1
|
Prabakaran S, Saad HM, Tan CH, Syed Abdul Rahman SN, Sim KS. Investigation of Phytochemical Composition, Radical Scavenging Potential, Anti-Obesogenic Effects, and Anti-Diabetic Activities of Kaempferia parviflora Rhizomes. Chem Biodivers 2025; 22:e202401086. [PMID: 39289837 DOI: 10.1002/cbdv.202401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Kaempferia parviflora or commonly known as "Kunyit hitam" by locals, is an edible plant, native to tropical regions, has been extensively utilized for culinary and medicinal applications. The present study aimed to investigate the phytochemical composition and biological activities of the rhizomes of K. parviflora. The ethanol crude and fractionated extracts (hexane and chloroform) of the rhizomes were evaluated for their total phenolic content, total steroidal content, as well as antioxidant, anti-obesogenic, and anti-diabetic activities. The chloroform extract demonstrated the highest concentration of plant sterols (432±0.23 mg BSE/g extract) and a substantial amount of phenolic compounds (1.19×103±0.41 mg GAE/g extract). Gas chromatography-mass spectrometry (GC/MS) analysis revealed that the chloroform extract of the rhizomes is predominantly composed of bioactive flavonoids including tectochrysin (1), 5,7-dimethoxyflavone (2), 3,5,7-trimethoxyflavone (3), 3,4',5,7-tetramethoxyflavone (4), and 4',5,7-trimethoxyflavone (5). Furthermore, the chloroform extract exhibited the highest overall radical scavenging and α-glucosidase inhibitory activities, which can be attributed to the presence of compounds 1-5 in the extract. Collectively, these findings suggest that the chloroform extract of the rhizomes of K. parviflora is a potentially valuable source of bioactive compounds with antioxidant, anti-obesogenic, and anti-diabetic properties, with potential application in therapeutics and functional foods.
Collapse
Affiliation(s)
- Sangeetha Prabakaran
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hazwani Mat Saad
- Biology Division, Centre for Foundation Studies in Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Hoe Tan
- Department of Biotechnology, Faculty of Applied Sciences, Lincoln University College, 47301, Selangor, Malaysia
| | | | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
You Q, Li L, Ding H, Liu Y. Proteomics-based network pharmacology and molecular docking reveal the potential mechanisms of 5,6,7,4'-tetramethoxyflavone against HeLa cancer cells. Heliyon 2024; 10:e38951. [PMID: 39449708 PMCID: PMC11497385 DOI: 10.1016/j.heliyon.2024.e38951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has highlighted the therapeutic potential of citrus-derived dietary 5,6,7,4'-tetramethoxyflavone (TMF) against HeLa cancer. Our study aims to elucidate its mechanisms of action through proteomics analysis, network pharmacology, and molecular docking. The results suggested that TMF demonstrated efficacy by upregulating CD40, CD40L, Fas, Fas-L, HSP27, HSP60, IGFBP-1, IGFBP-2, IGF-1sR, Livin, p21, p27, sTNFR2, TRAILR2, TRAILAR3, TRAILR4, XIAP, p-Sre, p-Stat1, p-Stat2 p-c-Fos, p-SMAD1, p-SMAD2, p-SMAD4, p-SMAD5, p-IκBα, p-MSK1, p-NFκB, p-TAK1, p-TBK1, p-ZAP70, and p-MSK2, while downregulating p-EGFR, p-ATF2, p-cJUN, p-HSP27, p-JNK, and p-GSK3A. These targets are primarily involved in MAPK, apoptosis, and TNF signaling pathways. Notably, p21, p27, EGFR, SMAD4, JNK, ATF2, and c-JUN merged as pivotal targets contributing to TMF's anti-cancer efficacy against HeLa cells. This study is first to delineate the potential signaling pathways and core targets of TMF in treating of HeLa cancer, paving the way for further exploration of TMF's medical potential.
Collapse
Affiliation(s)
- Qiang You
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China
| | - Lan Li
- School of Nursing, Peking University, Beijing, 100091, China
| | - Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Sakao K, Hamamoto S, Urakawa D, He Z, Hou DX. Anticancer Activity and Molecular Mechanisms of Acetylated and Methylated Quercetin in Human Breast Cancer Cells. Molecules 2024; 29:2408. [PMID: 38792269 PMCID: PMC11124128 DOI: 10.3390/molecules29102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Quercetin, a flavonoid polyphenol found in many plants, has garnered significant attention due to its potential cancer chemoprevention. Our previous studies have shown that acetyl modification of the hydroxyl group of quercetin altered its antitumor effects in HepG2 cells. However, the antitumor effect in other cancer cells with different gene mutants remains unknown. In this study, we investigated the antitumor effect of quercetin and its methylated derivative 3,3',4',7-O-tetramethylquercetin (4Me-Q) and acetylated derivative 3,3',4',7-O-tetraacetylquercetin (4Ac-Q) on two human breast cancer cells, MCF-7 (wt-p53, caspase-3-ve) and MDA-MB-231 (mt-p53, caspase-3+ve). The results demonstrated that 4Ac-Q exhibited significant cell proliferation inhibition and apoptosis induction in both MCF-7 and MDA-MB-231 cells. Conversely, methylation of quercetin was found to lose the activity. The human apoptosis antibody array revealed that 4Ac-Q might induce apoptosis in MCF-7 cells via a p53-dependent pathway, while in MDA-MB-231 cells, it was induced via a caspase-3-dependent pathway. Furthermore, an evaluation using a superoxide inhibitor, MnTBAP, revealed 4Ac-Q-induced apoptosis in MCF-7 cells in a superoxide-independent manner. These findings provide valuable insights into the potential of acetylated quercetin as a new approach in cancer chemoprevention and offer new avenues for health product development.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shihomi Hamamoto
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (Z.H.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Na Takuathung M, Klinjan P, Koonrungsesomboon N. A systematic review and meta-analysis of animal and human studies demonstrates the beneficial effects of Kaempferia parviflora on metabolic syndrome and erectile dysfunction. Nutr Res 2024; 122:80-91. [PMID: 38194854 DOI: 10.1016/j.nutres.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
Kaempferia parviflora (KP) has traditionally been used for centuries to promote health and well-being. Scant evidence is available to explain the relationship between KP and metabolic syndrome and impotence. We sought to test the hypothesis that administration of KP extract enriched with active ingredients, such as polymethoxyflavone, could improve metabolic syndrome, erectile dysfunction, and related outcomes in in vivo. We performed a systematic review and meta-analysis to evaluate the in vivo effects of KP extract on metabolic syndrome, erectile dysfunction, and related outcomes. Studies from 4 databases (i.e., PubMed, Scopus, Embase, and Cochrane Library) were searched from inception up to December 2022. Animal experiment studies and randomized controlled trials comparing KP extract to a placebo control were retrieved and analyzed using RevMan 5.4.1 software. The effect estimate was presented as the standardized mean difference along with its 95% confidence interval (CI). Of 664 articles, a total of 57 articles met our prespecified criteria. KP extract significantly decreased fasting blood glucose in both animal and human studies with standardized mean difference of -0.88 (95% CI, -1.63 to -0.14) and -0.51 (95% CI, -0.98 to -0.05), respectively. Furthermore, KP extract also markedly improved sexual function and physical performance. In sum, KP extract is shown to have effects beneficial to metabolic syndrome, erectile dysfunction, and physical performance.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Preeyaporn Klinjan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Qin G, Zhang F, Ren M, Chen X, Liu C, Li G, Gao Q, Qiao L, Jiang Y, Zhu L, Guo Y, Wang G. Eco-friendly and efficient extraction of polyphenols from Ligustrum robustum by deep eutectic solvent assisted ultrasound. Food Chem 2023; 429:136828. [PMID: 37478601 DOI: 10.1016/j.foodchem.2023.136828] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
An eco-friendly and efficient extraction method using deep eutectic solvents assisted ultrasound extraction (DESs-UAE) for the polyphenols from Ligustrum robustum was developed. Among the 34 kinds of DESs prepared, tetraethyl ammonium bromide: 1,2,4-butanol (Teab: 1,2,4-But) was proved to be a suitable extraction solvent based on the extraction efficiency. The extraction parameters including temperature, water content, liquid-solid ratio were optimized with response surface methodology (RSM). Under the optimal conditions, the total phenolic content (TPC) and total flavonoid content (TFC) were 101.46 ± 2.96 mg GAE/g DW and 264.17 ± 5.39 mg RE/g DW, respectively. Furthermore, the extraction mechanism of DESs-UAE was investigated by extraction kinetics, molecular dynamic simulation and theory calculations of interaction. In particular, 9 kinds of polyphenols compounds from Ligustrum robustum were firstly identified by UPLC-Q-TOF-MS. Moreover, the recovered polyphenols exhibited significant antioxidant, α-glucosidase inhibition, acetylcholinesterase inhibition and anticancer activity.
