shelf life of fresh red raspberry (Rubus idaeus. L. cv. 'Kweli') by using active film-pads inside commercial compostable packages. The pads were produced with chitosan (Ch) with the incorporation of green tea (GTE) and rosemary (RSME) ethanolic extracts as natural antifungal agents. Pads were placed on the bottom of commercial fruit trays underneath the fruits, and the trays were heat-sealed with a polyacid lactic (PLA) film. Preservation studies were carried out over 14 days of storage at refrigeration temperature (4 °C). Raspberry samples were periodically analyzed throughout storage, in terms of quality attributes (fungal decay, weight loss, firmness, surface color, pH, total soluble solids), total phenolic content and antioxidant activity. Gas composition inside the packages was also analyzed over time. From the packaging systems tested, the ones with active film-pads Ch + GTE and Ch + RSME were highly effective in reducing fungal growth and decay of raspberry during storage, showing only around 13% and 5% of spoiled fruits after 14 days, respectively, in contrast with the packages without pads (around 80% of spoiled fruits detected). In addition, fruits preserved using packages with Ch + RSME active film-pads showed lower mass loss (5.6%), decreased firmness (3.7%) and reduced antioxidant activity (around 9% and 15% for DPPH and FRAP methods, respectively). This sustainable packaging presents a potential strategy for the preservation of raspberries and other highly perishable small fruits.
Collapse
Affiliation(s)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (T.M.V.); (M.M.M.)
| | | |
Collapse
|
19
|
Extraction of Antioxidants from Grape and Apple Pomace: Solvent Selection and Process Kinetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyphenols have become a research target due to their antioxidant, anti-inflammatory and antimicrobial activity. Obtention via extraction from natural sources includes the revalorization of food wastes such as grape pomace (GP) or apple pomace (AP). In this work, GP and AP were submitted to a liquid–solid extraction using different solvents of industrial interest. Process kinetics were studied measuring the total phenolic content (TPC) and antioxidant capacity (AC), while the extraction liquor composition was analyzed employing chromatographic methods. Extraction processes using water-solvent mixtures stood out as the better options, with a particular preference for water 30%–ethanol 70% (v/v) at 90 °C, a mixture that quickly extracts up to 68.46 mg GAE/gds (Gallic Acid Equivalent per gram dry solid) and 122.67 TEAC/gds (TROLOX equivalent antioxidant capacity per gram dry solid) in case of GP, while ethylene water 10%–ethylene glycol 90% (v/v) at 70 °C allows to reach 27.19 mg GAE/gds and 27.45 TEAC/gds, in the case of AP. These extraction processes can be well-described by a second-order kinetic model that includes a solubility-related parameter for the first and fast-washing and two parameters for the slow mass transfer controlled second extraction phase. AP liquors were found to be rich in quercetin with different sugar moieties and GP extracts highlighted flavonols, cinnamic acids, and anthocyanins. Therefore, using identical extraction conditions for AP and GP and a comparative kinetic analysis of TPC and AC results for the first time, we concluded that ethanol/water mixtures are adequate solvents for polyphenols extraction due to their high efficiency and environmentally benign nature.
Collapse
|
20
|
The Polysaccharides from the Aerial Parts of Bupleurum chinense DC Attenuate Epilepsy-Like Behavior through Oxidative Stress Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7907814. [PMID: 35432728 PMCID: PMC9010214 DOI: 10.1155/2022/7907814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Bupleurum chinense DC. is a traditional Chinese medicine with a long medicinal history and is often used as the main ingredient in prescription drugs for epilepsy. The aerial parts of B. chinense DC. have similar efficacy and composition to B. chinense DC. Therefore, we speculated that the aerial parts of B. chinense DC. could be used in the treatment of epilepsy. Polysaccharides from the aerial parts of B. chinense DC. were selected to explore their therapeutic effects on epilepsy and their potential mechanism of action. The study is aimed at clarifying the antiepileptic effects of the polysaccharides from the aerial parts of B. chinense DC. and their potential underlying mechanisms. The chemical profile of the aerial parts of B. chinense DC. polysaccharides (ABP) was characterized by FT-IR spectrum and HPLC chromatogram. To determine the therapeutic effects of ABPs on epilepsy, we established a kainic acid- (KA-) induced rat model of epilepsy, and through H&E staining, Nissl staining, immunohistochemistry, biochemical analysis, ELISA, and Western blot analysis, we explored the mechanisms underlying the therapeutic effects of ABPs on epilepsy. The monosaccharide content of ABP included galacturonic acid (45.19%), galactose (36.63%), arabinose rhamnose (12.13%), and mannose (6.05%). Moreover, the average molecular weight of ABP was 1.38 × 103 kDa. ABP could improve hippocampal injuries and neuronal function in the KA-induced epilepsy rat model. ABP significantly inhibited oxidative stress in the hippocampus of KA-induced rats. More importantly, ABP could regulate TREM2 activation in the PI3K/Akt/GSK-3β pathway to inhibit neuronal apoptosis, including increasing the expression of superoxide dismutase and lactate dehydrogenase and decreasing the expression of malondialdehyde. The current study defined the potential role of ABP in inhibiting the development of epilepsy, indicating that ABP could upregulate TREM2 to alleviate neuronal apoptosis, by activating the PI3K/Akt/GSK-3β pathway and oxidative stress in epilepsy.
