1
|
Park K, Jung S, Ha JH, Jeong Y. Protaetia brevitarsis Hydrolysate Mitigates Muscle Dysfunction and Ectopic Fat Deposition Triggered by a High-Fat Diet in Mice. Nutrients 2025; 17:213. [PMID: 39861343 PMCID: PMC11767481 DOI: 10.3390/nu17020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. Protaetia brevitarsis (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects. However, specific effects of PB hydrolysate on skeletal muscles have not been fully elucidated. Therefore, this study sought to assess the influence of PB on HFD-induced MetS, focusing on the lipid metabolism and inflammatory responses mediated by AMP-activated protein kinase activation. METHODS To induce obesity, 6-week-old C57BL/6J mice were maintained on an HFD for 8 weeks, after which PB hydrolysate was orally administered for 16 weeks while the HFD regimen was sustained. A glucose tolerance test was conducted orally to evaluate glucose regulation, and forelimb grip strength was assessed upon completion of the experimental period. Histological assessments, serum biochemical analysis, lipid extraction, Western blot analysis, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were performed following euthanasia. RESULTS PB significantly reduced ectopic lipid deposition in skeletal muscles, enhanced muscle strength, and improved insulin sensitivity by increasing fatty acid oxidation via AMP-activated protein kinase/carnitine palmitoyltransferase 1 activation and inhibiting lipogenesis via stearoyl-CoA desaturase 1 gene downregulation. Furthermore, PB alleviated HFD-induced low-grade chronic inflammation by decreasing systemic monocyte chemoattractant protein 1 levels, thereby reducing ectopic fat deposition. CONCLUSIONS This study highlights the potential of PB as a nutraceutical to mitigate MetS in HFD-fed mice.
Collapse
Affiliation(s)
- Kyungeun Park
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Sunyoon Jung
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
2
|
Prommasith P, Surayot U, Autsavapromporn N, Rod-in W, Rachtanapun P, Wangtueai S. Immunomodulatory, Anticancer, and Antioxidative Activities of Bioactive Peptide Fractions from Enzymatically Hydrolyzed White Jellyfish ( Lobonema smithii). Foods 2024; 13:3350. [PMID: 39517134 PMCID: PMC11545224 DOI: 10.3390/foods13213350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to develop bioactive protein hydrolysates from low-value edible jellyfish obtained from local fisheries using enzymatic hydrolysis. Fresh white jellyfish were hydrolyzed using several commercial proteases, including alcalase (WJH-Al), flavourzyme (WJH-Fl), and papain (WJH-Pa). The antioxidant, immunomodulatory, and anticancer activities of these white jellyfish hydrolysates (WJH) were investigated. The results demonstrated that the crude WJH exhibited strong antioxidant properties, including DPPH, ABTS, and hydroxyl radical scavenging activities, as well as ferric-reducing antioxidant power. Additionally, the hydrolysates showed notable immunomodulatory activity. However, all WJH samples displayed relatively low ability to inhibit HepG2 cell proliferation at the tested concentrations. Among the hydrolysates, WJH-Pa demonstrated the highest antioxidant and immunomodulatory activities and was therefore selected for further bioactive peptide isolation and characterization. Ultrafiltration membranes with three molecular weight (MW) cut-offs (1, 3, 10 kDa) were used for peptide fractionation from WJH-Pa. Six potential peptides were identified with the MW range of 1049-1292 Da, comprising 9-12 residues, which exhibited strong antioxidant and immunomodulatory activities.
Collapse
Affiliation(s)
| | - Utoomporn Surayot
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerawan Rod-in
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Brotz L, Angel DL, D'Ambra I, Enrique-Navarro A, Lauritano C, Thibault D, Prieto L. Rhizostomes as a resource: The expanding exploitation of jellyfish by humans. ADVANCES IN MARINE BIOLOGY 2024; 98:511-547. [PMID: 39547754 DOI: 10.1016/bs.amb.2024.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While jellyfish are often considered to be a nuisance, their value to ecosystems and for human exploitation is shifting this perception. People have been eating jellyfish for millennia. In recent decades, the scale of jellyfish fisheries has expanded dramatically, with annual catches in the hundreds of thousands of tonnes. The overwhelming majority of jellyfish species targeted for human consumption are from the order Rhizostomeae, which can also be fed to livestock and certain species in mariculture operations. The use of rhizostome jellyfish is expanding beyond food applications, such as pharmaceuticals and cosmetics, especially for collagen and other bioactive compounds. Jellyfish collagen is high in antioxidants, can act as an immunostimulator, and has applications for tissue engineering and medical implements. Jellyfish venom extracts exhibit high biological activities, including those that are antihypertensive, antimicrobial, and anticancer. Jellyfish can also be used as fertilizers and insecticides, and jellyfish mucus appears to have potential as a filter for nanoparticles and microplastics, suggesting possible applications in wastewater treatment. Most of these applications are still in developmental stages, and beyond their use as food, jellyfish are not targeted at commercial scale, apart from collagen extraction. As research advances, exploitation of jellyfish is expected to continue expanding. Given the lack of knowledge and understanding regarding jellyfish fisheries and their management, caution should be exhibited to avoid overfishing.
Collapse
Affiliation(s)
- Lucas Brotz
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; SeaLifeBase, Quantitative Aquatics, Khush Hall, International Rice Research Institute (IRRI), Los Baños, Philippines.
| | - Dror L Angel
- Department of Maritime Civilizations & Recanati Institute for Maritime Studies, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Isabella D'Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy; National Center for Future Biodiversity (NFBC), Palermo, Italy
| | - Angélica Enrique-Navarro
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real Cádiz, Spain
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Delphine Thibault
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laura Prieto
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real Cádiz, Spain
| |
Collapse
|
4
|
Binlateh T, Hutamekalin P, Benjakul S, Chotphruethipong L. Antioxidant and Anti-Atherosclerosis Activities of Hydrolyzed Jellyfish Collagen and Its Conjugate with Black Jelly Mushroom Extract. Foods 2024; 13:2463. [PMID: 39123654 PMCID: PMC11311405 DOI: 10.3390/foods13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atherosclerosis, a noncommunicable disease caused by cholesterol plaque, can cause chronic diseases. The antiplatelet medicines used in its treatment can cause complications. Marine collagen peptides can be used as a natural atherosclerosis remedy. The present study investigated the preparation and characterization of hydrolyzed collagen (HC) from jellyfish and its conjugation with black jelly mushroom extract (BJME). Their cytotoxicity and ability to prevent cholesterol-induced endothelial cell injury were also examined. HC was prepared using Alcalase or papain hydrolysis (0.2-0.4 units/g of dry matter (DM)). Higher yield, degree of hydrolysis, and antioxidant activities (AAs) were found in the HC obtained from Alcalase, especially at 0.4 units/g DM (A-0.4), compared to other processes (p < 0.05). Thus, A-0.4 was further conjugated with BJME (1-4%, w/w of HC). The HC-2%BJME conjugate showed the highest surface hydrophobicity and AAs compared to other samples. The FTIR spectra and size distribution also confirmed the conjugation between HC and BJME. When EA.hy926 endothelial cells were treated with HC or HC-2%BJME (25-1000 µg/mL), HC-2%BJME had no cytotoxicity, whereas HC at 1000 µg/mL induced cytotoxicity (p < 0.05). Both samples also exhibited protective ability against cholesterol-induced apoptosis and VE-cadherin downregulation of cells. Therefore, HC and conjugate could be natural agents for preventing atherosclerosis.
