1
|
Romanić R, Lužaić T, Pezo L, Radić B, Kravić S. Omega 3 Blends of Sunflower and Flaxseed Oil-Modeling Chemical Quality and Sensory Acceptability. Foods 2024; 13:3722. [PMID: 39682794 PMCID: PMC11640067 DOI: 10.3390/foods13233722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Oil blending is increasingly utilized to improve and model the characteristics of enriched oils. This study aims to investigate the effect of blending refined sunflower oil (rich in essential omega 6 fatty acids) with cold-pressed flaxseed oil (a source of essential omega 3 fatty acids) on the fatty acid composition, quality, color, and sensory characteristics of the resulting oils. Principal component analysis (PCA) showed that the optimal fatty acid composition was achieved in the sample with 20% sunflower oil and 80% flaxseed oil (20S/80F). However, developing a new product is highly complex due to the importance of oil quality and sensory characteristics. Therefore, an Artificial Neural Network (ANN) was applied to optimize the proportions of flaxseed and sunflower oil to create an oil blend with improved nutritional, oxidative, and sensory characteristics compared to the individual oils. The ANN analysis determined the optimal composition of the oil blend to be 51.5% refined sunflower oil and 48.5% cold-pressed flaxseed oil. Sensory characteristics pose a particular challenge in optimization, as flaxseed oil, which increases essential omega 3 fatty acids, has a specific taste that is not widely favored by consumers. Nonetheless, by blending with refined sunflower oil, the resulting optimal blend (51.5% refined sunflower oil and 48.5% cold-pressed flaxseed oil) possesses pleasant sensory characteristics.
Collapse
Affiliation(s)
- Ranko Romanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (T.L.); (B.R.); (S.K.)
| | - Tanja Lužaić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (T.L.); (B.R.); (S.K.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojana Radić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (T.L.); (B.R.); (S.K.)
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (T.L.); (B.R.); (S.K.)
| |
Collapse
|
2
|
Tufail T, Khan T, Bader Ul Ain H, Morya S, Shah MA. Garden cress seeds: a review on nutritional composition, therapeutic potential, and industrial utilization. Food Sci Nutr 2024; 12:3834-3848. [PMID: 38873486 PMCID: PMC11167195 DOI: 10.1002/fsn3.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 06/15/2024] Open
Abstract
The growing preference for natural remedies has resulted in increased use of medicinal plants. One of the most significant and varied plants is garden cress (Lepidium sativum), which has large concentrations of proteins, fatty acids, minerals, and vitamins. It also contains a wide range of bioactive components, including kaempferol glucuronide, gallic acid, protocatechuic acid, coumaric acid, caffeic acid, terpenes, glucosinolates, and many more. These substances, which include antioxidant, thermogenic, depurative, ophthalmic, antiscorbutic, antianemic, diuretic, tonic, laxative, galactogogue, aphrodisiac, rubefacient, and emmengogue qualities, add to the medicinal and functional potential of garden cress. An extensive summary of the phytochemical profile and biological activity of garden cress seeds is the main goal of this review. Research showed that garden cress is one of the world's most underutilized crops, even with its nutritional and functional profile. Consequently, the goal of this review is to highlight the chemical and nutritional makeup of Lepidium sativum while paying particular attention to its bioactive profile, various health claims, therapeutic benefits, and industrial applications.
Collapse
Affiliation(s)
- Tabussam Tufail
- School of Food and Biological Engineering Jiangsu UniversityZhenjiangJiangsuChina
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
- Faculty of Health and Life SciencesINTI International UniversityNilaiMalaysia
| | - Tehreem Khan
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Huma Bader Ul Ain
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Sonia Morya
- Department of Food Technology & NutritionLovely Professional UniversityPhagwara, JalandharPunjabIndia
| | - Mohd Asif Shah
- Department of EconomicsKabridahar UniversitySomaliEthiopia
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and TechnologyChitkara UniversityRajpuraPunjabIndia
- Division of Research and DevelopmentLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
3
|
Tian M, Bai Y, Tian H, Zhao X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils-A Review. Molecules 2023; 28:6393. [PMID: 37687222 PMCID: PMC10489903 DOI: 10.3390/molecules28176393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
With population and economic development increasing worldwide, the public is increasingly concerned with the health benefits and nutritional properties of vegetable oils (VOs). In this review, the chemical composition and health-promoting benefits of 39 kinds of VOs were selected and summarized using Web of Science TM as the main bibliographic databases. The characteristic chemical compositions were analyzed from fatty acid composition, tocols, phytosterols, squalene, carotenoids, phenolics, and phospholipids. Health benefits including antioxidant activity, prevention of cardiovascular disease (CVD), anti-inflammatory, anti-obesity, anti-cancer, diabetes treatment, and kidney and liver protection were examined according to the key components in representative VOs. Every type of vegetable oil has shown its own unique chemical composition with significant variation in each key component and thereby illustrated their own specific advantages and health effects. Therefore, different types of VOs can be selected to meet individual needs accordingly. For example, to prevent CVD, more unsaturated fatty acids and phytosterols should be supplied by consuming pomegranate seed oil, flaxseed oil, or rice bran oil, while coconut oil or perilla seed oil have higher contents of total phenolics and might be better choices for diabetics. Several oils such as olive oil, corn oil, cress oil, and rice bran oil were recommended for their abundant nutritional ingredients, but the intake of only one type of vegetable oil might have drawbacks. This review increases the comprehensive understanding of the correlation between health effects and the characteristic composition of VOs, and provides future trends towards their utilization for the general public's nutrition, balanced diet, and as a reference for disease prevention. Nevertheless, some VOs are in the early stages of research and lack enough reliable data and long-term or large consumption information of the effect on the human body, therefore further investigations will be needed for their health benefits.