Collapse
Affiliation(s)
- Guifang Qin
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiuwen Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Gang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lei Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yingying Guo
- College of Pharmacy, Chengdu Medical College, Chengdu 610000, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
6
|
Wu DT, Deng W, Li J, Geng JL, Hu YC, Zou L, Liu Y, Liu HY, Gan RY. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants (Basel) 2023; 12:1475. [PMID: 37508013 PMCID: PMC10376641 DOI: 10.3390/antiox12071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Fruit thinning is a common practice employed to enhance the quality and yield of kiwifruits during the growing period, and about 30-50% of unripe kiwifruits will be thinned and discarded. In fact, these unripe kiwifruits are rich in nutrients and bioactive compounds. Nevertheless, the applications of thinned young kiwifruits and related bioactive compounds in the food and functional food industry are still limited. Therefore, to promote the potential applications of thinned young kiwifruits as value-added health products, the extraction, characterization, and evaluation of beneficial effects of phenolic compounds from thinned young fruits of red-fleshed Actinidia chinensis cv 'HY' were examined in the present study. A green and efficient ultrasound-assisted deep eutectic solvent extraction (UADE) method for extracting phenolic compounds from thinned young kiwifruits was established. A maximum yield (105.37 ± 1.2 mg GAE/g DW) of total phenolics extracted from thinned young kiwifruits by UADE was obtained, which was significantly higher than those of conventional organic solvent extraction (CSE, about 14.51 ± 0.26 mg GAE/g DW) and ultrasound-assisted ethanol extraction (UAEE, about 43.85 ± 1.17 mg GAE/g DW). In addition, 29 compounds, e.g., gallic acid, chlorogenic acid, neochlorogenic acid, catechin, epicatechin, procyanidin B1, procyanidin B2, quercetin-3-rhamnoside, and quercetin-3-O-glucoside, were identified in the kiwifruit extract by UPLC-MS/MS. Furthermore, the contents of major phenolic compounds in different kiwifruit extracts prepared by conventional organic solvent extraction (EE), ultrasound-assisted ethanol extraction (UEE), and ultrasound-assisted deep eutectic solvent extraction (UDE) were compared by HPLC analysis. Results revealed that the content of major phenolics in UDE (about 15.067 mg/g DW) was significantly higher than that in EE (about 2.218 mg/g DW) and UEE (about 6.122 mg/g DW), suggesting that the UADE method was more efficient for extracting polyphenolics from thinned young kiwifruits. In addition, compared with EE and UEE, UDE exhibited much higher antioxidant and anti-inflammatory effects as well as inhibitory effects against α-glucosidase and pancreatic lipase, which were closely associated with its higher content of phenolic compounds. Collectively, the findings suggest that the UADE method can be applied as an efficient technique for the preparation of bioactive polyphenolics from thinned young kiwifruits, and the thinned young fruits of red-fleshed A. chinensis cv 'HY' have good potential to be developed and utilized as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jin-Lei Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
7
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
8
|
Thawtar MS, Kusano M, Yingtao L, Thein MS, Tanaka K, Rivera M, Shi M, Watanabe KN. Exploring Volatile Organic Compounds in Rhizomes and Leaves of Kaempferia parviflora Wall. Ex Baker Using HS-SPME and GC-TOF/MS Combined with Multivariate Analysis. Metabolites 2023; 13:metabo13050651. [PMID: 37233692 DOI: 10.3390/metabo13050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from Kaempferia parviflora rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of K. parviflora plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of K. parviflora, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.
Collapse
Affiliation(s)
- May San Thawtar
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Miyako Kusano
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Li Yingtao
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Min San Thein
- Department of Agricultural Research, Ministry of Agriculture, Livestock, and Irrigation, Yezin, Myanmar
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya 156-8502, Japan
- Faculty of Informatics, Tokyo University of Information Sciences, Chiba 65-8501, Japan
| | - Marlon Rivera
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Miao Shi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuo N Watanabe
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
9
|
Singh A, Singh N, Singh S, Srivastava RP, Singh L, Verma PC, Devkota HP, Rahman LU, Kumar Rajak B, Singh A, Saxena G. The industrially important genus Kaempferia: An ethnopharmacological review. Front Pharmacol 2023; 14:1099523. [PMID: 36923360 PMCID: PMC10008896 DOI: 10.3389/fphar.2023.1099523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Kaempferia, a genus of the family Zingiberaceae, is widely distributed with more than 50 species which are mostly found throughout Southeast Asia. These plants have important ethnobotanical significance as many species are used in Ayurvedic and other traditional medicine preparations. This genus has received a lot of scholarly attention recently as a result of the numerous health advantages it possesses. In this review, we have compiled the scientific information regarding the relevance, distribution, industrial applications, phytochemistry, ethnopharmacology, tissue culture and conservation initiative of the Kaempferia genus along with the commercial realities and limitations of the research as well as missing industrial linkages followed by an exploration of some of the likely future promising clinical potential. The current review provides a richer and deeper understanding of Kaempferia, which can be applied in areas like phytopharmacology, molecular research, and industrial biology. The knowledge from this study can be further implemented for the establishment of new conservation strategies.
Collapse
Affiliation(s)
- Arpit Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nitesh Singh
- Department of Plant-Pathology, Faculty of Agriculture and Science, SGT University, Gurgaon, India
| | - Sanchita Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.,CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | | | - Lav Singh
- 4 PG Department of Botany, R.D and D.J. College, Munger University, Munger, India.,Central Academy for State Forest Services, Burnihat, Assam, India
| | - Praveen C Verma
- CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | - Hari P Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Pharmacy Program, Gandaki University, Pokhara, Nepal
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Bikash Kumar Rajak
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Amrita Singh
- Department of Botany, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Huang Z, Chen Y, Huang R, Zhao Z. Identification and Structure–Activity Relationship of Recovered Phenolics with Antioxidant and Antihyperglycemic Potential from Sugarcane Molasses Vinasse. Foods 2022; 11:foods11193131. [PMID: 36230205 PMCID: PMC9563075 DOI: 10.3390/foods11193131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Sugarcane molasses vinasse is the residue of the fermentation of molasses and the water and soil environmental pollutants from distilleries. However, its recycling value has been neglected. The chemical analysis of the molasses vinasse led to the isolation of a new benzoyl chloride called 2,3,4-trihydroxy-5-methoxy benzoyl chloride, as well as thirteen known compounds, including six benzoic acids. The structure of the new benzoyl chloride was elucidated on the basis of extensive spectroscopic analysis. The antioxidant activity of all isolated compounds was measured using the ORAC assay. Moreover, we compared the cellular antioxidant activity (CAA) and inhibitory activity against α-amylase and α-glucosidase for structure–activity analysis. The results showed that only vanillic acid had CAA (8.64 μmol QE/100 μmol in the no PBS wash protocol and 6.18 μmol QE/100 μmol in the PBS wash protocol), although other benzoic acid derivatives had high ORAC values ranging between 1879.9 and 32,648.1 μmol TE/g. Additional methoxy groups at the ortho-positions of the p-hydroxy group of benzoic acids enhanced the inhibition of α-glucosidase but reduced the ORAC activity unless at the para-position. This work indicated that phenolics, especially phenolic acids in the sugarcane molasses vinasse, possessed potential antioxidant and antihyperglycemic activity, which improved the utilization rate of resources and reduced the discharge of pollutants.
