1
|
Das S. Efficacy of Pinus roxburghii Sarg. essential oil against Fusarium proliferatum and fumonisin contamination in stored rice samples. Nat Prod Res 2025; 39:1387-1391. [PMID: 38099338 DOI: 10.1080/14786419.2023.2294110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 03/04/2025]
Abstract
The present study entails first time investigation on chemical characterisation of Pinus roxburghii essential oil (PEO) with its efficacy assessment against Fusarium proliferatum contamination and fumonisin synthesis in stored rice samples. The GC-MS analysis indicated α-Pinene, terpinolene, and O-cymene as major components of PEO. The PEO displayed complete inhibition of F. proliferatum growth and fumonisin B1, B2 biosynthesis at 1.5, 1.0, and 0.75 µL/mL, respectively. The antifungal activity of PEO was associated with impairment in ergosterol biosynthesis and enhanced leakage of vital cellular cations (Ca2+, Mg2+, and K+), nucleic acids, and proteins which validated plasma membrane as a plausible site of action. Moreover, the PEO showed promising antioxidant activity and in situ efficacy for preservation of rice samples against F. proliferatum infestation, and fumonisin B1, B2 contamination. Further, the high LD50 value in mammalian model strengthens the application of Pinus roxburghii essential oil as green fungitoxicant in agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal, India
| |
Collapse
|
2
|
Noshirvani N, Le Coz C, Gardrat C, Ghanbarzadeh B, Coma V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules 2024; 29:4664. [PMID: 39407592 PMCID: PMC11477974 DOI: 10.3390/molecules29194664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Active, fully biobased film-forming dispersions (FFDs) with highly promising results for sliced soft bread preservation were successfully elaborated from carboxymethyl cellulose (CMC) and chitosan (CH) using a simple method based on pH adjustments. They consisted of the association of polysaccharides and oleic acid (OL) added with cinnamon (CEO) or ginger (GEO) essential oils. The chemical compositions of the commercial essential oils were first determined via GC/MS, with less than 3% of compounds unidentified. The films obtained from FFDs were characterized by SEM, FTIR and DSC, indicating specific microstructures and some interactions between essential oils and the polymer matrix. CEO-based films exhibited higher antioxidant properties and a lower minimal inhibitory concentration in terms of antifungal properties. From experiments on sliced soft bread, the ginger-based films could increase the shelf life up to 20 days longer than that of the control. Even more promising, cinnamon-based films led to complete fungal inhibition in bread slices that was maintained beyond 60 days. Enumeration of the yeasts and molds for the FFD-coated breads revealed complete inhibition even after 15 days of storage with the FFDs containing the highest concentration of CEO.
Collapse
Affiliation(s)
- Nooshin Noshirvani
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
- Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu-Ali Sina University, Hamedan 65178-38695, Iran
| | - Cédric Le Coz
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| | - Christian Gardrat
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Véronique Coma
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| |
Collapse
|
3
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
4
|
Dos Santos EAR, Tadielo LE, Schmiedt JA, Possebon FS, Pereira MO, Pereira JG, Dos Santos Bersot L. Effect of ginger essential oil and 6-gingerol on a multispecies biofilm of Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. Braz J Microbiol 2023; 54:3041-3049. [PMID: 37668830 PMCID: PMC10689688 DOI: 10.1007/s42770-023-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 09/06/2023] Open
Abstract
The objective of this study was to evaluate the potential antimicrobial and antibiofilm effect of ginger essential oil (GEO) and 6-gingerol on a multispecies biofilm formed by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa on a polypropylene surface. The minimum inhibitory concentration concentrations obtained for GEO were 100 and 50 mg/mL and for 6-gingerol 1.25 mg/mL. Sessile cell counts ranged within 5.35-7.35 log CFU/cm2 in the control biofilm, with the highest sessile growth at 72 h. GEO treatments acted on the total population regardless of concentration at 1 and 48 h. L. monocytogenes behaved similarly to the total population, showing GEO action at 1 h and keeping the same pattern at 48, 72, and 96 h. Better action on S. Typhimurium was obtained at times of 1, 72, and 96 h. P. aeruginosa showed logarithmic reduction only when treated with GEO 50 mg at 24 h. As for 6-gingerol, in general, there was no significant action (p > 0.05) on the evaluated sessile cells. GEO showed antimicrobial activity against L. monocytogenes, S. Typhimurium, and P. aeruginosa, acting as an inhibitor of biofilm formation. As for 6-gingerol, it was considered a possible antimicrobial agent but without efficacy during biofilm formation.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Jhennifer Arruda Schmiedt
- Department of Veterinary Sciences, Federal University of Paraná, Palotina Campus, Rua Pioneiro, Jardim Dallas, Palotina, PR, 215385950-000, Brazil
| | - Fábio Sossai Possebon
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Maria Olivia Pereira
- Biological Engineering Center, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal
| | - Juliano Gonçalves Pereira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Luciano Dos Santos Bersot
- Department of Veterinary Sciences, Federal University of Paraná, Palotina Campus, Rua Pioneiro, Jardim Dallas, Palotina, PR, 215385950-000, Brazil.
| |
Collapse
|
5
|
Chen Y, Xing M, Chen T, Tian S, Li B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem 2023; 415:135787. [PMID: 36854245 DOI: 10.1016/j.foodchem.2023.135787] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Spoilage and mycotoxin contamination of fruits cause significant economic losses and food safety issues. Synthetic chemical fungicide treatment as primary postharvest management has attracted increasing public concern in recent years, because it may cause negative effects on the environment and human health. Numerous bioactive compounds from plants have demonstrated excellent control effects on fruit spoilage and mycotoxin contamination. Plant bioactive compounds have been considered one of the most promising alternatives, because they are generally regarded as safe and environmentally friendly. Here, we reviewed the most recent advances in plant bioactive compounds in the prevention of fungal spoilage and mycotoxin contamination in fruits. The control effects of these compounds and the mechanisms involved were summarized, and current limitations and future perspectives were discussed.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China.
| |
Collapse
|
6
|
Gao Z, Luo K, Zhu Q, Peng J, Liu C, Wang X, Li S, Zhang H. The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1:A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121065. [PMID: 36639041 DOI: 10.1016/j.envpol.2023.121065] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Fumonisin B1 (FB1) contaminates various crops, causing huge losses to agriculture and livestock worldwide. This review summarizes the occurrence regularity, toxicity, toxic mechanisms and management strategies of FB1. Specifically, FB1 contamination is particularly serious in developing countries, humid and hot regions. FB1 exposure can produce different toxic effects on the nervous system, respiratory system, digestive system and reproductive system. Furthermore, FB1 can also cause systemic immunotoxicity. The mechanism of toxic effects of FB1 is to interfere with the normal pathway of sphingolipid de novo biosynthesis by acting as a competitive inhibitor of ceramide synthase. Meanwhile, the toxic products of sphingolipid metabolic disorders can cause oxidative stress and apoptosis. FB1 also often causes feed contamination by mixing with other mycotoxins, and then exerts combined toxicity. For detection, lateral flow dipstick technology and enzyme linked immunosorbent assay are widely used in the detection of FB1 in commercial feeds, while mainstream detection methods such as high performance liquid chromatography and liquid chromatography-mass spectrometry are widely used in the laboratory theoretical study of FB1. For purification means of FB1, some natural plant extracts (such as Zingiber officinale and Litsea Cubeba essential oil) and their active compounds have been proved to inhibit the toxic effects of FB1 and protect livestock due to their antifungal and antioxidant effects. Natural plant extract has the advantages of high efficiency, low cost and no contamination residue. This review can provide information for comprehensive understanding of FB1, and provide reference for formulating reasonable treatment and management strategies in livestock production.