Collapse
Affiliation(s)
- Mingke Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Bai
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China;
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Plant-Derived Low-Ratio Linoleic Acid/Alpha-Linolenic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis. Foods 2023; 12:3005. [PMID: 37628004 PMCID: PMC10453764 DOI: 10.3390/foods12163005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This meta-analysis aimed to investigate the impact of low-ratio linoleic acid/alpha-linolenic acid (LA/ALA) supplementation on the blood lipid profiles in adults. We conducted a systematic search for relevant randomized controlled trials (RCTs) assessing the effects of low-ratio LA/ALA using databases including PubMed, Embase, Cochrane, and Web of Science, as well as screened related references up until February 2023. The intervention effects were analyzed adopting weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis indicated that low-ratio LA/ALA supplementation decreased total cholesterol (TC, WMD: -0.09 mmol/L, 95% CI: -0.17, -0.01, p = 0.031, I2 = 33.2%), low-density lipoprotein cholesterol (LDL-C, WMD: -0.08 mmol/L, 95% CI: -0.13, -0.02, p = 0.007, I2 = 0.0%), and triglycerides (TG, WMD: -0.05 mmol/L, 95% CI: -0.09, 0.00, p = 0.049, I2 = 0.0%) concentrations. There was no significant effect on high-density lipoprotein cholesterol concentration (HDL-C, WMD: -0.00 mmol/L, 95% CI: -0.02, 0.02, p = 0.895, I2 = 0.0%). Subgroup analysis showed that low-ratio LA/ALA supplementation significantly decreased plasma TC, LDL-C, and TG concentrations when the intervention period was less than 12 weeks. In the subgroup analysis, a noteworthy decrease in both TC and LDL-C levels was observed in individuals receiving low-ratio LA/ALA supplementation in the range of 1-5. These findings suggest that this specific range could potentially be effective in reducing lipid profiles. The findings of this study provide additional evidence supporting the potential role of low-ratio LA/ALA supplementation in reducing TC, LDL-C, and TG concentrations, although no significant impact on HDL-C was observed.
Collapse
Affiliation(s)
| | | | | | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Wang Q, Wang X. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. Int J Mol Sci 2023; 24:12117. [PMID: 37569494 PMCID: PMC10419107 DOI: 10.3390/ijms241512117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Golimowski W, Teleszko M, Zając A, Kmiecik D, Grygier A. Effect of the Bleaching Process on Changes in the Fatty Acid Profile of Raw Hemp Seed Oil ( Cannabis sativa). Molecules 2023; 28:769. [PMID: 36677827 PMCID: PMC9863655 DOI: 10.3390/molecules28020769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Many refined oils from soybean, rapeseed, and sunflower, among others, are available on the food market, except olive oil. Refining, on the small production scale of niche oils, is not used due to the high cost of the refining process. Unrefined oils are characterized by intense taste, odor, color, and undesirable nutrients. The problem to be solved is determining the effects of incomplete refining of niche oils on their composition. One process, which does not require the use of complex apparatus, is the bleaching process. The results presented in this article relate to the research stage, in which the aim is to evaluate the changes occurring in the oil due to the low-temperature bleaching process with different process parameters. The presented research results provide evidence of the absence of adverse changes in the fatty acid profile of hemp oil of the varieties 'Finola', 'Earlina 8FC', and 'Secuieni Jubileu'. Seven different types of bleaching earth were used to bleach the oil in amounts of 2.5 and 5 g/100 g of vegetable oil. The fatty acid profile was obtained by gas chromatography (GC-FID). The obtained chromatograms were subjected to statistical analysis and principal component analysis (PCA). The results show that there was no effect of the type of bleaching earth and its amount on the change in the fatty acid profile of bleached oils. Only real differences between the types of hemp oils were observed. However, an overall positive effect of the bleaching process on hemp oil was found. The amount of saturated fatty acid (SFA) was reduced by 17.1% compared with the initial value, resulting in an increase in the proportion of polyunsaturated fatty acids (PUFA) by 4.4%, resulting in an unsaturated fatty acid (UFA) proportion of 90%. There was a significant improvement in the SFA/PUFA ratio by 26% over the baseline, and the omega-6/omega-3 ratio by 8.9% to a value of 3.1:1. The new knowledge from this study is evidence of the positive effect of the low-temperature bleaching process on the fatty acid profile. In contrast, the parameters of the bleaching process itself are not significant.