Collapse
Affiliation(s)
- Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinning Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Correspondence: ; Tel./Fax: +86-189-2500-8785
| |
Collapse
|
11
|
Nemidkanam V, Chaichanawongsaroj N. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate. PLoS One 2022; 17:e0262884. [PMID: 35077499 PMCID: PMC8789119 DOI: 10.1371/journal.pone.0262884] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Plant-derived extracellular vesicles (EVs) are a promising candidate for nanomedicine delivery due to their bioactive cargos, high biocompatibility to human cells, biodegradability, low cytotoxicity, and potential for large-scale production. However, the research on EVs derived from medicinal plants is very limited. In this study, Kaempferia parviflora extracellular vesicles (KPEVs) were isolated by differential and sucrose density gradient centrifugation, and their size, morphology, and surface charge were characterized using transmission electron microscopy and dynamic light scattering. The biological properties of KPEVs, including their bioactive compound composition, gastric uptake, cytotoxicity, acid tolerance, and storage stability, were also examined. In addition, KPEVs had an average and uniform size of 200–300 nm and a negative surface charge of 14.7 ± 3.61 mV. Moreover, 5,7-dimethoxyflavone, the major bioactive compound of KP, was packaged into KPEVs. Meanwhile, KPEVs were resistant to gastric digestion and stably maintained at −20°C and −80°C for 8 weeks with no freeze-thaw cycle. The lipid hydrolysis during EVs storage at room temperature and 4°C were also demonstrated for the first time. Furthermore, the labeled KPEVs were internalized into adenocarcinoma gastric cells, and the cell viability was reduced in a dose-dependent manner, according to the results of the thiazolyl blue tetrazolium assay. Our study supports the potential application of KPEVs as a vehicle for anticancer or oral drugs.
Collapse
Affiliation(s)
- Variya Nemidkanam
- Department of Clinical Chemistry, Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuntaree Chaichanawongsaroj
- Department of Transfusion Medicine and Clinical Microbiology, Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
12
|
Preliminary studies of Volten VR4®
Kaempferia parviflora herb extracts on blood glucose levels in human type-2 diabetes mellitus and its mineral element analysis. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2021-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction
Volten VR4® capsules containing herb extract of Kaempferia parviflora has been claimed to reduce blood glucose in patients with diabetes.
Objectives
This preliminary study is conducted to evaluate the efficacy of Volten VR4® on healthy individuals and type-2 diabetes mellitus volunteers. The extracts of 400 mg capsules of Kaempferia parviflora (KP) were used to measure the blood glucose level of 2-hour postprandial.
Methods
The healthy group consists of 15 young adults aged 20-30 with no history of serious diseases, while the diabetic group includes 12 individuals aged 35-75 diagnosed with type-2 diabetes mellitus. Data were validated through the Willcoxon and Friedman test statistics and error distribution. The investigation was continued to trace the capsules contents of elements using inductively coupled plasma optical emission spectrometry (ICP-OES) techniques.
Results
It has been shown that KP reducing blood sugar levels has been associated with flavonoids and methoxyflavones components. The result specifically showed that consuming VR4® capsules can significantly reduce blood glucose, either at the state of fasting or postprandially. In the study the content of mineral and heavy metal elements in VR4® capsules has been evaluated.
Conclusion
Volten VR4®
Kaempferia parviflora extract is safe to be consumed at a single dose of 400 mg. The study also has shown that the participants are free from adverse reactions and hypoglycaemia.
Collapse
|
13
|
You Q, Li D, Ding H, Chen H, Hu Y, Liu Y. Pharmacokinetics and Metabolites of 12 Bioactive Polymethoxyflavones in Rat Plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12705-12716. [PMID: 34699208 DOI: 10.1021/acs.jafc.1c05004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymethoxyflavones (PMFs) are a subgroup of flavonoids possessing various health benefits. 3,5,7,4'-Tetramethoxyflavone (1), 5,6,7,4'-tetramethylflavone (2), 3,7,3',4'-tetramethoxyflavone (3), 5,7,3',4'-tetramethoxyflavone (4), 5-hydroxy-3,7,2',4'-tetramethoxyflavone (5), 3,5,7,2',4'-pentamethoxyflavone (6), 5-hydroxy-3,7,3',4'-tetramethoxyflavone (7), 3-hydroxy-5,7,3',4'-tetramethylflavone (8), 3,5,7,3',4'-pentamethoxyflavone (9), 5-hydroxy-3,7,3',4',5'-pentamethoxyflavone (10), 3-hydroxy-5,7,3',4',5'-pentamethoxyflavone (11), and 3,5,7,3',4',5'-hexamethoxylflavone (12) were 12 bioactive and available PMFs. The aim of this study was to investigate the pharmacokinetic, metabolite, and antitumor activities as well as the structure-pharmacokinetic-antitumor activity relationships of these 12 PMFs to facilitate further studies of their medicinal potentials. The cytotoxicity of PMFs with a hydroxy group toward HeLa, A549, HepG2, and HCT116 cancer cell lines was generally significantly more potent than that of PMFs without a hydroxy group. Compounds 5, 7, 8, 10, and 11 were all undetectable in rat plasma, while compounds 1-4, 6, 9, and 12 were detectable. Both the number and position of hydroxy and methoxy groups played an important role in modulating PMF pharmacokinetics and metabolites.
Collapse
Affiliation(s)
- Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, People's Republic of China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
| | - Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
| | - Hongping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
| | - Yuan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, People's Republic of China
| |
Collapse
|
14
|
Song K, Saini RK, Keum YS, Sivanesan I. Analysis of Lipophilic Antioxidants in the Leaves of Kaempferia parviflora Wall. Ex Baker Using LC-MRM-MS and GC-FID/MS. Antioxidants (Basel) 2021; 10:antiox10101573. [PMID: 34679708 PMCID: PMC8533615 DOI: 10.3390/antiox10101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023] Open
Abstract
Lipophilic metabolites such as carotenoids, fatty acids, vitamin K1, phytosterols, and tocopherols are important antioxidants that are used in the cosmetics, foods, and nutraceutical industries. Recently, there has been a growing demand for the use of byproducts (wastes) as a potential source of industrially important compounds. The leaves of Kaempferia parviflora (black ginger) (KP-BG) are major byproducts of KP-BG cultivation and have been reported to contain several bioactive metabolites; however, the composition of lipophilic metabolites in KP-BG leaves has not been examined. In this study, the lipophilic antioxidant profile was analyzed in the leaves of KP-BG plants grown in vitro and ex vitro. Lipophilic compounds, namely carotenoids (80.40-93.84 µg/g fresh weight (FW)), tocopherols (42.23-46.22 µg/g FW), phytosterols (37.69-44.40 µg/g FW), and vitamin K1 (7.25-7.31 µg/g FW), were quantified using LC-MRM-MS. The fatty acid profile of the KP-BG leaves was identified using GC-FID/MS. The content of individual lipophilic compounds varied among the KP-BG leaves. Ex vitro KP-BG leaves had high levels of lutein (44.38 µg/g FW), α-carotene (14.79 µg/g FW), neoxanthin (12.30 µg/g FW), β-carotene (11.33 µg/g FW), violaxanthin (11.03 µg/g FW), α-tocopherol (39.70 µg/g FW), α-linolenic acid (43.12%), palmitic acid (23.78%), oleic acid (12.28%), palmitoleic acid (3.64%), total carotenoids (93.84 µg/g FW), and tocopherols (46.22 µg/g FW) compared with in vitro KP-BG leaves. These results indicate that ex-vitro-grown KP-BG leaves could be used as a valuable natural source for extracting important lipophilic antioxidants.
