1
|
Zodio S, Serreli G, Melis MP, Franchi B, Boronat A, de la Torre R, Deiana M. Protective effect of hydroxytyrosol and tyrosol metabolites in LPS-induced vascular barrier derangement in vitro. Front Nutr 2024; 11:1350378. [PMID: 38706564 PMCID: PMC11066181 DOI: 10.3389/fnut.2024.1350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction The maintenance of endothelial barrier function is essential for vasal homeostasis and prevention of cardiovascular diseases. Among the toxic stimuli involved in the initiation of atherosclerotic lesions, Gram negative lipopolysaccharide (LPS) has been reported to be able to trigger endothelial dysfunction, through the alteration of barrier permeability and inflammatory response. Hydroxytyrosol (HT) and tyrosol (Tyr), the major phenolic compounds of extra virgin olive oil (EVOO), as wells as their circulating sulphated and glucuronidated metabolites have been shown to exert anti-inflammatory effects at endothelial level. Methods In this study we investigated the protective effects of HT and Tyr metabolites on LPS-induced alteration of permeability in Human Umbilical Vein Endothelial Cells (HUVEC) monolayers and examined underlying signaling pathways, focusing on tight junction (TJ) proteins, mitogen-activated protein kinase (MAPK) and NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Results It was shown that LPS-increased permeability in HUVEC cells was due to the alteration of TJ protein level, following the activation of MAPK and NLRP3. HT and Tyr sulphated and glucuronidated metabolites were able to limit the effects exerted by LPS, acting as signaling molecules with an efficacy comparable to that of their precursors HT and Tyr. Discussion The obtained results add a further piece to the understanding of HT and Tyr metabolites mechanisms of action in vascular protection.
Collapse
Affiliation(s)
- Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Benedetta Franchi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Boronat
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Giusepponi D, Barola C, Bucaletti E, Moretti S, Paoletti F, Valiani A, Branciari R, Galarini R. Occurrence of Hydroxytyrosol, Tyrosol and Their Metabolites in Italian Cheese. Molecules 2023; 28:6204. [PMID: 37687033 PMCID: PMC10488946 DOI: 10.3390/molecules28176204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HT) are phenyl alcohol polyphenols with well-recognized health-promoting properties. They are widely diffused in several vegetables, especially in olive products (leaves, fruits and oil). Therefore, they could be present in food produced from herbivorous animals such as in milk and cheese. In this study, an analytical method to determine T, HT and some of their phase II metabolites (sulphates and glucuronides) in cheese was developed and validated. Samples were extracted with an acidic mixture of MeOH/water 80/20 (v/v) and, after a low temperature clean-up, the extracts were evaporated and injected in a liquid-chromatography coupled with high resolution mass spectrometry (LC-Q-Orbitrap). A validation study demonstrated satisfactory method performance characteristics (selectivity, linearity, precision, recovery factors, detection and quantification limits). The developed protocol was then applied to analyze 36 Italian cheeses made from ewe, goat and cow milk. The sum of detected compounds (T, tyrosol sulfate, hydroxytyrosol-3-O-sulfate and hydroxytyrosol-4-O-sulfate) reached as high as 2300 µg kg-1 on a dry weight basis, although in about 45% of cow cheeses it did not exceed 50 µg kg-1. Ewe cheeses were significantly richer of polyphenols (sum) as well as HT sulfate metabolites than cow cheeses. In conclusion, results shows that cheese cannot be considered an important dietary source of these valuable compounds.
Collapse
Affiliation(s)
- Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Elisabetta Bucaletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (D.G.); (C.B.); (E.B.); (S.M.); (F.P.); (A.V.)
| |
Collapse
|
3
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
4
|
Di Renzo L, Smeriglio A, Ingegneri M, Gualtieri P, Trombetta D. The Pharmaceutical Formulation Plays a Pivotal Role in Hydroxytyrosol Pharmacokinetics. Pharmaceutics 2023; 15:pharmaceutics15030743. [PMID: 36986604 PMCID: PMC10059125 DOI: 10.3390/pharmaceutics15030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Current evidence supports the use of extra virgin olive oil (EVOO) and its minor components such as hydroxytyrosol or 3,4-dihydroxyphenyl ethanol (DOPET), to improve cardiovascular and metabolic health. Nevertheless, more intervention studies in humans are needed because some gaps remain in its bioavailability and metabolism. The aim of this study was to investigate the DOPET pharmacokinetics on 20 healthy volunteers by administering a hard enteric-coated capsule containing 7.5 mg of bioactive compound conveyed in EVOO. The treatment was preceded by a washout period with a polyphenol and an alcohol-free diet. Blood and urine samples were collected at baseline and different time points, and free DOPET and metabolites, as well as sulfo- and glucuro-conjugates, were quantified by LC-DAD-ESI-MS/MS analysis. The plasma concentration versus time profiles of free DOPET was analyzed by a non-compartmental approach, and several pharmacokinetic parameters (Cmax, Tmax, T1/2, AUC0–440 min, AUC0–∞, AUCt–∞, AUCextrap_pred, Clast and Kel) were calculated. Results showed that DOPET Cmax (5.5 ng/mL) was reached after 123 min (Tmax), with a T1/2 of 150.53 min. Comparing the data obtained with the literature, the bioavailability of this bioactive compound is about 2.5 times higher, confirming the hypothesis that the pharmaceutical formulation plays a pivotal role in the bioavailability and pharmacokinetics of hydroxytyrosol.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765630
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023; 15:nu15020325. [PMID: 36678196 PMCID: PMC9866489 DOI: 10.3390/nu15020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.