Collapse
Affiliation(s)
- Wojciech Golimowski
- Department of Agroengineering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Mirosława Teleszko
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Adam Zając
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120 Street, 53–345 Wroclaw, Poland
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Anna Grygier
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| |
Collapse
|
7
|
Dhara O, Azmeera T, Eanti A, Chakrabarti PP. Garden cress oil as a vegan source of PUFA: Achieving through optimized supercritical carbon dioxide extraction. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Afzal MF, Khalid W, Armghan Khalid M, Zubair M, Akram S, Kauser S, Noreen S, Jamal A, Kamran Khan M, Al-Farga A. Recent industrials extraction of plants seeds oil used in the development of functional food products: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:2530-2550. [DOI: 10.1080/10942912.2022.2144882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Affiliation(s)
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Zubair
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | - Sidra Akram
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Athar Jamal
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | | | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| |
Collapse
|
9
|
Effects of camelina oil supplementation on lipid profile and glycemic control: a systematic review and dose‒response meta-analysis of randomized clinical trials. Lipids Health Dis 2022; 21:132. [PMID: 36476379 PMCID: PMC9727906 DOI: 10.1186/s12944-022-01745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This systematic review and dose-response meta-analysis of published randomized controlled trials (RCTs) was conducted to determine the effectiveness of camelina oil supplementation (COS) on lipid profiles and glycemic indices. METHODS Relevant RCTs were selected by searching the ISI Web of Science, PubMed, and Scopus databases up to July 1, 2022. RTCs with an intervention duration of less than 2 weeks, without a placebo group, and those that used COS in combination with another supplement were excluded. Weighted mean differences and 95% confidence intervals were pooled by applying a random-effects model, while validated methods examined sensitivity analyses, heterogeneity, and publication bias. RESULTS Seven eligible RCTs, including 428 individuals, were selected. The pooled analysis revealed that COS significantly improved total cholesterol in studies lasting more than 8 weeks and utilizing dosages lower than 30 g/d compared to the placebo group. The results of fractional polynomial modeling indicated that there were nonlinear dose-response relations between the dose of COS and absolute mean differences in low-density cholesterol, high-density cholesterol, and total cholesterol, but not triglycerides. It appears that the greatest effect of COS oil occurs at the dosage of 20 g/day. CONCLUSION The present meta-analysis indicates that COS may reduce cardiovascular disease risk by improving lipid profile markers. Based on the results of this study, COS at dosages lower than 30 g/d may be a beneficial nonpharmacological strategy for lipid control. Further RCTs with longer COS durations are warranted to expand on these results.
Collapse
|
10
|
Azene M, Habte K, Tkuwab H. Nutritional, health benefits and toxicity of underutilized garden cress seeds and its functional food products: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
AbstractGarden cress seed is a potential source of macro and micronutrients including essential fatty acids and amino acids as well as minerals such as iron, potassium, calcium and phosphorus. The seed also provides appreciable amount of health-protective bioactive compounds used to treat diabetes, hypercholesterolemia, bone fracture, asthma, constipation and some forms of cancer. Besides,, it is used to develop functional foods of therapeutic value in food manufacturing industries and traditional food preparations. Even though, it is known for its superior health benefits, provision of essential nutrients, and wider application in functional food development it is among the most underutilized crop in the world. Additionally, majority of studies conducted on garden cress seeds are mainly animal trials and hence needs to conduct studies on human. Therefore, the aim of this review paper is to provide up to date research evidence on the nutrient composition and therapeutic use of underutilized garden cress seeds and its functional food products, promising for the prevention of non-communicable and communicable diseases.
Graphical Abstract
Collapse
|
11
|
Sharma K, Kumar M, Lorenzo JM, Guleria S, Saxena S. Manoeuvring the physicochemical and nutritional properties of vegetable oils through blending. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kanika Sharma
- Chemical and Biochemical Processing Division Central Institute for Research on Cotton Technology Mumbai India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division Central Institute for Research on Cotton Technology Mumbai India
- Department of Biology East Carolina University Greenville North Carolina USA
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Ourense Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense Universidad de Vigo Ourense Spain
| | - Sanjay Guleria
- Division of Biochemistry, Faculty of Basic Science Sher‐e‐Kashmir University of Agricultural Sciences and Technology Jammu India
| | - Sujata Saxena
- Chemical and Biochemical Processing Division Central Institute for Research on Cotton Technology Mumbai India
| |
Collapse
|
12
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
13
|
Xiao M, Huang M, Huan W, Dong J, Xiao J, Wu J, Wang D, Song L. Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4472751. [PMID: 35464771 PMCID: PMC9023180 DOI: 10.1155/2022/4472751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. METHODS Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. RESULTS Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. CONCLUSION Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.