Collapse
Affiliation(s)
- Kihwan Song
- Department of Bioresource Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea
- Correspondence: or ; Tel.: +82-2450-0576
| |
Collapse
|
15
|
Establishment of a Rapid Micropropagation System for Kaempferia parviflora Wall. Ex Baker: Phytochemical Analysis of Leaf Extracts and Evaluation of Biological Activities. PLANTS 2021; 10:plants10040698. [PMID: 33916375 PMCID: PMC8066125 DOI: 10.3390/plants10040698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to establish a rapid in vitro plant regeneration method from rhizome buds of Kaempferia parviflora to obtain the valuable secondary metabolites with antioxidant and enzyme inhibition properties. The disinfection effect of silver oxide nanoparticles (AgO NPs) on rhizome and effects of plant growth regulators on shoot multiplication and subsequent rooting were investigated. Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to control contamination. However, immersing rhizome buds in 100 mg L−1 AgO NPs for 60 min eliminated contamination without affecting the survival of explants. The number of shoots (12.2) produced per rhizome bud was higher in Murashige and Skoog (MS) medium containing 8 µM of 6-Benzyladenine (6-BA) and 0.5 µM of Thidiazuron (TDZ) than other treatments. The highest number of roots (24), with a mean root length of 7.8 cm and the maximum shoot length (9.8 cm), were obtained on medium MS with 2 µM of Indole-3-butyric acid (IBA). A survival rate of 98% was attained when plantlets of K. parviflora were acclimatized in a growth room. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine the chemical profile of K. parviflora leaf extracts. Results showed that several biologically active flavonoids reported in rhizomes were also present in leaf tissues of both in vitro cultured and ex vitro (greenhouse-grown) plantlets of K. parviflora. We found 40 and 36 compounds in in vitro cultured and ex vitro grown leaf samples, respectively. Greenhouse leaves exhibited more potent antioxidant activities than leaves from in vitro cultures. A higher acetylcholinesterase inhibitory ability was obtained for greenhouse leaves (1.07 mg/mL). However, leaves from in vitro cultures exhibited stronger butyrylcholinesterase inhibitory abilities. These results suggest that leaves of K. parviflora, as major byproducts of black ginger cultivation, could be used as valuable alternative sources for extracting bioactive compounds.
Collapse
|
16
|
Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida. J Nat Med 2021; 75:489-498. [PMID: 33687660 DOI: 10.1007/s11418-020-01480-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
New copaene-type and nerolidol-type sesquiterpenoids, 7-hydroxymustakone (1) and 15-hydroxynerolidol (2), and a 15-norlabdane diterpenoid, kaempcandiol (3), together with four known compounds (4-7) were isolated from the chloroform extract of Kaempferia candida roots and rhizomes. The structures of the new compounds 1-3 were elucidated based on 1D and 2D NMR and HRESIMS spectroscopic analyses. The extract of the K. candida roots and rhizomes and all isolated compounds 1-7 possessed HIV-1 viral protein R (Vpr) inhibitory activities on the TREx-HeLa-Vpr cell line at a 5 μM concentration, without detectable cytotoxicity.
Collapse
|
17
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
18
|
Mekjaruskul C, Sripanidkulchai B. Kaempferia parviflora Nanosuspension Formulation for Scalability and Improvement of Dissolution Profiles and Intestinal Absorption. AAPS PharmSciTech 2020; 21:52. [PMID: 31900735 DOI: 10.1208/s12249-019-1588-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 11/30/2022] Open
Abstract
Kaempferia parviflora (KP) is an herbal medicine for enhancement of physical fitness and male sexual function improvement with low oral absorption of the main active compounds, methoxyflavones. The purpose of this study is to optimize the preparation of nanosuspensions of KP extract for enhancing intestinal absorption using antisolvent precipitation technique which is an accessible nanomanufacturing methodology in the small industrial factory. Nanosuspensions were prepared using various types and concentrations of stabilizers. Then, the dry powder of KP nanosuspension was produced by spray drying. Its dissolution rate was determined using USP dissolution apparatus II. The rat everted intestinal sac was tested to confirm the improvement of intestinal absorption of KP nanosuspension. The result showed that 3% sodium lauryl sulfate (SLS) was the optimal condition for covering the nano-size of KP nanosuspension. KP nanosuspensions had particle sizes ranging from 100 to 300 nm with narrow size distribution (PDI < 0.60) and zeta potential at - 58 to - 70 mV. These characteristics were stable at 4°C and 25°C/60%RH for 1-month storage. Its methoxyflavones content also unchanged at 4°C and 25°C/60%RH for 1-month storage. KP nanosuspension released > 80% of the methoxyflavones within 30 min both in 0.1 N HCl and 0.01 M phosphate buffer solution (pH 6.8). Moreover, the developed nanosuspension dramatically improved the rat intestinal absorption about 10-fold. Therefore, the KP nanosuspension was successfully prepared. It has relatively high stability, fast dissolution rate, and high intestinal absorption.
Collapse
|
19
|
Elshamy AI, Mohamed TA, Essa AF, Abd-ElGawad AM, Alqahtani AS, Shahat AA, Yoneyama T, Farrag ARH, Noji M, El-Seedi HR, Umeyama A, Paré PW, Hegazy MEF. Recent Advances in Kaempferia Phytochemistry and Biological Activity: A Comprehensive Review. Nutrients 2019; 11:nu11102396. [PMID: 31591364 PMCID: PMC6836233 DOI: 10.3390/nu11102396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are distributed in Asia, especially in the southeast region, and Thailand. They have been widely used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections, fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases. Objective: Herein, we reported a comprehensive review, including the traditional applications, biological and pharmacological advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019. Materials and methods: All the information and reported studies concerning Kaempheria plants were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed, Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), based on the main chemical classes of compounds. Results: Approximately 141 chemical constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane, labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial, anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective, anti-allergenic, and anti-nociceptive were demonstrated. Conclusions: Up to date, significant advances in phytochemical and pharmacological studies of different Kaempheria species have been witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and in vivo biological studies. In addition, these traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdelaaty A Shahat
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | - Masaaki Noji
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt.