Collapse
Affiliation(s)
- Thunwa Binlateh
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand;
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| |
Collapse
|
5
|
Walquist MJ, Eilertsen KE, Elvevoll EO, Jensen IJ. Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food. Mar Drugs 2024; 22:140. [PMID: 38667757 PMCID: PMC11051484 DOI: 10.3390/md22040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Hypertension, a major health concern linked to heart disease and premature mortality, has prompted a search for alternative treatments due to side effects of existing medications. Sustainable harvesting of low-trophic marine organisms not only enhances food security but also provides a variety of bioactive molecules, including peptides. Despite comprising only a fraction of active natural compounds, peptides are ideal for drug development due to their size, stability, and resistance to degradation. Our review evaluates the anti-hypertensive properties of peptides and proteins derived from selected marine invertebrate phyla, examining the various methodologies used and their application in pharmaceuticals, supplements, and functional food. A considerable body of research exists on the anti-hypertensive effects of certain marine invertebrates, yet many species remain unexamined. The array of assessments methods, particularly for ACE inhibition, complicates the comparison of results. The dominance of in vitro and animal in vivo studies indicates a need for more clinical research in order to transition peptides into pharmaceuticals. Our findings lay the groundwork for further exploration of these promising marine invertebrates, emphasizing the need to balance scientific discovery and marine conservation for sustainable resource use.
Collapse
Affiliation(s)
- Mari Johannessen Walquist
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (K.-E.E.); (E.O.E.)
| | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (K.-E.E.); (E.O.E.)
| | - Edel Oddny Elvevoll
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (K.-E.E.); (E.O.E.)
| | - Ida-Johanne Jensen
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (K.-E.E.); (E.O.E.)
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
6
|
Liu L, Chen Y, Chen B, Xu M, Liu S, Su Y, Qiao K, Liu Z. Advances in Research on Marine-Derived Lipid-Lowering Active Substances and Their Molecular Mechanisms. Nutrients 2023; 15:5118. [PMID: 38140377 PMCID: PMC10745522 DOI: 10.3390/nu15245118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic disorder caused by abnormal lipid metabolism. Recently, the prevalence of HLP caused by poor dietary habits in the population has been increasing year by year. In addition, lipid-lowering drugs currently in clinical use have shown significant improvement in blood lipid levels, but are accompanied by certain side effects. However, bioactive marine substances have been shown to possess a variety of physiological activities such as hypoglycemic, antioxidant, antithrombotic and effects on blood pressure. Therefore, the hypolipidemic efficacy of marine bioactive substances with complex and diverse structures has also attracted attention. This paper focuses on the therapeutic role of marine-derived polysaccharides, unsaturated fatty acids, and bioactive peptides in HLP, and briefly discusses the main mechanisms by which these substances exert their hypolipidemic activity in vivo.
Collapse
Affiliation(s)
- Lina Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| |
Collapse
|
7
|
Teng L, Wang X, Yu H, Li R, Geng H, Xing R, Liu S, Li P. Jellyfish Peptide as an Alternative Source of Antioxidant. Antioxidants (Basel) 2023; 12:antiox12030742. [PMID: 36978990 PMCID: PMC10044913 DOI: 10.3390/antiox12030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Jellyfish is a valuable biological resource in marine ecosystems, and blooms been observed in numerous coastal regions. However, their utility is limited by their high water content. Recent research has focused on extracting antioxidants from marine sources. In this study, we obtained jellyfish peptides (JPHT-2) through enzymatic hydrolysis of lyophilized jellyfish powder under optimal conditions and measured their antioxidant activity. Our findings indicate that JPHT-2 possesses significant radical-scavenging activity and reducing power. At a concentration of 0.74 mg/mL, JPHT-2 exhibited a remarkable ability to scavenge hydroxyl radicals, with a rate of up to 50%. The EC50 values for scavenging superoxide anion and DPPH radical were 1.55 mg/mL and 1.99 mg/mL, respectively. At the cellular level, JPHT-2 was able to protect HaCaT cells from H2O2-induced oxidative damage by increasing the level of superoxide dismutase (SOD) in cells. In conclusion, jellyfish peptides with low molecular weight can be easily obtained through hydrolysis with three enzymes and exhibit excellent antioxidant activity and safety. Jellyfish can serve as a promising source of antioxidants.
Collapse
Affiliation(s)
- Lichao Teng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Dong J, Wang S, Yin X, Fang M, Gong Z, Wu Y. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effects of rice peptides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Trop Anim Health Prod 2022; 54:271. [PMID: 36040617 DOI: 10.1007/s11250-022-03244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/25/2022] [Indexed: 10/14/2022]
Abstract
In this research, the effect of mixed feather bioactive peptides (MFBPs) added in water, on intestinal health, meat quality, and plasma cholesterol level of broiler chickens, was evaluated. A total of 80 day-old male broiler chicks (Ross 308) were randomly divided into two treatments with four replication pens. The dietary treatments were the drinking water with no additives (control) and drinking water containing 50 mg/L of MFBPs. Live weight and feed intake were measured at the end of starter (1-10 days), grower (11-24 days), and finisher (25-36 days) periods by calculating the average daily gain and feed conversion ratio. The results indicate that body weight gain was greater (P < 0.05) in birds that received MFBPs in the final period. At 24 days of age, the villus height and muscle layer thickness in different parts of the intestine were higher in birds that received bioactive peptides but epithelial thickness was lower than that in control birds (P < 0.05). In addition, the administration of MFBPs decreased (P < 0.01) serum total cholesterol, triglyceride, and low-density lipoprotein in broilers. Supplementation with MFBPs significantly reduced (P < 0.01) the malondialdehyde (MDA) amount in the thigh muscle. In conclusion, using the MFBPs in the diet of broilers could improve meat quality, cholesterol concentration in serum, and gut health.
