1
|
Chai M, Liu C, Zhang L, Wang Y, Zhen X, Yang Y, Huang Y, Liu Z. Preparation of Hybrid Molecularly Imprinted Polymers Based on 3-Triethoxysilylpropyl Methacrylic Amide for Solid-Phase Extraction of Gatifloxacin From Lake Water. J Sep Sci 2025; 48:e70122. [PMID: 40089922 DOI: 10.1002/jssc.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
A novel molecularly imprinted polymer (MIP) against gatifloxacin based on a hybrid monomer (3-triethoxysilylpropyl methacrylic amide, APTES-MAA) was reported. In this study, the imprinted monolith was synthesized with gatifloxacin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and APTES-MAA as functional monomer in a mixture of acetonitrile and isooctane as porogen via an optimization based on density functional theory (DFT). The polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and mercury porosimetry. The resulting hybrid MIPs (HMIPs) showed high affinity and selectivity to the template molecule with an imprinted factor of 16.28 ± 0.53, which was 6.1 times higher than that of the traditional methacrylic acid-based MIP. The MIP was used as an adsorbent in solid-phase extraction of lake water with gatifloxacin. The recovery was 96.52 ± 2.69%. The method exhibits the advantageous features of cost-effectiveness and high sensitivity, rendering it a promising approach for analyzing organic pollutants in water.
Collapse
Affiliation(s)
- Meihong Chai
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, People's Republic of China
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chang Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Liping Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yi Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xueyan Zhen
- Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yanping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhaosheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Liu S, Zheng X, Luo Z, Tang C, Hu Y, Peng Q, Mi P, Chen H, Yao X. The synthesis and bioactivity of apigenin derivatives. Fitoterapia 2024; 179:106228. [PMID: 39332505 DOI: 10.1016/j.fitote.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Apigenin, a naturally occurring compound with a flavone core structure, is known for its diverse bioactivities, including anti-inflammation, anti-toxicant, anti-cancer and so on. There has been significant interest in the medicinal chemistry community. To address these challenges, researchers have developed various derivatives of apigenin to address challenges such as poor water-solubility and low intestinal absorption, aiming to enhance the pharmacological activities and pharmacokinetic properties of this compound. OBJECTIVE In recent years, there has been a proliferation of apigenin derivatives with enhanced bioactivity. However, there is a lack of comprehensive reviews on the function-based modification of these derivatives. In this paper, we provide an overview of the apigenin derivatives with varying bioactivities and explored their structure activity relationships. And the functions of different groups of apigenin derivatives were also analyzed. CONCLUSION This review summarized the current achievements that could provide some clues for further study of apigenin-based drugs.
Collapse
Affiliation(s)
- Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan 422000, China
| | - Caihong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yufei Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Lu XQ, Li J, Wang B, Qin S. Computational Insights into the Radical Scavenging Activity and Xanthine Oxidase Inhibition of the Five Anthocyanins Derived from Grape Skin. Antioxidants (Basel) 2024; 13:1117. [PMID: 39334776 PMCID: PMC11428504 DOI: 10.3390/antiox13091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, typical polyphenol compounds in grape skin, have attracted increasing interest due to their health-promoting properties. In this body of work, five representative anthocyanins (Cy-3-O-glc, Dp-3-O-glc, Pn-3-O-glc, Mv-3-O-glc, and Pt-3-O-glc) were studied using the density functional theory (DFT) to elucidate structure-radical scavenging activity in the relationship and the reaction path underlying the radical-trapping process. Based on thermodynamic parameters involved in HAT, SET-PT, and SPLET mechanisms, along with the structural attributes, it was found that the C4' hydroxyl group mainly contributes to the radical scavenging activities of the investigated compounds. Pt-3-O-glc exhibits a good antioxidant capacity among the five compounds. The preferred radical scavenging mechanisms vary in different phases. For the Pt-3-O-glc compound, the calculations indicate the thermodynamically favoured product is benzodioxole, rather than o-quinone, displaying considerably reduced energy in double HAT mechanisms. Additionally, the thermodynamic and kinetic calculations indicate that the reaction of •OH into the 4'-OH site of Pt-3-O-glc has a lower energy barrier (7.6 kcal/mol), a higher rate constant (5.72 × 109 M-1 s-1), and exhibits potent •OH radical scavenging properties. Molecular docking results have shown the strong affinity of the studied anthocyanins with the pro-oxidant enzyme xanthine oxidase, displaying their significant role in inhibiting ROS formation.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
4
|
Du Y, Chai Y, Zheng X, Zheng Y. Theoretical Study on the Multiple Free Radical Scavenging Reactions of Pyranoanthocyanins. Antioxidants (Basel) 2023; 13:33. [PMID: 38247458 PMCID: PMC10812497 DOI: 10.3390/antiox13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The free radical trapping capacities of multiple pyranoanthocyanins in wine storage and ageing were theoretically explored by density functional theory (DFT) methods. Intramolecular hydrogen bonds were detected in all pyranoanthocyanins, and the planarity of the compounds worsened with an increasing dielectric constant in the environment. Solvents significantly influenced the reaction enthalpies; thus, the preferred thermodynamic mechanisms of the free radical scavenging reactions were modified in different phases. This study incorporates hydrogen atom transfer (HAT), proton loss (PL), electron transfer (ET) reactions, and demethylation (De) of methoxy group mechanisms. The three pyranoanthocyanins have the capacity to capture n1+1 free radicals, where n1 represents the number of methoxy groups. In the gas phase, they prefer employing the n1-De-HAT mechanism on the guaiacyl moiety of the B ring, resulting in the formation of a stable quinone or a quinone radical to scavenge free radicals. In the benzene phase, pyranoanthocyanins trap free radicals via a PL-n1-De-HAT mechanism. In the water phase, the targeted pyranoanthocyanins may dissociate in the form of carboxylate and tend to utilize the n2-PL-n1-De-ET mechanism, where n2 and n1 represent the number of phenolic groups and methoxy groups, respectively, facilitating multiple H+/e- reactions.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.D.); (Y.C.); (X.Z.)
