1
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4779-4801. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
2
|
Liu Y, Lu H, Fang Z, Lu S. Hesperetin acts as a potent xanthine oxidase inhibitor: New evidence from its reactive oxygen suppression and enzyme binding. Int J Biol Macromol 2025; 306:141429. [PMID: 40010462 DOI: 10.1016/j.ijbiomac.2025.141429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Xanthine oxidase (XO) plays a crucial role in purine metabolism, catalyzing the oxidation of hypoxanthine to xanthine and subsequently to uric acid. Elevated uric acid levels can lead to hyperuricemia, a condition linked to gout, kidney stones, and other chronic diseases. Inhibiting XO activity represents a promising strategy for managing hyperuricemia. This study investigated the inhibitory effects of the flavonoid hesperetin enriched in citrus fruits on XO activity, its antioxidant properties against reactive oxygen species (ROS) generated by the XO reaction, and the underlying mechanisms of enzyme inhibition. Enzyme kinetics and spectroscopy revealed that hesperetin competitively inhibited XO at an inhibition constant of (2.15 ± 0.05) × 10-6 mol/L through its binding to the molybdopterin active center of XO, preventing the entry of xanthine and the transfer of electrons, effectively scavenging superoxide radicals by inhibiting uric acid production and oxygen reduction, and inducing conformational changes in XO's structure. Fluorescence quenching indicated that hesperetin interacted with XO through a combination of static and dynamic quenching mechanisms. Molecular docking simulations demonstrated that hesperetin binded tightly to XO's active site, blocking substrate entry. Molecular dynamics confirmed that hesperetin stabilized the XO-hesperetin complex through reinforced hydrophobic and hydrogen-bond interactions. The results suggest that hesperetin can act as a potent natural xanthine oxidase inhibitor or a functional food supplement to alleviate hyperuricemia.
Collapse
Affiliation(s)
- Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia.
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| |
Collapse
|
3
|
Chen KL, Xie DD, Luo MP, Liu B, Li Y, Zhao YJ, Zhao XX, Pei JM, Ding YG, Feng ZP, Wang B, Zhang XG. Functional Food Potential of Chrysanthemum morifolium, Perilla frutescens, and Sophora japonica in Managing Hyperuricemia through Dual Enzyme Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25879-25894. [PMID: 39526475 DOI: 10.1021/acs.jafc.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Amid growing concerns regarding gout and hyperuricemia associated with high-protein and purine-rich diets, the need for effective prevention and management strategies with minimal side effects has become increasingly critical. This study evaluates the potential of three commonly consumed plant-based functional foods, Chrysanthemum morifolium, Perilla frutescens, and Sophora japonica, inhibiting xanthine oxidase (XO) and adenosine deaminase (ADA), key enzymes in uric acid metabolism. Results from hyperuricemia model mice indicate that this blend significantly reduces serum uric acid levels, mirroring the efficacy of conventional prevention and management strategies such as allopurinol but with fewer adverse effects. Liquid chromatography-mass spectrometry (LC-MS) analysis confirms that flavonoids are the primary bioactive agents, exhibiting a strong affinity for XO. These findings highlight the viability of integrating plant-based functional foods into comprehensive gout management strategies, underscoring their role in enhancing patient health through dietary innovation.
Collapse
Affiliation(s)
- Kai-Lin Chen
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dong-Dong Xie
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Man-Ping Luo
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bing Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yang Li
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yu-Jie Zhao
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiao-Xiao Zhao
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jia-Mei Pei
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yong-Gang Ding
- Outpatient Department of the second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Zai-Ping Feng
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bei Wang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
4
|
Liu Y, Zheng K, Wang H, Liu H, Zheng K, Zhang J, Han L, Tu S, Wang Y. Natural Bioactive Compounds: Emerging Therapies for Hyperuricemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1863-1885. [PMID: 39558557 DOI: 10.1142/s0192415x24500733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Hyperuricemia is a crucial feature of metabolic syndrome, characterized by elevated uric acid that causes urate crystal deposits in joints, kidneys, and subcutaneous tissues, resulting in gout and hyperuricemic nephropathy. The primary causes of uric acid metabolism disorder include overproduction and reduced excretion. The majority of uric acid in human body is derived from the breakdown of purine nucleotides. Overproduction of uric acid can result from increased concentration or activity of xanthine oxidase, the key enzyme responsible for uric acid synthesis. Alterations in the activity of proteins responsible for uric acid reabsorption and excretion can also affect serum uric acid. Many bioactive compounds derived from natural plants have been shown to inhibit xanthine oxidase activity to reduce uric acid production, modulate the activity of transport proteins to promote uric acid excretion, or alleviate oxidative stress and inflammation through various signaling pathways. These properties have garnered significant attention from researchers. In this paper, we first introduce the pathophysiological mechanisms of hyperuricemia, then summarize bioactive compounds with urate-lowering effects, and discuss their potential applications in treating hyperuricemia and its complications.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