Collapse
|
21
|
KURTULBAŞ ŞAHİN E. Microwave-assisted extraction of Prunus cerasus L. peels: Citric acid-based deep eutectic solvents. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1033685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Jia M, Joyce JD, Bertke AS. SARS-CoV-2 Survival in Common Non-Alcoholic and Alcoholic Beverages. Foods 2022; 11:802. [PMID: 35327225 PMCID: PMC8947642 DOI: 10.3390/foods11060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, is known to be transmitted by respiratory droplets and aerosols. Since the virus is shed at high concentrations in respiratory secretions and saliva, SARS-CoV-2 would also be expected to be transmitted through activities that involve the transfer of saliva from one individual to another, such as kissing or sharing beverages. To assess the survival of infectious SARS-CoV-2 in common beverages, we quantified infectious virus by plaque assays one hour after inoculation into 18 non-alcoholic and 16 alcoholic beverages, plus saliva, and also 7 days later for 5 of these beverages. SARS-CoV-2 remains infectious with minimal reductions in several common beverages, including milk and beer. However, cocoa, coffee, tea, fruit juices, and wine contain antiviral compounds that inactivate SARS-CoV-2. Although hard liquors containing 40% alcohol immediately inactivate SARS-CoV-2, mixing with non-alcoholic beverages reduces the antiviral effects. In summary, SARS-CoV-2 can be recovered from commonly consumed beverages in a beverage type and time-dependent manner. Although aerosol or droplet transmission remains the most likely mode of transmission, our findings combined with others suggest that beverages contaminated with SARS-CoV-2 during handling, serving, or through sharing of drinks should be considered as a potential vehicle for virus transmission.
Collapse
Affiliation(s)
- Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Jonathan D. Joyce
- Translational Biology, Medicine & Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Andrea S. Bertke
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Todorova N, Rangelov M, Dincheva I, Badjakov I, Enchev V, Markova N. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting of herpes simplex virus DNA polymerase – metabolome profiling, molecular docking and quantum-chemical analysis. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e79467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to our previous investigation the total methanol extract from Graptopetalum paraguayense E. Walther demonstrates a significant inhibitory effect on herpes simplex virus type 1 (HSV-1). To clarify what causes this inhibitory activity on HSV-1, a metabolic profile of the plant was performed. Three main fractions: non-polar substances, polar metabolites and phenolic compounds were obtained and gas chromatography–mass spectrometry (GC-MS) analysis was carried out. Since it is well known that phenolic compounds show a significant anti-herpes effect and that viral DNA polymerase (DNApol) appears to play a key role in HSV virus replication, we present a docking and quantum-chemical analysis of the binding of these compounds to viral DNApol amino acids. Fourteen different phenolic acids found by GC-MS analyses, were used in molecular docking simulations. According to the interaction energies of all fourteen ligands in the DNApol pockets based on docking results, density functional theory (DFT) calculations were performed on the five optimally interacting with the receptor acids. It was found that hydroxybenzoic acids from phenolic fraction of Graptopetalum paraguayense E. Walther show a good binding affinity to the amino acids from the active site of the HSV DNApol, but significantly lower than that of acyclovir. The mode of action on virus replication of acyclovir (by DNApol) is different from that of the plant phenolic acids one, probably.
Collapse
|
24
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J. Polyphenols and their potential role to fight viral diseases: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149719. [PMID: 34438146 PMCID: PMC8373592 DOI: 10.1016/j.scitotenv.2021.149719] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
Fruits, vegetables, spices, and herbs are a potential source of phenolic acids and polyphenols. These compounds are known as natural by-products or secondary metabolites of plants, which are present in the daily diet and provide important benefits to the human body such as antioxidant, anti-inflammatory, anticancer, anti-allergic, antihypertensive and antiviral properties, among others. Plentiful evidence has been provided on the great potential of polyphenols against different viruses that cause widespread health problems. As a result, this review focuses on the potential antiviral properties of some polyphenols and their action mechanism against various types of viruses such as coronaviruses, influenza, herpes simplex, dengue fever, and rotavirus, among others. Also, it is important to highlight the relationship between antiviral and antioxidant activities that can contribute to the protection of cells and tissues of the human body. The wide variety of action mechanisms of antiviral agents, such as polyphenols, against viral infections could be applied as a treatment or prevention strategy; but at the same time, antiviral polyphenols could be used to produce natural antiviral drugs. A recent example of an antiviral polyphenol application deals with the use of hesperidin extracted from Citrus sinensis. The action mechanism of hesperidin relies on its binding to the key entry or spike protein of SARS-CoV-2. Finally, the extraction, purification and recovery of polyphenols with potential antiviral activity, which are essential for virus replication and infection without side-effects, have been critically reviewed.