Collapse
Affiliation(s)
- Minghui Xiao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Jiasheng Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lili Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
14
|
Manasa V, Tumaney AW. Evaluation of the anti-dyslipidemic effect of spice fixed oils in the in vitro assays and the high fat diet-induced dyslipidemic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
16
|
Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother Res 2021; 36:164-188. [PMID: 34553434 DOI: 10.1002/ptr.7295] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
α-linolenic acid (ALA, 18:3n-3) is a carboxylic acid composed of 18 carbon atoms and three cis double bonds, and is an essential fatty acid indispensable to the human body. This study aims to systematically review related studies on the dietary sources, metabolism, and pharmacological effects of ALA. Information on ALA was collected from the internet database PubMed, Elsevier, ResearchGate, Web of Science, Wiley Online Library, and Europe PMC using a combination of keywords including "pharmacology," "metabolism," "sources." The following findings are mainly contained. (a) ALA can only be ingested from food and then converted into eicosapentaenoic acid and docosahexaenoic acid in the body. (b) This conversion process is relatively limited and affected by many factors such as dose, gender, and disease. (c) Pharmacological research shows that ALA has the anti-metabolic syndrome, anticancer, antiinflammatory, anti-oxidant, anti-obesity, neuroprotection, and regulation of the intestinal flora properties. (d) There are the most studies that prove ALA has anti-metabolic syndrome effects, including experimental studies and clinical trials. (e) The therapeutic effect of ALA will be affected by the dosage. In short, ALA is expected to treat many diseases, but further high quality studies are needed to firmly establish the clinical efficacy of ALA.
Collapse
Affiliation(s)
- Qianghua Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Mei Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qilu Yan
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Zemou Chen
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Yan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Ni Z, Ding J, Zhao Q, Cheng W, Yu J, Zhou L, Sun S, Yu C. Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. Am J Reprod Immunol 2021; 86:e13471. [PMID: 34022075 DOI: 10.1111/aji.13471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
PROBLEM This study aims to investigate the effects of alpha-linolenic acid (ALA) on the gut microbiota (GM) and the abdominal environment in mice with endometriosis (EMS). METHODS The effects of faecal microbiota transplantation (FMT) from EMS mice on mice treated with antibiotic cocktail were conducted. The 16S rRNA sequencing and PICRUSt software were used to detect the structure and function of GM respectively. The protein levels of Claudin 4 and ZO-2 in the intestinal wall were detected using the western blotting. The level of LPS in the abdominal cavity was detected using enzyme-linked immunosorbent assay (ELISA). The content of macrophages in the abdominal cavity was detected using flow cytometry. RESULTS The exogenous supplementation of ALA could restore the abundance of Firmicutes and Bacteroidota in EMS mice. After the ALA treatment, the abundance of 125 functional pathways and 50 abnormal enzymes related to GM in EMS mice was significantly improved (p < .05). The expression of the ZO-2 protein in the intestinal wall was decreased, and the level of LPS in the abdominal cavity was significantly increased after FMT from EMS mice (p < .05). ALA could increase the expression of the ZO-2 protein in the intestinal wall of EMS mice, reduce the level of LPS in the abdominal cavity (p < .05) and reduce the aggregation of peritoneal macrophages (p < .05). CONCLUSION Alpha-linolenic acid can improve the GM, intestinal wall barrier and abdominal inflammatory environment and reduce the level of LPS in mice with EMS.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianqian Zhao
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Correlations between α-Linolenic Acid-Improved Multitissue Homeostasis and Gut Microbiota in Mice Fed a High-Fat Diet. mSystems 2020; 5:5/6/e00391-20. [PMID: 33144308 PMCID: PMC7646523 DOI: 10.1128/msystems.00391-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that α-linolenic acid (ALA) has a significant regulatory effect on related disorders induced by high-fat diets (HFDs), but little is known regarding the correlation between the gut microbiota and disease-related multitissue homeostasis. We systematically investigated the effects of ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and systemic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an HFD (HFD mice). We found that ALA improved HFD-induced multitissue metabolic disorders and gut microbiota disorders to various degrees. Importantly, we established a complex but clear network between the gut microbiota and host parameters. Several specific differential bacteria were significantly associated with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella were positively correlated with HFD-induced "harmful indicators" and negatively correlated with "beneficial indicators." Intriguingly, Bilophila showed a strong negative correlation with HFD-induced multitissue metabolic disorders and a significant positive correlation with most beneficial indicators, which is different from its previous characterization as a "potentially harmful genus." Turicibacter might be the key beneficial bacterium for ALA-improved metabolic endotoxemia, while Blautia might play an important role in ALA-improved gut barrier integrity and anti-inflammatory effects. The results suggested that the gut microbiota, especially some specific bacteria, played an important role in the process of ALA-improved multitissue homeostasis in HFD mice, and different bacteria might have different divisions of regulation.IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue in modern Western-style diets. A large amount of evidence now suggests that a balanced intestinal microecology is considered an important part of health. Our results show that α-linolenic acid administration significantly improved the host metabolic phenotype and gut microbiota of mice fed a high-fat diet, and there was a correlation between the improved gut microbiota and metabolic phenotype. Some specific bacteria may play a unique regulatory role. Here, we have established correlation networks between gut microbiota and multitissue homeostasis, which may provide a new basis for further elucidating the relationship between the gut microbiota and host metabolism.