Collapse
|
10
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
11
|
Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad ( Decapterus macrosoma) protein hydrolysate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4567-4577. [PMID: 34629521 DOI: 10.1007/s13197-020-04944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Hypertension is a threatening chronic disease, which become a global killer among the adult population. The mortality rate increasing day by day even several Angiotensin I-converting enzyme (ACE) inhibitor drugs were introduced. Bioactive peptides derived from aquatic resources exhibits potential ACE inhibitory activity. The objective of this work is to report the purification and molecular docking studies of angiotensin-I converting enzyme (ACE) inhibitory peptide isolated from shortfin scad (Decapterus macrosoma) waste protein hydrolysate (SWH), enzymatically prepared by using alcalase. The purification process included ultrafiltration, gel filtration and reverse phase high performance liquid chromatography (RP-HPLC). Results showed that ultra-filtered peptide fraction (< 3 kDa) possessed the highest ACE inhibitory activity, followed by the fraction 14 by gel filtration. Fraction P obtained by RP-HPLC, with the amino acid sequence of RGVGPVPAA (IC50 = 0.20 mg/ml) was identified. In terms of ACE inhibition, the Lineweaver-Burk plot showed that the SWH peptide obtained acted as a competitive ACE inhibitor. The molecular docking studies showed that the SWH peptide exhibit hydrogen bonds and Pi-interactions with ACE by Z-dock scores. These results showed that the purified peptide isolated from shortfin scad waste hydrolysate has potential antihypertensive properties which could potentially be used as functional food ingredients.
Collapse
|
12
|
Cao Y, Gao J, Zhang L, Qin N, Zhu B, Xia X. Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSS-induced colitis. Food Funct 2021; 12:10121-10135. [PMID: 34528649 DOI: 10.1039/d1fo02001c] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Jellyfish skin polysaccharides (JSP) were isolated from Rhopilema esculentum Kishinouye and contained 55.11% polysaccharides and 2.26% uronic acid. To examine the anti-inflammatory, antioxidant and immunomodulatory activities of JSP in vivo, C57BL/6 mice were induced to develop ulcerative colitis by dextran sulfate sodium (DSS) and the roles of dietary JSP supplementation in modulating colitis were explored. JSP supplementation reduced the symptoms of colitis in mice, increased colon length, protected goblet cells, and improved intestinal epithelial integrity and permeability. JSP modulated oxidative stress and inflammatory responses, which was demonstrated by reduced MPO activity, NO level, and levels of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 in mice. JSP suppressed NF-κB signaling pathways as evidenced by lower levels of phosphorylated p65 and IKB. Moreover, JSP supplementation enhanced the expression of tight junction proteins and mucins, and modulated the composition of the gut microbiota and the production of short-chain fatty acids. Taken together, these results reveal the anti-inflammatory effect of dietary JSP in vivo, suggesting the potential of JSP as a nutritional supplement or adjunct strategy in preventing or ameliorating colitis.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jingzhu Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Lihua Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
13
|
Cui T, Jia A, Shi Y, Zhang M, Bai X, Liu X, Sun J, Liu C. Improved stability and transshipment of enzymatic hydrolysate with ACE inhibitory activity‐loaded nanogels based on glycosylated soybean protein isolate via the Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tingting Cui
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Airong Jia
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Yaping Shi
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Miansong Zhang
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xinfeng Bai
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xue Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Jimin Sun
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Changheng Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| |
Collapse
|
14
|
Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int J Biol Macromol 2020; 161:1216-1229. [DOI: 10.1016/j.ijbiomac.2020.06.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
15
|
Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep Biochem Biotechnol 2020; 51:44-53. [PMID: 32701046 DOI: 10.1080/10826068.2020.1789991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
Collapse
Affiliation(s)
- Noor Atikah Ab Aziz
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, Faculty of Applied Sciences, School of Industrial Technology, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Angilè F, Del Coco L, Girelli CR, Basso L, Rizzo L, Piraino S, Stabili L, Fanizzi FP. 1H NMR Metabolic Profile of Scyphomedusa Rhizostoma pulmo (Scyphozoa, Cnidaria) in Female Gonads and Somatic Tissues: Preliminary Results. Molecules 2020; 25:molecules25040806. [PMID: 32069847 PMCID: PMC7070884 DOI: 10.3390/molecules25040806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean basin is one of the regions heavily affected by jellyfish bloom phenomena, mainly due to the presence of scyphozoans, such as Rhizostoma pulmo. The jellyfish have few natural predators, and their bodies represent an organic-rich substrate that can support rapid bacterial growth with great impact on the structure of marine food webs. In Asiatic countries, jellyfish are widely studied for their health benefits, but their nutritional and nutraceutical values still remain poorly characterized. In this study, the differences in the 1H NMR spectroscopy metabolic profiles of R. pulmo female gonads and body fractions (including umbrella and oral arms), in different sampling periods, were studied. For each body compartment both lipid and aqueous extracts were characterized and their 1H NMR metabolic profiles subjected to multivariate analysis. From a statistical analysis of the extracts, a higher contents of ω-3 polyunsaturated fatty acids (PUFAs), amino acid and osmolytes (homarine, betaine, taurine) with important roles in marine invertebrates were observed in female gonads, whereas umbrella and oral arms showed similar metabolic profiles. These results support a sustainable exploitation of the jellyfish for the extraction of bioactive compounds useful in nutraceutical, nutricosmetics, and functional food fields.