| |
Collapse
|
5
|
Zheng X, Du Y, Chai Y, Zheng Y. A DFT-Based Mechanism Analysis of the Cyclodextrin Inclusion on the Radical Scavenging Activity of Apigenin. Antioxidants (Basel) 2023; 12:2018. [PMID: 38001871 PMCID: PMC10669311 DOI: 10.3390/antiox12112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Natural flavonoids are renowned for their exceptional antioxidant properties, but their limited water solubility hampers their bioavailability. One approach to enhancing their water solubility and antioxidant activity involves the use of cyclodextrin (CD) inclusion. This study investigated the impact of CD inclusion on the three primary radical scavenging mechanisms associated with flavonoid antioxidant activity, utilizing apigenin as a representative flavonoid and employing density functional theory (DFT) calculations. Initially, the optimized geometries of CD-apigenin inclusion complexes were analyzed, revealing the formation of hydrogen bonds between CD and apigenin. In less polar environments, the inclusion complex strengthened the bond dissociation enthalpies of hydroxyl groups, thereby reducing antioxidant activity. Conversely, in polar environments, the inclusion complex had the opposite effect by lowering proton affinity. These findings align with experimental results demonstrating that CD inclusion complexation enhances flavonoid antioxidant activity in aqueous ethanol solutions.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.D.); (Y.C.)
| |
Collapse
|
6
|
Lu XQ, Qin S, Li J. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study. Molecules 2023; 28:5039. [PMID: 37446701 DOI: 10.3390/molecules28135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a valuable traditional Chinese herbal medicine, Radix Astragali has attracted much attention due to its extensive pharmacological activities. In this study, density functional theory (DFT) was used thermodynamically and kinetically in detail to predict the antioxidant activity and reaction mechanisms involved in the free radical scavenging reactions of three representative isoflavonoids (formononetin, calycosin, and calycosin-7-glucoside) extracted from Radix Astragali. Three main mechanisms, including hydrogen atom transfer (HAT), proton transfer after electron transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were examined by calculating the thermodynamic parameters. It was found that HAT is the predominant mechanism in the gas phase, while SPLET is supported in the solvent environment. The isoflavonoids' order of antioxidant activity was estimated as: calycosin > calycosin-7-glucoside > formononetin. For the calycosin compound, the result revealed the feasibility of double HAT mechanisms, which involve the formation of stable benzodioxazole with significantly reduced energy in the second H+/e- reaction. In addition, the potential energy profiles and kinetic calculations show that the reaction of •OH into the 3'-OH site of calycosin has a lower energy barrier (7.2 kcal/mol) and higher rate constant (4.55 × 109 M-1 s-1) compared with other reactions in the gas phase.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
7
|
Zhao J, Shi S, Zhang X, Liu Y, Yuan M, Cheng G, Wang Y. Confusoside, a dihydrochalcone glucoside, prevents acetaminophen-induced liver injury by modulating the Nrf2/NF-κB/caspase signaling pathway. Food Funct 2023; 14:2432-2443. [PMID: 36786681 DOI: 10.1039/d2fo03497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1β, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Xiaoyu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Minglong Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Guiguang Cheng
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
8
|
Boulebd H. Structure-activity relationship of antioxidant prenylated (iso)flavonoid-type compounds: quantum chemistry and molecular docking studies. J Biomol Struct Dyn 2022; 40:10373-10382. [PMID: 34176432 DOI: 10.1080/07391102.2021.1943529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prenylated (iso)flavonoid-type compounds are a subclass of natural flavonoids that have been reported to exhibit good antioxidant properties. In the present paper, the structure-activity relationship of three typical prenylated (iso)flavonoids namely 8-prenyldaidzein (Per), Licoflavone (Lic), and erysubin F (Ery) have been determined using DFT (density functional theory)-based calculations and molecular docking studies. As result, the CH bond of the prenyl substituent was found to be the most thermodynamically favorable site for trapping free radicals in the gas phase and lipid physiological environments. While the OH bond of the B-ring seems to be more reactive in water. HAT (hydrogen atom transfer) and SPLET (sequential proton loss electron transfer) play a decisive role in the antiradical activity of the studied compounds in lipid and polar physiological environments, respectively. All of the studied compounds exhibit strong binding affinity to both xanthine oxidase and inducible nitric oxide synthase enzymes by forming several hydrogen bonds and hydrophobic interactions with their respective catalytic sites. These results suggest that (iso)flavonoid-type compounds are promising radical scavengers and antioxidants. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
9
|
Enrichment, analysis, identification and mechanism of antioxidant components in Toona sinensis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ethnopharmacological Survey, Mineral and Chemical Content, In Vitro Antioxidant, and Antibacterial Activities of Aqueous and Organic Extracts of Chamaerops humilis L. var. argentea Andre Leaves. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1091247. [PMID: 36033551 PMCID: PMC9410792 DOI: 10.1155/2022/1091247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023]
Abstract
Introduction. The present study is carried out for the first time on Chamaerops humilis L. var. argentea Andre from the region of Taza using an ethnopharmacological survey, an experimental study of the mineralogical and chemical compositions, and evaluations of the antioxidant and antibacterial activities. Methods. After conducting the ethnopharmacological survey, a mineralogical and phytochemical study involving the preparation of aqueous and organic extracts was done. Essential oils were also extracted by hydrodistillation. Subsequently, qualitative and quantitative chemical analyses were performed. In vitro evaluation of antioxidant activities was performed by five tests (H2O2, DPPH, ABTS, FRAP, and RP) and antibacterial activities by the disc method and determination of MIC and MBC. A principal component analysis (PCA) was performed to visualize the different correlations. Results. The different parts of the plant are used for the treatment of digestive disorders, cardiovascular diseases, and diabetes. In addition, the leaves are rich in mineral compounds, catechic tannins, flavonoids, and sterols. However, they have some traces of essential oils. The quantitative analysis revealed that the ethanolic macerated had a higher content of total polyphenols (
EAG/g E) and catechic tannins (
EC/g E). This extract had a strong antioxidant capacity (H2O2 (
), DPPH (
), ABTS (
E AA/g E), FRAP (
E T/g E), and RP (
E AA/g E). The same extract had a bactericidal effect against Staphylococcus aureus. Principal component analysis (PCA) showed that antioxidant activity was highly correlated with the chemical composition of C. humilis leaves; a high correlation was recorded between the total polyphenol content and ABTS (
), FRAP (
), DPPH (
), and PR (
) tests. In addition, cathectic tannins were highly correlated with the tests of DPPH (
) and ABTS (
). Flavonoids were similarly correlated with DPPH (
) and ABTS (
) tests. Conclusion. These results could justify the traditional use of the leaves of Chamaerops humilis in the region of Taza for the treatment of some diseases.