- Application Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Hong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kunyang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Junjun Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Yaoxian Wang
- Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
5
|
Liu X, Zhang W, Chen J, Fu R, Lin X, Zhou S, Wang L. Investigating the inhibition of xanthine oxidase by five catechins: Kinetic studies, spectroscopy, molecular docking, and dynamics simulations. Int J Biol Macromol 2024; 281:136231. [PMID: 39368569 DOI: 10.1016/j.ijbiomac.2024.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Catechins compounds from tea have demonstrated significant inhibitory effects on xanthine oxidase (XOD). However, the precise inhibitory mechanisms of the main catechins on XOD remain to be fully elucidated. This study explored the inhibition mechanisms and binding characteristics of five catechins (GC, EGC, EC, EGCG, and ECG) on XOD through a combination of inhibition kinetics, multi-spectroscopy analysis, molecular docking, and dynamics simulations. Among the catechins, EGCG and ECG exhibited the most potent inhibitory activities against XOD. All five catechins were found to exhibit mixed inhibition, affecting the hydrophobic groups and secondary structure of XOD predominantly through hydrophobic interactions and hydrogen bonding. Molecular dynamics simulations revealed that a 3,4,5-trihydroxybenzoic acid moiety at C3 position significantly enhances the binding affinity of EGCG and ECG to XOD. Additionally, the decrease of β-sheet and random coil induced by EGCG and ECG was found to be crucial for enhancing inhibitory activity of XOD. In vitro cell experiments showed that EGCG and ECG significantly reduced high uric acid levels of BRL-3A cell. This study elucidates the inhibitory mechanisms of catechins on XOD, paving the way for their application as XOD inhibitors to combat hyperuricemia.
Collapse
Affiliation(s)
- Xiaoze Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Wen Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingwen Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruihui Fu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
6
|
Yu H, Huang L, Gui L, Wu Z, Luo H, Xu M, Zhang Y, Qian Y, Cao W, Liu L, Li F. Luteolin ameliorates hyperuricemic nephropathy by activating urate excretion and Nrf2/HO-1/NQO1 antioxidant pathways in mice. Food Sci Nutr 2024; 12:8053-8066. [PMID: 39479625 PMCID: PMC11521689 DOI: 10.1002/fsn3.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 11/02/2024] Open
Abstract
Luteolin is a natural flavonoid, which exists in many plants, including onions, broccoli, carrots, peppers, celery, olive oil, and mint. Luteolin is a dietary flavonoid with potent uric acid-lowering and antioxidant bioactivities. To date, the mechanism by which luteolin alleviates hyperuricemia nephropathy (HN) still needs to be better defined. This study aims to evaluate the therapeutic efficacy of luteolin in a preclinical mouse model and in vitro. Luteolin was administered in the HN mice induced by the combination of potassium oxonate and hypoxanthine to evaluate the potential renoprotective effects in vivo. The NRK-52E cells were stimulated with adenosine for in vitro evaluation. Hematoxylin and eosin staining, biochemical analysis, immunoblotting, immunofluorescence, and immunohistochemistry were performed for the histopathologic and mechanistic investigations. The results suggest that luteolin attenuated tubular dilation and epithelial atrophy in the renal tissue of HN mice. Further, luteolin improved biochemical indicators concerning renal functions and oxidative stress in vivo. Mechanistically, luteolin reduced the renal expressions of KIM-1 and caspase-3. Luteolin activated renal SIRT1/6 cascade and its downstream Nrf2-mediated antioxidant pathway. Furthermore, luteolin elevated the renal expressions of ATP-binding cassette subfamily G isoform 2 protein (ABCG2) and organic anion/cation transporters. In addition, livers of luteolin-treated HN mice exhibited robust inhibition of xanthine oxidase. Together, our study shows that luteolin alleviates renal injury in the HN mice by activating urate excretion and Nrf2/HO-1/NQO1 antioxidant pathways and inhibiting liver xanthine oxidase activity. Thus, luteolin may be a potential agent for the treatment of HN.
Collapse
Affiliation(s)
- Huifan Yu
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
- Institute of BiomedicineHubei University of MedicineShiyanHubeiChina
| | - Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Lili Gui
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
- Institute of BiomedicineHubei University of MedicineShiyanHubeiChina
| | - Zhengkun Wu
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
- Institute of BiomedicineHubei University of MedicineShiyanHubeiChina
| | - Han Luo
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Mao Xu
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Yan Zhang
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Yongshuai Qian
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Wenjie Cao
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Li Liu
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| | - Fei Li
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanHubeiChina
| |
Collapse
|
7
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
8
|
Di Petrillo A, Siguri C, Delogu GL, Fais A, Era B, Floris S, Pintus F, Kumar A, Fantini MC, Olla S. Exploring Asphodelus microcarpus as a source of xanthine oxidase inhibitors: Insights from in silico and in vitro studies. Chem Biol Interact 2024; 397:111087. [PMID: 38823536 DOI: 10.1016/j.cbi.2024.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 μg/mL compared to 11.5 μg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy.