Collapse
Affiliation(s)
- Federica Angilè
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
| | - Lucia Rizzo
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- Water Research Institute of the National Research Council, (IRSA-CNR), Via Roma 3, 74123 Taranto, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CIRCMSB, Piazza Umberto I, 1, 70121 Bari, Italy
- Correspondence: ; Tel.: +39-0832-299265
| |
Collapse
|
17
|
Taheri A, Bakhshizadeh G A. Antioxidant and ACE Inhibitory Activities of Kawakawa (Euthynnus affinis) Protein Hydrolysate Produced by Skipjack Tuna Pepsin. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1707924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Taheri
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | | |
Collapse
|
18
|
Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Tai HM, Li CC, Hung CY, Yin LJ. Production of functional peptides with inhibition ability against angiotensin I-Converting enzyme using P. pastoris expression system. J Food Drug Anal 2018; 26:1097-1104. [PMID: 29976402 PMCID: PMC9303040 DOI: 10.1016/j.jfda.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/04/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
To obtain the angiotension-I converting enzyme inhibitor (ACEI), a fusion ACEI polypeptide encoded with 8 DNA sequences of GPL, GPM, IKW, IVY, IRPVQ, IWHHT, IYPRY and IAPG, which were selected and designed and cloned into pGAPZαC and then transformed into Pichia pastoris SMD1168H. After 3 days induction, the fraction with highest ACEI activity was expressed and purified using a Ni Sepharose™ 6 Fast Flow. The IC50 of recombinant ACEI polypeptide was 88.2 μM. A 128-fold increase of ACEI activity (0.69 μM) was obtained after pepsin digestion, which was equivalent to 0.022 μM of captopril. Reverse phase HPLC indicated all the 8 peptides contained in ACEI-hydrolysate after pepsin digestion.
Collapse
Affiliation(s)
- Hsueh-Ming Tai
- Nugen Bioscience (Taiwan) Co., Ltd, 4F., No.35, Keya Rd., Daya Dist., Taichung City, 428,
Taiwan
| | - Ching-Chin Li
- Nugen Bioscience (Taiwan) Co., Ltd, 4F., No.35, Keya Rd., Daya Dist., Taichung City, 428,
Taiwan
| | - Chun-Yu Hung
- Nugen Bioscience (Taiwan) Co., Ltd, 4F., No.35, Keya Rd., Daya Dist., Taichung City, 428,
Taiwan
| | - Li-Jung Yin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142 Hai-Chuan Rd. Nan-Tzu, Kaohsiung, 81143,
Taiwan
- Corresponding author. Fax: +886 7 3640634. E-mail address: (L.-J. Yin)
| |
Collapse
|
20
|
U G Y, Bhat I, Karunasagar I, B S M. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr 2018. [PMID: 29533693 DOI: 10.1080/10408398.2018.1452182] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rising interest to utilize nutritionally exorbitant fish proteins has instigated research activities in fish waste utilization. The development of newer technologies to utilize fish waste has fostered use of bioactive value-added products for specific health benefits. Enzymatically obtained Fish Protein Hydrolysate (FPH) is a rich source of biologically active peptides possessing anti-oxidant, anticancer, antimicrobial and anti-hypertensive activity. Isolating natural remedies to combat alarming negative consequences of synthetic drugs has been the new trend in current research promoting identification of antihypertensive peptides from FPH. In this review, we aim to culminate data available to produce antihypertensive peptides from FPH, its composition and potential to be used as a therapeutic agent. These purified peptides are known to be rich in arginine, valine and leucine. Reports reveal peptides with low molecular weight (<1 kDa) and shorter chain length (<20 amino acids) exhibited higher antihypertensive activity. As these peptides have proven Angiotensin Converting Enzyme - I inhibitory activity in vitro and in vivo, their potential to be used as antihypertensive drugs is outrageous. However, current focus on research in the field of molecular docking is necessary to have improved understanding of interaction of the peptides with the enzyme.
Collapse
Affiliation(s)
- Yathisha U G
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Ishani Bhat
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Iddya Karunasagar
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Mamatha B S
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| |
Collapse
|
21
|
Li X, He C, Song L, Li T, Cui S, Zhang L, Jia Y. Antimicrobial activity and mechanism of Larch bark procyanidins against Staphylococcus aureus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1058-1066. [PMID: 29095973 DOI: 10.1093/abbs/gmx112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 11/12/2022] Open
Abstract
Larch bark procyanidins (LBPCs) have not only antioxidant and antitumor properties, but also strong bacteriostatic effects. However, it is not clear about the antibacterial mechanisms of LBPC. In this work, the antibacterial effects and mechanisms of LBPC on Staphylococcus aureus were studied in the aspects of morphological structure, cell wall and membrane, essential proteins, and genetic material. The results showed that LBPC effectively inhibited bacterial growth at a minimum inhibitory concentration of 1.75 mg/ml. Bacterial morphology was significantly altered by LBPC treatment, with the cell walls and membranes being destroyed. Extracellular alkaline phosphatase content, bacterial fluid conductivity, and Na+/K+-ATPase and Ca2+-ATPase activities in the membrane system were all increased. In the energy metabolic systems, the activities of succinate dehydrogenase, malate dehydrogenase, and adenosine triphosphatase (ATPase) were all decreased, resulting in a slowdown of metabolism and bacterial growth inhibition. Changes of protein content and composition in the bacteria suggested that the protein expression system was affected. In addition, LBPC was found to bind to DNA grooves to form complexes. Thus, LBPC has a very strong inhibitory effect on S. aureus and can kill S. aureus by destroying the integrity and permeability of the cell wall and cell membrane, affecting protein synthesis, and binding to DNA.
Collapse
Affiliation(s)
- Xinchao Li
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Ting Li
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Shumei Cui
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Liping Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
22
|
Characterisation of novel angiotensin-I-converting enzyme inhibitory tripeptide, Gly-Val-Arg derived from mycelium of Pleurotus pulmonarius. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Kim MR, Kim JW, Park JB, Hong YK, Ku SK, Choi JS. Anti-obesity effects of yellow catfish protein hydrolysate on mice fed a 45% kcal high-fat diet. Int J Mol Med 2017; 40:784-800. [PMID: 28713910 PMCID: PMC5548026 DOI: 10.3892/ijmm.2017.3063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Obesity contributes to the etiologies of a variety of comorbid conditions, such as type 2 diabetes, hypertension and cardiovascular disease. In the present study, the anti-obesity effects of yellow catfish protein hydrolysate (YPh) were observed in mice fed a 45% kcal high-fat diet (HFD) compared with those of mice treated with simvastatin. The HFD-fed control mice exhibited noticeable increase in body weight, and whole-body and abdominal fat densities, periovarian and abdominal wall-deposited fat pad weight, as well as in the levels of triglycerides (TG), blood total cholesterol (TC), low-density lipoprotein, alanine aminotransferase, aspartate aminotransferase, creatinine, blood urea nitrogen, and in the fecal TG and TC contents. However, they exhibited a decrease in serum high-density lipoprotein levels. In addition, an increase was detected in periovarian and dorsal abdominally deposited fat pad thickness, adipocyte hypertrophy, the number of steatohepatitis regions, hepatocyte hypertrophy and lipid droplet deposition-related renal tubular vacuolation degenerative lesions, along with increased hepatic lipid peroxidation and a deteriorated endogenous antioxidant defense system (glutathione, catalase and superoxide dismutase). However, all the above-mentioned obesity-related complications were dose-dependently and significantly inhibited after 84 days of thye consecutive oral administration of 125, 250 and 500 mg/kg YPh. In addition, YPh dose-dependently depleted the liver endogenous antioxidant defense system and inhibited hepatic lipid peroxidation. Overall, the effects of 250 mg/kg YPh on HFD-induced obesity and related complications were similar or more potent than those of 10 mg/kg simvastatin. These results indicate that YPh is a promising new potent medicinal ingredient for possible use in the treatment of obesity and related complications.