Collapse
|
11
|
Michala AS, Pritsa A. Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases 2022; 10:37. [PMID: 35892731 PMCID: PMC9326669 DOI: 10.3390/diseases10030037] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin belongs to the broader category of polyphenols. It is found, in particular, among the flavonols, and along with kaempferol, myricetin and isorhamnetin, it is recognized as a foreign substance after ingestion in contrast to vitamins. Quercetin occurs mainly linked to sugars with the most common compounds being quercetin-3-O-glucoside or as an aglycone, especially in the plant population. The aim of this review is to present a recent bibliography on the mechanisms of quercetin absorption and metabolism, bioavailability, and antioxidant and the clinical effects in diabetes and cancer. The literature reports a positive effect of quercetin on oxidative stress, cancer, and the regulation of blood sugar levels. Moreover, research-administered drug dosages of up to 2000 mg per day showed mild to no symptoms of overdose. It should be noted that quercetin is no longer considered a carcinogenic substance. The daily intake of quercetin in the diet ranges 10 mg-500 mg, depending on the type of products consumed. This review highlights that quercetin is a valuable dietary antioxidant, although a specific daily recommended intake for this substance has not yet been determined and further studies are required to decide a beneficial concentration threshold.
Collapse
Affiliation(s)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University (IHU), P.O. 141 Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|
12
|
Araújo LRS, Watanabe PH, Fernandes DR, Mello MCA, Maia IRDEO, Silva ÊCDA, Owen RW, Nascimento GAJDO, Trevisan MTS, Freitas ER. Ethanol extracts of mango seeds added to the diet of pigs increases antioxidant capacity of processed pork. AN ACAD BRAS CIENC 2021; 93:e20210406. [PMID: 34878049 DOI: 10.1590/0001-3765202120210406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Synthetic antioxidants (e.g.butylhydroxytoluene, BHT) are routinely used for to restrict oxidative processes of meat products, but they are implicated as harmful to the health of humans. Therefore natural alternatives, such as plant antioxidants, have been sought as replacements. Plant antioxidants when added to the diet can be incorporated into meat and reduce the need for the addition of synthetic antioxidants during processing. The objective of this study was to evaluate the effects of ethanol extracts of mango seeds (EEMS) in the diet of pigs on qualitative parameters and total antioxidant capacity of mortadella produced from these animals. Thirty-two pigs with an average 60 days of age were distributed among four treatments: control=no antioxidant; BHT=200ppm BHT; EEMS200=200ppm of EEMS and EEMS400=400ppm of EEMS. At 145 days of age the animals were slaughtered and loin was removed for the preparation of mortadella, which was analyzed during 90 days of storage at 4°C. A higher content of polyphenolic compounds and, total antioxidant capacity in mortadellas processed with meat of animals which consumed the EEMS400 ration after 60 and 90 days of storage was observed. EEMS polyphenolic antioxidants incorporated into pork through the diet results in an increase of total antioxidant capacity in the processed product.
Collapse
Affiliation(s)
- Lina R S Araújo
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Pedro H Watanabe
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Danilo R Fernandes
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Marcelle C A Mello
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Irvila R DE O Maia
- Departamento de Química, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Bloco 938, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Ênio C DA Silva
- Pós-graduação IFOPE, Rua Gonçalves Dias, 55, Funcionários, 30140-090 Belo Horizonte, MG, Brazil
| | - Robert W Owen
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Germano A J DO Nascimento
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Maria T S Trevisan
- Departamento de Química, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Bloco 938, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Ednardo R Freitas
- Departamento de Zootecnia, Universidade Federal do Ceará, Av. Humberto Monte, s/n, Blocos 810, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
13
|
Zheng YZ, Fu ZM, Guo R, Chen DF, Zhang YC. The important role of benzylic C H bond in the antioxidant behaviours of the xanthones. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zheng YZ, Deng G, Zhang YC. Multiple free radical scavenging reactions of aurones. PHYTOCHEMISTRY 2021; 190:112853. [PMID: 34214923 DOI: 10.1016/j.phytochem.2021.112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
A series of naturally occurring 3',4'-dihydroxy aurones have been studied with regard to multiple free radical scavenging reactions in the gas and two liquid phases using density functional theory (DFT). All of the aurones prefer to perform (2 + n)-HAT mechanism to trap 2 + n free radicals, where n is the sum of the numbers of catechol and guaiacyl units in the gas and benzene phases. The second HAT reaction favours occurring in the same catechol moiety of the first HAT mechanism occurring OH group due to the formation of a stable quinone and the highly exothermic step of the final stable product formation. The catechol and guaiacyl moieties show increased potency for the second and fourth H+/e‒ reactions. In the water phase, aurones can perform multiple H+/e‒ reactions through n1PL-ET-n2HAT-(n+1-n2)ET mechanism, where n1 is the number of OH groups and n2 is the number of guaiacyl moieties.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
15
|
Abstract