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042, Monserrato, Italy
| | - Giovanna L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Massimo Claudio Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042, Monserrato, Italy
| |
Collapse
|
9
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
10
|
Rameshbabu S, Alehaideb Z, Alghamdi SS, Suliman RS, Almourfi F, Yacoob SAM, Venkataraman A, Messaoudi S, Matou-Nasri S. Identification of Anastatica hierochuntica L. Methanolic-Leaf-Extract-Derived Metabolites Exhibiting Xanthine Oxidase Inhibitory Activities: In Vitro and In Silico Approaches. Metabolites 2024; 14:368. [PMID: 39057691 PMCID: PMC11278686 DOI: 10.3390/metabo14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in the discovery of novel xanthine oxidase inhibitors for gout prevention and treatment with fewer side effects. This study aimed to identify the xanthine oxidase (XO) inhibitory potential and drug-likeness of the metabolites present in the methanolic leaf extract of Anastatica (A.) hierochuntica L. using in vitro and in silico models. The extract-derived metabolites were identified by liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry (LC-QTOF-MS). Molecular docking predicted the XO inhibitory activity of the identified metabolites and validated the best scored in vitro XO inhibitory activities for experimental verification, as well as predictions of their anticancer, pharmacokinetic, and toxic properties; oral bioavailability; and endocrine disruption using SwissADMET, PASS, ProTox-II, and Endocrine Disruptome web servers. A total of 12 metabolites, with a majority of flavonoids, were identified. Rutin, quercetin, and luteolin flavonoids demonstrated the highest ranked docking scores of -12.39, -11.15, and -10.43, respectively, while the half-maximal inhibitory concentration (IC50) values of these metabolites against XO activity were 11.35 µM, 11.1 µM, and 21.58 µM, respectively. In addition, SwissADMET generated data related to the physicochemical properties and drug-likeness of the metabolites. Similarly, the PASS, ProTox-II, and Endocrine Disruptome prediction models stated the safe and potential use of these natural compounds. However, in vivo studies are necessary to support the development of the prominent and promising therapeutic use of A. hierochuntica methanolic-leaf-extract-derived metabolites as XO inhibitors for the prevention and treatment of hyperuricemic and gout patients. Furthermore, the predicted findings of the present study open a new paradigm for these extract-derived metabolites by revealing novel oncogenic targets for the potential treatment of human malignancies.
Collapse
Affiliation(s)
- Saranya Rameshbabu
- PG & Research Department of Biotechnology, Mohamed Sathak College of Arts and Science, Chennai 600119, India; (S.R.); (S.A.M.Y.)
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (Z.A.); (F.A.)
| | - Sahar S. Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, KSAU-HS, MNGHA, Riyadh 11481, Saudi Arabia;
| | - Rasha S. Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi P.O. Box 3798, United Arab Emirates;
| | - Feras Almourfi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (Z.A.); (F.A.)
| | - Syed Ali Mohamed Yacoob
- PG & Research Department of Biotechnology, Mohamed Sathak College of Arts and Science, Chennai 600119, India; (S.R.); (S.A.M.Y.)
| | - Anuradha Venkataraman
- PG & Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, Chennai 600119, India;
| | - Safia Messaoudi
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia;
| | - Sabine Matou-Nasri
- Department of Blood and Cancer Research, KAIMRC, KSAU-HS, MNGHA, Riyadh 11481, Saudi Arabia
- Department of Biosciences, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 22030, USA
| |
Collapse
|
11
|
Xu Z, Hileuskaya K, Kraskouski A, Yang Y, Huang Z, Zhao Z. Inhibition of α-glucosidase activity and intestinal glucose transport to assess the in vivo anti-hyperglycemic potential of dodecyl-acylated phlorizin and polydatin derivatives. Food Funct 2024; 15:4785-4804. [PMID: 38511466 DOI: 10.1039/d3fo05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A diet containing natural active compounds that can inhibit the hydrolytic activity of α-glucosidase on carbohydrates and intestinal glucose absorption is an effective means of controlling postprandial hyperglycemia. Phlorizin and polydatin as phenolic glycosides have a high affinity for the catalytic site of α-glucosidase, but exhibited unsatisfactory competitive inhibitory capacity, with an IC50 of 0.97 and >2 mM, respectively. However, dodecyl-acylated derivatives of phlorizin and polydatin exerted α-glucosidase inhibitory capacity, with an IC50 of 55.10 and 70.95 μM, respectively, which were greatly enhanced and much stronger than that of acarbose with an IC50 of 2.46 mM. The SPR assay suggested the high affinity of dodecyl phlorizin and dodecyl polydatin to α-glucosidase with equilibrium dissociation constant (KD) values of 12.0 and 7.9 μM, respectively. Both dodecyl phlorizin and dodecyl polydatin reduced the catalytic ability of α-glucosidase by reversible noncompetitive and uncompetitive mixed inhibition, which bind noncovalently to the allosteric site 2 through hydrogen bonds and hydrophobic interactions, thereby inducing the secondary structure unfolding and intrinsic fluorescence quenching of α-glucosidase. Confocal microscopy detection visually showed significant inhibitory effects on FITC-labeled glucose uptake in intestinal Caco-2 cells by phlorizin, polydatin, dodecyl phlorizin and dodecyl polydatin. In addition, based on the differentiated Caco-2 cell monolayer model, dodecyl phlorizin and dodecyl polydatin suppressed intestinal glucose transport more effectively than phlorizin and polydatin, suggesting that they were promising in vivo hypoglycemic active compounds.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yujiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhe Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
12
|
Li YL, Liu F, Zhao LY, Li HX, Jumai A, Xu ZF, Qiu SX. Xanthine oxidase inhibitory constituents from the roots of Ampelopsis japonica. Nat Prod Res 2024:1-10. [PMID: 38635344 DOI: 10.1080/14786419.2024.2341308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Bioassay-guided purification of the xanthine oxidase (XOD) inhibitory extract of the roots of Ampelopsis japonica resulted in the isolation of two new triterpenoids (1-2), designated Ampejaponoside A and B, along with sixteen known compounds (3-18). The structures of Ampejaposide A and B were elucidated by comprehensive analysis of spectroscopic data with the structures of the known compounds 3-18 confirmed by comparison the spectral data with corresponding values reported in literatures. All the isolates were evaluated for their XOD inhibitory activity in vitro. As a result, compounds 2, 8, and 14-16 displayed significant XOD inhibitory effect, particularly 16 being the most potent with an IC50 value of 0.21 μM, superior to positive substance allopurinol (IC50 1.95 μM). Molecular docking uncovered a unique interaction mode of 16 with the active site of XOD. The current study showed that the triterpenoids and polyphenols from A. japonica could serve as new lead compounds with the potential to speed up the development of novel XOD inhibitors with clinical potential to treat hyperuricaemia and gout.
Collapse
Affiliation(s)
- Yu-Lin Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Fen Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Han-Xiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Aikebaier Jumai
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Zhi-Fang Xu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Sheng-Xiang Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
13
|
Yan S, Yan X, Li Y, Qi B. Comparison of pH-induced protein-polyphenol self-assembly methods: Binding mechanism, structure, and functional characteristics. Food Chem 2024; 438:137996. [PMID: 37979260 DOI: 10.1016/j.foodchem.2023.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Herein, we used pH-shifted and pH-driven methods to assemble kidney-bean protein isolate (KPI) and luteolin (Lut) into a nanocomplex and subsequently investigated their binding mechanism, structure, and functional properties. Results showed that the nanocomplex prepared by the pH-driven method exhibited a better encapsulation effect and controlled release of Lut. Fluorescence spectroscopy and molecular docking analysis showed that the binding affinities under alkaline conditions were higher than those under acidic and neutral conditions. Various spectral techniques were used to determine the structural changes in the KPI-Lut nanocomplex, including the transformation of α-helices and β-sheets and alteration of specific amino acid microenvironments, which were more pronounced in the pH-driven nanocomplex. The structural changes in the nanocomplex further affected their surface hydrophobicity and thermal stability. Additionally, the combination of KPI and Lut significantly improved the antioxidant activity and α-glucosidase inhibitory ability of the resultant nanocomplexes, particularly the one prepared by the pH-driven method.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyue Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Nguyen DK, Liu TW, Hsu SJ, Huynh QDT, Thi Duong TL, Chu MH, Wang YH, Vo TH, Lee CK. Xanthine oxidase inhibition study of isolated secondary metabolites from Dolichandrone spathacea (Bignoniaceae): In vitro and in silico approach. Saudi Pharm J 2024; 32:101980. [PMID: 38439949 PMCID: PMC10909772 DOI: 10.1016/j.jsps.2024.101980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 μM to 64.50 ± 0.94 μM. The enzyme kinetics indicated that compounds 3-5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (-18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 μM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.