Collapse
|
6
|
López-Yerena A, Grases-Pintó B, Zhan-Dai S, Pérez-Cano FJ, Lamuela-Raventos RM, Rodríguez-Lagunas MJ, Vallverdú-Queralt A. Nutrition during pregnancy and lactation: New evidence for the vertical transmission of extra virgin olive oil phenolic compounds in rats. Food Chem 2022; 391:133211. [DOI: 10.1016/j.foodchem.2022.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
|
7
|
Polia F, Horcajada MN, Poquet L, Tomás-Barberán FA, García-Villalba R. A novel combined analytical UV and MS approach for the quantification of oleuropein metabolites in human biological samples when authentic standards are not available. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123457. [PMID: 36150306 DOI: 10.1016/j.jchromb.2022.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
The beneficial health effects of phytochemicals depend on their bioavailability and the form under which they reach systemic circulation, usually as phase II metabolites. The lack of authentic standards for these metabolites makes their quantification in biological samples challenging. A new analytical approach to get a more accurate quantification of oleuropein metabolites in biological samples after ingestion of olive leaf extract was proposed. This approach was based on the calculation of a response factor in QTOF MS for each metabolite, comparing their quantification in UV and MS using urine samples concentrated in the metabolites of interest. Glucuronide and sulfate conjugates of hydroxytyrosol and homovanillyl alcohol were more accurately quantified in plasma and urine and for the first time, oleuropein aglycone conjugates and their hydroxylated and hydrogenated derivatives were quantified after consumption of olive products. This approach could be extensible to the analysis of other phenolic metabolites when authentic standards are not available, opening a valuable method for bioavailability studies.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Innovation EPFL Park, 1015 Lausanne, Switzerland.
| | - Laure Poquet
- Nestlé Institute of Health Sciences, Nestlé Research, Innovation EPFL Park, 1015 Lausanne, Switzerland.
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
8
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Li J, Hu X, Zhang H, Peng Y, Li S, Xiong Y, Jiang W, Wang Z. N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression. J Med Chem 2022; 65:10481-10505. [PMID: 35868003 DOI: 10.1021/acs.jmedchem.2c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the close association between inflammation and cancer, combining anti-inflammation therapy is prominent to improve the anticancer effect. Based on I-1, a series of agents targeting COX-2 and Topo I were designed by combining fenamates and phenols. The optimal compound 1H-30 displayed an enhanced inhibitory effect on COX-2 compared to tolfenamic acid and I-1 and showed better inhibition of Topo I than I-1. Importantly, 1H-30 showed potential anticancer effects and suppressed the activation of the NF-κB pathway in cancer cells. 1H-30 inhibited the nuclear translocation of NF-κB and suppressed the production of NO, COX-2, and IL-1β in RAW264.7. In vivo, 1H-30 showed acceptable pharmacokinetic parameters, decreased the tumor growth without affecting the body weight, down-regulated COX-2 and MMP-9, and induced apoptosis in the CT26.WT tumor-bearing mice. Accordingly, 1H-30 as a potential Topo I/COX-2 inhibitor which possessed anti-inflammatory and anticancer effects, with inhibition of the NF-κB pathway, is promising for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
The secoiridoid profile of virgin olive oil conditions phenolic metabolism. Food Chem 2022; 395:133585. [PMID: 35779504 DOI: 10.1016/j.foodchem.2022.133585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 01/23/2023]
Abstract
The European Food Safety Authority highlights the beneficial effects of olive oil phenols, mainly, secoiridoids. Nevertheless, the metabolism of secoiridoids in humans has not been fully elucidated. This research evaluated the metabolism of secoiridoids in humans after intake of olive oils with diverse phenolic profiles. For this purpose, three extra virgin olive oils (EVOOs) were ingested by six volunteers at scheduled meals, and urine samples were collected the following morning for subsequent LC-MS/MS analysis. Using untargeted analysis, urinary metabolites revealed representative patterns associated with the various olive oil phenolic contents in absolute and relative terms. We were able to identify metabolites obtained through phase I, phase II, and microbial metabolism with discrimination between tyrosol and hydroxytyrosol derivatives. Metabolism of phenols is differentially activated as a function of the olive oil secoiridoids content, and this proof-of-concept study shows how urinary metabolites represent olive oil phenolic content.