A series of naturally occurring 3',4'-dihydroxy aurones have been studied with regard to multiple free radical scavenging reactions in the gas and two liquid phases using density functional theory (DFT). All of the aurones prefer to perform (2 + n)-HAT mechanism to trap 2 + n free radicals, where n is the sum of the numbers of catechol and guaiacyl units in the gas and benzene phases. The second HAT reaction favours occurring in the same catechol moiety of the first HAT mechanism occurring OH group due to the formation of a stable quinone and the highly exothermic step of the final stable product formation. The catechol and guaiacyl moieties show increased potency for the second and fourth H+/e‒ reactions. In the water phase, aurones can perform multiple H+/e‒ reactions through n1PL-ET-n2HAT-(n+1-n2)ET mechanism, where n1 is the number of OH groups and n2 is the number of guaiacyl moieties.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
16
|
The relationship between the first oxidation potential and changes in electronic structures upon the electrochemical oxidation of flavonoids: Approach to O-glycosyl, galloyl and methoxy substituents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Huang P, Jin LX, Lu JF, Gao YH, Guo SB. A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Xiao Z, He L, Hou X, Wei J, Ma X, Gao Z, Yuan Y, Xiao J, Li P, Yue T. Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols. Foods 2021; 10:849. [PMID: 33919682 PMCID: PMC8070355 DOI: 10.3390/foods10040849] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
The antioxidant capacity (AC) and antioxidant activity (AA) of three flavonols (FLV), aglycones and their glycosylated derivatives were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays in various solvents. Findings confirmed that the glycosylation at the 3-position (3-glycosylation) always decreased the AC under most conditions due to substitution of the 3-position hydroxyl group and glycoside disruption in the molecular planarity. The 7-glycosylated derivatives did not have the above effects, thus generally exhibited ACs similar to their aglycones. Glycosylation decreased the AA of kaempferol and isorhamnetin for both assays in methanol, 3-glycosylation inhibited quercetin AA in the ABTS assay. In the DPPH assay, the AA of 3-glycosylated quercetin was significantly higher than quercetin. Using LC-MS/MS analysis, we found that quercetin and quercetin-7-glucoside underwent dimerization during the antioxidant reaction, potentially leading to a decline in AAs. However, 3-glycoside substitution may have hindered dimer formation, thereby allowing the FLVs to retain strong free radical scavenging abilities.
Collapse
Affiliation(s)
- Zhengcao Xiao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China;
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Liangliang He
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
| | - Xiaohui Hou
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Xiaoyu Ma
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Zihan Gao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China;
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Z.X.); (L.H.); (X.H.); (J.W.); (X.M.); (Z.G.)
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China
| |
Collapse
|
19
|
Santos SC, Fortes GA, Camargo LT, Camargo AJ, Ferri PH. Antioxidant effects of polyphenolic compounds and structure-activity relationship predicted by multivariate regression tree. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Araújo LRS, Watanabe PH, Fernandes DR, Maia IRDO, Silva ECD, Pinheiro RRS, Melo MCAD, Santos EOD, Owen RW, Trevisan MTS, Freitas ER. Dietary ethanol extract of mango increases antioxidant activity of pork. Animal 2021; 15:100099. [PMID: 33573964 DOI: 10.1016/j.animal.2020.100099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Ethanol extract of mango seeds (EEMS) are composed of several polyphenolic compounds with considerable in vitro antioxidant activity that can be used in pig feed and may contribute positively to meat quality characteristics. The aim of this study was to evaluate the effect of EEMS as a source of antioxidants in growing-finishing pig diets on meat quality, lipid stability, sulfhydryl groups non-proteinaceous (SG-NP), total phenolic compounds, total antioxidant potential and total antioxidant activity of meat after 1 and 7 days of refrigeration storage. Thirty-two (60-day-old) barrows, weighing 20.20 ± 1.34 kg, were used in a randomized block design consisting of eight animals with four treatment regimens. Treatments consisted of: Control = no dietary antioxidant; butylated hydroxytoluene (BHT) = diet with 200 ppm BHT; EEMS200 = diet with 200 ppm EEMS; EEMS400 = diet with 400 ppm EEMS. At 145 days of age and average weight of 95.47 ± 6.19 kg, the animals were slaughtered and loin samples were collected and frozen before for qualitative analysis and evaluation of the effect of subsequent storage for 1 or 7 days at 8 °C on lipid stability, SG-NP, phenolic compounds, total antioxidant capacity and total antioxidant activity Meat from animals fed EEMS400 diet showed lower cooking loss (P < 0.0001) and higher non-protein sulfhydryl groups, phenolic compounds and total antioxidant activity at both 1 and 7 days of storage (P < 0.0001) compared to the other treatments. Greater antioxidant capacity was observed at 1 day storage in the meat of animals that consumed EEMS regardless of concentration when compared to the control group (P < 0.01). The dietary inclusion of EEMS to pig diets is more effective at 400 ppm in improving meat quality after cooking and antioxidant parameters of pork.
Collapse
Affiliation(s)
- L R S Araújo
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil; Faculdade de Veterinária, Universidade Estadual do Ceará, Av. Silas Munguba, 1700, Campus do Itaperi, Fortaleza, CE 60.714-903, Brazil.