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Karwacka M, Gumkowska M, Rybak K, Ciurzyńska A, Janowicz M. Impact of Sodium Alginate and Dried Apple Pomace Powder as a Carrier Agent on the Properties of Freeze-Dried Vegetable Snacks. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Iordănescu OA, Băla M, Iuga AC, Gligor (Pane) D, Dascălu I, Bujancă GS, David I, Hădărugă NG, Hădărugă DI. Antioxidant Activity and Discrimination of Organic Apples ( Malus domestica Borkh.) Cultivated in the Western Region of Romania: A DPPH· Kinetics-PCA Approach. PLANTS 2021; 10:plants10091957. [PMID: 34579489 PMCID: PMC8466220 DOI: 10.3390/plants10091957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Apple (Malus domestica Borkh.) is one of the most used fruit for beverages in Romania. The goal of the study was to evaluate the antioxidant activity and discrimination of various parts of organic and non-organic apple varieties cultivated in the western region of Romania using the DPPH· kinetics–PCA (principal component analysis) approach. Organic and non-organic apples were subjected to solid–liquid ethanol extraction. Core and shell extracts were mixed with DPPH· and spectrophotometrically monitored at 517 nm. Antioxidant activity and mean DPPH· reaction rate at various time ranges reveal significant differences between organic and non-organic samples, as well as apple parts. Organic core and shell extracts had higher antioxidant activities than the corresponding non-organic samples (74.5–96.9% and 61.9–97.2%, respectively, 23.5–94.3% and 59.5–95.5%). Significant differences were observed for the DPPH· reaction rate for the first ½ min, especially in the presence of organic core extracts (3.7–4.8 μM/s). The organic samples were well discriminated by DPPH· kinetics–PCA, the most important variables being the DPPH· reaction rate for the first time range. This is the first DPPH· kinetics–PCA approach applied for discriminating between organic and non-organic fruits and can be useful for evaluating the quality of such type of fruits.
Collapse
Affiliation(s)
- Olimpia Alina Iordănescu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Maria Băla
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Alina Carmen Iuga
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
| | - Ionuţ Dascălu
- Department of Horticulture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (O.A.I.); (M.B.); (A.C.I.); (I.D.)
| | - Gabriel Stelian Bujancă
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania;
| | - Ioan David
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Nicoleta Gabriela Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Food Science, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Correspondence: (I.D.); or (N.G.H.); Tel.: +40-256-277-423 (N.G.H.)
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania; (D.G.); (D.I.H.)
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| |
Collapse
|
27
|
Supplementation of Carbon-Based Conductive Materials and Trace Metals to Improve Biogas Production from Apple Pomace. SUSTAINABILITY 2021. [DOI: 10.3390/su13179488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to its high water and organic contents, management of apple pomace (AP) poses several waste management challenges on the apple juice and cider producing industries. Bioconversion of AP into biogas provides an excellent possibility to reduce the environmental challenge faced in the management of AP waste along with producing renewable energy in the form of methane. This study investigated the effect of carbon-based conductive materials (biochar and graphene) and trace metals supplementation to improve biogas production from AP. The results indicate that supplementation of biochar, trace metals, and graphene significantly improves the biogas production from AP. Trace metal and biochar supplementation at a COD concentration of 6000 mg/L resulted in 7.2% and 13.3% increases in the biogas production, respectively. When trace metals and biochar were supplemented together, the biogas production increased by 22.7%. This synergistic effect was also observed at the COD concentration of 12,000 mg/L. The improvement in the biogas formation was significantly higher for graphene supplemented reactors (27.8%). Moreover, biochar and trace metals supplementation also led to 19.6% and 23.0% increases in the methane yield relative to the reactor fed only with AP, respectively. These results suggest anaerobic digestion supplemented with carbon-based conductive materials and trace metals is a viable option for valorizing apple pomace.