Collapse
|
19
|
Yue H, Qiu B, Jia M, Liu W, Guo XF, Li N, Xu ZX, Du FL, Xu T, Li D. Effects of α-linolenic acid intake on blood lipid profiles:a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:2894-2910. [PMID: 32643951 DOI: 10.1080/10408398.2020.1790496] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the effect of ALA intake on blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL-C) and ratio of TC to HDL-C. We systematically searched randomized controlled trials of ALA intervention on PubMed, Embase, Cochrane library and related references up to March 2018. The final values were calculated as weighted mean difference (WMD) by using a random effects model. Subgroup analysis and meta-regression were used to explore the source of heterogeneity. Generalized least square was performed for dose-response analysis. Forty-seven studies with 1305 individuals in the ALA arm and 1325 individuals in the control arm were identified. Compared with control group, dietary intake of ALA significantly reduced the concentrations of TG (WMD -0.101 mmol/L; 95% CI: -0.158 to -0.044 mmol/L; P = 0.001), TC (WMD -0.140 mmol/L; 95% CI: -0.224 to -0.056 mmol/L; P = 0.001), LDL-C (WMD -0.131 mmol/L; 95% CI: -0.191 to -0.071 mmol/L; P < 0.001), VLDL-C (WMD -0.121 mmol/L; 95% CI: -0.170 to -0.073 mmol/L; P < 0.001), TC/HDL-C ratio (WMD -0.165 mmol/L; 95% CI: -0.317 to -0.013 mmol/L; P = 0.033) and LDL-C/HDL-C ratio (WMD -0.158 mmol/L; 95% CI: -0.291 to -0.025 mmol/L; P = 0.02). There is no effect of ALA intake on HDL-C (WMD 0.008 mmol/L; 95% CI: -0.018 to 0.034 mmol/L; P = 0.541). Dose-response analysis indicated that 1 g per day increment of ALA was associated with a 0.0016 mmol/L, 0.0071 mmol/L, 0.0015 and 0.0061 mmol/L reduction in TG (95% CI: -0.0029 to -0.0002 mmol/L), TC (95% CI: -0.0085 to -0.0058 mmol/L), HDL-C (95% CI: -0.0020 to -0.0011 mmol/L) and LDL-C (95% CI: -0.0073 to -0.0049 mmol/L) levels, respectively. The effects of ALA intake on TG, TC and LDL-C concentrations were more obvious among Asian participants, and also more obvious on patients with hyperlipidemia or hyperglycemia compared to healthy individuals. Dietary ALA intervention improves blood lipid profiles by decreasing levels of TG, TC, LDL and VLDL-C. Our findings add to the evidence that increasing ALA intake could potentially prevent risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.,College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Min Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Na Li
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.,College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Zhi-Xiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Fang-Ling Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Kiwifruit seed oil prevents obesity by regulating inflammation, thermogenesis, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Food Chem Toxicol 2019; 125:85-94. [DOI: 10.1016/j.fct.2018.12.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 01/15/2023]
|
21
|
Nehdi IA, Hadj-Kali MK, Sbihi HM, Tan CP, Al-Resayes SI. Characterization of Ternary Blends of Vegetable Oils with Optimal ω-6/ω-3 Fatty Acid Ratios. J Oleo Sci 2019; 68:1041-1049. [DOI: 10.5650/jos.ess19111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Imededdine Arbi Nehdi
- Chemistry Department, College of Science, King Saud University
- Chemistry Department, Science College, Tunis El Manar University
| | | | | | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia
| | | |
Collapse
|
22
|
Qu L, Liu Q, Zhang Q, Liu D, Zhang C, Fan D, Deng J, Yang H. Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Mulla M, Ahmed J, Al-Sharrah T. Effect of hot oven and microwave roasting on garden cress (Lepidium sativum
) seed flour quality and fatty acid composition, thermal and dielectric properties of extracted oil. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mehrajfatema Mulla
- Food and Nutrition Program; Environment and Life Sciences Research Center; Kuwait Institute for Scientific Research; P.O. Box 24885 Safat 13109 Kuwait
| | - Jasim Ahmed
- Food and Nutrition Program; Environment and Life Sciences Research Center; Kuwait Institute for Scientific Research; P.O. Box 24885 Safat 13109 Kuwait
| | - Tahani Al-Sharrah
- Food and Nutrition Program; Environment and Life Sciences Research Center; Kuwait Institute for Scientific Research; P.O. Box 24885 Safat 13109 Kuwait
| |
Collapse
|
24
|
Effects of Chinese Dietary Pattern of Fat Content, n-6/n-3 Polyunsaturated Fatty Acid Ratio, and Cholesterol Content on Lipid Profile in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4398086. [PMID: 29744358 PMCID: PMC5878914 DOI: 10.1155/2018/4398086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/23/2023]
Abstract
This study aims to investigate the effect of Chinese diet pattern of fat content (30% or 36.06%), n-6/n-3 polyunsaturated fatty acid (PUFA) ratio (5 : 1 or 9 : 1), and cholesterol content (0.04 or 0.057 g/kg total diet) on lipid profile using a rat model. Results showed that rats' body weights (BWs) were controlled by the simultaneous intakes of cholesterol level of 0.04 g/kg total diet and n-6/n-3 ratio of 5 : 1. In addition, under high-fat diet, increased cholesterol feeding led to increased total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels and decreased triacylglycerols (TG) in rats' plasma. However, high density lipoprotein cholesterol (HDL-C) level and the ratios of HDL-C/LDL-C and HDL-C/TC in rats' plasma increased in response to simultaneous intakes of low n-6/n-3 ratio (5 : 1) and cholesterol (0.04 g/kg total diet) even under high-fat diet. Moreover, as the n-6/n-3 PUFA ratio in the diet decreased, the proportion of n-3 PUFAs increased in plasma, liver, and muscle and resulted in the decrease of n-6/n-3 PUFA ratio.