Collapse
Affiliation(s)
- Dang-Khoa Nguyen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Quoc-Dung Tran Huynh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Truc-Ly Thi Duong
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Man-Hsiu Chu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Han Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Thanh-Hoa Vo
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Zhou HB, Feng LJ, Weng XH, Wang T, Lu H, Bian YB, Huang ZY, Zhang JL. Inhibition mechanism of cordycepin and ergosterol from Cordyceps militaris Link. against xanthine oxidase and cyclooxygenase-2. Int J Biol Macromol 2024; 258:128898. [PMID: 38141695 DOI: 10.1016/j.ijbiomac.2023.128898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Cordyceps militaris Link. (C. militaris) is an entomopathogenic fungus that parasitizes the pupa or cocoon of lepidopteran insect larvae, with various bioactive compounds. Cordycepin and ergosterol are the two active components in C. militaris. This study aimed to evaluate the inhibitory activity of cordycepin and ergosterol against xanthine oxidase (XO) and cyclooxygenase-2 (COX-2), as well as investigate the inhibition mechanism. Cordycepin could better inhibit XO (IC50 = 0.014 mg/mL) and COX-2 (IC50 = 0.055 mg/mL) than ergosterol. Additionally, surface hydrophobicity and circular dichroism (CD) spectra results confirmed the conformational changes in enzymes induced by cordycepin and ergosterol. Finally, cordycepin and ergosterol significantly decreased uric acid (UA) and inflammatory factors to normal level in mice with gouty nephropathy (GN). This study could provide theoretical evidence for utilization of C. militaris in hyperuricemia-management functional foods.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - L J Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - H Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Y B Bian
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - Z Y Huang
- Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
16
|
Xu Z, Du H, Manyande A, Xiong S. A comprehensive investigation on the interaction between jaceosidin, baicalein and lipoxygenase: Multi-spectroscopic analysis and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123423. [PMID: 37742591 DOI: 10.1016/j.saa.2023.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Lipoxygenase (LOX) has the harmful effect of accelerating lipid oxidation, and polyphenols have the inhibitory effect on lipoxygenase. However, there were rare researches investigated on the interactions between polyphenols and LOX. In this study, the binding mechanisms between polyphenols (Jaceosidin-JSD and baicalein-BCL) and LOX were investigated by multi-spectroscopic analysis and computational study. Both JSD and BCL binding to LOX resulted in static fluorescence quenching, and the complexes of JSD-LOX and BCL-LOX were built at a molar ratio of 1:1, respectively. The binding constants of LOX-JSD (72.18 × 105 L/mol at 298 K) and LOX-BCL (12.43 × 105 L/mol at 298 K) indicated that LOX had stronger binding affinity to JSD compared to BCL. Compared with BCL-LOX, the JSD-LOX system formed more hydrogen bonds which ensured a stronger bond between JSD and LOX. The studies in molecular dynamics also demonstrated that the JSD-LOX complex is more stable, and the addition of JSD is more conducive to the complex formation. The current study provides some new insights for the study on the inhibition of lipid oxidation and affords a new strategy for the discovery of novel food preservatives.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
17
|
Chen J, Yu S, He Z, Zhu D, Cai X, Ruan Z, Jin N. Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid: In Vitro and In Vivo Investigations and Docking Simulations. Curr Pharm Biotechnol 2024; 25:477-487. [PMID: 37345239 DOI: 10.2174/1389201024666230621141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Background: Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear. Objectives: The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound. Methods: The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 μmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA-XO complexes, with the negative values of △H and ΔS. Results: This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice. Conclusion: This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors. .
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Sijin Yu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zemin He
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Danhong Zhu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
18
|
Zhou QX, Zhou Q, Zhang P, Xie YQ, Yang ZY, Tan WH, Khan A, Duan WG, Zhou ZH, Liu L. Integrating multi-level interactive network and in vivo/vitro studies to explore the protective mechanism of Ampelopsis grossedentata in hyperuricemia. Fitoterapia 2024; 172:105718. [PMID: 37931719 DOI: 10.1016/j.fitote.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.
Collapse
Affiliation(s)
- Qi-Xiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qian Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Peng Zhang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yan-Qing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhu-Ya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wen-Hong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Wei-Gang Duan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhi-Hong Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
19