Collapse
Affiliation(s)
- Mi-Ryung Kim
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958
| | - Joo-Wan Kim
- Aribio Inc., Byeoksan Digital Valley, Yeongdeungpo-gu, Seoul 07286
| | - Jeong Been Park
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958
| | - Yong-Ki Hong
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan 48513
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958
| |
Collapse
|
24
|
Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2752716. [PMID: 28785288 PMCID: PMC5530421 DOI: 10.1155/2017/2752716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells.
Collapse
|
25
|
Choi JS, Kim JW, Park JB, Pyo SE, Hong YK, Ku SK, Kim MR. Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes. Int J Mol Med 2017; 39:1437-1451. [PMID: 28487991 PMCID: PMC5428967 DOI: 10.3892/ijmm.2017.2967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
Freshwater animal proteins have long been used as nutrient supplements. In this study, melanian snail (Semisulcospira libertina) protein hydrolysates (MPh) were found to exert anti-diabetic and protective effects against liver and kidney damage in mice with type II diabetes adapted to a 45% kcal high-fat diet (HFD). The hypoglycemic, hepatoprotective and nephroprotective effects of MPh were analyzed after 12 weeks of the continuous oral administration of MPh at 125, 250 and 500 mg/kg. Diabetic control mice exhibited an increase in body weight, and blood glucose and insulin levels, with a decrease in serum high-density lipoprotein (HDL) levels. In addition, an increase in the regions of steatohepatitis, hepatocyte hypertrophy, and lipid droplet deposit-related renal tubular vacuolation degenerative lesions were detected, with noticeable expansion and hyperplasia of the pancreatic islets, and an increase in glucagon- and insulin-producing cells, insulin/glucagon cell ratios in the endocrine pancreas and hepatic lipid peroxidation, as well as decreased zymogen contents. Furthermore, a deterioration of the endogenous antioxidant defense system was observed, with reduced glucose utilization related hepatic glucokinase (GK) activity and an increase in hepatic gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) activity. However, all of these diabetic complications were significantly inhibited by oral treatment with MPh in a dose-dependent manner. In addition, the marked dose-dependent inhibition of hepatic lipid peroxidation, the depletion of the liver endogenous antioxidant defense system, and changes in hepatic glucose-regulating enzyme activities were also observed. The results of this study suggest that MPh exerts potent anti-diabetic effects, along with the amelioration of related complications in mice with type II diabetes. The overall effects of MPh at a dose of 125 mg/kg on HFD-induced diabetes and related complications were similar or more potent than those of metformin (250 mg/kg).
Collapse
Affiliation(s)
- Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Joo-Wan Kim
- Aribio Inc., Byeoksan Digital Valley, Yeongdeungpo-gu, Seoul 07286, Republic of Korea
| | - Jeong Been Park
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Sang Eun Pyo
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Nam-Gu, Busan 48513, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Mi-Ryung Kim
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang-gu, Busan 46958, Republic of Korea
| |
Collapse
|
26
|
Huang YL, Ma MF, Chow CJ, Tsai YH. Angiotensin I-converting enzyme inhibitory and hypocholesterolemic activities: Effects of protein hydrolysates prepared from Achatina fulica snail foot muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1274904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ya-Ling Huang
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Mau-Fang Ma
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chau-Jen Chow
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Wang B, Liu D, Wang C, Wang Q, Zhang H, Liu G, Tao X, Zhang L. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by tentacle extract from the jellyfish Cyanea capillata. PeerJ 2017; 5:e3172. [PMID: 28413728 PMCID: PMC5390764 DOI: 10.7717/peerj.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Our previous study demonstrated that tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) could cause a weak relaxation response mediated by nitric oxide (NO) using isolated aorta rings. However, the intracellular mechanisms of TE-induced vasodilation remain unclear. Thus, this study was conducted to examine the role of TE on Akt/eNOS/NO and Ca2+ signaling pathways in human umbilical vein endothelial cells (HUVECs). Our results showed that TE induced dose- and time-dependent increases of eNOS activity and NO production. And TE also induced Akt and eNOS phosphorylation in HUVECs. However, treatment with specific PI3-kinase inhibitor (Wortmannin) significantly inhibited the increases in NO production and Akt/eNOS phosphorylation. In addition, TE also stimulated an increase in the intracellular Ca2+ concentration ([Ca2+]i), which was significantly attenuated by either IP3 receptor blocker (Heparin) or PKC inhibitor (PKC 412). In contrast, extracellular Ca2+-free, L-type calcium channel blocker (Nifedipine), or PKA inhibitor (H89) had no influence on the [Ca2+]i elevation. Since calcium ions also play a critical role in stimulating eNOS activity, we next explored the role of Ca2+ in TE-induced Akt/eNOS activation. In consistent with the attenuation of [Ca2+]i elevation, we found that Akt/eNOS phosphorylation was also dramatically decreased by Heparin or PKC 412, but not affected by Nifedipine or H89. However, the phosphorylation level could also be decreased by the removal of extracellular calcium. Taken together, our findings indicated that TE-induced eNOS phosphorylation and activation were mainly through PI3K/Akt-dependent, PKC/IP3R-sensitive and Ca2+-dependent pathways.