Collapse
Affiliation(s)
- Zhicheng Gao
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Kangxin Luo
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Qiuxiang Zhu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Jinghui Peng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Xiaoyue Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Haiyang Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
7
|
Ahmed N, Alam M, Saeed M, Ullah H, Iqbal T, Awadh Al-Mutairi K, Shahjeer K, Ullah R, Ahmed S, Abd Aleem Hassan Ahmed N, Fathy Khater H, Salman M. Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests. GLOBAL DECLINE OF INSECTS 2022. [DOI: 10.5772/intechopen.100416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insect control for crops is one of the most critical global concerns. Pest management is an economic and ecological problem worldwide due to the human and environmental risks raised by most synthetic pesticide products. Botanical insecticides have resurfaced in popularity due to their low cost and low environmental impact, rather than their negative effects on human health. Botanical insecticides destroy only the insects they are meant to kill, leaving no residue on food or in the environment. Botanicals have long been used to combat pests. The compounds have many environmental advantages. However, as opposed to other bio-control pests and pathogens, their use was minimal during the twentieth century. In developing countries, botanical insecticides are well adapted for use in organic food production. Nonetheless, they may play a far bigger role in developed countries’ food production and post-harvest food protection. Consequently, the current chapter briefly addresses botanicals with active ingredients with insecticidal, antifeedant, or repellent properties.
Collapse
|
8
|
Uwineza PA, Urbaniak M, Bryła M, Stępień Ł, Modrzewska M, Waśkiewicz A. In Vitro Effects of Lemon Balm Extracts in Reducing the Growth and Mycotoxins Biosynthesis of Fusarium culmorum and F. proliferatum. Toxins (Basel) 2022; 14:355. [PMID: 35622601 PMCID: PMC9143328 DOI: 10.3390/toxins14050355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
The objectives of this research were to obtain the extracts of lemon balm (Melissa officinalis) using supercritical CO2 (SC-CO2) and methanol as co-solvent and evaluate the antifungal activity of those extracts against two selected strains of Fusarium species (Fusarium culmorum and Fusarium proliferatum). The extraction conditions were set at 40 and 60 °C and 250 bar. The obtained extracts were characterized in terms of antifungal activity on potato dextrose agar media (PDA). The results showed that the extraction parameters had different effects on mycelium growth and mycotoxins biosynthesis reduction. All studied lemon balm extracts (1, 2.5, 5, 7.5, and 10%) inhibited the growth of F. proliferatum and F. culmorum mycelia compared to the control. The lemon balm extracts significantly reduced ergosterol content and synthesized mycotoxins in both tested strains. These findings support the antifungal activity of lemon balm extracts against F. proliferatum and F. culmorum. However, more research on other Fusarium species is needed, as well as in vivo applications, before considering lemon balm extracts as a natural alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.M.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
9
|
Kumar Poudel D, Dangol S, Rokaya A, Maharjan S, Kumar Ojha P, Rana J, Dahal S, Timsina S, Dosoky NS, Satyal P, Setzer WN. Quality Assessment of Zingiber officinale Roscoe Essential Oil from Nepal. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221080322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Zingiber officinale Roscoe rhizome plays a vital role in food flavoring as well as utilization in folk medicine. Nepal is categorized among the leading countries of Z. officinale rhizome production and export. Mature Z. officinale rhizome collection is based on the major production sites within Nepal, but we are currently unaware of the chemical composition of essential oil for export. A comparative investigation of Z. officinale rhizome essential oil compositions, collected from 12 different sites of the eastern, mid, and western regions of Nepal, has been carried out. The analysis of essential oils chemical composition by gas chromatographic–mass spectral (GC-MS), enantiomeric composition by chiral gas chromatography–mass spectrometry (CGC-MS), and antimicrobial activity was evaluated. Essential oil yields ranged from 0.28% to 0.34%. The results showed that the essential oils obtained in this study contained α-zingiberene (8.6%-24.1%), camphene (7.2%-12.8%), β-phellandrene (3.8%-10.1%), neral (0.6%-11.8%), geranial (1.0%-17.4%), ar-curcumene (3.0%-10.3%), and β-sesquiphellandrene (3.7%-9.7%). With CGC-MS, the enantiomeric distributions of 21 chiral compounds were determined and showed no contrasting enantiomeric distributions. Two essential oil samples (G3 and G5) possessed good antibacterial activity against Pseudomonas aeruginosa (MIC = 78.1μg/mL) and excellent antifungal activity against Aspergillus niger (MIC = 39.1 μg/mL). Based on the content of α-zingiberene and citral (neral and geranial), samples collected from their respective areas might be used to identify an ideal Z. officinale rhizome production zone in Nepal.
Collapse
Affiliation(s)
| | - Sabita Dangol
- Analytica Research Center, Kritipur, Kathmandu, Nepal
| | - Anil Rokaya
- Analytica Research Center, Kritipur, Kathmandu, Nepal
| | | | | | - Janaki Rana
- Analytica Research Center, Kritipur, Kathmandu, Nepal
| | - Sumitra Dahal
- Analytica Research Center, Kritipur, Kathmandu, Nepal
| | - Sujan Timsina
- Analytica Research Center, Kritipur, Kathmandu, Nepal
| | | | | | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
10
|
Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, Jin L, Sun D, Dong H. Toxic Mechanism and Biological Detoxification of Fumonisins. Toxins (Basel) 2022; 14:182. [PMID: 35324679 PMCID: PMC8954241 DOI: 10.3390/toxins14030182] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food safety is related to the national economy and people's livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs, and milk which may enter the human body and pose a serious threat to human health. Although there are many strategies to prevent fumonisins from entering the food chain, the traditional physical and chemical methods of mycotoxin removal have some disadvantages, such as an unstable effect, large nutrient loss, impact on the palatability of feed, and difficulty in mass production. As a safe, efficient, and environmentally friendly detoxification technology, biological detoxification attracts more and more attention from researchers and is gradually becoming an accepted technique. This work summarizes the toxic mechanism of fumonisins and highlights the advances of fumonisins in the detoxification of biological antioxidants, antagonistic microorganisms, and degradation mechanisms. Finally, the future challenges and focus of the biological control and degradation of fumonisins are discussed.
Collapse
Affiliation(s)
- Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Lei Wang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Ji
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Yimeng Fang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Pengyu Lei
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Libo Jin
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Da Sun
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| |
Collapse
|
11
|
Marone D, Mastrangelo AM, Borrelli GM, Mores A, Laidò G, Russo MA, Ficco DBM. Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:48-55. [PMID: 35030365 DOI: 10.1016/j.plaphy.2021.12.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 05/20/2023]
Abstract
Specialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management. In this review we summarize the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms). New crop management strategies based on the direct application of the most promising compounds in form of plant residuals or liquid formulations are also described.
Collapse
Affiliation(s)
- Daniela Marone
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Grazia Maria Borrelli
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Antonia Mores
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Giovanni Laidò
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Maria Anna Russo
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy.
| |
Collapse
|
12
|
Romoli JCZ, Silva MV, Pante GC, Hoeltgebaum D, Castro JC, Oliveira da Rocha GH, Capoci IRG, Nerilo SB, Mossini SAG, Micotti da Gloria E, Svidzinski TIE, Graton Mikcha JM, Machinski M. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:362-372. [PMID: 34854801 DOI: 10.1080/19440049.2021.1996636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to evaluate the antimycotoxigenic effect of essential oils (EOs) obtained from four different aromatic plants on the production of deoxynivalenol (DON) and zearalenone (ZEA) by Fusarium graminearum. The EOs from ginger (GEO), turmeric (TEO), thyme (ThEO) and rosemary (REO) were obtained by hydrodistillation and identified by gas chromatography/mass spectrometry (GC/MS). The major compounds found were mostly monoterpenes and sesquiterpenes. The minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were 11.25, 364, 366 and 11,580 µg mL-1 for ThEO, GEO, REO and TEO, respectively. The results evidenced that the assessed EOs inhibited DON and partially ZEA production by F. graminearum. ThEO and GEO were the EOs with most potent antimycotoxigenic action for DON and ZEA, respectively. These EOs have shown promising results in vitro regarding inhibition of mycotoxin production and might be used in the future as substitutes for synthetic fungicides.