Collapse
|
11
|
Sakavitsi ME, Breynaert A, Nikou T, Lauwers S, Pieters L, Hermans N, Halabalaki M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022; 12:391. [PMID: 35629895 PMCID: PMC9144922 DOI: 10.3390/metabo12050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/15/2023] Open
Abstract
Hydroxytyrosol (HTyr) and tyrosol (Tyr) are the most well studied phenolic alcohols of olive oil and olive products demonstrating numerous and significant beneficial health effects. However, their activity in the human organism as food bioactives is strongly associated with their bioavailability and metabolism, while manifested through their metabolites. Nevertheless, there are limited studies investigating their biotransformation and mainly catabolism by gut microflora under a holistic interpretation close to the human organism. Thus, in the present study, the GastroIntestinal Dialysis (GIDM)-colon model, a continuous flow in vitro dialysis system mimicking physiological conditions during human gastrointestinal digestion, was used to explore the metabolism of HTyr and Tyr as pure compounds. The GIDM-colon model simulates absorption from the lumen to the mucosa, followed by the colon phase using pooled human fecal suspensions. Samples were collected at different time points and analyzed via LC-Orbitrap MS. An integrated approach combining Multivariate Data Analysis (MVA) and thorough dereplication procedures led to the identification of HTyr and Tyr metabolites in different phases (gastric, small intestine, and colon), yielding also valuable information about metabolites kinetics. To our knowledge, this is the first study reporting full spectrometric data of HTyr and Tyr metabolites along with possible transformation mechanisms in the GI tract.
Collapse
Affiliation(s)
- Maria Eleni Sakavitsi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Stef Lauwers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| |
Collapse
|
12
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives. Nutrients 2021; 13:3831. [PMID: 34836087 PMCID: PMC8624306 DOI: 10.3390/nu13113831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Given their beneficial potential on human health, plant food bioactive molecules are important components influencing nutrition. Polyphenols have been widely acknowledged for their potentially protective role against several complex diseases. In particular, the polyphenols of olive oil (OOPs) emerge as the key components of many healthy diets and have been widely studied for their beneficial properties. The qualitative and quantitative profile defining the composition of olive oil phenolic molecules as well as their absorbance and metabolism once ingested are key aspects that need to be considered to fully understand the health potential of these molecules. In this review, we provide an overview of the key aspects influencing these variations by focusing on the factors influencing the biosynthesis of OOPs and the findings about their absorption and metabolism. Despite the encouraging evidence, the health potential of OOPs is still debated due to limitations in current studies. Clinical trials are necessary to fully understand and validate the beneficial effects of olive oil and OOPs on human health. We provide an update of the clinical trials based on olive oil and/or OOPs that aim to understand their beneficial effects. Tailored studies are needed to standardize the polyphenolic distribution and understand the variables associated with phenol-enriched OO. An in-depth knowledge of the steps that occur following polyphenol ingestion may reveal useful insights to be used in clinical settings for the prevention and treatment of many diseases.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
13
|
Determination of hydroxytyrosol and tyrosol in human urine after intake of extra virgin olive oil produced with an ultrasounds-based technology. J Pharm Biomed Anal 2021; 203:114204. [PMID: 34130008 DOI: 10.1016/j.jpba.2021.114204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Extra virgin olive oil (EVOO) is a known source of antioxidants, such as phenolic compounds, useful in the prevention of non-infectious diseases (atherosclerosis, diabetes, cancer, and other diseases). In the present study, EVOO obtained using an innovative ultrasounds-based technology was found richer in total polyphenols, hydroxytyrosol and tyrosol, than EVOO obtained using a conventional mechanical technology. The urinary excretion in humans of hydroxytyrosol and tyrosol, after the administration of ultrasounds and mechanical EVOOs, respectively, was assessed and compared. The analytes were determined in urine samples, collected for 24 h, of six healthy people (3 men and 3 women, age 22-70 years and body mass index <30 kg/m2) who ingested 20 g of oil for six consecutive days. A commercial refined olive oil was also used in the study to determine the baseline excretion levels of the two metabolites. High correlation coefficients (≥0.9311) were found between the amounts of the analytes ingested daily with EVOOs and those determined in the 24-h urines. The results clearly indicated that the EVOO obtained with the ultrasound process was characterized by the highest concentration of biophenols which were consequently available in greater quantities after ingestion, indicating that it represents a high-quality product containing high levels of beneficial compounds such as biophenols readily assimilable by the human body.