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Chen J, Zhang Z, Li H, Tang H. Exploring the effect of a series of flavonoids on tyrosinase using integrated enzyme kinetics, multispectroscopic, and molecular modelling analyses. Int J Biol Macromol 2023; 252:126451. [PMID: 37619686 DOI: 10.1016/j.ijbiomac.2023.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The control of food browning can be achieved by inhibiting tyrosinase (TY) activity, but current studies on the interaction of flavonoids as potent inhibitors with TY are inadequate. Herein, the effect of a library of flavonoids on TY was investigated using enzyme kinetics, multispectroscopic methods, and molecular modelling. Some flavonoids including 4, 8, 10, 17, 18, 28, 30, 33, and 34 exhibited potent TY inhibitory activity, with compound 10 demonstrating reversible inhibition in a mixed-competitive manner. Ultraviolet-visible spectral changes confirmed the formation of flavonoid-TY complexes. Fluorescence quenching analysis suggested effective intrinsic fluorescence quenching by flavonoids through static quenching with the ground-state complex formation. Synchronous fluorescence spectra showed the microenvironment change around the fluorophores induced by flavonoids. ANS-binding fluorescence assay indicated TY's surface hydrophobicity change by flavonoids and highlighted the change in secondary structure conformation, which was further confirmed by Fourier-transform infrared spectra. Molecular modelling results helped visualize the preferred binding conformation at the active site of TY, and demonstrated the important role of hydrophobic interaction and hydrogen bonding in stabilizing the flavonoid-TY complexes. These findings prove that diverse flavonoid structures distinctly impact their binding behavior on TY and contribute to understanding flavonoids' potential as TY inhibitors in controlling food browning.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
21
|
Liu Q, Li L, Zheng D, Jin S, Guan X, Fu Z, Xiong Z, Ding H. Mechanism of ShuiJingDan in Treating Acute Gouty Arthritis Flares Based on Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2023; 17:3493-3505. [PMID: 38034481 PMCID: PMC10683514 DOI: 10.2147/dddt.s436360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares. Methods This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD). The core drug group-target-disease Venn diagram was formed by crossing the active ingredients of SJD and the relevant targets. Gene Ontology (GO) analysis was conducted for functional annotation, DAVID was used for Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis, and R was used to find the core targets. The accuracy of SJD network pharmacology analysis in GA treatment was verified by molecular docking simulations. Finally, a rat GA model was used to further verify the anti-inflammatory mechanism of SJD in the treatment of GA. Results SJD mainly acted on target genes including IL1B, PTGS2, CXCL8, EGF, and JUN, as well as signal pathways including NF-κB, Toll-like receptor (TLR), IL-17, and MAPK. The rat experiments showed that SJD could significantly relieve ankle swelling, reduce the local skin temperature, and increased the paw withdrawal threshold. SJD could also reduce synovial inflammation, reduced the concentrations of interleukin-1β (IL-1β), IL-8, and COX-2 in the synovial fluid, and suppressed the expression of IL1B, CXCL8, and PTGS2 mRNA in the synovial tissue. Conclusion SJD has a good anti-inflammatory effect to treat GA attacks, by acting on target genes such as IL-1β, PTGS2, and CXCL8.
Collapse
Affiliation(s)
- Qingsong Liu
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Lunyu Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Dan Zheng
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Songlin Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Xiaotian Guan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zeting Fu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zhigang Xiong
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haili Ding
- Insititute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Valentová K, Vida RG, Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother 2023; 167:115548. [PMID: 37734263 DOI: 10.1016/j.biopha.2023.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Z Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Prague, Czech Republic
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary.
| |
Collapse
|
23
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
24
|
Dong Y, Sun N, Ge Q, Lv R, Lin S. Antioxidant soy peptide can inhibit xanthine oxidase activity and improve LO2 cell damage. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
In-vitro antigout potential of Alstonia scholaris flower, characterization and prospective ligand-receptor interaction of bioactive lead compound. Heliyon 2023; 9:e14093. [PMID: 36923885 PMCID: PMC10009449 DOI: 10.1016/j.heliyon.2023.e14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gout is an arthropathic and inflammatory disease. The prevalence and incidence of such disease has risen in last decades. It is associated with life style thus it could be recognize as life style diseases. In the present study, the flower extract of Alstonia scholaris Linn R.Br., Flower was initially subjected to extraction, isolation which leads to purification of pure eight compounds. All these compounds were identified using various spectroscopic techniques. In-vitro Xanthine oxidase inhibition activity was performed to determine the antigout potential of lead compounds. Compound 8 showed significant activity among all i.e. 14.7 ± 0.43 as compare to standard allopurinol 6.77 ± 0.26. Accordingly, in-silico studies using Autodock vina 4 showed the ligand-protein interaction of luteolin with 3AX7. The docking simulations showed significant binding pocket sites of respective proteins 3AX7 with the least binding energy -10.2 kcal/mol. Consequently, molecular docking simulations for 100ns indicated robust evidence with their conformational structural interaction which serve as active sites for Lead compound. Principal Component Analysis indicated first three PCs capture 23.8%, 39%, and 49% of structural variance in protein. Therefore compound 8 could be consider for potential drug design and development in gout therapy.
Collapse
|
26
|
Haguet Q, Le Joubioux F, Chavanelle V, Groult H, Schoonjans N, Langhi C, Michaux A, Otero YF, Boisseau N, Peltier SL, Sirvent P, Maugard T. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Int J Mol Sci 2023; 24:3652. [PMID: 36835060 PMCID: PMC9966338 DOI: 10.3390/ijms24043652] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.