Collapse
Affiliation(s)
| | - Milena Veronezi Silva
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Giseli Cristina Pante
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Danielle Hoeltgebaum
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Juliana Cristina Castro
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| | - Gustavo Henrique Oliveira da Rocha
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Laboratory of Experimental Toxicology, University of São Paulo, Brazil
| | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Brazil
| | | | | | - Eduardo Micotti da Gloria
- Departament of Agri-Food, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Jane Martha Graton Mikcha
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Brazil
| | - Miguel Machinski
- Department of Basic Health Sciences, Laboratory of Toxicology, State University of Maringá, Brazil
| |
Collapse
|
13
|
SHIN SD, LEE MS, LEE JH. Quality characteristics of grain syrups containing ginger (Zingiber officinale). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Pok PS, García Londoño VA, Vicente S, Pacin A, Alzamora SM, Resnik SL. Citrus flavonoids against Fusarium verticillioides in post-harvest maize: Minimization of fumonisins and alteration of fungal ultrastructure. J Appl Microbiol 2021; 132:2234-2248. [PMID: 34800317 DOI: 10.1111/jam.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
AIMS To minimize fumonisins (FBs) accumulation by Fusarium verticillioides in post-harvest maize, using flavonoids obtained from citrus residues: naringin (NAR), neohesperidin (NEO), quercetin (QUER), and its mixtures. METHODS AND RESULTS Response surface methodology with Box-Behnken design was applied in maize at 0.98 and 0.95 aw . The optimal mixture found, composed of 0.40 mmol kg-1 NAR, 0.16 mmol kg-1 NEO and 0.37 mmol kg-1 QUER, reduced the accumulation of FBs B1, B2, and B3 by 88 ± 6%, 90 ± 6% and 85 ± 5%, respectively, when applied to maize at 0.98 aw . The mentioned mixture led to a 54 ± 9% reduction of fumonisin B1 accumulation in maize adjusted to 0.95 aw . These flavonoids applied individually and as a mixture, affected the structure of both the cell wall and the cytoplasm of F. verticillioides. The cell wall lost rigidity and the cells appeared highly deformed, with ruptured plasmalemma and disrupted endomembranes. CONCLUSIONS It was possible to diminish the accumulation of FBs in maize by a highly toxigenic Fusarium strain, producing severe damage to its ultrastructure. SIGNIFICANCE AND IMPACT OF STUDY The results indicate the possible use of flavonoids from citrus industry residues as natural and environmentally friendly antifungal agents to restrain the accumulation of FBs in stored maize.
Collapse
Affiliation(s)
- Paula Sol Pok
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina.,Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor Alonso García Londoño
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Vicente
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| | - Ana Pacin
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina
| | - Stella Maris Alzamora
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Liliana Resnik
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
15
|
Oliveira AMD, Mateus GAP, Santos TRTD, Filho BADA, Gomes RG, Bergamasco R. Functionalized magnetite nanoparticles with Moringa oleifera with potent antibacterial action in wastewater. ENVIRONMENTAL TECHNOLOGY 2021; 42:4296-4305. [PMID: 32272870 DOI: 10.1080/09593330.2020.1754923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Contaminations by Staphylococcus aureus in food industry environments have been extended to industrial Effluent Treatment Plant (ETP). The methodologies used in ETP for bacterial removals and quality parameters adjustment commonly use products toxic to the environment, being mostly inefficient against virulent bacteria such as S. aureus. Seeds of Moringa oleifera Lam. (MO) have potential to be used in ETP as an alternative to harmful products, as it has both the ability to regulate the physicochemical parameters of water and has antibacterial action. Functionalization of MO with magnetite magnetic nano particles (Fe3O4) at nano scale focusing on coagulation and flocculation of wastewater has been gaining prominence. Therefore, the present study evaluated the potential use of the magnetic coagulant MO-Fe3O4 in the elimination of S. aureus in synthetic dairy effluent; concomitantly sought to adjust the quality levels of physicochemical parameters. MO-Fe3O4 added to synthetic dairy effluent at different concentrations amounted to 16 treatments, which were evaluated for removal of color, turbidity, UV254nm and S. aureus on the effluent surface and sludge after 30 min of sedimentation. The results confirmed the efficient elimination of S. aureus simultaneously with a significant reduction of the physicochemical values, with constant efficiency up to 30 min. Scanning electron microscopy images confirm the removal of S. aureus on the effluent surface and sludge. Thus, this study was able to present a natural coagulant capable of remove bacteria and adjust the quality levels of the effluent after 10 min of sedimentation, making this biotechnological innovation highly applicable to ETP.
Collapse
Affiliation(s)
- Alessandra Marjorie de Oliveira
- Center of Biological Sciences, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Gustavo Affonso Pisano Mateus
- Center of Biological Sciences, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | | | | | - Raquel Guttierres Gomes
- Technology Center, Department of Food Engineering, State University of Maringa, Maringa, Brazil
| | - Rosangela Bergamasco
- Technology Center, Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| |
Collapse
|
16
|
Rezende DADCS, Cardoso MDG, Alves E, Brandão RM, Ferreira VRF, Caetano ARS, Lunguinho ADS, Campolina GA, Nelson DL, Batista LR. Effect of the essential oils of Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. on mycotoxin-producing Aspergillus flavus and Aspergillus ochraceus antifungal properties of essential oils. FEMS Microbiol Lett 2021; 368:6414530. [PMID: 34718530 DOI: 10.1093/femsle/fnab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.
Collapse
Affiliation(s)
| | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | | | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| |
Collapse
|
17
|
Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4879-4890. [PMID: 33852733 DOI: 10.1002/jsfa.11255] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Postharvest food spoilage due to fungal and mycotoxin contamination is a major challenge in tropical countries, leading to severe adverse effects on human health. Because of the negative effects of synthetic preservatives on both human health and the environment, it has been recommended that chemicals that have a botanical origin, with an eco-friendly nature and a favorable safety profile, should be used as green preservatives. Recently, the food industry and consumers have been shifting drastically towards green consumerism because of their increased concerns about health and the environment. Among different plant-based products, essential oils (EOs) and their bioactive components are strongly preferred as antimicrobial food preservatives. Despite having potent antimicrobial efficacy and preservation potential against fungal and mycotoxin contamination, essential oils and their bioactive components have limited practical applicability caused by their high volatility and their instability, implying the development of techniques to overcome the challenges associated with EO application. Essential oils and their bioactive components are promising alternatives to synthetic preservatives. To overcome challenges associated with EOs, nanotechnology has emerged as a novel technology in the food industries. Nanoencapsulation may boost the preservative potential of different essential oils by improving their solubility, stability, and targeted sustainable release. Nanoencapsulation of EOs is therefore currently being practiced to improve the stability and bioactivity of natural products. The present review has dealt extensively with the application of EOs and their nanoformulated products encapsulated in suitable polymeric matrices, so as to recommend them as novel green preservatives against foodborne molds and mycotoxin-induced deterioration of stored food commodities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bijendra Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shikha Tiwari
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Competency of Clove and Cinnamon Essential Oil Fumigation against Toxigenic and Atoxigenic Aspergillus flavus Isolates. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus flavus is a frequent contaminant of maize grain. We isolated this fungus, determined the colony morphology and species (by internal transcribed spacer sequencing) and measured the aflatoxin content. The selected A. flavus fungi were placed into two groups, toxigenic and atoxigenic; both appeared similar morphologically, except that the atoxigenic group lacked sclerotia. An essential oil fumigation test with clove and cinnamon oils as antifungal products was performed on fungal conidial discs and fungal colonies in Petri plates. Cinnamon oil at 2.5 to 5.0 μL/plate markedly inhibited the mycelial growth from conidial discs of both strains, whereas clove oil showed less activity. The oils had different effects on fungal mycelia. The higher clove fumigation doses of 10.0 to 20.0 μL/plate controlled fungal growth, while cinnamon oil caused less inhibition. Compared with atoxigenic groups, toxigenic A. flavus responded stably. Within abnormal A. flavus hyphae, the essential oils degenerated the hyphal morphology, resulting in exfoliated flakes and shrinkage, which were related to fungal membrane injury and collapse of vacuoles and phialide. The treatments, especially those with cinnamon oil, increased the electroconductivity, which suggested a weak mycelium membrane structure. Moreover, the treatments with essential oils reduced the ergosterol content in mycelia and the aflatoxin accumulation in the culture broth. The fumigations with clove and cinnamon oils inhibited the development of both conidia and colonies of A. flavus in dose-dependent manners.