Collapse
|
14
|
López-Yerena A, Pérez M, Vallverdú-Queralt A, Miliarakis E, Lamuela-Raventós RM, Escribano-Ferrer E. Oleacein Intestinal Permeation and Metabolism in Rats Using an In Situ Perfusion Technique. Pharmaceutics 2021; 13:719. [PMID: 34068871 PMCID: PMC8153610 DOI: 10.3390/pharmaceutics13050719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Oleacein (OLEA) is one of the most important phenolic compounds in extra virgin olive oil in terms of concentration and health-promoting properties, yet there are insufficient data on its absorption and metabolism. Several non-human models have been developed to assess the intestinal permeability of drugs, among them, single-pass intestinal perfusion (SPIP), which is commonly used to investigate the trans-membrane transport of drugs in situ. In this study, the SPIP model and simultaneous luminal blood sampling were used to study the absorption and metabolism of OLEA in rats. Samples of intestinal fluid and mesenteric blood were taken at different times and the ileum segment was excised at the end of the experiment for analysis by LC-ESI-LTQ-Orbitrap-MS. OLEA was mostly metabolized by phase I reactions, undergoing hydrolysis and oxidation, and metabolite levels were much higher in the plasma than in the lumen. The large number of metabolites identified and their relatively high abundance indicates an important intestinal first-pass effect during absorption. According to the results, OLEA is well absorbed in the intestine, with an intestinal permeability similar to that of the highly permeable model compound naproxen. No significant differences were found in the percentage of absorbed OLEA and naproxen (48.98 ± 12.27% and 43.96 ± 7.58%, respectively).
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | | | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (M.P.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Galmés S, Reynés B, Palou M, Palou-March A, Palou A. Absorption, Distribution, Metabolism, and Excretion of the Main Olive Tree Phenols and Polyphenols: A Literature Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5281-5296. [PMID: 33908772 DOI: 10.1021/acs.jafc.1c00737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of olive tree (poly)phenols (OPs) are largely dependent upon their bioavailability and metabolization by humans. Absorption, distribution, metabolism, and excretion (ADME) are fundamental for the nutritional efficacy and toxicological impact of foods containing OPs. This review includes studies on the administration of hydroxytyrosol (HT), oleuropein (Ole), or other OPs and foods, products, or mixtures that contain them. Briefly, data from in vivo studies indicate that OPs are absorbable by intestinal cells. Both absorption and bioavailability depend upon each compound and/or the matrix in which it is contained. OPs metabolism begins in enterocytes and can also continue in the liver. Metabolic phase I mainly consists of the hydrolysis of Ole, which results in an increase in the HT content. Phase II metabolic reactions involve the conjugation of (poly)phenols mainly with glucuronide and sulfate groups. This review offers a complete perspective of the ADME processes of OPs, which could support the future nutritional and/or toxicological studies in this area.
Collapse
Affiliation(s)
- Sebastià Galmés
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Bàrbara Reynés
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
| | - Mariona Palou
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Andreu Palou-March
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Andreu Palou
- Alimentómica S.L., 07121 Palma de Mallorca, Balearic Islands, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), University of the Balearic Islands (UIB) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma de Mallorca, Balearic Islands, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
| |
Collapse
|
16
|
López-Yerena A, Vallverdú-Queralt A, Jáuregui O, Garcia-Sala X, Lamuela-Raventós RM, Escribano-Ferrer E. Tissue Distribution of Oleocanthal and Its Metabolites after Oral Ingestion in Rats. Antioxidants (Basel) 2021; 10:688. [PMID: 33925686 PMCID: PMC8146289 DOI: 10.3390/antiox10050688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Claims for the potential health benefits of oleocanthal (OLC), a dietary phenolic compound found in olive oil, are based mainly on in vitro studies. Little is known about the tissue availability of OLC, which is rapidly metabolized after ingestion. In this study, the distribution of OLC and its metabolites in rat plasma and tissues (stomach, intestine, liver, kidney, spleen, lungs, heart, brain, thyroid and skin) at 1, 2 and 4.5 h after the acute intake of a refined olive oil containing 0.3 mg/mL of OLC was examined by LC-ESI-LTQ-Orbitrap-MS. OLC was only detected in the stomach and intestine samples. Moreover, at 2 and 4.5 h, the concentration in the stomach decreased by 36% and 74%, respectively, and in the intestine by 16% and 33%, respectively. Ten OLC metabolites arising from phase I and phase II reactions were identified. The metabolites were widely distributed in rat tissues, and the most important metabolizing organs were the small intestine and liver. The two main circulating metabolites were the conjugates OLC + OH + CH3 and OLC + H2O + glucuronic acid, which may significantly contribute to the beneficial health effects associated with the regular consumption of extra virgin olive oil. However, more studies are necessary to determine the concentrations and molecular structures of OLC metabolites in human plasma and tissues when consumed with the presence of other phenolic compunds present in EVOO.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Olga Jáuregui
- Scientific and Technological Center of University of Barcelona (CCiTUB), 08028 Barcelona, Spain;
| | - Xavier Garcia-Sala
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
17
|