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Song D, Cheng L, Zhang X, Wu Z, Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. J Food Biochem 2019; 43:e12954. [PMID: 31368555 DOI: 10.1111/jfbc.12954] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
With the improvement of living standards, obesity has become a serious health problem all over the word. Currently, the methods and drugs for obesity treatment have some limitations and side effects. Flavonoids are active constituents with various biological activities, widely found in plants, and numerous studies have shown that flavonoids can inhibit obesity and related metabolism disorders effectively. This perspective reviews the recent progress in understanding the anti-obesity effects of flavonoids through modulating food intake, enzyme activities, nutrition absorption, adipogenesis and adipocyte lifecycle, thermogenesis, energy consumption, and intestinal microbiota. PRACTICAL APPLICATIONS: Natural bioactive substance flavonoids have anti-obesity property, which may play a role in anti-obesity drugs or functional food without any side effects. Flavonoids can inhibit weight gain directly or through their biologically active metabolites by various potential pathways. A better understanding of the modulatory effect and the mechanism of flavonoids on obesity will allow us to better utilize flavonoids in plants to treat obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, P.R. China
| |
Collapse
|
21
|
Mekjaruskul C, Sripanidkulchai B. In vivo effect of Kaempferia parviflora extract on pharmacokinetics of acetaminophen. Drug Chem Toxicol 2019; 43:602-608. [PMID: 31195843 DOI: 10.1080/01480545.2018.1542435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Kaempferia parviflora is widely used as a food supplement and a herbal medicine for vitalization. Previous study has shown that K. parviflora had CYP2E1 inducer activity. It is likely to affect the metabolism of CYP2E1 substrates such as acetaminophen which is a common household pain relief medicine. This study investigated the possible pharmacokinetic interaction between K. parviflora and acetaminophen in rats. Acetaminophen (100 mg/kg, p.o) was administered to rats for nine consecutive days. On days 4-9, K. parviflora extract (250 mg/kg, p.o) was given to the acetaminophen-treated rats. After co-administration with K. parviflora, the concentrations of acetaminophen during day 5-8 markedly decreased compared with acetaminophen-only group. At day 9, the pharmacokinetic parameters of acetaminophen in the presence of K. parviflora extract also decreased, including area under the concentration-time curve (from 1.68 ± 0.16 to 0.34 ± 0.04 mg.min/mL), the maximum concentration (from 19.10 ± 1.90 to 4.48 ± 0.56 µg/mL), and half-life (from 21.29 ± 1.36 to 10.81 ± 1.24 min). In addition, clearance and the elimination rate constant of acetaminophen were significantly increased (from 0.003 ± 0.000 to 0.006 ± 0.001 L/min and 0.03 ± 0.00 to 0.07 ± 0.01 min-1, respectively) in the presence of K. parviflora extract. These findings provide the data for in vivo herb-drug interaction between K. parviflora extract and acetaminophen. Therefore, the concomitant use of K. parviflora as a food supplement and acetaminophen should occasion therapeutic and safety concerns.
Collapse
Affiliation(s)
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
22
|
Glucose Tolerance Test and Pharmacokinetic Study of Kaempferia parviflora Extract in Healthy Subjects. Nutrients 2019; 11:nu11051176. [PMID: 31130666 PMCID: PMC6566825 DOI: 10.3390/nu11051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Kaempferia parviflora Wall. ex Baker (KP), Krachaidam in Thai or Thai ginseng, is a herbal medicine that has many potential pharmacological effects. The effect of KP extract on blood glucose level in rodent was reported. This study focused on the oral glucose tolerance test and pharmacokinetic study in healthy volunteers administered with KP extract (90 and 180 mg/day, placebo). The oral glucose tolerance tests were performed at baselines and 28-days of administration. The pharmacokinetics were determined after a single dose administration of the tested products using 3,5,7,3′,4′-pentamethoxyflavone (PMF) and 5,7,4′-trimethoxylflavone (TMF) as markers. The results showed that glucose metabolism via oral glucose tolerance test was not affected by KP extract. Blood glucose levels of volunteers at 120 min after glucose loading were able to be returned to initial levels in placebo, KP 90 mg/day, and KP 180 mg/day groups both at baseline and 28-days of administration. The results of the pharmacokinetic study revealed that only TMF and PMF, but not 5,7-dimethoxyflavone (DMF) levels could be detected in human blood. The given doses of KP extract at 90 and 180 mg/day showed a linear dose-relationship of blood PMF concentration whereas blood TMF was detected only at high given dose (180 mg/day). The half-lives of PMF and TMF were 2–3 h. The maximum concentration (Cmax), area under the curve of blood concentration and time (AUC), and time to maximum concentration (Tmax) values of PMF and TMF estimated for the 180 mg/day dose were 71.2 ± 11.3, 63.0 ± 18.0 ng/mL; 291.9 ± 48.2, 412.2 ± 203.7 ng∙h/mL; and 4.02 ± 0.37, 6.03 ± 0.96 h, respectively. PMF was quickly eliminated with higher Ke and Cl than TMF at the dose of 180 mg/day of KP extract. In conclusion, the results demonstrated that KP extract had no effect on the glucose tolerance test. In addition, this is the first demonstration of the pharmacokinetic parameters of methoxyflavones of KP extract in healthy volunteers. The data suggest the safety of the KP extract and will be of benefit for further clinical trials using KP extract as food and sport supplements as well as a drug in health product development.
Collapse
|
23
|
Tatsuzaki J, Ohwada T, Otani Y, Inagi R, Ishikawa T. A simple and effective preparation of quercetin pentamethyl ether from quercetin. Beilstein J Org Chem 2018; 14:3112-3121. [PMID: 30643589 PMCID: PMC6317434 DOI: 10.3762/bjoc.14.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Among the five hydroxy (OH) groups of quercetin (3,5,7,3',4'-pentahydroxyflavone), the OH group at 5 position is the most resistant to methylation due to its strong intramolecular hydrogen bonding with the carbonyl group at 4 position. Thus, it is generally difficult to synthesize the pentamethyl ether efficiently by conventional methylation. Here, we describe a simple and effective per-O-methylation of quercetin with dimethyl sulfate in potassium (or sodium) hydroxide/dimethyl sulfoxide at room temperature for about 2 hours, affording quercetin pentamethyl ether (QPE) quantitatively as a single product. When methyl iodide was used in place of dimethyl sulfate, the C-methylation product 6-methylquercetin pentamethyl ether was also formed. A computational study provided a rationale for the experimental results.
Collapse
Affiliation(s)
- Jin Tatsuzaki
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Reiko Inagi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tsutomu Ishikawa
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
| |
Collapse
|
24
|
Lee MH, Han AR, Jang M, Choi HK, Lee SY, Kim KT, Lim TG. Antiskin Inflammatory Activity of Black Ginger (Kaempferia parviflora) through Antioxidative Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5967150. [PMID: 29849904 PMCID: PMC5903305 DOI: 10.1155/2018/5967150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/16/2018] [Accepted: 02/05/2018] [Indexed: 11/18/2022]
Abstract
Kaempferia parviflora (Krachaidum (KD)) is a traditional herbal medicine and has properties that are beneficial for human health. In the current study, we sought to investigate the anti-inflammatory properties of KD extract (KPE). In mouse skin tissue, UV light representing solar wavelengths (sUV) increased COX-2 expression, while treatment with KPE reduced this effect. The anti-inflammatory activity of KPE was confirmed in in vitro models. MAPK signaling pathways were activated by sUV irradiation, and this was also repressed in the presence of KPE treatment. It is assumed that the anti-inflammatory activity of KPE is caused by the antioxidative effect. Furthermore, we confirmed the critical role of oxidative stress in sUV-induced COX-2 expression. We analyzed the polyphenol composition of KPE. Of the polyphenols identified, gallic acid, apigenin, and tangeretin were identified as the major polyphenols (at 9.31 ± 1.27, 2.37 ± 0.14, and 2.15 ± 0.19 μg/mg dry weight, resp.). Collectively, these findings show that in the presence of sUV irradiation, KD has anti-inflammatory properties and antioxidative effects in the skin.
Collapse
Affiliation(s)
- Myung-hee Lee
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Ah-Ram Han
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Mi Jang
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Kyung-Tack Kim
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun, 55365 Jeollabuk-do, Republic of Korea
| |
Collapse
|
25
|
Proença C, Freitas M, Ribeiro D, Oliveira EFT, Sousa JLC, Tomé SM, Ramos MJ, Silva AMS, Fernandes PA, Fernandes E. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. J Enzyme Inhib Med Chem 2017; 32:1216-1228. [PMID: 28933564 PMCID: PMC6009965 DOI: 10.1080/14756366.2017.1368503] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme’s activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure–activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG.