| | - P H Watanabe
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| | - D R Fernandes
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| | - I R de O Maia
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Caixa postal 6021, Fortaleza, CE 60.455-760, Brazil
| | - E C da Silva
- Pós-graduação IFOPE, Universidade Cândido Mendes, R. da Assembleia, 10 Centro, Rio de Janeiro, RJ 20.011-901, Brazil
| | - R R S Pinheiro
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| | - M C A de Melo
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| | - E O Dos Santos
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| | - R W Owen
- Division of Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460 and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - M T S Trevisan
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Caixa postal 6021, Fortaleza, CE 60.455-760, Brazil
| | - E R Freitas
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Av. Mister Hull, 970 Campus do Pici, Bloco 808, Fortaleza, CE 60.021-640, Brazil
| |
Collapse
|
21
|
Zheng YZ, Fu ZM, Deng G, Guo R, Chen DF. Free radical scavenging potency of ellagic acid and its derivatives in multiple H +/e ‒ processes. PHYTOCHEMISTRY 2020; 180:112517. [PMID: 32950773 DOI: 10.1016/j.phytochem.2020.112517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The reaction energetics of the multiple free radical scavenging mechanisms of ellagic acid and its derivatives were studied by DFT method. Ellagic acid and its derivatives that bear catechol or guaiacyl moieties can proceed multiple free radical scavenging processes. Intramolecular hydrogen-bonds were found in the most stable geometries of the investigated compounds and can influence the antioxidant activity of the related groups and hydrogen atom/proton loss sequence. The stronger hydrogen-bond, the weaker antioxidant activity of the hydrogen atom/proton-donating group. The preferred mechanisms vary among different phases. All of the investigated compounds prefer to trap free radicals by multiple HAT mechanisms in gas and benzene phases. The second HAT reaction preferably occurs in the same catechol or guaiacyl unit of the first HAT group with the formation of stable quinone or benzodioxole. The catechol and guaiacyl moieties not only retain high free radical scavenging ability of the parent compounds but even show increased potency for the second and fourth H+/e‒ reactions. In water phase, ellagic acid and its derivatives would proceed consecutively PL reactions from the OH groups. The formed di/tri/tetra-anion would proceed one/four electron transfers following with single/double SPLET mechanism and electron donation reactions until forming the stable quinone or benzodioxole.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
22
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. Effects of different ester chains on the antioxidant activity of caffeic acid. Bioorg Chem 2020; 105:104341. [DOI: 10.1016/j.bioorg.2020.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
|
23
|
Zheng YZ, Fu ZM, Deng G, Guo R, Chen DF. Role of C‒H bond in the antioxidant activities of rooperol and its derivatives: A DFT study. PHYTOCHEMISTRY 2020; 178:112454. [PMID: 32692658 DOI: 10.1016/j.phytochem.2020.112454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Rooperol and its derivatives, derived from the Hypoxis rooperi plant, are polyphenolic and norlignan compounds with excellent antioxidant activities. The reaction enthalpies for the free-radical scavenging by rooperol and its six derivatives were studied using density functional theory. We found that the C-H groups played a significant role in the antioxidant activities in non-polar phases. In the gas and benzene phases, rooperol and its derivatives preferentially underwent the free-radical scavenging process via the 3‒CH group by following the hydrogen atom transfer (HAT) mechanism. In polar phases, the sequential proton loss electron transfer (SPLET) was the most preferred mechanism, and the phenolic O‒H groups played a significant role. Additionally, we found that when the hydrogen atom in the OH group was replaced by a glucose moiety, the antioxidant activity of the adjacent OH group was reduced. ROP, DHROP-I, DHROP-II, ROP-4″-G and ROP-4'G have catechol moiety, they may proceed double step-wise mechanisms to trap free radicals. In the gas and benzene phases, the preferable mechanism is dHAT. In water phase, it is SPLHAT.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
24
|
Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen GRMM. The Flow of the Redox Energy in Quercetin during Its Antioxidant Activity in Water. Int J Mol Sci 2020; 21:E6015. [PMID: 32825576 PMCID: PMC7504380 DOI: 10.3390/ijms21176015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Erik Hursel
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| |
Collapse
|
25
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
26
|
Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model 2020; 26:233. [DOI: 10.1007/s00894-020-04469-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
|
27
|
A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Boulebd H, Khodja IA, Bay MV, Hoa NT, Mechler A, Vo QV. Thermodynamic and Kinetic Studies of the Radical Scavenging Behavior of Hydralazine and Dihydralazine: Theoretical Insights. J Phys Chem B 2020; 124:4123-4131. [DOI: 10.1021/acs.jpcb.0c02439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria 25017
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria 25017
| | - Mai Van Bay
- Department of Chemistry, The University of Da Nang—University of Science and Education, Da Nang 550000, Vietnam
| | - Nguyen Thi Hoa
- Academic Affairs, The University of Da Nang—University of Technology and Education, 48 Cao Thang, Da Nang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Chemical Technology—Environment, The University of Da Nang—University of Technology and Education, 48 Cao Thang, Da Nang 550000, Vietnam
| |
Collapse
|
29
|
Boulebd H. The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study. J Biomol Struct Dyn 2020; 39:1955-1964. [DOI: 10.1080/07391102.2020.1740791] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
30
|
Khalili A, Baei MT, Hossein Hosseini Ghaboos S. Improvement of Antioxidative Activity of Apigenin by B
12
N
12
Nanocluster: Antioxidative Mechanism Analysis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Atefeh Khalili
- Department of Food Science and Technology, Azadshahr Branch Islamic Azad University Azadshahr, Golestan Iran
| | - Mohammad T. Baei
- Department of Chemistry, Azadshahr Branch Islamic Azad University Azadshahr, Golestan Iran
| | | |
Collapse
|
31
|
Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030947] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.
Collapse
|
32
|
Zheng YZ, Zhou Y, Guo R, Fu ZM, Chen DF. Structure-antioxidant activity relationship of ferulic acid derivatives: Effect of ester groups at the end of the carbon side chain. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Boulebd H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond. Free Radic Res 2019; 53:1125-1134. [DOI: 10.1080/10715762.2019.1690652] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
34
|
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:135-143. [PMID: 31563754 DOI: 10.1016/j.plaphy.2019.09.039] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 05/29/2023]
Abstract
Due to the negative impact of reactive species (including free radicals) on humans and animals, the investigations to find effective substances (antioxidants), which protect living organisms against their damaging influence are carried out throughout the world. As most widespread synthetic antioxidants are suspected of having a noxious effect on the human body, more and more attention is paid to natural antioxidant compounds found in plants (especially phenolic compounds). The aim of this paper is to present the data about antioxidant activity of polyphenolic compounds with the emphasis on the main factors having influence on their antioxidant activity: chemical structure, ability to form hydrogen bonds, capability of metal ions chelation and reduction, adduct formation, kinetic solvents effect, mechanism of antioxidant reaction, capability of antioxidant enzyme activation and reduction potential.