Collapse
|
19
|
Pante GC, Castro JC, Lini RS, Romoli JCZ, Almeida RTRD, Garcia FP, Nakamura CV, Pilau EJ, Abreu Filho BAD, Machinski M. Litsea cubeba essential oil: chemical profile, antioxidant activity, cytotoxicity, effect against Fusarium verticillioides and fumonisins production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:387-395. [PMID: 33645426 DOI: 10.1080/03601234.2021.1890519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to determine the chemical profile of Litsea cubeba essential oil, carry out an in vitro evaluation of its antioxidant potential and its cytotoxicity, as well as its antifungal and antimicotoxigenic activities against Fusarium verticillioides. Most of the compounds observed in the EO were neral (32.75%) and geranial (37.67%). The radical scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid was 104.4 and 56.4 mmol Trolox mg-1, respectively, indicating good antioxidant activity. The EO studied by us revealed cytotoxic effect against HT-29 and HeLa cancer cells. The Minimum Inhibitory and Minimum Fungicidal Concentrations against F. verticillioides were both 125 µg mL-1. Morphological investigation, performed by fluorescence microscopy and scanning electron microscopy, showed that hyphae and microconidia structures underwent changes after treatment with the EO. Analyses performed with the EO strongly reduced the mycelial development of F. verticillioides and the synthesis of fumonisins B1 and B2 in dose-dependence effect compared (P < 0.01) with the fungal control (105 conidia mL-1) and positive control (fludioxonil + metalaxyl-M). Thus, the results obtained in vitro suggest that L. cubeba EO has excellent antioxidant, fungicidal, and antimycotoxigenic effects.
Collapse
Affiliation(s)
| | | | - Renata Sano Lini
- Department of Basic Health Science, State University of Maringá, Maringá, Brazil
| | | | | | | | | | | | | | - Miguel Machinski
- Department of Basic Health Science, State University of Maringá, Maringá, Brazil
| |
Collapse
|
20
|
Achimón F, Brito VD, Pizzolitto RP, Ramirez Sanchez A, Gómez EA, Zygadlo JA. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Rev Argent Microbiol 2021; 53:292-303. [PMID: 33546971 DOI: 10.1016/j.ram.2020.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze the chemical composition of Curcuma longa, Pimenta dioica, Rosmarinus officinalis, and Syzygium aromaticum essential oils (EOs) and their antifungal and anti-conidiogenic activity against Fusarium verticillioides. The chemical profile of the EOs was determined by GC/MS. The antifungal and anti-conidiogenic activities were evaluated by the agar dilution method. The tested concentrations were 1000ppm, 500ppm, 250ppm and 125ppm. S. aromaticum EO exhibited the highest antifungal effect, followed by P. dioica and to a lesser extent C. longa. The major compounds of these EOs were eugenol (88.70% in S. aromaticum and 16.70% in P. dioica), methyl eugenol (53.09% in P. dioica), and α-turmerone (44.70%), β-turmerone (20.67%), and Ar-turmerone (17.27%) in C. longa. Rosmarinus officinalis poorly inhibited fungal growth; however, it was the only EO that inhibited conidial production, with its major components being 1,8-cineole (53.48%), α-pinene (15.65%), and (-)-camphor (9.57%). Our results showed that some compounds are capable of decreasing mycelial growth without affecting sporulation, and vice versa. However, not all the compounds of an EO are responsible for its bioactivity. In the present work, we were able to identify different major compounds or mixtures of major compounds that were responsible for antifungal and anti-conidiogenic effects. Further experiments combining these pure components are necessary in order to achieve a highly bioactive natural formulation against the phytopathogenic fungus F. verticillioides.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina.
| | | | - Elisa A Gómez
- Instituto de Innovación en Biotecnología e Industria (IIBI), Santo Domingo, Dominican Republic
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| |
Collapse
|
21
|
Deepika, Singh A, Chaudhari AK, Das S, Dubey NK. Zingiber zerumbet L. essential oil-based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B 1 contamination. J Food Sci 2020; 86:149-160. [PMID: 33314161 DOI: 10.1111/1750-3841.15545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/26/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023]
Abstract
The present study envisages the potential application of chitosan-coated Zingiber zerumbet essential oil nanoemulsion (ZEO-CsNE) as green antimicrobial preservative against Aspergillus flavus, aflatoxin B1 (AFB1 ), and lipid peroxidation of stored functional foods. GC-MS analysis of ZEO exhibited the abundance of cis-geraniol (15.53%) as the major component. ZEO-CsNE showed biphasic release profile during in vitro release study conducted for 10 days. The ZEO-CsNE inhibited the growth of A. flavus (strain AF-LHP-SH1) and AFB1 production at 1.0 and 0.8 µL/mL, respectively. Interestingly, considerable reduction in ergosterol biosynthesis followed by enhanced leakage of vital cellular contents and methylglyoxal inhibition represents novel antifungal and antiaflatoxigenic mechanism of action, respectively. Further, ZEO-CsNE inhibited lipid peroxidation and AFB1 production in postharvest Salvia hispanica seeds during in situ trial and presented favorable safety profile (median lethal dose [LD50 ] = 29,114 µL/kg) for male mice. Based on overall observations, ZEO-CsNE could be recommended as a green antimicrobial substitute of synthetic preservatives for in vitro and in situ protection of functional food samples. PRACTICAL APPLICATION: Food industries are facing enormous amount of burden coming from fungal and aflatoxin contamination that can cause severe adverse effects to humans. Essential oils (EOs) are well known for their food preservative efficacy; however, some limitations such as oxidative instability in open system may limit their application directly into food system. The encapsulation of the EOs into polymeric matrix could provide a barrier that will protect the EOs from degradation. This research could provide a basis for utilization of EO after encapsulation into chitosan nanoemulsion for industrial-scale application for preservation of stored functional foods from fungal and aflatoxin contamination.
Collapse
Affiliation(s)
- Deepika
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
22
|
Castro JC, Pante GC, Centenaro BM, Almeida RTRD, Pilau EJ, Dias Filho BP, Mossini SAG, Abreu Filho BAD, Matioli G, Machinski Junior M. Antifungal and antimycotoxigenic effects of Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii essential oils against Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1531-1541. [PMID: 32684097 DOI: 10.1080/19440049.2020.1778183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
There is an increasing demand for fungi control in grains, especially toxigenic. Also, there is growing concern on the use of synthetic fungicides; thus alternatives are needed. The aim of this study was to evaluate the antifungal and antimycotoxigenic action of essential oils (EOs) from Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii against Fusarium verticillioides, a spoilage and toxigenic fungus. Essential oils were first chemically characterised by gas chromatography coupled to mass spectrometry, and their antioxidant potential was measured by the DPPH, ABTS and FRAP methods. Minimum inhibitory concentration (MIC) and disc diffusion were used to assess antifungal activity. Scanning electron microscopy was used to evaluate morphological changes in the fungus. Antimycotoxigenic activity of the EOs against the production of fumonisin B1 and B2 by F. verticillioides was evaluated using ultra-high-performance liquid chromatography system. Z. officinale, C. zeylanicum and C. martinii EOs were predominantly composed by zingiberene and geranial; eugenol; and geraniol, respectively. All the EOs had high antioxidant power, especially that from C. zeylanicum. The MICs were 250, 500 and 2,000 µg mL-1 for C. zeylanicum, C. martinii and Z. officinale EOs, respectively. Mycelial reduction of F. verticillioides was observed when EOs were used, and the lowest activity was detected in the Z. officinale EO. Overall, the tested EOs promoted structural damage to the fungal cell wall, decreased conidia size and mycelial reduction. Antimycotoxigenic evaluation of the EOs evidenced a significant reduction (p < .05) in the production of fumonisins B1 and B2 with all the EOs evaluated in the study. These results suggest that especially C. zeylanicum and C. martinii EOs are highly useful for controlling F. verticillioides and fumonisins production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Graciette Matioli
- Department of Pharmacy, State University of Maringá , Paraná, Brazil
| | | |
Collapse
|
23
|
Kalagatur NK, Gurunathan S, Kamasani JR, Gunti L, Kadirvelu K, Mohan CD, Rangappa S, Prasad R, Almeida F, Mudili V, Siddaiah C. Inhibitory effect of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini essential oils on growth and ochratoxin A content of A. ochraceous and P. verrucosum in maize grains. ACTA ACUST UNITED AC 2020; 27:e00490. [PMID: 32637345 PMCID: PMC7327888 DOI: 10.1016/j.btre.2020.e00490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
Essenetial oils (EOs) extrcated by hydrodistillation and chemical profile deduced by GC–MS. EOs shown potential antioxidant activity by DPPH and ABTS assay. EOs presented superlative antifungal activity against P. verrucosum related to A. ochraceus. C. zeylanicum and C. martini EOs presented superlative antifungal activity related to other EOs. C. zeylanicum EO inhibited the growth and OTA of fungi at 1500 μg/g in maize grains.