Collapse
|
25
|
Ghobadi S, Hassanzadeh-Rostami Z, Mohammadian F, Nikfetrat A, Ghasemifard N, Raeisi Dehkordi H, Faghih S. Comparison of blood lipid-lowering effects of olive oil and other plant oils: A systematic review and meta-analysis of 27 randomized placebo-controlled clinical trials. Crit Rev Food Sci Nutr 2018; 59:2110-2124. [PMID: 29420053 DOI: 10.1080/10408398.2018.1438349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: We aim to report a systematic review and meta-analysis of randomized controlled trials (RCTs) on effects of olive oil consumption compared with other plant oils on blood lipids. Methods: PubMed, web of science, Scopus, ProQuest, and Embase were systematically searched until September 2017, with no age, language and design restrictions. Weighed mean difference (WMD) and 95% confidence interval (CI) were expressed as effect size. Sensitivity analyses and pre specified subgroup was conducted to evaluate potential heterogeneity. Meta-regression analyses were performed to investigate association between blood lipid-lowering effects of olive oil and duration of treatment. Results: Twenty-seven trials, comprising 1089 participants met the eligibility criteria. Results of this study showed that compared to other plant oils, high-density lipoprotein level increased significantly more for OO (1.37 mg/dl: 95% CI: 0.4, 2.36). Also OO consumption reduced total cholesterol (TC) (6.27 mg/dl, 95% CI: 2.8, 10.6), Low-density lipoprotein (LDL-c) (4.2 mg/dl, 95% CI: 1.4, 7.01), and triglyceride (TG) (4.31 mg/dl, 95% CI: 0.5, 8.12) significantly less than other plant oils. There were no significant effects on Apo lipoprotein A1 and Apo lipoprotein B. Conclusion: This meta-analysis suggested that OO consumption decreased serum TC, LDL-c, and TG less but increased HDL-c more than other plant oils.
Collapse
Affiliation(s)
- Saeed Ghobadi
- a Shiraz University of Medical Sciences, Nutrition Research Center , School of Nutrition and Food Sciences , Shiraz , Iran (the Islamic Republic of)
| | - Zahra Hassanzadeh-Rostami
- b Shiraz University of Medical Sciences, Department of Community Nutrition , School of Nutrition and Food Sciences , Shiraz , Iran (the Islamic Republic of)
| | - Fatemeh Mohammadian
- c Shiraz University of Medical Sciences, Department of Physiology , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran (the Islamic Republic of)
| | - Arash Nikfetrat
- d Shiraz University of Medical Sciences, Student Research Committee , School of Nutrition and Food Sciences , Shiraz , Iran (the Islamic Republic of)
| | - Negar Ghasemifard
- e Shiraz University of Medical Sciences , Shiraz , Iran (the Islamic Republic of)
| | - Hamidreza Raeisi Dehkordi
- f Shahid Sadoughi University of Medical Sciences and Health Services , Yazd , Iran (the Islamic Republic of)
| | - Shiva Faghih
- g Shiraz University of Medical Sciences, Department of Community Nutrition , School of Nutrition and Food Sciences , Shiraz , Iran (the Islamic Republic of)
| |
Collapse
|
26
|
Li M, Zhai S, Xie Q, Tian L, Li X, Zhang J, Ye H, Zhu Y, Yang L, Wang W. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9995-10002. [PMID: 29084426 DOI: 10.1021/acs.jafc.7b02918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.