Collapse
Affiliation(s)
- Carina Proença
- a UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Marisa Freitas
- a UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Daniela Ribeiro
- a UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Eduardo F T Oliveira
- b UCIBIO, REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Porto , Portugal
| | - Joana L C Sousa
- c Department of Chemistry & QOPNA , University of Aveiro , Aveiro , Portugal
| | - Sara M Tomé
- c Department of Chemistry & QOPNA , University of Aveiro , Aveiro , Portugal
| | - Maria J Ramos
- b UCIBIO, REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Porto , Portugal
| | - Artur M S Silva
- c Department of Chemistry & QOPNA , University of Aveiro , Aveiro , Portugal
| | - Pedro A Fernandes
- b UCIBIO, REQUIMTE, Faculty of Sciences, Department of Chemistry and Biochemistry , University of Porto , Porto , Portugal
| | - Eduarda Fernandes
- a UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| |
Collapse
|
26
|
He R, Liu P, Huo X, Zhang W. Ir/Zn Dual Catalysis: Enantioselective and Diastereodivergent α-Allylation of Unprotected α-Hydroxy Indanones. Org Lett 2017; 19:5513-5516. [DOI: 10.1021/acs.orglett.7b02577] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui He
- School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Penglin Liu
- School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaohong Huo
- School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
27
|
Simultaneous optimisation of extraction of xanthone and benzophenone α-glucosidase inhibitors from Cyclopia genistoides and identification of superior genotypes for propagation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Burapan S, Kim M, Han J. Demethylation of Polymethoxyflavones by Human Gut Bacterium, Blautia sp. MRG-PMF1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1620-1629. [PMID: 28211698 DOI: 10.1021/acs.jafc.7b00408] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polymethoxyflavones (PMFs) were biotransformed to various demethylated metabolites in the human intestine by the PMF-metabolizing bacterium, Blautia sp. MRG-PMF1. Because the newly formed metabolites can have different biological activities, the pathways and regioselectivity of PMF bioconversion were investigated. Using an anaerobic in vitro study, 12 PMFs, 5,7-dimethoxyflavone (5,7-DMF), 5-hydroxy-7-methoxyflavone (5-OH-7-MF), 3,5,7-trimethoxyflavone (3,5,7-TMF), 5-hydroxy-3,7-dimethoxyflavone (5-OH-3,7-DMF), 5,7,4'-trimethoxyflavone (5,7,4'-TMF), 5-hydroxy-7,4'-dimethoxyflavone (5-OH-7,4'-DMF), 3,5,7,4'-tetramethoxyflavone (3,5,7,4'-TMF), 5-hydroxy-3,7,4'-trimethoxyflavone (5-OH-3,7,4'-TMF), 5,7,3',4'-tetramethoxyflavone (5,7,3',4'-TMF), 3,5,7,3',4'-pentamethoxyflavone (3,5,7,3',4'-PMF), 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5-OH-3,7,3',4'-TMF), and 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (5,3'-diOH-3,7,4'-TMF), were converted to chrysin, apigenin, galangin, kaempferol, luteolin, and quercetin after complete demethylation. The time-course monitoring of PMF biotransformations elucidated bioconversion pathways, including the identification of metabolic intermediates. As a robust flavonoid demethylase, regioselectivity of PMF demethylation generally followed the order C-7 > C-4' ≈ C-3' > C-5 > C-3. PMF demethylase in the MRG-PMF1 strain was suggested as a Co-corrinoid methyltransferase system, and this was supported by the experiments utilizing other methyl aryl ether substrates and inhibitors.
Collapse
Affiliation(s)
- Supawadee Burapan
- Metalloenzyme Research Group and Department of Integrative Plant Science, Chung-Ang University , Anseong 17546, Korea
| | - Mihyang Kim
- Metalloenzyme Research Group and Department of Integrative Plant Science, Chung-Ang University , Anseong 17546, Korea
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Integrative Plant Science, Chung-Ang University , Anseong 17546, Korea
| |
Collapse
|
29
|
Ke Z, Yang Y, Tan S, Zhou Z. Characterization of Polymethoxylated Flavonoids in the Peels of Chinese Wild Mandarin (Citrus reticulata Blanco) by UPLC-Q-TOF-MS/MS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0690-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Saokaew S, Wilairat P, Raktanyakan P, Dilokthornsakul P, Dhippayom T, Kongkaew C, Sruamsiri R, Chuthaputti A, Chaiyakunapruk N. Clinical Effects of Krachaidum ( Kaempferia parviflora): A Systematic Review. J Evid Based Complementary Altern Med 2016; 22:413-428. [PMID: 27694558 PMCID: PMC5871153 DOI: 10.1177/2156587216669628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Kaempferia parviflora (Krachaidum) is a medicinal plant in the family Zingiberaceae. Its rhizome has been used as folk medicine for many centuries. A number of pharmacological studies of Krachaidum had claimed benefits for various ailments. Therefore, this study aimed to systematically search and summarize the clinical evidences of Krachaidum in all identified indications. Of 683 records identified, 7 studies were included. From current clinical trials, Krachaidum showed positive benefits but remained inconclusive since small studies were included. Even though results found that Krachaidum significantly increased hand grip strength and enhanced sexual erotic stimuli, these were based on only 2 studies and 1 study, respectively. With regard to harmful effects, we found no adverse events reported even when Krachaidum 1.35 g/day was used. Therefore, future studies of Krachaidum are needed with regards to both safety and efficacy outcomes.