In the study, antifungal and ochratoxin A (OTA) production inhibitory activities of essential oils (EOs) of Cinnamomum zeylanicum, Curcuma longa, Ocimum basilicum, Zingiber officinale, and Cymbopogon martini were reported on Aspergillus ochraceus and Penicillium verrucosum. EOs were obtained by hydrodistillation and GC–MS technique was chosen to deduce their chemical profile. Major chemical compounds in EOs of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini were (E)-cinnamaldehyde (35.81 %), ar-turmerone (46.13 %), eugenol (36.58 %), geranyl proprionate (18.93 %), and geranyl acetate (14.88 %), respectively. The EOs shown potent antioxidant activity by DPPH and ABTS assays. The EOs presented superlative antifungal activity against P. verrucosum related to A. ochraceus. The C. zeylanicum and C. martini EOs shown superlative antifungal activity related to other EOs. The C. zeylanicum and C. martini EOs completely inhibited the growth and OTA production of P. verrucosum and A. ochraceous at 1500 and 2500 μg/g in maize grains, respectively.
Collapse
Affiliation(s)
- Naveen Kumar Kalagatur
- DRDO-BU-Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Selvakumar Gurunathan
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jalarama Reddy Kamasani
- Freeze Drying and Animal Products Technology, Defence Food Research Laboratory, Mysuru, 570011, India
| | - Lokanadhan Gunti
- Department of Microbiology, Pondicherry University, Pondicherry, 605014, India
| | - Krishna Kadirvelu
- DRDO-BU-Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya, 571448, India
| | - Ram Prasad
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.,Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, India
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
24
|
Brandão RM, Ferreira VRF, Batista LR, Alves E, Lira NDA, Bellete BS, Scolforo JRS, Cardoso MDG. Antifungal and antimycotoxigenic effect of the essential oil of
Eremanthus erythropappus
on three different
Aspergillus
species. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Luís Roberto Batista
- Departamento de Ciência dos Alimentos Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Eduardo Alves
- Departamento de Fitopatologia Universidade Federal de Lavras (UFLA) Lavras Brazil
| | | | | | | | | |
Collapse
|
25
|
Ghazi Eid B, Hanafy A, Hasan A, Neamatalla T. Zingerone Enhances Fertility Markers in Both Male and Female Rats and Increases Aryl Hydrocarbon Receptor Expression. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.267.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Lengai GM, Muthomi JW, Mbega ER. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
27
|
Traditional Uses, Phytochemistry, and Pharmacological Properties of Zingiber officinale Essential Oil and Extracts. ACTA ACUST UNITED AC 2020. [DOI: 10.4018/978-1-7998-2524-1.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Ginger (Zingiber officinale) has been traditionally employed in south East Asia as well as India and China for treatment of nausea, asthma, fever, vomiting, cough, constipation, pain, arthritis, inflammation, etc. This chapter discusses the phytochemical composition and pharmacological studies of ginger extracts, ginger essential oil (GEO), and active bioactive constituents. The essential oil of fresh and dry ginger was ranged between 0.2% - 2.62% and 0.72% - 4.17% respectively. The bioactive constituent zingiberene, β-sesquiphellandrene, curcumene, β-bisabolene, β-farnesene, camphene, and gingerol and shogal are the major constituents in ginger extracts. These compounds are chief bioactive substances responsible for pharmacological activities such antioxidant, antidiabetic, anticancer, anticoagulant, antiradiation, anti-inflammatory, gastrointestinal, antimicrobial, cardiovascular, anti-obesity, and weight loss effects. Future research needs to investigate the suitable duration, maximum dosage of ginger, concerns of overdosage, and its side effects in animal models and humans.
Collapse
|
28
|
Perczak A, Gwiazdowska D, Gwiazdowski R, Juś K, Marchwińska K, Waśkiewicz A. The Inhibitory Potential of Selected Essential Oils on Fusarium spp. Growth and Mycotoxins Biosynthesis in Maize Seeds. Pathogens 2019; 9:pathogens9010023. [PMID: 31887989 PMCID: PMC7168669 DOI: 10.3390/pathogens9010023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022] Open
Abstract
Owing to their rich chemical composition, essential oils (EOs) have many interesting properties, including antimicrobial activities. The presence of Fusarium and their secondary metabolites, mycotoxins, in cereal crops is a serious problem in agriculture, which consequently affects food quality. The aim of the present study was to investigate the effects of selected EOs on the growth of Fusarium graminearum and F. culmorum and the biosynthesis of mycotoxins in maize seeds. Chromatographic analysis of ergosterol as a fungal growth indicator showed a significant inhibition of Fusarium growth (83.24–99.99%) compared to the control samples, which as a consequence resulted in a reduction in mycotoxin concentrations. The addition of cinnamon, palmarosa, orange, and spearmint EOs was shown to be the most effective in reducing zearalenone concentration (99.10–99.92%). Deoxynivalenol analysis confirmed a very high reduction of this compound at the application all tested EOs (90.69–100%). The obtained results indicated that EOs have a great potential to inhibit growth of Fusarium fungi as well as reduce the concentration of mycotoxins in maize seed.
Collapse
Affiliation(s)
- Adam Perczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
- Correspondence: ; Tel.: +48-618-487-824
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Romuald Gwiazdowski
- Department of Pesticide Investigation, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Krzysztof Juś
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Katarzyna Marchwińska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland; (D.G.); (K.J.); (K.M.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
29
|
SILVA FFAD, ALVES CCF, OLIVEIRA FILHO JGD, VIEIRA TM, CROTTI AEM, MIRANDA MLD. Chemical constituents of essential oil from Murraya paniculata leaves and its application to in vitro biological control of the fungus Sclerotinia sclerotiorum. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.20218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wan J, Zhong S, Schwarz P, Chen B, Rao J. Enhancement of antifungal and mycotoxin inhibitory activities of food-grade thyme oil nanoemulsions with natural emulsifiers. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106709] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Baldin VP, Bertin de Lima Scodro R, Mariano Fernandez CM, Ieque AL, Caleffi-Ferracioli KR, Dias Siqueira VL, de Almeida AL, Gonçalves JE, Garcia Cortez DA, Cardoso RF. Ginger essential oil and fractions against Mycobacterium spp. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112095. [PMID: 31325601 DOI: 10.1016/j.jep.2019.112095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiber officinale (ginger) is a perennial herbaceous plant native in tropical Asia and generally cultivated in most American tropical countries with widespread use in popular medicine. Ginger essential oil (GEO) has been reported to exhibit several biological activities, such as antimicrobial. AIMS OF THE STUDY The aim of this study was to determine the composition and the property of GEO and related fractions against Mtb and NTM, as well as their cytotoxicity. METHODS AND MATERIALS GEO was obtained by hydrodistillation and fractionation was performed. Chemical characterization of GEO and fractions were carried out by gas chromatography/mass spectrometry. The antimycobacterial activity was evaluated by resazurin microtiter assay plate and broth microdilution method for Mtb and NTM, respectively. The cytotoxicity in Vero cells was assessed by MTT colorimetric assay. RESULTS The analyses showed 63 compounds in the GEO sample, characterized by a high number of monoterpenes and sesquiterpenes. GEO fractionation rendered 11 fractions (FR1 to FR11). GEO and fractions minimum inhibitory concentration ranged from 31.25 to >250 μg/mL against Mtb and from 15.6 to >250 μg/mL against NTM. GEO showed better activity against NTM, M. chelonae, and M. abscessus sub. massiliense, than the semi-pure fractions. One fraction (FR5), containing γ-eudesmol as the main compound, was the most active against Mtb and NTM. The GEO and semi-pure fractions cytotoxicity assay showed CC50 63.3 μg/mL, and 36.3-312.5 μg/mL, respectively. CONCLUSIONS In general, GEO showed a mix of monoterpenes and sesquiterpenes and a better antimycobacterial activity than the semi-pure fractions. Cytotoxic effects of GEO and its fractions should be better investigated.