Collapse
|
28
|
Edible fruit extracts and fruit juices as potential source of antiviral agents: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [PMCID: PMC8328999 DOI: 10.1007/s11694-021-01090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fruits have been widely consumed since the beginning of human evolution and are important source of a healthy being and helpful in treating various diseases as immunity boosters with the presence of a rich amount of health-promoting bioactives. Therapeutic efficacies of fruit extracts are reported to have immune-modulatory properties and influence greatly on the immune system of human body. Given the facts of the efficacy of edible fruits in improving the immunity of body as immune-stimulants, we have tried to consolidate the previously published data on edible fruits and its juices with antiviral potential. The objective of this review was to gather information on edible fruits with antiviral properties and the efforts to obtain their efficient delivery. Online bibliographical databases like PubMed, Scopus, and Web of Science were used to search literature on the antiviral effect of edible fruit extracts and fruit juices. The edible fruits like almond, apple, bael, blackberry, black currants, crane berry, citrus, grapes, Japanese cherry, mango, mulberry, pistachios, pomegranate, and strawberry showed promising antiviral properties against the different pathogenic viruses. The review provided an overview of likely effects of the intake of edible fruit extracts/fruit juices to strengthen the immune cells by reducing the oxidative stress in host body system which in turn inhibits the viral attachment and replication on the host cell. Hence these fruits can also be exploited in combating COVID-19 in the current pandemic situation. To validate the present hypothesis, the proposed edible fruit extracts can be evaluated against the SARS-CoV-2 via in vitro and in vivo models to confirm the fact.
Collapse
|
29
|
Kowalczyk M, Golonko A, Świsłocka R, Kalinowska M, Parcheta M, Swiergiel A, Lewandowski W. Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives. Front Pharmacol 2021; 12:709104. [PMID: 34393787 PMCID: PMC8363300 DOI: 10.3389/fphar.2021.709104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell's biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Aleksandra Golonko
- Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Artur Swiergiel
- Faculty of Biology, University of Gdansk, Gdansk, Poland
- Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | | |
Collapse
|
30
|
Optimization of Ultrasound Assisted Extraction of Bioactive Compounds from Apple Pomace. Molecules 2021; 26:molecules26133783. [PMID: 34206325 PMCID: PMC8270251 DOI: 10.3390/molecules26133783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
In the present work, the optimization of the extraction of antioxidant compounds from apple pomace using ultrasound technology as an environmentally friendly and intensification process was developed. Different sonication powers, extraction temperatures and extraction times were studied and their influence on extraction yield and characteristics of the extracted samples (total phenolic compounds, flavonoid content and antioxidant capacity) are presented. The elaborated experimental design and the analysis of Pareto and response surface diagrams allowed us to determine the optimal extraction conditions. The conditions that allow the maximum extraction of phenolic compounds were found at 20 min, 90 °C and 50% ultrasound amplitude. Nevertheless, at these conditions, the antioxidant capacity measured by DPPH decreased in the extracted samples.
Collapse
|
31
|
Awasthi MK, Ferreira JA, Sirohi R, Sarsaiya S, Khoshnevisan B, Baladi S, Sindhu R, Binod P, Pandey A, Juneja A, Kumar D, Zhang Z, Taherzadeh MJ. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 143:110972. [DOI: 10.1016/j.rser.2021.110972] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
32
|
Dhakal J, Jia M, Joyce JD, Moore GA, Ovissipour R, Bertke AS. Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated Temperature. Foods 2021; 10:1005. [PMID: 34064494 PMCID: PMC8147942 DOI: 10.3390/foods10051005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Outbreaks of coronavirus infectious disease 2019 (COVID-19) in meat processing plants and media reports of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection on foods have raised concerns of a public health risk from contaminated foods. We used herpes simplex virus 1, a non-Biosafety Level 3 (non-BSL3) enveloped virus, as a surrogate to develop and validate methods before assessing the survival of infectious SARS-CoV-2 on foods. Several food types, including chicken, seafood, and produce, were held at 4 °C and assessed for infectious virus survival (herpes simplex virus 1 (HSV-1) and SARS-CoV-2) at 0 h, 1 h, and 24 h post-inoculation (hpi) by plaque assay. At all three time points, recovery of SARS-CoV-2 was similar from chicken, salmon, shrimp, and spinach, ranging from 3.4 to 4.3 log PFU/mL. However, initial (0 h) virus recovery from apples and mushrooms was significantly lower than that from poultry and seafood, and infectious virus decreased over time, with recovery from mushrooms becoming undetectable by 24 hpi. Comparing infectious virus titers with viral genome copies confirmed that PCR-based tests only indicate presence of viral nucleic acid, which does not necessarily correlate with the quantity of infectious virus. The survival and high recovery of SARS-CoV-2 on certain foods highlight the importance of safe food handling practices in mitigating any public health concerns related to potentially contaminated foods.