Collapse
Affiliation(s)
- Beilei Wang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Dan Liu
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Chao Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Guoyan Liu
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China.,Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Jensen IJ, Mæhre HK. Preclinical and Clinical Studies on Antioxidative, Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides-A Review. Mar Drugs 2016; 14:md14110211. [PMID: 27869700 PMCID: PMC5128754 DOI: 10.3390/md14110211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
High seafood consumption has traditionally been linked to a reduced risk of cardiovascular diseases, mainly due to the lipid lowering effects of the long chained omega 3 fatty acids. However, fish and seafood are also excellent sources of good quality proteins and emerging documentation show that, upon digestion, these proteins are sources for bioactive peptides with documented favorable physiological effects such as antioxidative, antihypertensive and other cardioprotective effects. This documentation is mainly from in vitro studies, but also animal studies are arising. Evidence from human studies evaluating the positive health effects of marine proteins and peptides are scarce. In one study, a reduction in oxidative stress after intake of cod has been documented and a few human clinical trials have been performed evaluating the effect on blood pressure. The results are, however, inconclusive. The majority of the human clinical trials performed to investigate positive health effects of marine protein and lean fish intake, has focused on blood lipids. While some studies have documented a reduction in triglycerides after intake of lean fish, others have documented no effects.
Collapse
Affiliation(s)
- Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Hanne K Mæhre
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
29
|
Angiotensin-I converting enzyme inhibitory activity of mushroom Lentinus polychrous Lév. and its development of healthy drink recipes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Sadegh Vishkaei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats. Mar Drugs 2016; 14:md14100176. [PMID: 27706040 PMCID: PMC5082324 DOI: 10.3390/md14100176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Mahdokht Sadegh Vishkaei
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Afshin Ebrahimpour
- Department of Chemistry, Sam Houston State University, Huntsville, TX 77340, USA.
| | - Azizah Abdul-Hamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
31
|
Manikkam V, Vasiljevic T, Donkor ON, Mathai ML. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides. Crit Rev Food Sci Nutr 2016; 56:92-112. [PMID: 25569557 DOI: 10.1080/10408398.2012.753866] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability.
Collapse
Affiliation(s)
- V Manikkam
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | - T Vasiljevic
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | - O N Donkor
- a Centre of Chronic Disease Prevention, School of Biomedical and Health Sciences , Victoria University , Melbourne , Australia
| | | |
Collapse
|
32
|
Liu X, Zhang M, Shi Y, Qiao R, Tang W, Sun Z. Production of the angiotensin I converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3240-3248. [PMID: 26494047 DOI: 10.1002/jsfa.7507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Angiotensin I converting enzyme (ACE) plays an important role in regulating blood pressure in the human body. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Jellyfish (Rhopilema esculentum) is an important fishery resource suitable for production of ACE inhibitory peptides. The objective of this study was to optimize the hydrolysis conditions for production of protein hydrolysate from R. esculentum (RPH) with ACE inhibitory activity, and to isolate and identify the ACE inhibitory peptides from RPH. RESULTS Rhopilema esculentum protein was hydrolyzed with Compound proteinase AQ to produce protein hydrolysate with ACE inhibitory activity, and the hydrolysis conditions were optimized using response surface methodology. The optimum parameters for producing peptides with the highest ACE inhibitory activity were as follows: hydrolysis time 3.90 h, hydrolysis temperature 58 °C, enzyme:substrate ratio 2.8% and pH 7.60. Under these conditions, the ACE inhibitory rate reached 32.21%. In addition, four novel ACE inhibitory peptides were isolated, and their amino acids sequences were identified as Val-Gly-Pro-Tyr, Phe-Thr-Tyr-Val-Pro-Gly, Phe-Thr-Tyr-Val-Pro-Gly-Ala and Phe-Gln-Ala-Val-Trp-Ala-Gly, respectively. The IC50 value of the purified peptides for ACE inhibitory activity was 8.40, 23.42, 21.15 and 19.11 µmol L(-1) . CONCLUSION These results indicate that the protein hydrolysate prepared from R. esculentum might be a commercial competitive source of ACE inhibitory ingredients to be used in functional foods. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Liu
- Biology Institute of Shandong Academy of Sciences/Key Laboratory for Applied Microbiology of Shandong Province, Jinan, 250014, China
| | - Miansong Zhang
- Biology Institute of Shandong Academy of Sciences/Key Laboratory for Applied Microbiology of Shandong Province, Jinan, 250014, China
| | - Yaping Shi
- Biology Institute of Shandong Academy of Sciences/Key Laboratory for Applied Microbiology of Shandong Province, Jinan, 250014, China
| | - Ruojin Qiao
- Biology Institute of Shandong Academy of Sciences/Key Laboratory for Applied Microbiology of Shandong Province, Jinan, 250014, China
| | - Wei Tang
- Linyi Institute for Food and Drug control, Linyi, 276001, China
| | - Zhenliang Sun
- Fengxian Hospital Affiliated to Southern Medical University, 6600 NanFeng Road, Shanghai, 201499, China
| |
Collapse
|
33
|
Ktari N, Belguith-Hadriche O, Ben Amara I, Ben Hadj A, Turki M, Makni-Ayedi F, Boudaouara T, El Feki A, Boualga A, Ben Salah R, Nasri M. Cholesterol regulatory effects and antioxidant activities of protein hydrolysates from zebra blenny (Salaria basilisca) in cholesterol-fed rats. Food Funct 2016; 6:2273-82. [PMID: 26065510 DOI: 10.1039/c5fo00492f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aims to explore the hypocholesterolemic effects and antioxidative activities of zebra blenny protein hydrolysates (ZBPHs) in rats fed with a hypercholesterolemic diet. The rats were fed during eight weeks a standard laboratory diet (normal rats), a high-cholesterol diet (HCD) (1%) or a HCD and orally treated with ZBPHs or undigested zebra blenny proteins (UZBPs) (400 mg per kg per day). Results showed that a hypercholesterolemic diet induced the increase of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Treatment with ZBPHs increased the level of high-density lipoprotein cholesterol (HDL-C) and decreased significantly the levels of TC, TG, and LDL-C. In addition, ZBPH treatment showed significant normalization of thiobarbituric acid-reactive substance (TBARS) levels as well as catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in renal and hepatic tissues. Furthermore, ZBPHs may also exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in the level of serum urea, uric acid, creatinine, alkaline phosphatase (ALP), and alanine aminotransferase (ALAT). Histological studies confirmed that ZBPHs effectively protected the livers and kidneys against hypercholesterolemia-mediated oxidative damage. Therefore, the study strengthens the hypothesis that ZBPHs can be used as novel antioxidants and hypocholesterolemic compounds against hyperlipidemia induced atherosclerosis.