Collapse
Affiliation(s)
- Vanessa Pietrowski Baldin
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringa, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil.
| | - Regiane Bertin de Lima Scodro
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Carla Maria Mariano Fernandez
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Andressa Lorena Ieque
- Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringa, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Vera Lucia Dias Siqueira
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringa, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Aryadne Larissa de Almeida
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringa, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - José Eduardo Gonçalves
- Instituto Cesumar de Ciências, Tecnologia e Inovação - ICETI, Av. Guedner, 1610, 87050-390, Maringa, Parana, Brazil
| | - Diógenes Aparício Garcia Cortez
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringa, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900, Maringa, Parana, Brazil
| |
Collapse
|
32
|
The Efficiency of Deoxynivalenol Degradation by Essential Oils under In Vitro Conditions. Foods 2019; 8:foods8090403. [PMID: 31514336 PMCID: PMC6769570 DOI: 10.3390/foods8090403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Abstract
Essential oils (EOs) are complex natural products of plant origin and exhibit different desirable, e.g., antimicrobial properties. Their growth inhibition effect on the pathogenic fungi of the genus, Fusarium, which forms deoxynivalenol (DON), has been documented. DON is the most common contaminant of grains and their products, causing strong emetic effects after their consumption. The aim of the study was to investigate the ability of selected EOs to degrade DON under in vitro conditions, using various incubation terms. The impact of a different temperature, pH, incubation time, mycotoxin, and essential oil concentration was tested. The results indicate that the kind of EO influences the effectiveness of mycotoxin level reduction, and the most effective EOs were palmarosa and lemon oils. A higher reduction of DON content by EOs was achieved after 24 h of the experiment (up to 72%), at a pH range between 3 and 6 and a temperature of 20 °C. Moreover, the effect of various doses of white and pink grapefruit and palmarosa EOs (100 and 200 μL/mL) on toxin level reduction was observed. The experiment confirmed that the selected EOs may be effective in DON reduction, as previously documented in experiments with zearalenone.
Collapse
|
33
|
Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25414-25431. [PMID: 31313235 DOI: 10.1007/s11356-019-05932-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Fungal and mycotoxin contamination of stored food items is of utmost concern throughout the world due to their hazardous effects on mammalian systems. Most of the synthetic chemicals used as preservatives have often been realised to be toxic to humans and also cause adverse environmental effects. In this respect, use of different plant products especially essential oils (EOs) and their bioactive compounds has been recognized as a green strategy and safer alternatives to grey synthetic chemicals in view of their long traditional use. The current nanoencapsulation technology has strengthened the prospective of EOs and their bioactive compounds in food preservation by enhancing their bioactivity and mitigating other problems regarding their large-scale application. Although, the antimicrobial potential of EOs and their bioactive compounds has been reviewed time to time by different food microbiologists, but very less is known about their mode of action. Based on these backgrounds, the present article provides an account on the antifungal and antimycotoxigenic mode of action of EOs as well as their bioactive compounds. In addition, the article also deals with the application of currently used nanoencapsulation approach to improve the stability and efficacy of EOs and their bioactive compounds against mycotoxigenic fungi causing deterioration of stored food items so as to recommend their large-scale application for safe preservation and enhancement of shelf life of food items during storage.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Fusarium Species In Vitro and in Stored Cereals. Toxins (Basel) 2019; 11:toxins11090495. [PMID: 31461909 PMCID: PMC6783911 DOI: 10.3390/toxins11090495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022] Open
Abstract
Two garlic-derived compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), were examined for their efficacy against mycotoxigenic Fusarium species (F. graminearum, F. langsethiae, F. verticillioides). The objectives were to assess the inhibitory effect of these compounds on growth and mycotoxin production in vitro, and in situ in artificially inoculated wheat, oats and maize with one isolate of each respectively, at different water activity (aw) conditions when stored for up to 20 days at 25 °C. In vitro, 200 ppm of either PTS or PTSO reduced fungal growth by 50-100% and mycotoxin production by >90% depending on species, mycotoxin and aw conditions on milled wheat, oats and maize respectively. PTS was generally more effective than PTSO. Deoxynivalenol (DON) and zearalenone (ZEN) were decreased by 50% with 80 ppm PTSO. One-hundred ppm of PTS reduced DON and ZEN production in wheat stored at 0.93 aw for 20 days, although contamination was still above the legislative limits. Contrasting effects on T-2/HT-2 toxin contamination of oats was found depending on aw, with PTS stimulating production under marginal conditions (0.93 aw), but at 0.95 aw effective control was achieved with 100 ppm. Treatment of stored maize inoculated with F. verticilliodies resulted in a stimulation of total fumonsins in most treatments. The potential use of such compounds for mycotoxin control in stored commodities is discussed.
Collapse
|
35
|
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger ( Zingiber officinale Roscoe). Foods 2019; 8:E185. [PMID: 31151279 PMCID: PMC6616534 DOI: 10.3390/foods8060185] [Citation(s) in RCA: 465] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, cardiovascular protective, respiratory protective, antiobesity, antidiabetic, antinausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are also discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
36
|
Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch Microbiol 2019; 201:1085-1097. [PMID: 31123790 PMCID: PMC6746685 DOI: 10.1007/s00203-019-01673-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 10/31/2022]
Abstract
Essential oils (EOs) are products of plant origin and include mixtures of different chemical compounds. These volatile substances have many interesting properties, including antifungal properties. Fungi may develop under field conditions on crops such as wheat or corn and are able to synthesize mycotoxins, which adversely affect livestock and human health. In the present study, selected EOs were used to inhibit the growth of Fusarium graminearum and F. culmorum and reduce the concentrations of mycotoxins in wheat grain. The EOs significantly inhibited the growth of tested Fusarium species (90.99-99.99%), as determined based on ergosterol quantitative analysis. Only the addition of orange oil to F. culmorum exhibits a different inhibition capacity (68.13%). EO application resulted in a large reduction in zearalenone content (99.08-99.99%); only in the case of orange oil application was the reduction estimated at approximately 68.33%. However, all EOs provided a significant reduction in the concentration levels of group B trichothecenes (94.51-100%). It can be concluded that EOs inhibit the growth of fungi of the genus Fusarium and reduce concentration levels of the mycotoxins zearalenone and group B trichothecenes.
Collapse
|
37
|
Evaluation of the Anti-Trypanosomal Activity of Vietnamese Essential Oils, with Emphasis on Curcuma longa L. and Its Components. Molecules 2019; 24:molecules24061158. [PMID: 30909559 PMCID: PMC6471621 DOI: 10.3390/molecules24061158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
Human African trypanosomiasis (HAT), known as sleeping sickness and caused by Trypanosoma brucei, is threatening low-income populations in sub-Saharan African countries with 61 million people at risk of infection. In order to discover new natural products against HAT, thirty-seven Vietnamese essential oils (EOs) were screened for their activity in vitro on Trypanosoma brucei brucei (Tbb) and cytotoxicity on mammalian cells (WI38, J774). Based on the selectivity indices (SIs), the more active and selective EOs were analyzed by gas chromatography. The anti-trypanosomal activity and cytotoxicity of some major compounds (isolated or commercial) were also determined. Our results showed for the first time the selective anti-trypanosomal effect of four EOs, extracted from three Zingiberaceae species (Curcuma longa, Curcuma zedoaria, and Zingiber officinale) and one Lauraceae species (Litsea cubeba) with IC50 values of 3.17 ± 0.72, 2.51 ± 1.08, 3.10 ± 0.08, and 2.67 ± 1.12 nL/mL respectively and SI > 10. Identified compounds accounted for more than 85% for each of them. Among the five major components of Curcuma longa EO, curlone is the most promising anti-trypanosomal candidate with an IC50 of 1.38 ± 0.45 µg/mL and SIs of 31.7 and 18.2 compared to WI38 and J774 respectively.