Collapse
Affiliation(s)
- Małgorzata Olszowy
- Faculty of Chemistry, Maria Curie Sklodowska University, 20-031, Lublin, Pl. Marii Curie Sklodowskiej 3, Poland.
| |
Collapse
|
35
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. Theoretical insight into the antioxidative activity of isoflavonoid: The effect of the C2=C3 double bond. PHYTOCHEMISTRY 2019; 166:112075. [PMID: 31351332 DOI: 10.1016/j.phytochem.2019.112075] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Isoflavonoids are one of the most important groups of naturally occurring antioxidants. Their structural features are important for evaluating their antioxidative activity. In this work, density functional theory (DFT) methods were applied to investigate the influence of the C2=C3 double bond on the antioxidative activity of isoflavonoids based on three currently accepted radical scavenging mechanisms from the viewpoint of thermodynamics. The C2=C3 double bond can make the compounds more flat, which would extend the conjugated system in the molecule and make the isoflavonoids higher antioxidant activity. The C2=C3 double bond would not alter the strongest antioxidative hydroxyl group of the isoflavonoids. In the gas, benzene and CHCl3 phases, the C2=C3 double bond will enhance the antioxidative activity of isoflavonoids by lowering the bond dissociation enthalpies of the hydroxyl groups in the B ring that are the strongest antioxidative sites for the hydrogen atom transfer (HAT) mechanism. In polar phases, a similar result is obtained by weakening the proton affinity of 7-OH that is the strongest antioxidative hydroxyl group in the sequential proton loss electron transfer (SPLET), mechanism. Thus, the C2=C3 double bond will enhance the antioxidative activity of isoflavonoids irrespective of the studied phases.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
36
|
Harej A, Macan AM, Stepanić V, Klobučar M, Pavelić K, Pavelić SK, Raić-Malić S. The Antioxidant and Antiproliferative Activities of 1,2,3-Triazolyl-L-Ascorbic Acid Derivatives. Int J Mol Sci 2019; 20:ijms20194735. [PMID: 31554245 PMCID: PMC6801448 DOI: 10.3390/ijms20194735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
The novel 4-substituted 1,2,3-triazole L-ascorbic acid (L-ASA) conjugates with hydroxyethylene spacer as well as their conformationally restricted 4,5-unsaturated analogues were synthesized as potential antioxidant and antiproliferative agents. An evaluation of the antioxidant activity of novel compounds showed that the majority of the 4,5-unsaturated L-ASA derivatives showed a better antioxidant activity compared to their saturated counterparts. m-Hydroxyphenyl (7j), p-pentylphenyl (7k) and 2-hydroxyethyl (7q) substituted 4,5-unsaturated 1,2,3-triazole L-ASA derivatives exhibited very efficient and rapid (within 5 min) 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity (7j, 7k: IC50 = 0.06 mM; 7q: IC50 = 0.07 mM). In vitro scavenging activity data were supported by in silico quantum-chemical modelling. Thermodynamic parameters for hydrogen-atom transfer and electron-transfer radical scavenging pathways of anions deprotonated at C2-OH or C3-OH groups of L-ASA fragments were calculated. The structure activity analysis (SAR) through principal component analysis indicated radical scavenging activity by the participation of OH group with favorable reaction parameters: the C3-OH group of saturated C4-C5(OH) derivatives and the C2-OH group of their unsaturated C4=C5 analogues. The antiproliferative evaluation showed that p-bromophenyl (4e: IC50 = 6.72 μM) and p-pentylphenyl-substituted 1,2,3-triazole L-ASA conjugate (4k: IC50 = 26.91 μM) had a selective cytotoxic effect on breast adenocarcinoma MCF-7 cells. Moreover, compound 4e did not inhibit the growth of foreskin fibroblasts (IC50 > 100 μM). In MCF-7 cells treated with 4e, a significant increase of hydroxylated hypoxia-inducible transcription factor 1 alpha (HIF-1α) expression and decreased expression of nitric oxide synthase 2 (NOS2) were observed, suggesting the involvement of 4e in the HIF-1α signaling pathway for its strong growth-inhibition effect on MCF-7 cells.
Collapse
Affiliation(s)
- Anja Harej
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Andrijana Meščić Macan
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia.
| | - Višnja Stepanić
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marko Klobučar
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Krešimir Pavelić
- Faculty of medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Sandra Kraljević Pavelić
- Centre for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Antioxidative activity analyses of some pyridazine derivatives using computational methods. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Synergistic and antagonistic co-antioxidant effects of flavonoids with trolox or ascorbic acid in a binary mixture. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Augustine C. Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Stepanić V, Matijašić M, Horvat T, Verbanac D, Kučerová-Chlupáčová M, Saso L, Žarković N. Antioxidant Activities of Alkyl Substituted Pyrazine Derivatives of Chalcones-In Vitro and In Silico Study. Antioxidants (Basel) 2019; 8:antiox8040090. [PMID: 30959820 PMCID: PMC6523444 DOI: 10.3390/antiox8040090] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/03/2023] Open
Abstract
Chalcones are polyphenolic secondary metabolites of plants, many of which have antioxidant activity. Herein, a set of 26 synthetic chalcone derivatives with alkyl substituted pyrazine heterocycle A and four types of the monophenolic ring B, were evaluated for the potential radical scavenging and antioxidant cellular capacity influencing the growth of cells exposed to H2O2. Before that, compounds were screened for cytotoxicity on THP-1 and HepG2 cell lines. Most of them were not cytotoxic in an overnight MTS assay. However, three of them, 4a, 4c and 4e showed 1,1-diphenyl-2-picrylhydrazyl (DPPH●) radical scavenging activity, through single electron transfer followed by a proton transfer (SET-PT) mechanism as revealed by density functional theory (DFT) modeling. DFT modeling of radical scavenging mechanisms was done at the SMD//(U)M052X/6-311++G** level. The in vitro effects of 4a, 4c and 4e on the growth of THP-1 cells during four days pre- or post-treatment with H2O2 were examined daily with the trypan blue exclusion assay. Their various cellular effects reflect differences in their radical scavenging capacity and molecular lipophilicity (clogP) and depend upon the cellular redox status. The applied simple in vitro-in silico screening cascade enables fast identification and initial characterization of potent radical scavengers.