Collapse
Affiliation(s)
- Surasak Saokaew
- 1 University of Phayao, Phayao, Thailand.,2 Monash University Malaysia, Kuala Lumpur, Malaysia.,3 Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | | | | | - Anchalee Chuthaputti
- 4 Department for Development of Thai Traditional and Alternative Medicine, Ministry of Public Health, Nonthaburi, Thailand
| | - Nathorn Chaiyakunapruk
- 2 Monash University Malaysia, Kuala Lumpur, Malaysia.,3 Naresuan University, Phitsanulok, Thailand.,5 University of Queensland, Brisbane, Queensland, Australia.,6 University of Wisconsin-Madison, WI, USA
| |
Collapse
|
31
|
Thao NP, Luyen BTT, Kim JH, Jo AR, Yang SY, Dat NT, Van Minh C, Kim YH. Soluble epoxide hydrolase inhibitory activity by rhizomes of Kaempferia parviflora Wall. ex Baker. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1525-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Sharma S, Sharma S, Vig AP. Evaluation of antimutagenic and protective effects of Parkinsonia aculeata L. leaves against H2O2 induced damage in pBR322 DNA. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:17-31. [PMID: 27186016 PMCID: PMC4840153 DOI: 10.1007/s12298-016-0346-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
The in vitro antimutagenic and DNA protecting potential of organic (methanol, hexane, n-butanol) and aqueous extract/fractions of Parkinsonia aculeata L. (Fabaceae) was investigated by employing Ames assay and DNA nicking assay. DNA damage by hydroxyl radicals was effectively inhibited by all the extract/fractions. A marked antimutagenic effect was observed against 4-Nitro-o-phenylenediamine and sodium azide (direct acting mutagens) and 2-Aminofluorene (indirect acting mutagen) in TA98 and TA100 strains of Salmonella typhimurium. In Ames assay, two different modes of experiments i.e. pre-incubation and co-incubation were performed and it was observed that all the extract/fractions showed better results in the pre-incubation as compared to co- incubation mode. Out of all the extract/fractions tested, n-butanol fraction was found to be the most effective in preventing DNA damage and inhibiting mutagenesis. UHPLC analysis of extract/fractions revealed presence of polyphenols such as gallic acid, catechin, chlorogenic acid, caffeic acid, umbelliferone, coumaric acid, rutin, and ellagic acid etc. DNA protecting and antimutagenic activity of this plant could be attributed to presence of these polyphenols. The results of this study indicate the presence of potent antioxidant factors in Parkinsonia aculeata L, which are being explored further for their mechanism of action.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab India
| | - Sushant Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
33
|
Thao NP, Luyen BTT, Lee SH, Jang HD, Kim YH. Anti-osteoporotic and Antioxidant Activities by Rhizomes ofKaempferia parvifloraWall. ex Baker. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.1.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Phuong Thao
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Thi Thuy Luyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sang Hyun Lee
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Republic of Korea
| | - Hae Dong Jang
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
34
|
Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora. J Nat Med 2015; 70:179-89. [DOI: 10.1007/s11418-015-0955-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
|
35
|
Kobayashi S, Kato T, Azuma T, Kikuzaki H, Abe K. Anti-allergenic activity of polymethoxyflavones from Kaempferia parviflora. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
|
37
|
|
38
|
Mekjaruskul C, Sripanidkulchai B. Pharmacokinetic interaction between Kaempferia parviflora extract and sildenafil in rats. J Nat Med 2015; 69:224-31. [PMID: 25567192 DOI: 10.1007/s11418-014-0882-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022]
Abstract
Kaempferia parviflora (KP) is a plant widely used in Southeast Asia. Its major compounds are 3,5,7,3',4'-pentamethoxyflavone (PMF), 5,7,4'-trimethoxylflavone (TMF), and 5,7-dimethoxyflavone (DMF). This study investigated the effect of KP extract on the blood levels and pharmacokinetics of sildenafil co-administration in rats. Rats were randomly assigned to four groups. Groups 1, 2, and 3 were given sildenafil 20 mg/kg daily for 9 days. On days 4-9 of each treatment period, the treated rats received KP extract (250 mg/kg) and vehicle (groups 2 and 3, respectively). Group 4 received KP extract only (250 mg/kg daily for 9 days). Daily blood concentrations of sildenafil, PMF, TMF, and DMF were determined by HPLC to evaluate the daily blood level interactions. Additional blood samples were collected at various times on the last day of treatment to evaluate the pharmacokinetic interactions. The KP extract decreased blood levels of sildenafil on the first day of co-administration by 95 % but the percentage reduction was insignificant on subsequent days. When co-administered with KP extract, the area under the curve (AUC), maximum concentration (C max), and half-life (T 1/2) of sildenafil were decreased by 60-65, 40-52, and 32-54 %, respectively, with the elimination rate constant (K e) increased by 37-77 %. In addition, PMF, TMF, and DMF concentrations and their AUC, C max, T max, K e, and T 1/2 values were changed after co-administration of KP extract and sildenafil.
Collapse
|
39
|
Beelders T, Brand DJ, de Beer D, Malherbe CJ, Mazibuko SE, Muller CJF, Joubert E. Benzophenone C- and O-glucosides from Cyclopia genistoides (Honeybush) inhibit mammalian α-glucosidase. JOURNAL OF NATURAL PRODUCTS 2014; 77:2694-2699. [PMID: 25419864 DOI: 10.1021/np5007247] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An enriched fraction of an aqueous extract prepared from the aerial parts of Cyclopia genistoides Vent. yielded a new benzophenone di-C,O-glucoside, 3-C-β-d-glucopyranosyl-4-O-β-d-glucopyranosyliriflophenone (1), together with small quantities of a known benzophenone C-glucoside, 3-C-β-d-glucopyranosylmaclurin (2). The isolated compounds showed α-glucosidase inhibitory activity against an enzyme mixture extracted from rat intestinal acetone powder. Compound 2 exhibited significantly (p < 0.05) higher inhibitory activity (54%) than 1 (43%) at 200 μM. In vitro tests in several cell models showed that 1 and its 3-C-monoglucosylated derivative (3-C-β-d-glucopyranosyliriflophenone) were marginally effective (p ≥ 0.05) in increasing glucose uptake.
Collapse
Affiliation(s)
- Theresa Beelders
- Department of Food Science, Stellenbosch University , Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
40
|
Songngam S, Sukwattanasinitt M, Siralertmukul K, Sawasdee P. A 5,7-dimethoxyflavone/hydroxypropyl-β-cyclodextrin inclusion complex with anti-butyrylcholinesterase activity. AAPS PharmSciTech 2014; 15:1189-96. [PMID: 24879292 DOI: 10.1208/s12249-014-0157-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022] Open
Abstract
This study aimed to improve the water solubility of 5,7-dimethoxyflavone (5,7-DMF) isolated from Kaempferia parviflora by complexation with 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The phase solubility profile of 5,7-DMF in the presence of HPβ-CD was classified as AL-type and indicated a 1:1 mole ratio. Differential scanning colorimetry, X-ray diffraction, NMR and SEM analyses supported the formation of a 5,7-DMF/HPβ-CD inclusion complex involving the A ring of 5,7-DMF inside the HPβ-CD cavity. This is the first example of CD inclusion with the A ring of non-hydroxyl flavones. The stability and binding constants of the complexes were determined using the phase solubility and UV-vis absorption spectroscopy, respectively. The water solubility of 5,7-DMF was increased 361.8-fold by complexation with HPβ-CD and overcame the precipitation problem observed in aqueous buffers, such as during in vitro anti-butyrylcholinesterase activity assays. The 1:1 mole ratio of the 5,7-DMF/HPβ-CD complex showed a 2.7-fold higher butyrylcholinesterase inhibitory activity (in terms of the IC50 value) compared to the non-complexed compound.
Collapse
|
41
|
|
42
|
Da Silva D, Casanova LM, Marcondes MC, Espindola-Netto JM, Paixão LP, De Melo GO, Zancan P, Sola-Penna M, Costa SS. Antidiabetic activity ofSedum dendroideum: Metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin. IUBMB Life 2014; 66:361-70. [DOI: 10.1002/iub.1270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Livia Marques Casanova
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Núcleo de Pesquisa de Produtos Naturais; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Mariah Celestino Marcondes
- Laboratório de Oncobiologia Molecular (LabOMol), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Jair Machado Espindola-Netto
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Larissa Pereira Paixão
- Laboratório de Oncobiologia Molecular (LabOMol), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Giany Oliveira De Melo
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Núcleo de Pesquisa de Produtos Naturais; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), BioTecFar, Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Sônia Soares Costa
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Núcleo de Pesquisa de Produtos Naturais; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
43
|
Wei GJ, Hwang LS, Tsai CL. Absolute bioavailability, pharmacokinetics and excretion of 5,7,3′,4′-tetramethoxyflavone in rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
44
|
Boonkerd S, Yompakdee C, Miyakawa T, Chavasiri W. A flavonoid, 5-hydroxy-3,7-dimethoxyflavone, from Kaempferia parviflora Wall. Ex. Baker as an inhibitor of Ca2+ signal-mediated cell-cycle regulation in yeast. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Mekjaruskul C, Yang YT, Leed MG, Sadgrove MP, Jay M, Sripanidkulchai B. Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin. Int J Pharm 2013; 445:1-11. [DOI: 10.1016/j.ijpharm.2013.01.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 11/16/2022]
|
46
|
Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci Nutr 2013; 53:818-836. [PMID: 23768145 DOI: 10.1080/10408398.2011.561379] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The dietary polyphenols as α-glucosidases inhibitors have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting α-glucosidases. The molecular structures that influence the inhibition are the following: (1) The hydroxylation and galloylation of flavonoids including catechins improve the inhibitory activity. (2) The glycosylation of hyroxyl group and hydrogenation of the C2=C3 double bond on flavonoids weaken the inhibition. (3) However, cyaniding glycosides show higher inhibition against than cyanidin. Proanthocyanidins oligomers exhibit a stronger inhibitory activity than their polymers. (4) The hydroxylation on B ring and the glycosylation of stilbenes reduce the inhibitory activity. (5) Caffeoylquinic acids display strong inhibition against α-glucosidases. However, hydroxycinnamic acid, ferulic acid, and gallic acid hardly inhibited α-glucosidases. (6) The coupled galloyl structures attached to C-3 and C-6 of the 4C(1) glucose core of ellagitanin gave basic inhibitory activity. (7) The mono-glycosylation of chalcones slightly lowers the inhibition. However, the diglycosylation of chalcones significantly decreased the activity.