Collapse
Affiliation(s)
- Quentin Haguet
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | | | - Vivien Chavanelle
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Hugo Groult
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Nathan Schoonjans
- Valbiotis, R&D Center, 23 Avenue Albert Einstein, 17000 La Rochelle, France
| | - Cédric Langhi
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Arnaud Michaux
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Yolanda F. Otero
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Nathalie Boisseau
- AME2P, STAPS, Université Clermont Auvergne, 5 Impasse Amélie Murat, 63001 Clermont-Ferrand, France
| | | | - Pascal Sirvent
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Thierry Maugard
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
27
|
Wee SP, Loh KE, Lam KW, Ismail IS. A Study of the Interaction between Xanthine Oxidase and Its Inhibitors from Chrysanthemum morifolium Using Computational Simulation and Multispectroscopic Methods. Metabolites 2023; 13:metabo13010113. [PMID: 36677038 PMCID: PMC9864848 DOI: 10.3390/metabo13010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023] Open
Abstract
The current therapeutic approach for gout is through the inhibition of the xanthine oxidase (XO) enzyme. Allopurinol, a clinically used XO inhibitor, causes many side effects. This study aimed to investigate the interaction between XO and inhibitors identified from Chrysanthemum morifolium by using computational simulation and multispectroscopic methods. The crude extract, petroleum ether, ethyl acetate (EtOAc), and residual fractions were subjected to an XO inhibitory assay and 1H NMR analysis. The EtOAc fraction was shown to be strongly correlated to the XO inhibitory activity by using PLS biplot regression analysis. Kaempferol, apigenin, homovanillic acid, and trans-cinnamic acid were suggested to contribute to the XO inhibitory activity. Molecular docking showed that kaempferol and apigenin bound to the active site of XO with their benzopyran moiety sandwiched between Phe914 and Phe1009, interacting with Thr1010 and Arg880 by hydrogen bonding. Kaempferol showed the lowest binding energy in molecular dynamic simulation. The residues that contributed to the binding energy were Glu802, Arg880, Phe 914, and Phe 1009. A fluorescence quenching study showed a combination of static and dynamic quenching for all four inhibitors binding to XO. Circular dichroism spectroscopy revealed that there was no major change in XO conformation after binding with each inhibitor.
Collapse
Affiliation(s)
- Sze Ping Wee
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Federal Territory of Kuala Lumpur, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Federal Territory of Kuala Lumpur, Malaysia
- Correspondence: ; Tel.: +60-3-41450123 (ext. 3171)
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Federal Territory of Kuala Lumpur, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
28
|
Li W, Tian H, Guo F, Wu Y. Inhibition characteristics and mechanism of tyrosinase using five citrus flavonoids: A spectroscopic and molecular dynamics simulation study. J Food Biochem 2022; 46:e14484. [PMID: 36239431 DOI: 10.1111/jfbc.14484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023]
Abstract
This work presents a comparative analysis of the tyrosinase inhibitory effects of five citrus flavonoids, namely hesperetin, hesperidin, neohesperidin, naringenin and naringin. Visbile, fluorescence, and fourier transform infrared (FITR) spectroscopies, and molecular dynamic methods were employed to compare the anti-tyrosinase mechanisms of each flavonoid. Hesperetin, neohesperidin, naringenin and naringin exhibited potent inhibitory activities with IC50 values of 0.74 ± 0.05, 2.19 ± 0.03, 7.50 ± 9.82 and 24.94 ± 8.43 μmol/ml, respectively, all of which were higher than that of kojic acid (0.04 ± 0.02 μmol/ml). The enzymatic kinetics results suggested that hesperetin and naringenin were reversible inhibitors on tyrosinase in the mixed-type manner. H-bond and hydrophobic interactions were found to drive the binding of tyrosinase with hesperetin or naringenin, which subsequently changed the FTIR spectroscopy results by decreasing the α-helix ratio and increasing the β-turn, β-sheet and random coil ratio in tyrosinase. Molecular dynamics simulation not only verified some of the experimental results, but also suggested that the binding of hesperetin and naringenin to tyrosinase was spontaneous. The findings of this study indicate that citrus flavonoids are a promising dietary resource for tyrosinase inhibition. PRACTICAL APPLICATIONS: Hesperetin, hesperidin, neohesperidin, naringenin and naringin were typical citrus flavonoids that have anti-obesity, anti-oxidation, anti-inflammation and anti-diabetes activities. Current study suggested that hesperetin and naringenin were effective reversible inhibitors on tyrosinase in the mixed-type manner. Hesperetin and naringenin might serve as nutritional and chemical agents for regulating the tyrosinase activity to control melanin level in vivo.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Hua Tian
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Futing Guo
- School of Life Science and Biotechnology
- , Yangtze Normal University, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
29
|
Chen J, Wang Y, Pan X, Cheng Y, Liu J, Cao X. Study on the interaction mechanism between luteoloside and xanthine oxidase by multi-spectroscopic and molecular docking methods. J Mol Recognit 2022; 35:e2985. [PMID: 35907782 DOI: 10.1002/jmr.2985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Gout is an inflammatory joint disease caused by urate crystal deposition, which is associated with hyperuricemia. Gout will take place when the uric acid accumulates. Xanthine oxidase (XO) is a crucial enzyme in the formation of uric acid. Inhibiting XO is one of the means to ameliorate gout. Luteoloside is a kind of natural flavonoid, which has an excellent prospect for relieving gout. But there are few reports on the interaction mechanism between luteoloside and XO currently. In this study, the interaction mechanism between luteoloside and XO was explored using spectroscopy and molecular docking. The fluorescence spectroscopy results indicated that luteoloside could make the intrinsic fluorescence of XO quenched, and the binding constant between luteoloside and XO was (1.85 ± 0.22) × 103 L mol-1 at 298 K. The synchronous fluorescence spectroscopy results showed that the absorption peaks of Tyr and Trp shifted blue, and the hydrophobicity of the microenvironment increased. Moreover, CD spectra showed that α-helix of XO decreased, β-sheet and β-turn increased after adding luteoloside. The results of molecular docking analysis showed that XO could combine with luteoloside through hydrogen bonds and hydrophobic force. The results indicated that luteoloside could remarkably interact with XO. Insights into the interaction mechanism provide a necessary basis for the search for low-toxic natural products as targets of XO. HIGHLIGHTS: Luteoloside and xanthine oxidase was a strong binding mode and had only one binding site. Luteoloside could cause α-helix reduced, β-sheet and β-turn increased, and change the secondary structure of XO. The binding between luteoloside and xanthine oxidase was a spontaneous process. The main binding force was hydrophobic force between luteoloside and xanthine oxidase.