Collapse
Affiliation(s)
- Višnja Stepanić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Mario Matijašić
- Department for Intercellular Communication, Centre for Translational and Clinical Research and Croatian Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 2, HR-10000 Zagreb, Croatia.
| | - Tea Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Donatella Verbanac
- Department for Intercellular Communication, Centre for Translational and Clinical Research and Croatian Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 2, HR-10000 Zagreb, Croatia.
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, HR-10000 Zagreb, Croatia.
| | - Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Neven Žarković
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
41
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. PHYTOCHEMISTRY 2019; 160:19-24. [PMID: 30669059 DOI: 10.1016/j.phytochem.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Flavonoids widely found in natural foods are characterized by acting as antioxidants compounds. There are close relationship between the antiradical activities and structural properties of flavonoids. In this work, density functional theory (DFT) methods were applied to investigate the influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton-loss electron-transfer (SPLET). The thermodynamic properties: bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) related with these mechanisms were calculated to elucidate the antiradical activity. The results showed that the 5-OH group is most influenced and its antiradical capacity was weakened by the H5⋯OC4 IHB. In the gas, benzene and chloroform phases, H5⋯OC4 IHB would reduce the antiradical activity of flavonoid via increasing the bond dissociation enthalpy. While, in the DMSO and H2O phases, the opposite result occurs by lowering the proton affinity.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
42
|
DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3. Int J Mol Sci 2019; 20:ijms20061450. [PMID: 30909377 PMCID: PMC6470621 DOI: 10.3390/ijms20061450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023] Open
Abstract
The radical scavenging activity of a flavonoid is largely influenced by its structure. The effects of the substituents at C3 position on the antioxidant activity of naringenin were carried out using the density functional theory (DFT) method. The reaction enthalpies related with the three well-established mechanisms were analyzed. Excellent correlations were found between the reaction enthalpies and Hammett sigma constants. Equations obtained from the linear regression can be helpful in the selection of suitable candidates for the synthesis of novel naringenin derivatives with enhanced antioxidant properties. In the gas and benzene phases, the antioxidant activity of naringenin was enhanced by the electron-donating substituents via weakening the bond dissociation enthalpy (BDE). In the water phase, it was strengthened by electron-withdrawing groups—via lowering the proton affinity (PA). The electronic effect of the substituent on the BDE of naringenin is mainly governed by the resonance effect, while that on the ionization potential (IP) and PA of naringenin is mainly controlled by the field/inductive effect.
Collapse
|
43
|
Zheng YZ, Deng G, Guo R, Chen DF, Fu ZM. Substituent Effects on the Radical Scavenging Activity of Isoflavonoid. Int J Mol Sci 2019; 20:ijms20020397. [PMID: 30669260 PMCID: PMC6359201 DOI: 10.3390/ijms20020397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
Understanding the role of substituents is of great importance for the preparation of novel phenolic compounds with enhanced antioxidative properties. In this work, the antioxidative activity of isoflavonoid derivatives with different substituents placed at the C2 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) related to hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were calculated. The strongest antioxidative group of isoflavonoid is not altered by the substituents. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Equations obtained from linear regression can be useful in the selection of suitable candidates for the synthesis of novel isoflavonoids derivatives with enhanced antioxidative properties. In the gas and benzene phases, the electron-donating substituents would enhance the antioxidative activity of isoflavonoids via weakening the BDE of 4′−OH. In water phase, they will reduce the antioxidative by strengthening the PA of 7−OH. Contrary results occur for the electron-withdrawing groups. In addition, the electronic effects of substituents on the BDE/IP/PA have also been analyzed.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Zheng YZ, Deng G, Chen DF, Guo R, Lai RC. The influence of C2C3 double bond on the antiradical activity of flavonoid: Different mechanisms analysis. PHYTOCHEMISTRY 2019; 157:1-7. [PMID: 30342314 DOI: 10.1016/j.phytochem.2018.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Flavonoids widely found in bee products are excellent antioxidants. The structural features are important in evaluating the antiradical activity of flavonoid. In this work, the density functional theory (DFT) methods were applied to investigate the influence of C2C3 double bond on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms from the thermodynamic aspect. It is found that the hydroxyl groups in different rings are affected variously by the C2C3 double bond and the 3OH group is most influenced. For the compounds that only differ with the C2C3 double bond, the antiradical activity of flavone or flavonol (possessing C2C3 double bond) is not always stronger than that of flavanone: in the weak polarity phases, only the antiradical activities of chrysin, galangin and morin are stronger than those of pinocembrin, pinobanksin and dihydro-morin, respectively. In polar phases, the C2C3 double bond would weaken the antiradical activity of flavonoid via enlarging the proton affinity and the antiradical activity of flavone or flavonol is weaker than that of flavanone.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Rong-Cai Lai
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
45
|
Araújo LRS, Watanabe PH, Fernandes DR, Maia IRO, Vieira EHM, Silva EC, Trevisan MTS, Pinheiro RRS, Freitas ER. Ethanol extract of mango seed is a suitable plant-based replacement for synthetic antioxidants in pig grower–finisher diets. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present study was to evaluate the inclusion of ethanol extracts of mango seed (EEMS) in growing–finishing pig diets on lipid stability and antioxidant potential of feed, animal performance, carcass traits as well as haematological and biochemical parameters in the serum. Thirty-two barrows that were 60 days old and weighed 20.20 ± 1.34 kg were used in a randomised-block design with four treatments and eight replicates. The treatments consisted of the following: diet without antioxidant addition (negative control); diet with 200 mg of butylate hydroxytoluene/kg (positive control); diet with 200 mg EEMS/kg (EEMS200); and diet with 400 mg EEMS/kg (EEMS400). Diet with synthetic (butylate hydroxytoluene) and natural antioxidants presented better oxidative stability and antioxidant potential than did the negative control. Animals fed 400 mg EEMS/kg presented greater weight gain up to 110 days (P < 0.05). Pigs fed diet containing 200 mg EEMS/kg showed a decrease in red blood cells (P < 0.001) and a higher average corpuscular volume (P < 0.0001), whereas pigs fed control diet had lower average corpuscular haemoglobin concentration than did those in other treatments (P < 0.01). At 140 days of age, dietary addition of 400 mg EEMS/kg decreased malondialdehyde and increased antioxidant potential (2,2-diphenyl-1-picryl hydrazyl method) in serum, with the highest phenolic compound concentration found in the serum of pigs fed diet with 200 mg EEMS/kg. The total antioxidant activity in the serum was not influenced by the treatments (P > 0.05). Ethanol mango extracts can be used as an antioxidant in growing–finishing pig diets at levels of 200 and 400 mg/kg without impairment of performance, carcass traits, serum and biochemical parameters. The dietary addition of EEMS at 400 mg/kg improves the performance of pigs at growing phase and contributes to an increase in circulating phenolic compounds, improving the lipid stability and the antioxidant potential of the serum.