Collapse
Affiliation(s)
- Jianbo Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China.
| | | | | | | |
Collapse
|
47
|
Wang H, Liu T, Huang D. Starch hydrolase inhibitors from edible plants. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 70:103-136. [PMID: 23722095 DOI: 10.1016/b978-0-12-416555-7.00003-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Type 2 diabetes is a chronic disease with gradual deterioration in glucose metabolism, which causes multiple systemic complications. Postprandial hyperglycemia is a concern in the management of type 2 diabetes. Of all the available antidiabetic therapeutic methods, inhibition of α-glucosidase and α-amylase is postulated to be a preventive treatment. Many natural products and herbal medicines have been recommended as being beneficial for mitigation of postprandial hyperglycemia. In this review, recent discoveries of α-glucosidase and α-amylase inhibitors from edible plants are described along with their chemical structures. Their inhibition mechanisms, the type of each glucosidase and amylase, and measurement methods for the inhibitory activity are also given. Finally, recent progress on low glycemic index foods incorporated with plants containing starch hydrolase inhibitors is summarized.
Collapse
Affiliation(s)
- Hongyu Wang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | | | | |
Collapse
|
48
|
Mekjaruskul C, Jay M, Sripanidkulchai B. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug Metab Dispos 2012; 40:2342-53. [PMID: 22961680 DOI: 10.1124/dmd.112.047142] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Kaempferia parviflora (KP) is an herbal plant in the family of Zingiberaceae. KP mainly contains methoxyflavones, especially 5,7-dimethoxyflavone (DMF), 5,7,4'-trimethoxyflavone (TMF), and 3,5,7,3',4'-pentamethoxyflavone (PMF). The present study was designed to characterize the pharmacokinetics, including bioavailability, distribution, excretion, and identification of metabolites after administration of a KP ethanolic extract. Male rats were orally or intravenously administered a 250 mg/kg concentration of a KP extract, and blood samples were obtained at selected times to determine pharmacokinetic parameters of PMF, TMF, and DMF. For distribution and excretion studies, the organs, urine, and feces samples were collected at various times after oral administration of a larger (750 mg/kg) dose of KP extract. Methoxyflavones in the biological samples were quantified by high-performance liquid chromatography-UV, and the metabolites in urine and feces were further identified by using liquid chromatography-tandem mass spectrometry. After oral administration, concentrations of the three methoxyflavones quickly approached their maximal concentration, ranging from 0.55 to 0.88 μg/ml within 1 to 2 h after administration, and then were gradually excreted with half-lives of 3 to 6 h. The methoxyflavones showed low oral bioavailability of 1 to 4%. Three methoxyflavones were detected at their highest levels in liver followed by kidney. They were also found in lung, testes, and brain. After absorption, organ distribution, and metabolism, the components of KP were mainly eliminated through urine in the forms of demethylated, sulfated, and glucuronidated products and as demethylated metabolites in the feces. The parent compounds were found to have 0.79, 1.76, and 3.10% dose recovery in urine and 1.06, 1.77, and 0.96% dose recovery in feces for PMF, TMF, and DMF, respectively. These studies are the first to describe the pharmacokinetics of KP extract to provide the information on blood and tissue levels.
Collapse
|
49
|
Lu WC, Sheen JF, Hwang LS, Wei GJ. Identification of 5,7,3',4'-tetramethoxyflavone metabolites in rat urine by the isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8123-8128. [PMID: 22812915 DOI: 10.1021/jf302043a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
5,7,3',4'-Tetramethoxyflavone (TMF), one of the major polymethoxyflavones (PMFs) isolated from Kaempferia parviflor , has been reported possessing various bioactivities, including antifungal, antimalarial, antimycobacterial, and anti-inflammatory activities. Although several studies on the TMF have been reported, the information about the metabolism of TMF and the structures of TMF metabolites is still not yet clear. In this study, an isotope-labeling method was developed for the identification of TMF metabolites. Three isotope-labeled TMFs (5,7,3',4'-tetramethoxy[3'-D(3)]flavone, 5,7,3',4'-tetramethoxy[4'-D(3)]flavone, and 5,7,3',4'-tetramethoxy[5,4'-D(6)]flavone) were synthesized and administered to rats. The urine samples were collected, and the main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry. Five TMF metabolites were unambiguously identified as 3'-hydroxy-5,7,4'-trimethoxyflavone, 7-hydroxy-5,3',4'-trimethoxyflavone sulfate, 7-hydroxy-5,3',4'-trimethoxyflavone, 4'-hydroxy-5,7,3'-trimethoxyflavone, and 5-hydroxy-7,3',4'-trimethoxyflavone.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
50
|
Mekjaruskul C, Jay M, Sripanidkulchai B. Modulatory effects of Kaempferia parviflora extract on mouse hepatic cytochrome P450 enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:831-839. [PMID: 22465145 DOI: 10.1016/j.jep.2012.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/16/2012] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kaempferia parviflora is a herbal plant, the extracts of which are commonly used as alternative medicines. It widely uses as aphrodisiac, anti-inflammation, anti-microbacterial, and anti-peptic ulcer. AIM OF THE STUDY In order to obtain an effective utilization and safety of the herb, the influence of Kaempferia parviflora on hepatic CYP450 metabolizing enzymes including CYP1A1, CYP1A2, CYP2B, CYP2E1, and CYP3A was investigated. MATERIALS AND METHODS The impact of Kaempferia parviflora on CYP450 both in vitro and in vivo was examined by using ethoxyresorufin O-dealkylation, methoxyresorufin O-dealkylation, pentoxyresorufin O-dealkylation, p-nitrophenol hydroxylation, and erythromycin N-demethylation assays, respectively. RESULTS In vitro studies using non-induced mouse hepatic microsomes in the presence or absence of Kaempferia parviflora extract showed that Kaempferia parviflora extract altered CYP1A1, CYP1A2, CYP2B, and CYP2E1 activities by non-competitive, mixed-competitive, competitive, and uncompetitive mechanisms, respectively. Among these enzymes, CYP1A2 was affected by Kaempferia parviflora based on the highest value of V(max) (15.276±0.206 nmol/min) and lowest of K(i) value (0.008±0.002 μg/ml). In addition, the plant extract also modulated CYP2B activity based on the low K(m) value (1.599±0.147 pmol). For in vivo studies, mice were orally treated with 250 mg/kg of Kaempferia parviflora extract for 7, 14, and 21 days. The results demonstrated that Kaempferia parviflora extract significantly induced CYP1A1, CYP1A2 enzyme activities following short-term treatment. CYP2B enzyme activities were markedly increased all Kaempferia parviflora extract treatment timepoints, whereas Kaempferia parviflora extract significantly enhanced CYP2E1 activity only after long-term treatment. However, Kaempferia parviflora extract did not affect the CYP3A enzyme activity. CONCLUSIONS Kaempferia parviflora extract modulated several CYP450 enzyme activities, thus, its utilization with drugs or other herbs should raise concern for potential drug-herb interactions.
Collapse
|