Collapse
Affiliation(s)
- Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, P.O. 1173-3038, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Zhou J, Zeng X, Yu J. A Novel ACE Inhibitory Peptide Ala-His-Leu-Leu Lowering Blood Pressure in Spontaneously Hypertensive Rats. J Med Food 2016; 19:181-6. [DOI: 10.1089/jmf.2015.3483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Science, Nanjing, P.R. China
| | - Jianzhong Zhou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Science, Nanjing, P.R. China
| | - XiaoXiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
35
|
Purification and characterization of angiotensin converting enzyme-inhibitory peptides derived from Stichopus horrens : Stability study against the ACE and inhibition kinetics. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Girgih AT, Nwachukwu ID, Hasan FM, Fagbemi TN, Malomo SA, Gill TA, Aluko RE. Kinetics of in vitro enzyme inhibition and blood pressure-lowering effects of salmon ( Salmo salar ) protein hydrolysates in spontaneously hypertensive rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Yang G, Jiang Y, Yang W, Du F, Yao Y, Shi C, Wang C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Fact 2015; 14:202. [PMID: 26691527 PMCID: PMC4687296 DOI: 10.1186/s12934-015-0394-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Hypertension is considered the most serious risk factor for cardiovascular disease. Angiotensin-converting enzyme inhibitory peptides (ACEIPs), which are made from tuna frame protein (TFP) and yellow fin sole frame protein (YFP), have been used previously to treat hypertension. However, the production of these short peptides is usually dependent on enzymatic hydrolysis, resulting in a digested mixture that makes it difficult to purify the ACEIPs. Although it has been reported that ACEIPs could be produced in recombinant Escherichia coli strains, the use of lactic acid bacteria in the production of ACEIPs has not been demonstrated. Results In this study, the ACEIP coding sequences from TFP and YFP were joined through an arginine linker and expressed in the Lactobacillus plantarum (Lb. plantarum) NC8 strain by an inducible vector pSIP-409. Then, the antihypertensive effects were determined in the model of spontaneously hypertensive rats (SHRs) by measuring the blood pressure, hematology, blood biochemistry and nitric oxide (NO), endothelin (ET) and angiotensin II (Ang II) levels. The results showed that oral administration
of recombinant Lb. plantarum NC8 (RLP) significantly decreased systolic blood pressure (P < 0.01) during treatment, which lasted for at least 10 days after the last dose. Furthermore, the presence of RLP resulted in an increased level of NO, as well as decreased levels of ET and Ang II in plasma, heart, and kidney. In addition, a dramatically decreased triglyceride level was also observed even though there was no significant change in hematology or blood biochemistry. Although some drawbacks were still observed, such as the presence of an antibiotic selection marker, no obvious side effects or bacterial translocation were observed in vivo, indicating the potential application of RLP in the treatment of hypertension. Conclusion These results demonstrated the effectiveness and safety of RLP on the treatment of hypertension.
Collapse
Affiliation(s)
- Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Fang Du
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Yunbao Yao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
38
|
Betancur-Ancona D, Dávila-Ortiz G, Chel-Guerrero LA, Torruco-Uco JG. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration. J Med Food 2015; 18:1247-54. [DOI: 10.1089/jmf.2015.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., México
| | | | - Juan Gabriel Torruco-Uco
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., México
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Tuxtepec, Tuxtepec, México
| |
Collapse
|
39
|
Khong NMH, Yusoff FM, Jamilah B, Basri M, Maznah I, Chan KW, Nishikawa J. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem 2015; 196:953-60. [PMID: 26593577 DOI: 10.1016/j.foodchem.2015.09.094] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/29/2015] [Accepted: 09/28/2015] [Indexed: 11/15/2022]
Abstract
The study aimed to evaluate nutraceutical potential of three commercially significant edible jellyfish species (Acromitus hardenbergi, Rhopilema hispidum and Rhopilema esculentum). The bell and oral arms of these jellyfishes were analyzed for their proximate composition, calorific value, collagen content, amino acid profile, chemical score and elemental constituent. In general, all jellyfish possessed low calorific values (1.0-4.9 kcal/g D.W.) and negligible fat contents (0.4-1.8 g/100 g D.W.), while protein (20.0-53.9 g/100 g D.W.) and minerals (15.9-57.2g/100g D.W.) were found to be the richest components. Total collagen content of edible jellyfish varied from 122.64 to 693.92 mg/g D.W., accounting for approximately half its total protein content. The dominant amino acids in both bell and oral arms of all jellyfish studied includes glycine, glutamate, threonine, proline, aspartate and arginine, while the major elements were sodium, potassium, chlorine, magnesium, sulfur, zinc and silicon. Among the jellyfish, A. hardenbergi exhibited significantly higher total amino acids, chemical scores and collagen content (p<0.05) compared to R. hispidum and R. esculentum. Having good protein quality and low calories, edible jellyfish is an appealing source of nutritive ingredients for the development of oral formulations, nutricosmetics and functional food.
Collapse
Affiliation(s)
- Nicholas M H Khong
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Fatimah Md Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - B Jamilah
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mahiran Basri
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - I Maznah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Kim Wei Chan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Jun Nishikawa
- Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan.
| |
Collapse
|
40
|
Affiliation(s)
- Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2;
| |
Collapse
|
41
|
Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chem 2014; 174:37-43. [PMID: 25529649 DOI: 10.1016/j.foodchem.2014.11.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 10/07/2014] [Accepted: 11/03/2014] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate antihypertensive effect of bioactive peptides from skate (Okamejei kenojei) skin gelatin. The Alcalase/protease gelatin hydrolysate below 1 kDa (SAP) exhibited the highest angiotensin-I converting enzyme (ACE) inhibition compared to other hydrolysates. SAP can decrease systolic blood pressure significantly in spontaneously hypertensive rats. SAP inhibited vasoconstriction via PPAR-γ expression, activation and phosphorylation of eNOS in lungs. Moreover, the expression levels of endothelin-1, RhoA, α-smooth muscle actin, cleaved caspase 3 and MAPK were decreased by SAP in lungs. Vascularity, muscularization and cellular proliferation in lungs were detected by immunohistochemical staining. Finally, two purified peptides (LGPLGHQ, 720Da and MVGSAPGVL, 829Da) showed potent ACE inhibition with IC50 values of 4.22 and 3.09 μM, respectively. These results indicate that bioactive peptides isolated from skate skin gelatin may serve as candidates against hypertension and could be used as functional food ingredients.