Collapse
Affiliation(s)
- Janak Dhakal
- Food Science and Technology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Jonathan D. Joyce
- Translational Biology Medicine and Health, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| | - Reza Ovissipour
- Food Science and Technology, Agricultural Research and Extension Center, Virginia Polytechnic Institute & State University, Hampton, VA 23669, USA;
| | - Andrea S. Bertke
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
33
|
Abstract
Apples (Malus domestica) are one of the most widely grown and consumed fruits in the world that contain abundant phenolic compounds that possess remarkable antioxidant potential. The current study characterised phenolic compounds from five different varieties of Australian grown apples (Royal Gala, Pink Lady, Red Delicious, Fuji and Smitten) using LC-ESI-QTOF-MS/MS and quantified through HPLC-PDA. The phenolic content and antioxidant potential were determined using various assays. Red Delicious had the highest total phenolic (121.78 ± 3.45 mg/g fw) and total flavonoid content (101.23 ± 3.75 mg/g fw) among the five apple samples. In LC-ESI-QTOF-MS/MS analysis, a total of 97 different phenolic compounds were characterised in five apple samples, including Royal Gala (37), Pink Lady (54), Red Delicious (17), Fuji (67) and Smitten (46). In the HPLC quantification, phenolic acid (chlorogenic acid, 15.69 ± 0.09 mg/g fw) and flavonoid (quercetin, 18.96 ± 0.08 mg/g fw) were most abundant in Royal Gala. The obtained results highlight the importance of Australian apple varieties as a rich source of functional compounds with potential bioactivity.
Collapse
|
34
|
Gansukh E, Nile A, Kim DH, Oh JW, Nile SH. New insights into antiviral and cytotoxic potential of quercetin and its derivatives - A biochemical perspective. Food Chem 2021; 334:127508. [PMID: 32711265 DOI: 10.1016/j.foodchem.2020.127508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 02/04/2023]
Abstract
Quercetin, a potential polyphenolic which possesses several biological effects. The influenza virus polymerase basic 2 (PB2) subunit of RNA polymerase responsible for replication, degree of virus conservation and active target site for designing specific antivirals. The quercetin derivatives downloaded from PubChem were screened using PyRX software configured with Vina Wizard, targeted on cap-binding site of the PB2 of influenza viral RNA polymerase. Among the PubChem library (total 97,585,747 compounds), 410 quercetin derivatives were screened using molecular docking (affinity: <-9.0 kcal) for their drug-likeness and in vitro cytopathic effect by Sulforhodamine B (SRB) assay. Among all quercetin derivatives, quercetin 3'-glucuronide (Q3G) showed strongest binding affinity towards cap-binding site of the PB2 subunit with -9.6 kcal of binding affinity and 0.00054 mM of Ki value, while quercetin 3'-glucuronide (Q7G) was presented highest anti-influenza activity with 2.10 ± 0.05 of IC50 on influenza A/PR/8/34 virus and non-cytotoxic effect as CC50 > 100 µg/mL.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143701, South Korea; Department of Life Science and Biotechnology, Huree University, Ulaanbaatar, Mongolia
| | - Arti Nile
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143701, South Korea
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143701, South Korea
| | - Jae Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Shivraj Hariram Nile
- Department of Bio-resources and Food Science, Konkuk University, Seoul 143701, South Korea; Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
35
|
Wang S, Xu J, Wang C, Li J, Wang Q, Kuang H, Yang B, Chen R, Luo Z. Paeoniae radix alba polysaccharides obtained via optimized extraction treat experimental autoimmune hepatitis effectively. Int J Biol Macromol 2020; 164:1554-1564. [PMID: 32735927 DOI: 10.1016/j.ijbiomac.2020.07.214] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
The extraction process of Paeoniae radix alba polysaccharides (PRAP) was optimized as the liquid-solid ratio of 10.65 mL/g, the extraction time of 2.10 h, and the 2 extraction repetitions through a response surface methodology. The chemical profiles of the obtained PRAP were characterized by measuring the contents of total carbohydrates, total phenolics, uronic acid and protein, and by analyzing the FT-IR spectrum and monosaccharide composition. To determine the therapeutic effects of PRAP on experimental autoimmune hepatitis (EAH), we established an EAH mice model. After treated with PRAP, liver and spleen injuries were reduced, and hepatocyte regeneration and liver function were improved. Further study of the mechanism by which PRAP treats EAH showed that PRAP significantly inhibited oxidative stress in the livers of EAH model mice. More importantly, PRAP inhibited immune inflammatory reactions in EAH model mice, including the hepatic infiltration of inflammatory CD4+ and CD8+ T cells, as well as overexpression of inflammatory cytokines IL-2, IL-6 and IL-10, via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Siyu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Jiazhi Xu
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Changfu Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China.