Collapse
Affiliation(s)
- Mengmeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Shuangshuang Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Qiang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Lu Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Xiaocun Li
- Henan Huaying Agriculture Development Co., Ltd, Xinyang 464000, China
| | - Jiaming Zhang
- Henan Huaying Agriculture Development Co., Ltd, Xinyang 464000, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
27
|
Hsu E, Parthasarathy S. Anti-inflammatory and Antioxidant Effects of Sesame Oil on Atherosclerosis: A Descriptive Literature Review. Cureus 2017; 9:e1438. [PMID: 28924525 PMCID: PMC5587404 DOI: 10.7759/cureus.1438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Sesame oil (SO) is a supplement that has been known to have anti-inflammatory and antioxidant properties, which makes it effective for reducing atherosclerosis and the risk of cardiovascular disease. Due to the side effects of statins, the current recommended treatment for atherosclerosis and cardiovascular diseases, the idea of using dietary and nutritional supplementation has been explored. The benefits of a dietary health regime have piqued curiosity because many different cultures have reaped health benefits through the ingredients in their cooking with negligible side effects. The purpose of this literary review is to provide a broad overview of the potential benefits and risks of SO on the development of atherosclerosis and its direction toward human clinical use. Current in vivo and in vitro research has shed light on the effects of SO and its research has shown that SO can decrease low-density lipoprotein (LDL) levels while maintaining high-density lipoprotein (HDL) levels. Current limitations in recent studies include no standardized doses of SO given to subjects and unknown specific mechanisms of the different components of SO. Future studies should explore possible synergistic and adverse effects of SO when combined with current recommended pharmaceutical therapies and other adjunct treatments.
Collapse
Affiliation(s)
- Edmund Hsu
- University of Central Florida College of Medicine
| | - Sam Parthasarathy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine
| |
Collapse
|
28
|
Perez-Ternero C, Alvarez de Sotomayor M, Herrera MD. Contribution of ferulic acid, γ-oryzanol and tocotrienols to the cardiometabolic protective effects of rice bran. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Makedou KG, Iliadis S, Gogou M, Kara E, Papageorgiou G. Sesame oil: An ex vivo study of properties against oxidation of plasma low-density lipoproteins and total serum lipoproteins. Hellenic J Cardiol 2017; 58:153-155. [DOI: 10.1016/j.hjc.2017.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/17/2017] [Indexed: 10/19/2022] Open
|
30
|
Zhang M, Du N, Wang L, Wang X, Xiao Y, Zhang K, Liu Q, Wang P. Conjugated fatty acid-rich oil from Gynostrmma pentaphyllum seed can ameliorate lipid and glucose metabolism in type 2 diabetes mellitus mice. Food Funct 2017; 8:3696-3706. [DOI: 10.1039/c7fo00712d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gynostrmma pentaphyllumseed oil (GPSO), extracted fromG. pentaphyllumseeds, is rich in conjugated linolenic acid, which is a special fatty acid consisting ofcis-9,trans-11,trans-13 isomers.
Collapse
Affiliation(s)
- Mingxing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Nan Du
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Lu Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Yaping Xiao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- Ministry of Education
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| |
Collapse
|
31
|
Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP. Vegetable oil blending: A review of physicochemical, nutritional and health effects. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Su H, Zhou D, Pan YX, Wang X, Nakamura MT. Compensatory induction of Fads1 gene expression in heterozygous Fads2-null mice and by diet with a high n-6/n-3 PUFA ratio. J Lipid Res 2016; 57:1995-2004. [PMID: 27613800 DOI: 10.1194/jlr.m064956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
In mammals, because they share a single synthetic pathway, n-6/n-3 ratios of dietary PUFAs impact tissue arachidonic acid (ARA) and DHA content. Likewise, SNPs in the human fatty acid desaturase (FADS) gene cluster impact tissue ARA and DHA. Here we tested the feasibility of using heterozygous Fads2-null-mice (HET) as an animal model of human FADS polymorphisms. WT and HET mice were fed diets with linoleate/α-linolenate ratios of 1:1, 7:1, and 44:1 at 7% of diet. In WT liver, ARA and DHA in phospholipids varied >2× among dietary groups, reflecting precursor ratios. Unexpectedly, ARA content was only <10% lower in HET than in WT livers, when fed the 44:1 diet, likely due to increased Fads1 mRNA in response to reduced Fads2 mRNA in HET. Consistent with the RNA data, C20:3n-6, which is elevated in minor FADS haplotypes in humans, was lower in HET than WT. Diet and genotype had little effect on brain PUFAs even though brain Fads2 mRNA was low in HET. No differences in cytokine mRNA were found among groups under unstimulated conditions. In conclusion, differential PUFA profiles between HET mice and human FADS SNPs suggest low expression of both FADS1 and 2 genes in human minor haplotypes.