Clarke ED, Rollo ME, Pezdirc K, Collins CE, Haslam RL. Urinary biomarkers of dietary intake: a review. Nutr Rev 2020; 78:364-381. [PMID: 31670796 DOI: 10.1093/nutrit/nuz048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary intakes are commonly assessed by established methods including food frequency questionnaires, food records, or recalls. These self-report methods have limitations impacting validity and reliability. Dietary biomarkers provide objective verification of self-reported food intakes, and represent a rapidly evolving area. This review aims to summarize the urinary biomarkers of individual foods, food groups, dietary patterns, or nutritional supplements that have been evaluated to date. Six electronic databases were searched. Included studies involved healthy populations, were published from 2000, and compared measured dietary intake with urinary markers. The initial search identified 9985 studies; of these, 616 full texts were retrieved and 109 full texts were included. Of the included studies, 67 foods and food components were studied, and 347 unique urinary biomarkers were identified. The most reliable biomarkers identified were whole grains (alkylresorcinols), soy (isoflavones), and sugar (sucrose and fructose). While numerous novel urinary biomarkers have been identified, further validation studies are warranted to verify the accuracy of self-reported intakes and utility within practice.
Collapse
Affiliation(s)
- Erin D Clarke
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Megan E Rollo
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Kristine Pezdirc
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca L Haslam
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
18
|
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020; 9:cells9020478. [PMID: 32093046 PMCID: PMC7072812 DOI: 10.3390/cells9020478] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a "successful aging", being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation.
Collapse
|
19
|
Yin F, Wang X, Hu Y, Xie H, Liu X, Qin L, Zhang J, Zhou D, Shahidi F. Evaluation of Absorption and Plasma Pharmacokinetics of Tyrosol Acyl Esters in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1248-1256. [PMID: 31927921 DOI: 10.1021/acs.jafc.9b05112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipophenols are regarded as an emerging source of functional food ingredients. However, little is known about their in vivo digestion, absorption, and metabolism. Thus, the pharmacokinetic characteristics in rat and the gut microbial degradation of tyrosol acyl esters (TYr-Es) with fatty acids of C12:0, C18:0, and C18:2 were investigated for the first time. Major metabolites including tyrosol sulfate and tyrosol glucuronide, rather than the parent compounds, were detected in rat plasma after oral administration of TYr-Es. The increased plasma half-life (T1/2) and mean residence time demonstrated that TYr-Es display a longer duration of action in vivo than TYr, potentially leading to higher oral bioavailability. TYr-Es could be hydrolyzed by the gut microbiota to free TYr, which may result in the appearance of the second absorption peak in pharmacokinetic profiles. Therefore, TYr-Es exhibit improved bioavailability compared to that of TYr because of their prolonged duration of action.
Collapse
Affiliation(s)
- Fawen Yin
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Xinmiao Wang
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Yuanyuan Hu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Hongkai Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing 100083 , People's Republic of China
| | - Xiaoyang Liu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Lei Qin
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Jianghua Zhang
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Dayong Zhou
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Fereidoon Shahidi
- Department of Biochemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X9 , Canada
| |
Collapse
|
20
|
Serra-Majem L, Román-Viñas B, Sanchez-Villegas A, Guasch-Ferré M, Corella D, La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67:1-55. [PMID: 31254553 DOI: 10.1016/j.mam.2019.06.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
More than 50 years after the Seven Countries Study, a large number of epidemiological studies have explored the relationship between the Mediterranean diet (MD) and health, through observational, case-control, some longitudinal and a few experimental studies. The overall results show strong evidence suggesting a protective effect of the MD mainly on the risk of cardiovascular disease (CVD) and certain types of cancer. The beneficial effects have been attributed to the types of food consumed, total dietary pattern, components in the food, cooking techniques, eating behaviors and lifestyle behaviors, among others. The aim of this article is to review and summarize the knowledge derived from the literature focusing on the benefits of the MD on health, including those that have been extensively investigated (CVD, cancer) along with more recent issues such as mental health, immunity, quality of life, etc. The review begins with a brief description of the MD and its components. Then we present a review of studies evaluating metabolic biomarkers and genotypes in relation to the MD. Other sections are dedicated to observation and intervention studies for various pathologies. Finally, some insights into the relationship between the MD and sustainability are explored. In conclusion, the research undertaken on metabolomics approaches has identified potential markers for certain MD components and patterns, but more investigation is needed to obtain valid measures. Further evaluation of gene-MD interactions are also required to better understand the mechanisms by which the MD diet exerts its beneficial effects on health. Observation and intervention studies, particularly PREDIMED, have provided invaluable data on the benefits of the MD for a wide range of chronic diseases. However further research is needed to explore the effects of other lifestyle components associated with Mediterranean populations, its environmental impact, as well as the MD extrapolation to non-Mediterranean contexts.