| | - Jianchun Li
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Qiuhong Wang
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24 Heping Road, XiangFang District, Harbin 150040, Heilongjiang Province, China
| | - Rongying Chen
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| | - Zhongwen Luo
- College of TCM, Guangdong Pharmaceutical University, No. 280 Outside Loop East Road of Higher Education Mega Center, Panyu District, 510006 Guangzhou, Guangdong Province, China
| |
Collapse
|
36
|
Simonato B, Marangon M, Vincenzi S, Vegro M, Pasini G. Evaluation of the phenolic profile and immunoreactivity of Mal d 3 allergen in ancient apple cultivars from Italy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4978-4986. [PMID: 32500544 DOI: 10.1002/jsfa.10561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/11/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since the second half of the 20th century, the cultivation of ancient and local apple cultivars has almost disappeared from orchards in Italy. Some of these ancient apple cultivars often possess high nutraceutical values and display lower allergenicity than the modern ones, supporting the so-called 'green revolution' theory. RESULTS In this study, the phenolic composition and the antioxidant activity of five ancient apple cultivars ('Belfiore', 'Pomella Genovese', 'Gravenstein', 'Bella del Bosco', and 'Piatlin') were compared with a 'Golden Delicious' commercial cultivar. Additionally, apples were tested for their potential allergenicity by detecting the presence of Mal d 3, a non-specific lipid transfer protein that represents the main apples' allergen. All apples came from northern Italy (Trentino Region) and were organically produced. Results showed that, for all cultivars, the skins contained more polyphenols than the pulps. 'Bella del Bosco' had the highest amount of polyphenols and antioxidant activity, whereas 'Piatlin' had the lowest phenolic content. All ancient cultivars presented a higher amount of pulp phenolic compounds than 'Golden Delicious'. Immunoblotting techniques showed that 'Bella del Bosco' and 'Piatlin' had very low quantities of Mal d 3 allergen; hence, they can be considered hypoallergenic cultivars. CONCLUSIONS The preservation of ancient apple cultivars would be of great importance, not only to maintain the biodiversity but also for their nutritional properties. The hypoallergenic activity of some of these cultivars could be of interest also for the preparation of different apple-based products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Barbara Simonato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padua, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padua, Italy
- Centre for Research in Viticulture and Enology (CIRVE), Conegliano, Italy
| | - Mara Vegro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padua, Italy
| | - Gabriella Pasini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padua, Italy
| |
Collapse
|
37
|
Antonic B, Jancikova S, Dordevic D, Tremlova B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J Food Sci 2020; 85:2977-2985. [PMID: 32966605 DOI: 10.1111/1750-3841.15449] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
The present review aimed to investigate and analyze the use of byproduct apple pomace as a fortification ingredient in different types of foods. The data obtained from English published articles found on Web of Science, Scopus, and Google Scholar in the period from 2007 to 2019 were used for making the table overview and meta-analysis of results described in those studies. The systematic review confirmed the importance of apple pomace use in the food industry due to the beneficial nutritional profile and ecological issue (waste management). The main attributes of apple pomace are high content of antioxidant compounds and dietary fibers. Dietary fibers from apple pomace significantly increased total fiber content in enriched products-meaning that the transfer of the fortification can be declared health beneficial. The conducted meta-analysis showed unambiguously the different influence of apple pomace addition according to fortified food commodity. The fortification drawbacks were noticeable in plant food products because darker and brownish color was not evaluated positively by panelists. Oppositely, color, as one of the main sensory characteristics, was beneficially affected in animal origin food. The sensory properties, including color, play an important role in product acceptance by consumers. Besides color, animal origin products fortified by apple pomace showed the most acceptable textural properties and oxidative stability.
Collapse
Affiliation(s)
- Bojan Antonic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| | - Simona Jancikova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| | - Dani Dordevic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic.,Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russia
| | - Bohuslava Tremlova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| |
Collapse
|
38
|
Suleria HAR, Barrow CJ, Dunshea FR. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020; 9:E1206. [PMID: 32882848 PMCID: PMC7556026 DOI: 10.3390/foods9091206] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAB (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products.
Collapse
Affiliation(s)
- Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
Dias C, Fonseca AMA, Amaro AL, Vilas-Boas AA, Oliveira A, Santos SAO, Silvestre AJD, Rocha SM, Isidoro N, Pintado M. Natural-Based Antioxidant Extracts as Potential Mitigators of Fruit Browning. Antioxidants (Basel) 2020; 9:E715. [PMID: 32784698 PMCID: PMC7463621 DOI: 10.3390/antiox9080715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Fruit enzymatic browning (EB) inhibition continues to be a challenge in the Food Industry. This physiological disorder results mainly from the oxidation of natural phenolic compounds by polyphenoloxidase (PPO) and peroxidase (POX) leading to the formation of brown pigments. EB can be controlled with the application of antioxidants, reducing/inhibiting the activity of these oxidative enzymes. In this study, strawberry tree (leaves and branches) and apple byproduct were the natural-based extracts (NES) selected, as potential tissue browning inhibitors, within a first screening of fifteen natural-based extracts with antioxidant properties. Phenolic profile, total phenolic content and antioxidant activity of the selected extracts were also performed as well as their depletion effect on the oxidative enzyme's activity and browning inhibiton in fresh-cut pears. Strawberry tree extracts (leaves and branches) revealed higher total phenolic content (207.97 ± 0.01 mg GAE.gNES-1 and 104.07 ± 16.38 mg GAE.gNES-1, respectively), confirmed by the plethora of phenolic compounds identified by LC-ESI-UHR-QqTOF-HRMS and quantified by HPLC. This phytochemical composition was reflected in the low IC50 against PPO and POX obtained. Despite the lower phenolic content (6.76 ± 0.11 mg GAE.gNES-1) and antioxidant activity (IC50 = 45.59 ± 1.34 mg mL-1), apple byproduct extract showed potential in delaying browning. This study highlights the opportunity of byproducts and agricultural wastes extracts as novel anti-browning agents.