Collapse
|
38
|
Beristain-Bauza SDC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II, Ochoa-Velasco CE. Antimicrobial Activity of Ginger (Zingiber Officinale) and Its Application in Food Products. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573829] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Paola Hernández-Carranza
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Teresa Soledad Cid-Pérez
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Raúl Ávila-Sosa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Carlos Enrique Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
39
|
Mahboubi M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-018-0097-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Gömöri C, Nacsa-Farkas E, Kerekes E, Vidács A, Bencsik O, Kocsubé S, Khaled J, Alharbi N, Vágvölgyi C, Krisch J. Effect of essential oil vapours on aflatoxin production of Aspergillus parasiticus. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The effect of cinnamon, clary sage, juniper, lemon and marjoram essential oil (EO) vapours was tested on growth, aflatoxin production and sporulation of Aspergillus parasiticus. In reversed Petri-dish method the sub-lethal EO vapour concentrations ranging from 0.05 to 0.42 mg/cm3 air were used and growth rates (mm/day) and antifungal indices (%) were calculated from the growth curves of the fungus. Aflatoxin production was determined by HPLC and spores were counted in a Burker chamber. Cinnamon, clary sage and marjoram EOs showed concentration dependent growth inhibition. Antifungal index and aflatoxin production using the weak antifungals, juniper and lemon EO, increased in parallel. The same trend was found using cinnamon and clary sage EO vapours up to 0.11 mg/cm3 concentration, and marjoram EO up to 0.21 mg/cm3, while higher concentrations caused a sharp decrease in aflatoxin production. Applying sub-lethal concentrations of EOs might induce stress response in A. parasiticus leading to increased aflatoxin production. Only EO concentrations with strong growth and sporulation inhibitory effect were suitable to inhibit the aflatoxin production of A. parasiticus..
Collapse
Affiliation(s)
- Cs. Gömöri
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - E. Nacsa-Farkas
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - E.B. Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - A. Vidács
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - O. Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - J.M. Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N.S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Cs. Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - J. Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| |
Collapse
|
41
|
Ferreira FMD, Hirooka EY, Ferreira FD, Silva MV, Mossini SAG, Machinski M. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2168-2174. [PMID: 30281407 DOI: 10.1080/19440049.2018.1520397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Members of the Fusarium genus are capable of contaminating agricultural commodities, compromising the quality of maize and other grains, which leads to severe quality and yield losses. Contamination with mycotoxins is also a concern. Essential oils are possible alternatives to the use of synthetic pesticides for control of fungal contamination, as many have antifungal and anti-mycotoxigenic properties and are innocuous to human health. They also do not cause any sort of microbial resistance and do not promote environmental pollution. The aim of this study was to evaluate the antifungal and anti-mycotoxigenic effects of Zingiber officinale Roscoe essential oil (GEO) upon Fusarium graminearum Schwabe in vitro. The essential oil was extracted by hydrodistillation and analysed by GC/MS. Antifungal and anti-mycotoxigenic activities were assessed by HPLC/UV by quantifying ergosterol and deoxynivalenol (DON), respectively. Results indicated that GEO inhibited ergosterol production at a concentration of 1000 µg/mL and DON production at a concentration of 500 µg/mL, evidencing that the anti-mycotoxigenic effect is independent of the antifungal effect due to its probable direct action upon toxin biosynthesis.
Collapse
Affiliation(s)
- Francine Maery Dias Ferreira
- a Department of Health Basic Sciences, Laboratory of Toxicology , State University of Maringá , Maringá , Brazil
| | - Elisa Yoko Hirooka
- b Department of Food Science , State University of Londrina , Londrina , Brazil
| | - Flavio Dias Ferreira
- c Department of Food , Federal Technological University of Paraná , Medianeira , Brazil
| | - Milena Veronezi Silva
- a Department of Health Basic Sciences, Laboratory of Toxicology , State University of Maringá , Maringá , Brazil
| | | | - Miguel Machinski
- a Department of Health Basic Sciences, Laboratory of Toxicology , State University of Maringá , Maringá , Brazil
| |
Collapse
|
42
|
Chen T, Lu J, Kang B, Lin M, Ding L, Zhang L, Chen G, Chen S, Lin H. Antifungal Activity and Action Mechanism of Ginger Oleoresin Against Pestalotiopsis microspora Isolated From Chinese Olive Fruits. Front Microbiol 2018; 9:2583. [PMID: 30425698 PMCID: PMC6218584 DOI: 10.3389/fmicb.2018.02583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022] Open
Abstract
Pestalotiopsis microspora (P. microspora) is one of dominant pathogenic fungi causing rotten disease in harvested Chinese olive (Canarium album Lour.) fruits. The purposes of this study were to evaluate the antifungal activities of ginger oleoresin (GO) against P. microspora and to illuminate the underlying action mechanisms. The in vitro assays indicate that GO exhibited strong antifungal activity against mycelial growth of P. microspore, and with 50%-inhibition concentration (EC50) and 90%-inhibition concentration (EC90) at 2.04 μL GO and 8.87 μL GO per mL propylene glycol, respectively, while the minimal inhibitory concentration (MIC) and minimal fungicidal concentration were at 10 μL GO and 30 μL GO per mL propylene glycol, respectively. Spore germination of P. microspora was inhibited by GO in a dose-dependent manner, and with 100% inhibition rate at the concentration of 8 μL GO per mL propylene glycol. Compared to the control, the cellular membrane permeability of P. microspora increased due to severe leakage of intercellular electrolytes, soluble proteins, and total sugars with the treatments (EC50, EC90) by GO during incubation. In addition, analysis of fatty acid contents and compositions in cellular membrane by GC-MS indicated that GO could significantly promote the degradation or peroxidation of unsaturated fatty acids in P. microspore, resulting in the enhancement of membrane fluidity. Moreover, observations of microstructure further showed the damage to plasma membrane and morphology of P. microspora caused by GO, which resulted in distortion, sunken and shriveled spores and mycelia of the pathogen. Furthermore, in vivo assay confirmed that over 3 MIC GO treatments remarkably suppressed disease development in P. microspore inoculated-Chinese olive fruit. These results demonstrate that owing to its strong antifungal activity, GO can be used as a promising antifungal agent to inhibit the growth of pathogenic fungi in Chinese olives.
Collapse
Affiliation(s)
- Tuanwei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ju Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binbin Kang
- Fujian Bio-Engineering Professional Technology Institute, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO, United States
| | - Lijie Ding
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingyan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoying Chen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Shaojun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
43
|
Wang L, Jin J, Liu X, Wang Y, Liu Y, Zhao Y, Xing F. Effect of Cinnamaldehyde on Morphological Alterations of Aspergillus ochraceus and Expression of Key Genes Involved in Ochratoxin A Biosynthesis. Toxins (Basel) 2018; 10:E340. [PMID: 30135391 PMCID: PMC6162615 DOI: 10.3390/toxins10090340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is a potent nephrotoxic, hepatotoxic, and teratogenic compound which is a significant mycotoxin contaminates cereals during storage. Aspergillus ochraceus is the most common producer of OTA in cereals and cereal-derived products. Cinnamaldehyde is a natural substance derived from plant cinnamon playing an important role in the reduction of OTA contamination. In this study, the antifungal and antitoxigenic effect of cinnamaldehyde was investigated with its mechanisms of inhibition of fungal growth at the morphological and ultrastructural levels, and inhibition of OTA biosynthesis at the transcriptional level. Significant A. ochraceus growth was inhibited at 0.4⁻1.6 mmol/L with fumigation. A. ochraceus exposed to 0.4 mmol/L of cinnamaldehyde indicated irreversible harmful morphological and ultrastructural modifications such as the folding of the cell, the loss of integrity of the cell wall, the disruption of plasma membrane, the destruction of the mitochondria, and the absence of intracellular organelles. These alterations may be attributed to its inhibition of enzymatic reactions that regulate cell wall synthesis, thus disturbing the morphogenesis and growth of A. ochraceus. In the presence of cinnamaldehyde, the tested biosynthetic and regulatory genes like pks, nrps, veA, laeA and velB were highly downregulated. Moreover, the downregulation effect of cinnamaldehyde increased proportionally with the concentrations. These results suggest that the decrease of OTA production by cinnamaldehyde is attributed to the downregulation of the transcriptional levels of OTA biosynthetic and regulatory genes besides the inhibition of fungal growth. The study reveals the mechanisms of the antifungal and antitoxigenic activities of cinnamaldehyde against A. ochraceus, and further emphasizes that cinnamaldehyde could be a safe and effective natural agents against OTA contamination during cereals storage.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Xiao Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
44
|
Yang C, Guo F, Zang C, Li C, Cao H, Zhang B. The Effect of Ginger Juice Processing on the Chemical Profiles of Rhizoma coptidis. Molecules 2018; 23:E380. [PMID: 29439421 PMCID: PMC6017751 DOI: 10.3390/molecules23020380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis (RC) has been used as an herbal medicine in China for over one thousand years, and it was subjected to specific processing before use as materia medica. Processing is a pharmaceutical technique that aims to enhance the efficacy and/or reduce the toxicity of crude drugs according to traditional Chinese medicine theory. In this study, the chemical profiles of RC, ginger juice processed RC (GRC), and water processed RC (WRC) was determined to reveal the mechanism of processing of RC. UPLC-QTOF-MS analysis of methanol extract of RC, GRC, and WRC has been conducted to investigate the effect of processing on the composition of RC. HPLC-PDA was used to determine the variance of total alkaloids and seven alkaloids of RC during the processing. The volatiles of RC, GRC and ginger juice were separated by distillation, the change of volatiles content was recorded and analyzed, and the qualitative analysis of the volatiles was carried out using GC-MS. The microstructures of RC, GRC and WRC were observed using a light microscope. Results showed that ginger juice/water processing had limited influence on the composition of RC's methanol extract, but significant influence on the content of some alkaloids in RC. Ginger juice processing significantly increased (p < 0.05) the volatiles content of RC and changed the volatiles composition obviously. Processing also had an influence on the microstructure of RC. This research comprehensively revealed the mechanism of ginger juice processing of RC.