Collapse
Affiliation(s)
- Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain.
| | - Blanca Román-Viñas
- Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain; School of Health and Sport Sciences (EUSES), Universitat de Girona, Salt, Spain; Department of Physical Activity and Sport Sciences, Blanquerna, Universitat Ramon Llull, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Almudena Sanchez-Villegas
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H.Chan School of Public Health, Boston, MA, USA; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dolores Corella
- Genetic and Molecular Epidemiology Unit. Department of Preventive Medicine. University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
21
|
Garcia-Aloy M, Hulshof PJM, Estruel-Amades S, Osté MCJ, Lankinen M, Geleijnse JM, de Goede J, Ulaszewska M, Mattivi F, Bakker SJL, Schwab U, Andres-Lacueva C. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. GENES & NUTRITION 2019; 14:7. [PMID: 30923582 PMCID: PMC6423890 DOI: 10.1186/s12263-019-0628-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Abstract
Nuts and vegetable oils are important sources of fat and of a wide variety of micronutrients and phytochemicals. Following their intake, several of their constituents, as well as their derived metabolites, are found in blood circulation and in urine. As a consequence, these could be used to assess the compliance to a dietary intervention or to determine habitual intake of nuts and vegetable oils. However, before these metabolites can be widely used as biomarkers of food intake (BFIs), several characteristics have to be considered, including specificity, dose response, time response, stability, and analytical performance. We have, therefore, conducted an extensive literature search to evaluate current knowledge about potential BFIs of nuts and vegetable oils. Once identified, the strengths and weaknesses of the most promising candidate BFIs have been summarized. Results from selected studies have provided a variety of compounds mainly derived from the fatty fraction of these foods, but also other components and derived metabolites related to their nutritional composition. In particular, α-linolenic acid, urolithins, and 5-hydroxyindole-3-acetic acid seem to be the most plausible candidate BFIs for walnuts, whereas for almonds they could be α-tocopherol and some catechin-derived metabolites. Similarly, several studies have reported a strong association between selenium levels and consumption of Brazil nuts. Intake of vegetable oils has been mainly assessed through the measurement of specific fatty acids in different blood fractions, such as oleic acid for olive oil, α-linolenic acid for flaxseed (linseed) and rapeseed (canola) oils, and linoleic acid for sunflower oil. Additionally, hydroxytyrosol and its metabolites were the most promising distinctive BFIs for (extra) virgin olive oil. However, most of these components lack sufficient specificity to serve as BFIs. Therefore, additional studies are necessary to discover new candidate BFIs, as well as to further evaluate the specificity, sensitivity, dose-response relationships, and reproducibility of these candidate biomarkers and to eventually validate them in other populations. For the discovery of new candidate BFIs, an untargeted metabolomics approach may be the most effective strategy, whereas for increasing the specificity of the evaluation of food consumption, this could be a combination of different metabolites.
Collapse
Affiliation(s)
- Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paul J. M. Hulshof
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sheila Estruel-Amades
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Maryse C. J. Osté
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maria Lankinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Johanna M. Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Janette de Goede
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Marynka Ulaszewska
- Department of Food Quality and Nutrition, Research Innovation Center, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research Innovation Center, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, TN Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
22
|
Ancient olive trees as a source of olive oils rich in phenolic compounds. Food Chem 2019; 276:231-239. [DOI: 10.1016/j.foodchem.2018.09.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
|
23
|
Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants (Basel) 2018; 7:antiox7120170. [PMID: 30469520 PMCID: PMC6315336 DOI: 10.3390/antiox7120170] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
Abstract
Extra virgin olive oil (EVOO) polyphenols beneficial effects have widely been debated throughout the last three decades, with greater attention to hydroxytyrosol and tyrosol, which are by far the most studied. The main concern about the evaluation of EVOO phenols activities in vitro and in vivo is that the absorption and metabolism of these compounds once ingested lead to the production of different metabolites in the human body. EVOO phenols in the ingested forms are less concentrated in human tissues than their glucuronide, sulfate and methyl metabolites; on the other hand, metabolites may undergo deconjugation before entering the cells and thus act as free forms or may be reformed inside the cells so acting as conjugated forms. In most in vitro studies the presence of methyl/sulfate/glucuronide functional groups does not seem to inhibit biological activity. Parent compounds and metabolites have been shown to reach tissue concentrations useful to exert beneficial effects others than antioxidant and scavenging properties, by modulating intracellular signaling and improving cellular response to oxidative stress and pro-inflammatory stimuli. This review aims to give an overview on the reported evidence of the positive effects exerted by the main EVOO polyphenols metabolites in comparison with the parent compounds.