Collapse
Affiliation(s)
- Cindy Dias
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Alexandre M. A. Fonseca
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana L. Amaro
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Ana A. Vilas-Boas
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Ana Oliveira
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Sonia A. O. Santos
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
| | - Armando J. D. Silvestre
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
| | - Sílvia M. Rocha
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Nélson Isidoro
- Cooperativa Agrícola dos Fruticultores do Cadaval, CRL (COOPVAL), Estrada Nacional 115, Km 26 2550-108 Cadaval, Portugal;
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| |
Collapse
|
40
|
Comparative study on antidiabetic function of six legume crude polysaccharides. Int J Biol Macromol 2020; 154:25-30. [DOI: 10.1016/j.ijbiomac.2020.03.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
41
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
42
|
Girard AL, Awika JM. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf 2020; 19:2164-2199. [PMID: 33337093 DOI: 10.1111/1541-4337.12572] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Expanding plant-based protein applications is increasingly popular. Polyphenol interactions with wheat gluten proteins can be exploited to create novel functional foods and food ingredients. Polyphenols are antioxidants, thus generally decrease gluten strength by reducing disulfide cross-linking. Monomeric polyphenols can be used to reduce dough mix time and improve flexibility of the gluten network, including to plasticize gluten films. However, high-molecular-weight polyphenols (tannins) cross-link gluten proteins, thereby increasing protein network density and strength. Tannin-gluten interactions can greatly increase gluten tensile strength in dough matrices, as well as batter viscosity and stability. This could be leveraged to reduce detrimental effects of healthful inclusions, like bran and fiber, to loaf breads and other wheat-based products. Further, the dual functions of tannins as an antioxidant and gluten cross-linker could help restructure gluten proteins and improve the texture of plant-based meat alternatives. Tannin-gluten interactions may also be used to reduce inflammatory effects of gluten experienced by those with gluten allergies and celiac disease. Other potential applications of tannin-gluten interactions include formation of food matrices to reduce starch digestibility; creation of novel biomaterials for edible films or medical second skin type bandages; or targeted distribution of micronutrients in the digestive tract. This review focuses on the effects of polyphenols on wheat gluten functionality and discusses emerging opportunities to employ polyphenol-gluten interactions.
Collapse
Affiliation(s)
- Audrey L Girard
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas
| | - Joseph M Awika
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
43
|
Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods 2020; 9:foods9060718. [PMID: 32498295 PMCID: PMC7353481 DOI: 10.3390/foods9060718] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022] Open
Abstract
A pineapple peel hydroalcoholic extract rich in phenolic compounds, was stabilized by microencapsulation using spray drying technology, with maltodextrin, inulin, and arabic gum as wall materials. The influence of the type of wall material and drying temperature (150 and 190 °C) on the particles properties was studied. The particles presented a spherical shape with a diameter ranging from approximately 1.3 to 18.2 µm, the exception being the ones with inulin that showed a large degree of agglomeration. All powders produced presented an intermediate cohesiveness and a fair to good flowability according to Carr index and Hausner ratio, which envisages suitable handling properties at an industrial scale. The microencapsulation processes using maltodextrin and arabic gum at 150 °C were the ones that showed higher maintenance of the antioxidant activity of compounds present in the extract before encapsulation during spray drying. In addition, the microparticles obtained were quite efficient in stabilizing the encapsulated phenolic compounds, as their antioxidant activity did not change significantly during six months of storage at 5 °C.
Collapse
|
44
|
Cheng Y, Wu T, Chu X, Tang S, Cao W, Liang F, Fang Y, Pan S, Xu X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109260] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Azari M, Shojaee-Aliabadi S, Hosseini H, Mirmoghtadaie L, Marzieh Hosseini S. Optimization of physical properties of new gluten-free cake based on apple pomace powder using starch and xanthan gum. FOOD SCI TECHNOL INT 2020; 26:603-613. [PMID: 32279573 DOI: 10.1177/1082013220918709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apple pomace is a valuable waste from the apple juice industry with high level of poly phenols and also phytate-free dietary fiber. This research was done to optimize and compare the physical properties of new gluten-free cake based on whole replacement of wheat flour with apple pomace powder using starch and xanthan gum by Mixture Design. The results of chemical analysis of apple pomace flour showed 10% moisture, 1.28% ash, 1.68% fat, 1.25% protein, 56% fiber and 9.62 mg gallic acid/g phenolic compounds. There was a significant difference in the texture of optimized apple pomace cakes in comparison to rice and wheat cakes as control and black samples. The hardness of the wheat flour sample was less than the gluten-free samples. Based on the results of the sensory evaluation, the cake containing apple pomace powder had the highest score in terms of overall acceptance.