Collapse
Affiliation(s)
- Chunyu Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Cao
- School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Baoxian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
45
|
Tarazona A, Gómez JV, Gavara R, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Mateo EM. Risk management of ochratoxigenic fungi and ochratoxin A in maize grains by bioactive EVOH films containing individual components of some essential oils. Int J Food Microbiol 2018; 269:107-119. [PMID: 29421354 DOI: 10.1016/j.ijfoodmicro.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus steynii and Aspergillus tubingensis are possibly the main ochratoxin A (OTA) producing species in Aspergillus section Circumdati and section Nigri, respectively. OTA is a potent nephrotoxic, teratogenic, embryotoxic, genotoxic, neurotoxic, carcinogenic and immunosuppressive compound being cereals the first source of OTA in the diet. In this study bioactive ethylene-vinyl alcohol copolymer (EVOH) films containing cinnamaldehyde (CINHO), linalool (LIN), isoeugenol (IEG) or citral (CIT) which are major components of some plant essential oils (EOs) were produced and tested against A. steynii and A. tubingensis growth and OTA production in partly milled maize grains. Due to the favourable safety profile, these bioactive compounds are considered in the category "GRAS". The study was carried out under different water activity (0.96 and 0.99 aw), and temperature (24 and 32 °C) conditions. ANOVA showed that class of film, fungal species, aw and temperature and their interactions significantly affected growth rates (GR), ED50 and ED90 and the doses for total fungal growth inhibition and OTA production. The most effective EVOH films against both species were those containing CINHO. ED50, ED90 and doses for total growth and OTA inhibition were 165-405, 297-614, 333-666 μg of EVOH-CINHO/plate (25 g of maize grains), respectively, depending on environmental conditions. The least efficient were EVOH-LIN films. ED50, ED90 and doses for total growth and OTA inhibition were 2800->3330, >3330 and >3330 μg of EVOH-LIN/plate (25 g of maize grains), respectively. The effectiveness of the bioactive films increased with increasing doses. Overall, A. tubingensis was less sensitive to treatments than A. steynii. Depending on the species, aw and temperature affected GR and OTA production in a different way. In A. steynii cultures, optimal growth occurred at 0.96 aw and 32 °C while optimal OTA production happened at 0.99 aw and 32 °C. In A. tubingensis cultures optimal growth happened at 0.99 aw and 32 °C, although the best conditions for OTA production were 0.99 aw and 24 °C. Thus, these species can be very competitive in warm climates and storage conditions. The EVOH-CINHO films followed by EVOH-IEG and EVOH-CIT films, designed in this study and applied in vapour phase, can be potent antifungal agents against A. steynii and A. tubingensis and strong inhibitors of OTA biosynthesis in maize grains at very low doses. This is the first study on the impact that interacting environmental conditions and bioactive films containing individual components of EOs have on the growth of these ochratoxigenic fungi and on OTA production in maize grains.
Collapse
Affiliation(s)
- Andrea Tarazona
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Rafael Gavara
- Packaging Lab, Institute of Agrochemistry and Food Technology, CSIC, Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Rufino Mateo-Castro
- Department of Analytical Chemistry. University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - José V Gimeno-Adelantado
- Department of Analytical Chemistry. University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Eva M Mateo
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Av. Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
46
|
Effect of the essential oils from Melaleuca alternifolia, Melaleuca quinquenervia and Backhousia citriodora on the synthesis of ochratoxin A by Aspergillus niger and Aspergillus carbonarius isolated from tropical wine grapes. Journal of Food Science and Technology 2017; 55:418-423. [PMID: 29358835 DOI: 10.1007/s13197-017-2857-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The influence of essential oils (EOs) extracted from the leaves of Melaleuca alternifolia, Melaleuca quinquenervia and Backhousia citriodora on ochratoxin A (OTA) synthesis by fungi was studied. The extraction of EOs was performed by hydrodistillation (Clevenger apparatus) over a 2-h period and subsequently analyzed by GC-MS and GC-FID. The toxigenic activity of the essential oils (31.25; 15.62 and 7.81 µg mL-1) was evaluated by inhibiting the production of OTA by Aspergillus niger and Aspergillus carbonarius in Czapek agar medium culture. The quantification of the toxin was performed by HPLC. The production of OTA was dependent on the fungal species, incubation temperature (15 and 25 °C) and the presence of the essential oils. In tests carried out at 15 °C, the oils caused a reduction in OTA synthesis that ranged from 57.60 to 76.93% and from 54.78 to 98.68% for the fungal species A. carbonarius and A. niger, respectively. At 25 °C, reductions ranged from the 38.66 to 75.93% and from 17.94 to 71.79% for the respective fungi. The study concluded that natural products could be potential biocontrol agents against OTA contamination in food.
Collapse
|
47
|
Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C, Coma V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Foltinová D, Tančinová D, Císarová M. Influence of essential oils on the growth of aspergillus flavus. POTRAVINARSTVO 2017. [DOI: 10.5219/725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper was focused on the determination of the inhibitory effect of selected essential oils on growth of ten isolates of Aspergillus flavus and their potential ability to produce mycotoxins in vitro by TLC method. The isolates were obtained from moldy bread of domestic origin. We followed the impact of five essential oils at 100% concentration - lemon, eucalyptus, oregano, sage and thyme. The effect of the essential oils we tested the gaseous diffusion method. We isolates grown on CYA (Czapek yeast extract agar), in the dark at 25 ±1 °C, 14 days. The diameter of colonies grown we continuously measured on the 3rd, 7th, 11th, and 14th day of cultivation. The results of the paper suggest that oregano and thyme essential oil had 100% inhibited the growth of all tested isolates of Aspergillus flavus. Lemon, eucalyptus and sage essential oil had not significant inhibitory effects on tested isolates Aspergillus flavus, but affected the growth of colonies throughout the cultivation. In addition to the inhibitory effect we witnessed the stimulative effect of lemon, eucalyptus and sage essential oil to some isolates. Together with the antifungal effect of essential oils, we monitored the ability of Aspergillus flavus isolates to produce mycotoxins - aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA) in the presence of essential oils. Production mycotoxins we have seen in the last (14th) day of cultivation. Lemon and eucalyptus essential oil did not affect the production of mycotoxins. In the case of sage essential oil we were recorded cyclopiazonic acid production in three of the ten isolates from the all three repetitions, while neither isolate did not produced aflatoxin B1. The production of secondary metabolites was detected in all control samples. From the results we can say that oregano and thyme essential oil could be used as a natural preservative useful in the food industry.
Collapse
|
49
|
Avanço GB, Ferreira FD, Bomfim NS, Santos PADSRD, Peralta RM, Brugnari T, Mallmann CA, Abreu Filho BAD, Mikcha JMG, Machinski Jr. M. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Rachitha P, Krupashree K, Jayashree GV, Gopalan N, Khanum F. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil. Pharmacognosy Res 2017; 9:74-79. [PMID: 28250658 PMCID: PMC5330108 DOI: 10.4103/0974-8490.199771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. METHODS The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. RESULT In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. CONCLUSION The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope.
Collapse
Affiliation(s)
- P. Rachitha
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - K. Krupashree
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - G. V. Jayashree
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Natarajan Gopalan
- Department of Food Biotechnology, Defence Food Research Laboratory, Mysore, Karnataka, India
| | - Farhath Khanum
- Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Mysore, Karnataka, India
| |
Collapse
|