Collapse
|
24
|
Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, Xiao J. Chemical composition and nutritional function of olive (Olea europaea L.): a review. PHYTOCHEMISTRY REVIEWS 2018; 17:1091-1110. [DOI: 10.1007/s11101-017-9526-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Míguez N, Ramírez‐Escudero M, Gimeno‐Pérez M, Poveda A, Jiménez‐Barbero J, Ballesteros AO, Fernández‐Lobato M, Sanz‐Aparicio J, Plou FJ. Fructosylation of Hydroxytyrosol by the β‐Fructofuranosidase from
Xanthophyllomyces dendrorhous
: Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem 2018. [DOI: 10.1002/cctc.201801171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Noa Míguez
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| | - Mercedes Ramírez‐Escudero
- Macromolecular Crystallography and Structural Biology Department Institute of Physical-Chemistry Rocasolano (CSIC) Madrid 28006 Spain
| | - María Gimeno‐Pérez
- Molecular Biology Department Centre of Molecular Biology Severo Ochoa (CSIC-UAM)Autonomous University of Madrid Madrid 28049 Spain
| | - Ana Poveda
- CIC bioGUNE: Center for Cooperative Research in Biosciences Basque Network of Science Technology and InnovationBiscay Science and Technology Park Derio 48160 Spain
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE: Center for Cooperative Research in Biosciences Basque Network of Science Technology and InnovationBiscay Science and Technology Park Derio 48160 Spain
| | - Antonio O. Ballesteros
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| | - María Fernández‐Lobato
- Molecular Biology Department Centre of Molecular Biology Severo Ochoa (CSIC-UAM)Autonomous University of Madrid Madrid 28049 Spain
| | - Julia Sanz‐Aparicio
- Macromolecular Crystallography and Structural Biology Department Institute of Physical-Chemistry Rocasolano (CSIC) Madrid 28006 Spain
| | - Francisco J. Plou
- Biocatalysis DepartmentInstitute of Catalysis and Petrochemistry (CSIC) Madrid 28049 Spain
| |
Collapse
|
26
|
Deiana M, Serra G, Corona G. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food Funct 2018; 9:4085-4099. [DOI: 10.1039/c8fo00354h] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extra virgin olive oil polyphenols concentrate at the intestinal level and, by modulating the microbiota, oxidative status and inflammation, contribute to prevent the onset or delay the progression of inflammatory/degenerative diseases.
Collapse
Affiliation(s)
- Monica Deiana
- Department of Biomedical Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Gessica Serra
- Department of Food and Nutritional Sciences
- University of Reading
- Reading
- UK
| | - Giulia Corona
- Health Sciences Research Centre
- University of Roehampton
- SW15 4JD London
- UK
| |
Collapse
|
27
|
Rodríguez-Morató J, Boronat A, Kotronoulas A, Pujadas M, Pastor A, Olesti E, Pérez-Mañá C, Khymenets O, Fitó M, Farré M, de la Torre R. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Drug Metab Rev 2016; 48:218-36. [PMID: 27186796 DOI: 10.1080/03602532.2016.1179754] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydroxytyrosol and tyrosol are dietary phenolic compounds present in virgin olive oil and wine. Both compounds are also endogenously synthesized in our body as byproducts of dopamine and tyramine metabolisms, respectively. Over the last decades, research into hydroxytyrosol and tyrosol has experienced an increasing interest due to the role that these compounds may play in the prevention of certain pathologies (e.g. cardiovascular, metabolic, neurodegenerative diseases and cancer). The translation of promising in vitro and in vivo biological effects from preclinical studies to the context of human disease prevention initially depends on whether the dose ingested becomes available at the site of action. In this regard, information regarding the bioavailability and metabolic disposition of hydroxytyrosol and tyrosol is of most importance to evaluate the impact they may have on human health. In this review, we discuss and summarize the state of the art of the scientific evidence regarding the processes of absorption, distribution, metabolism and excretion of both hydroxytyrosol and tyrosol. We also examine the impact of these compounds and their metabolites on biological activity in terms of beneficial health effects. Finally, we evaluate the different analytical approaches that have been developed to measure the plasma and urinary levels of hydroxytyrosol, tyrosol and their metabolites.