Collapse
Affiliation(s)
- Masoumeh Azari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Zardo DM, Alberti A, Zielinski AAF, Prestes AA, Esmerino LA, Nogueira A. Influence of solvents in the extraction of phenolic compounds with antibacterial activity from apple pomace. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1744652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Aline Alberti
- Food Science and Technology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Amanda Alves Prestes
- Food Science and Technology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Luis Antonio Esmerino
- Department of Clinical Analysis, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Alessandro Nogueira
- Food Science and Technology, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
47
|
Usman M, Ahmed S, Mehmood A, Bilal M, Patil PJ, Akram K, Farooq U. Effect of apple pomace on nutrition, rheology of dough and cookies quality. Journal of Food Science and Technology 2020; 57:3244-3251. [PMID: 32728272 DOI: 10.1007/s13197-020-04355-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2020] [Accepted: 03/16/2020] [Indexed: 11/29/2022]
Abstract
Agro-industrial waste material is a rich source of various bioactive components and fiber. Apple pomace is a by-product of apple juice processing unit. It contains a plethora of phenolic compounds and dietary fiber. The addition of apple pomace in bakery items is a judicious approach to utilize the apple juice processing industry waste material in nutritional product development. Purposely, in the current research the apple pomace was collected from the juice processing industry followed by drying at 58-60 °C. The dried pomace was ground added in wheat flour (AARI-11) at 5, 10, 15, 20 and 25% to prepare cookies. The wheat flour (AARI-11) contained crude fiber (0.57%), crude protein (10.71%) and total phenolic contents (1.35 mg/g) while apple pomace showed higher contents of dietary fiber and total phenolic contents i.e. 10.85% and 9.75 mg/g respectively. Maximum values of physical characteristics of cookies such as thickness and width were found in T0 as 1.47 mm and 5.13 mm, respectively. On the other hand, spread factor and hardness changed and maximum value was observed in T5 as 46.20 and 1555.5 n/m2 respectively. Based on the sensory and compositional attributes, it was concluded that good quality cookies with improved organoleptic properties can be prepared through using 10% apple pomace powder with wheat flour.
Collapse
Affiliation(s)
- Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048 China
| | - Shabbir Ahmed
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048 China
| | - Muhammad Bilal
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Prasanna Jagannath Patil
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048 China
| | - Kashif Akram
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences, Punjab, Pakistan
| | - Umar Farooq
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| |
Collapse
|
48
|
da Silva LC, Souza MC, Sumere BR, Silva LGS, da Cunha DT, Barbero GF, Bezerra RMN, Rostagno MA. Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chem 2020; 318:126450. [PMID: 32151921 DOI: 10.1016/j.foodchem.2020.126450] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
The objective of this work was the development of an on-line extraction/fractionation method based on the coupling of pressurized liquid extraction and solid-phase extraction for the separation of phenolic compounds from apple pomace. Several variables of the process were evaluated, including the amount of water of the first stage (0-120 mL), temperature (60-80 °C), solid-phase extraction adsorbent (Sepra, Isolute, Strata X and Oasis) and activation/elution solvent (methanol and ethanol). The best results were observed with the adsorbent Sepra. The temperature had a small effect on recovery, but significant differences were observed for phlorizin and a quercetin derivative. Results indicate that ethanol can be used to replace methanol as an activation, extraction/elution solvent. While using mostly green solvents (water, ethanol, and a small amount of methanol that could be reused), the developed method produced higher or similar yields of acids (2.85 ± 0.19 mg/g) and flavonoids (0.97 ± 0.11 mg/g) than conventional methods.
Collapse
Affiliation(s)
- Laise C da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil
| | - Mariana C Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil
| | - Beatriz R Sumere
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil
| | - Luiz G S Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil
| | - Diogo T da Cunha
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil.
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Rosangela M N Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil.
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
49
|
Gharedaghi J, Aliakbarlu J, Tajik H. Antioxidant potential of apple pomace extract and its efficacy in alginate coating on chemical stability of rainbow trout fillet. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Oszmiański J, Lachowicz S, Gamsjäger H. Phytochemical analysis by liquid chromatography of ten old apple varieties grown in Austria and their antioxidative activity. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03411-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|