Collapse
|
46
|
Stepanić V, Matić S, Amić A, Lučić B, Milenković D, Marković Z. Effects of conjugation metabolism on radical scavenging and transport properties of quercetin – In silico study. J Mol Graph Model 2019; 86:278-285. [DOI: 10.1016/j.jmgm.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
|
47
|
Zheng YZ, Chen DF, Deng G, Guo R, Fu ZM. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. PHYTOCHEMISTRY 2018; 156:184-192. [PMID: 30312934 DOI: 10.1016/j.phytochem.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 05/27/2023]
Abstract
The naturally occurring stilbenes piceatannol and its derivatives are excellent antioxidants. In this work, the antioxidative activities of piceatannol and different piceatannol derivatives have been investigated using the density functional theory (DFT) method based on three widely accepted radical scavenging mechanisms, namely, the hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). The gas and four solvent phases, namely, bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE), related to these mechanisms were calculated to elucidate the antioxidative capacities of the investigated compounds. This work focuses specifically on the thermodynamically preferred mechanism, antioxidative site and antioxidative activity order of the investigated stilbenes. The substituted effects of the methyl group and prenyl group on the chemical properties of the remaining OH and CH groups are also analysed. This work confirms the vital role of the OH and CH groups on free radical scavenging of piceatannol and its derivatives.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
48
|
Xiao Z, Wang Y, Wang J, Li P, Ma F. Structure-antioxidant capacity relationship of dihydrochalcone compounds in Malus. Food Chem 2018; 275:354-360. [PMID: 30724207 DOI: 10.1016/j.foodchem.2018.09.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/04/2023]
Abstract
The antioxidant capacity (AC) of six dihydrochalcone compounds was evaluated using DPPH and ABTS assays. In water-based solution 3-hydroxyphlorizin exhibited the highest AC among all dihydrochalcones. In acetone and acidic solutions (pH = 2.5 or 2.0), presence of an o-dihydroxyl at the B-ring increased AC, whereas glycosylation at the A-ring decreased AC of dihydrochalcones. By comparing the AC of dihydrochalcones with similar structures, it was found that the o-dihydroxyl at the B-ring and 2'-hydroxyl group at the A-ring were critical for maintaining the AC of dihydrochalcones by promoting hydrogen atom transfer or single electron transfer mechanism. Sequential proton-loss electron transfer commonly occurred during free radical scavenging in water-based solution. Moreover, we report a unique phenomenon in which glycosylation at the 2'-position enhanced the dissociation ability of the 4'-hydroxyl group and increased the AC of dihydrochalcones containing o-dihydroxyl. We speculate that this increase in AC might occur through intramolecular electron transfer.
Collapse
Affiliation(s)
- Zhengcao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
49
|
Zheng YZ, Chen DF, Deng G, Guo R. The Substituent Effect on the Radical Scavenging Activity of Apigenin. Molecules 2018; 23:E1989. [PMID: 30103379 PMCID: PMC6222755 DOI: 10.3390/molecules23081989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Flavonoids widely found in natural foods are excellent free radical scavengers. The relationship between the substituent and antioxidative activity of flavonoids has not yet been completely elucidated. In this work, the antioxidative activity of apigenin derivatives with different substituents at the C3 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) were calculated. Donator acceptor map (DAM) analysis illustrated that the studied compounds are worse electron acceptors than F and also are not better electron donors than Na. The strongest antioxidative group of apigenin derivatives was the same as apigenin. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Therefore, Hammett sigma constants can be used to predict the antioxidative activity of substituted apigenin and to design new antioxidants based on flavonoids. In non-polar phases, the antioxidative activity of apigenin was increased by the electron-withdrawing groups, while it was reduced by the electron-donating groups. Contrary results occurred in the polar phase. The electronic effect of the substituents on BDE(4'-OH), BDE(5-OH), PA(4'-OH), and IP is mainly controlled by the resonance effect, while that on BDE(7-OH), PA(5-OH), and PA(7-OH) is governed by the field/inductive effect.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
50
|
The surrounding environments on the structure and antioxidative activity of luteolin. J Mol Model 2018; 24:149. [PMID: 29869725 DOI: 10.1007/s00894-018-3680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Luteolin is an excellent antioxidant found in a wide variety of natural foods, such as honey and pollen. In this work, the effect of the surrounding environments on the structure and antioxidative activity of luteolin was carried out using density functional theory (DFT) calculation. The studied environments are gas, benzene, chloroform, pyridine, acetonitrile, ethanol, DMSO, and water. The structure of the luteolin monomer in different environments was optimized. The hydrogen-bond was especially focused, and the antioxidative capacity of luteolin was analyzed from the thermodynamic aspect. It is found that: (1) hydrogen atom transfer (HAT) is the most thermodynamically favorable mechanism in the gas, benzene, and chloroform phases, while sequential proton loss electron transfer (SPLET) is more favorable than HAT and single electron transfer followed by proton transfer (SET-PT) in pyridine, acetonitrile, ethanol, DMSO, and water phases. (2) The 4'-OH group could more strongly participate in the free radical scavenging process of luteolin than other OH groups, while the 5-OH group is the least favored one in the studied environments. (3) The antioxidative capacity of luteolin is strongest in pyridine.
Collapse
|