Collapse
|
42
|
Wang S, Lin LM, Wu YN, Fang M, Yu YQ, Zhou J, Gong ZY. Angiotensin I Converting Enzyme (ACE) inhibitory activity and antihypertensive effects of grass carp peptides. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Li J, Li Q, Li J, Zhou B. Peptides derived from Rhopilema esculentum hydrolysate exhibit angiotensin converting enzyme (ACE) inhibitory and antioxidant abilities. Molecules 2014; 19:13587-602. [PMID: 25185066 PMCID: PMC6271940 DOI: 10.3390/molecules190913587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 11/16/2022] Open
Abstract
Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and VKCFR (651 Da) by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecular docking results suggested that VKP and VKCFR bind to ACE through coordinating with the active site Zn(II) atom. Free radical scavenging activity and protection against hydrogen peroxide (H2O2)-induced rat cerebral microvascular endothelial cell (RCMEC) injury were used to evaluate the antioxidant activities of the two peptides. As the results clearly showed that the peptides increased the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-px) activities in RCMEC cells), it is proposed that the R. esculentum peptides exert significant antioxidant effects.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Reproductive Medicine, Department of Plastic & Consmetic Surgery, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Qian Li
- State Key Laboratory of Reproductive Medicine, Department of Plastic & Consmetic Surgery, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Jingyun Li
- State Key Laboratory of Reproductive Medicine, Department of Plastic & Consmetic Surgery, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Bei Zhou
- State Key Laboratory of Reproductive Medicine, Department of Plastic & Consmetic Surgery, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
44
|
Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0138-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Alashi AM, Blanchard CL, Mailer RJ, Agboola SO, Mawson AJ, He R, Malomo SA, Girgih AT, Aluko RE. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Jakubczyk A, Karaś M, Baraniak B, Pietrzak M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem 2013; 141:3774-80. [PMID: 23993548 DOI: 10.1016/j.foodchem.2013.06.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/08/2013] [Accepted: 06/20/2013] [Indexed: 01/11/2023]
Abstract
Pea seeds were fermented by Lactobacillus plantarum 299v in monoculture under different time and temperature conditions and the fermented products were digested in vitro under gastrointestinal conditions. After fermentation and digestion ACE inhibitory activity was determined. In all samples after fermentation no ACE inhibitory activity was noted. Potentially antihypertensive peptides were released during in vitro digestion. The highest DH (68.62%) were noted for control sample, although the lowest IC50 value (0.19 mg/ml) was determined for product after 7 days fermentation at 22 °C. The hydrolysate characterised by the highest ACE inhibitory activity was separated on Sephadex G10 and two peptides fractions were obtained. The highest ACE inhibitory activity (IC50=64.04 μg/ml) for the first fraction was noted. This fraction was separated by HPLC and identified by LC-MS/MS and the sequence of peptide derived from pea proteins was determined as KEDDEEEEQGEEE.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, ul. Skromna 8, 20-704 Lublin, Poland.
| | | | | | | |
Collapse
|
47
|
Antihypertensive effects of lactoferrin hydrolyzates: Inhibition of angiotensin- and endothelin-converting enzymes. Food Chem 2013; 139:994-1000. [PMID: 23561201 DOI: 10.1016/j.foodchem.2012.12.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 11/23/2022]
Abstract
The potential of bovine lactoferrin (LF) as a source of antihypertensive peptides acting on the renin-angiotensin system (RAS) and the endothelin (ET) system as dual vasopeptidase inhibitors has been examined. For this purpose enzymatic LF hydrolyzates (LFHs) were generated by trypsin and proteinase K digestions. Permeate fractions with molecular masses lower than 3 kDa (LFH <3 kDa) were orally administered to spontaneously hypertensive rats (SHRs). Although both LFHs <3 kDa showed in vitro angiotensin I-converting enzyme (ACE)-inhibitory activity, only proteinase K LFH <3 kDa exerted an in vivo antihypertensive effect. The proteinase K LFH <3 kDa and a previously characterized pepsin LFH <3 kDa with ACE-inhibitory and antihypertensive effects were tested in ex vivo functional assays as inhibitors of ACE-dependent vasoconstriction. Pepsin LFH <3 kDa but not proteinase K LFH <3 kDa inhibited ACE-dependent vasoconstriction. When tested as inhibitors towards endothelin-converting enzyme (ECE), both LFHs <3 kDa exerted in vitro inhibitory effects on ECE activity and inhibited ECE-dependent vasoconstriction. Most abundant peptides in proteinase K LFH <3 kDa were identified by using an ion trap mass spectrometer. Based on peptide abundance, two peptides (GILRPY and REPYFGY) were chemically synthesized and their ECE-inhibitory activity was tested. Both exerted in vitro inhibitory effects on ECE activity. In conclusion, orally effective antihypertensive LFHs <3 kDa may act as dual vasopeptidase (ACE/ECE) or as single ECE inhibitors with different antivasoconstrictor effects depending on the protease used to release bioactive peptide sequences.
Collapse
|
48
|
Liu X, Zhang M, Jia A, Zhang Y, Zhu H, Zhang C, Sun Z, Liu C. Purification and characterization of angiotensin I converting enzyme inhibitory peptides from jellyfish Rhopilema esculentum. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Howard A, Udenigwe CC. Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food Funct 2012; 4:40-51. [PMID: 23108291 DOI: 10.1039/c2fo30216k] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperlipidaemia is an important risk factor for developing cardiovascular disease, a leading global health issue. While pharmaceutical interventions have proved efficacious in acute conditions, many hypolipidaemic drugs are known to induce adverse side effects. Due to a strong positive link between functional food components and human health, emerging research has explored the application of natural food-based strategies in disease management. One of such strategies involves the use of food proteins as precursors of peptides with a wide variety of beneficial health functions. Some plant, animal and marine-derived protein hydrolysates and peptides have shown promising hypolipidaemic properties when evaluated in vitro, in cultured mammalian cells and animal models. The products exert their functions via bile acid-binding and disruption of cholesterol micelles in the gastrointestinal tract, and by altering hepatic and adipocytic enzyme activity and gene expression of lipogenic proteins, which can modulate aberrant physiological lipid profiles. The activity of the protein hydrolysates and peptides depends on their physicochemical properties including hydrophobicity of amino acid residues but there is knowledge gap on detailed structure-function relationships and efficacy in hyperlipidaemic human subjects. Based on the prospects, commercial functional food products containing hypolipidaemic peptides have been developed for enhancement of cardiovascular health.
Collapse
Affiliation(s)
- Ashton Howard
- Health and Bio-products Research Laboratory, Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | | |
Collapse
|