Collapse
Affiliation(s)
- Jose Rodríguez-Morató
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,b Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF) , Barcelona , Spain ;,c CIBER de Fisiopatología Obesidad y Nutrición , Santiago de Compostela , Spain
| | - Anna Boronat
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,b Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF) , Barcelona , Spain
| | - Aristotelis Kotronoulas
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain
| | - Mitona Pujadas
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain
| | - Antoni Pastor
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,c CIBER de Fisiopatología Obesidad y Nutrición , Santiago de Compostela , Spain
| | - Eulalia Olesti
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,b Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF) , Barcelona , Spain
| | - Clara Pérez-Mañá
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,d Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona , Cerdanyola, Spain
| | - Olha Khymenets
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain
| | - Montserrat Fitó
- c CIBER de Fisiopatología Obesidad y Nutrición , Santiago de Compostela , Spain ;,e Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain
| | - Magí Farré
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,d Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona , Cerdanyola, Spain ;,f Hospital Universitari Germans Trias i Pujol (IGTP) , Badalona , Spain
| | - Rafael de la Torre
- a Integrative Pharmacology and Systems Neuroscience , IMIM (Hospital Del Mar Research Institute) , Barcelona , Spain ;,b Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF) , Barcelona , Spain ;,c CIBER de Fisiopatología Obesidad y Nutrición , Santiago de Compostela , Spain
| |
Collapse
|
28
|
|
29
|
Fernández-Ávila C, Montes R, Castellote AI, Chisaguano AM, Fitó M, Covas MI, Muñoz-Aguallo D, Nyyssönen K, Zunft HJ, López-Sabater MC. Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins. Biomed Chromatogr 2014; 29:1035-41. [DOI: 10.1002/bmc.3389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 10/15/2014] [Indexed: 01/26/2023]
Affiliation(s)
- C. Fernández-Ávila
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - R. Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - A. I. Castellote
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - A. M. Chisaguano
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| | - M. Fitó
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - M. I. Covas
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - D. Muñoz-Aguallo
- Lipids and Cardiovascular Epidemiology Unit; Institut Municipal d'Investigació Mèdica (IMIM); Barcelona Spain
| | - K. Nyyssönen
- Research Institute of Public Health; University of Kuopio; Kuopio Finland
| | - H. J. Zunft
- German Institute of Human Nutrition; Postdam-Rehbruecke; Germany
| | - M. C. López-Sabater
- Department of Nutrition and Food Science, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain
| |
Collapse
|
30
|
Application of dried spot cards as a rapid sample treatment method for determining hydroxytyrosol metabolites in human urine samples. Comparison with microelution solid-phase extraction. Anal Bioanal Chem 2013; 405:9179-92. [DOI: 10.1007/s00216-013-7322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/25/2022]
|
31
|
Orozco-Solano MI, Ferreiro-Vera C, Priego-Capote F, Luque de Castro MD. Automated method for determination of olive oil phenols and metabolites in human plasma and application in intervention studies. J Chromatogr A 2012; 1258:108-16. [PMID: 22944382 DOI: 10.1016/j.chroma.2012.08.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 10/28/2022]
Abstract
The interest for olive oil phenols (OOPs) is a growing trend thanks to their contribution to prevent or improve diseases associated to oxidative damage. OOPs ingested in the diet are found at low concentrations in blood either as free forms (e.g. hydroxytyrosol, tyrosol, vanillin, ferulic acid, coumaric acid) or conjugated as sulfate and glucuronide derivatives. Therefore, the identification/quantitation of OOPs in plasma to study their biological effects and elucidate their metabolism requires selective and sensitive methods. The present research describes the development, validation and application of an automated method based on on-line coupling of solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) for quantitation of conjugated and free OOPs in human plasma. This approach minimizes sample handling-thus reducing analyte losses and degradation by contact with the atmosphere-and increases analysis throughput, which is crucial in intervention studies dealing with cohorts formed by numerous individuals. The fundamental of the approach is the retention of OOPs and metabolites in an SPE anionic cartridge with subsequent on-line elution to an LC-MS/MS system. Quantitative analysis of OOPs (relative quantitation for conjugated OOPs) was carried out by selected reaction monitoring mode that reported relative limits of detection and quantitation between 0.02-0.28 ng/mL (16.6-232 pg on-column) and 0.05-0.83 ng/mL (41.5-689 pg on-column), respectively. The accuracy of the method, estimated as recovery factor, ranged from 84.2 to 99.4%, and precision, expressed as relative standard deviation, was below 3.8%. The resulting method has been applied to the determination of OOPs and metabolites in plasma samples from individuals who ingested a breakfast prepared with virgin olive oil. The proposed method has an excellent potential for high-throughput use in both clinical and research laboratories.
Collapse
Affiliation(s)
- M I Orozco-Solano
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | | | | | | |
Collapse
|
32
|
Randomized controlled study of the urinary excretion of biophenols following acute and chronic intake of olive leaf supplements. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|