Collapse
Affiliation(s)
- Hang Su
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dan Zhou
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuan-Xiang Pan
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Manabu T Nakamura
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
33
|
Evaluation of cardioprotective activity of Lepidium sativum seed powder in albino rats treated with 5-fluorouracil. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
34
|
Kim M, Kim M, Lee YJ, Lee SP, Kim TS, Yang HJ, Kwon DY, Lee SH, Lee JH. Effects of α-linolenic acid supplementation in perilla oil on collagen-epinephrine closure time, activated partial thromboplastin time and Lp-PLA 2 activity in non-diabetic and hypercholesterolaemic subjects. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
35
|
Su J, Ma C, Liu C, Gao C, Nie R, Wang H. Hypolipidemic Activity of Peony Seed Oil Rich in α-Linolenic, is Mediated Through Inhibition of Lipogenesis and Upregulation of Fatty Acid β-Oxidation. J Food Sci 2016; 81:H1001-9. [DOI: 10.1111/1750-3841.13252] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/05/2016] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jianhui Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Lihu Rd. 1800 Wuxi 214122 PR China
- National Engineering Research Center for Functional Food; Jiangnan Univ; Wuxi 214122 PR China
| | - Chaoyang Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Lihu Rd. 1800 Wuxi 214122 PR China
- National Engineering Research Center for Functional Food; Jiangnan Univ; Wuxi 214122 PR China
| | - Chengxiang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Lihu Rd. 1800 Wuxi 214122 PR China
- National Engineering Research Center for Functional Food; Jiangnan Univ; Wuxi 214122 PR China
| | - Chuanzhong Gao
- Anhui Tongling Ruipu Peony Industry Development Co., Ltd; Anhui 244000 PR China
| | - Rongjing Nie
- Anhui Tongling Ruipu Peony Industry Development Co., Ltd; Anhui 244000 PR China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Lihu Rd. 1800 Wuxi 214122 PR China
- National Engineering Research Center for Functional Food; Jiangnan Univ; Wuxi 214122 PR China
| |
Collapse
|
36
|
Kondreddy VKR, Anikisetty M, Naidu KA. Medium-chain triglycerides and monounsaturated fatty acids potentiate the beneficial effects of fish oil on selected cardiovascular risk factors in rats. J Nutr Biochem 2016; 28:91-102. [DOI: 10.1016/j.jnutbio.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
|
37
|
Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2015; 51:49-59. [DOI: 10.1007/s11745-015-4091-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
|
38
|
SHINAGAWA FB, SANTANA FCD, TORRES LRO, MANCINI-FILHO J. Grape seed oil: a potential functional food? FOOD SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1590/1678-457x.6826] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Umesha S, Manohar RS, Indiramma A, Akshitha S, Naidu KA. Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Umesha SS, Naidu KA. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium Sativum L) seed oil and its blended oils. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:1993-2002. [PMID: 25829579 PMCID: PMC4375168 DOI: 10.1007/s13197-013-1196-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 01/24/2023]
Abstract
Garden cress (Lepidium sativum L) seed oil (GCO) is a rich source of α-linolenic acid (ALA, 33.6 %) and the oil has a fairly balanced SFA, MUFA and PUFA ratio. In this study we have investigated the effect of GCO and its blends with n-6 PUFA rich edible vegetable oils sunflower oil (SFO), rice bran oil (RBO) and sesame oil (SESO) on antioxidant status of oils and antioxidative enzymes in Wistar rats. Physical blending of GCO with n-6 PUFA rich vegetable oils (SFO, RBO and SESO) increased content of natural antioxidants such as tocopherols, oryzanol and lignans, decreased the n-6/n-3 PUFA ratio and improved the radical scavenging activity of blended oils. Dietary feeding of GCO and its blended oils for 60 days, increased the tocopherols levels (12.2-21.6 %) and activity of antioxidant enzymes namely catalase, glutathione peroxidase (GPx), but did not affect the activity of glutathione reductase (GR), superoxide dismutase (SOD) and glutathione S-transferase (GST) in liver compared to native oil fed rats. Thus, blending of GCO with other vegetable oil decreased n-6/n-3 PUFA ratio (>2.0) and dietary feeding of GCO blended oils increased the antioxidant status and activity of antioxidant enzymes (catalase and GPx) in experimental rats.
Collapse
Affiliation(s)
- Shankar Shetty Umesha
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (CSIR), Mysore, 570020 India
| | - K. Akhilender Naidu
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (CSIR), Mysore, 570020 India
| |
Collapse
|
41
|
Das AK, Singh V. Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Su J, Wang H, Ma C, Lou Z, Liu C, Tanver Rahman M, Gao C, Nie R. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice. Food Funct 2015; 6:2930-8. [DOI: 10.1039/c5fo00507h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peony seed oil rich in α-linolenic acid (38.66%), linoleic acid (26.34%) and oleic acid (23.65%) reduced fasting blood glucose of diabetic mice induced by STZ.
Collapse
Affiliation(s)
- Jianhui Su
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Caoyang Ma
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Zaixiang Lou
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Chengxiang Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - MdRamim Tanver Rahman
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Chuanzhong Gao
- Anhui Tongling Ruipu Peony Industry Development Co
- Ltd
- Anhui 244000
- China
| | - Rongjing Nie
- Anhui Tongling Ruipu Peony Industry Development Co
- Ltd
- Anhui 244000
- China
| |
Collapse
|
43
|
|
44
|
Umesha SS, Monahar B, Naidu KA. Microencapsulation of α-linolenic acid-rich garden cress seed oil: Physical characteristics and oxidative stability. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S. S. Umesha
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Mysore India
| | - B. Monahar
- Department of Food Engineering; CSIR-Central Food Technological Research Institute (CFTRI); Mysore India
| | - K. Akhilender Naidu
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Mysore India
| |
Collapse
|