Collapse
Affiliation(s)
- Junliang Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang, People's Republic of China
| | - Xinyu Pan
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Ye Cheng
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Li N, Amatjan M, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. Integration of network pharmacology and intestinal flora to investigate the mechanism of action of Chinese herbal Cichorium intybus formula in attenuating adenine and ethambutol hydrochloride-induced hyperuricemic nephropathy in rats. PHARMACEUTICAL BIOLOGY 2022; 60:2338-2354. [PMID: 36444935 PMCID: PMC9897651 DOI: 10.1080/13880209.2022.2147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Cichorium intybus L. (Asteraceae) formula (CF) has been applied as a folk medicine to treat hyperuricemic nephropathy (HN). However, the exact mechanism remains unclear. OBJECTIVE To explore the therapeutic effect and mechanism of CF on HN. MATERIALS AND METHODS Through network pharmacological methods, the targets of the active component of CF against HN were obtained. Subsequently, Male Wistar rats were divided into control, HN, allopurinol (50 mg/kg), CF high-dose (8.64 g/kg) and CF low-dose (2.16 g/kg) groups. The HN model was induced via intragastric administration of adenine (100 mg/kg) and ethambutol hydrochloride (250 mg/kg) for 3 weeks. After CF treatment, biochemical indicators including UA, UREA and CREA were measured. Then, HE staining, qRT-PCR and gut microbiota analysis were conducted to further explore the mechanism. RESULTS The network pharmacology identified 83 key targets, 6 core genes and 200 signalling pathways involved in the treatment of HN. Compared to the HN group, CF (8.64 g/kg) significantly reduced the levels of UA, UREA and CREA (from 2.4 to 1.57 μMol/L, from 15.87 to 11.05 mMol/L and from 64.83 to 54.83 μMol/L, respectively), and mitigated renal damage. Furthermore, CF inhibited the expression of IL-6, TP53, TNF and JUN. It also altered the composition of gut microbiota, and ameliorated HN by increasing the relative abundance of some probiotics. CONCLUSIONS This work elucidated the therapeutic effect and underlying mechanism by which CF protects against HN from the view of the biodiversity of the intestinal flora, thus providing a scientific basis for the usage of CF.
Collapse
Affiliation(s)
- Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
31
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
32
|
Screening of xanthine oxidase inhibitory peptides by ligand fishing and molecular docking technology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Liu Y, Luo D, Xu B. The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout. Medicine (Baltimore) 2022; 101:e31535. [PMID: 36451451 PMCID: PMC9704887 DOI: 10.1097/md.0000000000031535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Due to unhealthy diet and living habits, the incidence of gout is on the rise and has become a common disease with a high incidence. Danggui Niantong decoction (DGNTD), as a classic formula composed of 15 common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism and target of DGNTD are not clear. METHODS The potential active compounds and targets of DGNTD were obtained by traditional Chinese medicine systems pharmacology (TCMSP) database, and the differential genes of gout patients and controls were analyzed in gene expression omnibus (GEO) database. GSEA analysis of differential genes with GSEA 4.1.0 software and then the differential genes were intersected with the gout-related disease targets searched by GeneCard, CTD and OMIM disease database to obtain the final disease target. The "Traditional Chinese medicine-Active compounds-Targets" network was constructed by Cytoscape3.7.2 software. The R packet is used for enrichment analysis. The molecular docking between the active compound of DGNTD and the core target was verified by AutoDockTools software. RESULTS Two hundred eighty six and 244 targets of DGNTD-related active components and 652 targets of gout were obtained, of which 13 targets were potential targets of DGNTD in the treatment of gout. GSEA analysis showed that the differential genes were mainly involved in apoptosis, inflammatory reaction, and receptor metabolism and so on. Gene ontology (GO) functional enrichment analysis shows that DGNTD regulates many biological processes, such as the response to purine-containing compound and response to lipopolysaccharide, positive regulation of acute inflammatory response and other cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis shows that DGNTD treatment of gout is mainly related to interleukin-17 (IL-17), Toll-like receptor, rheumatoid arthritis, tumor necrosis factor (TNF) and so on. The results of molecular docking showed that the five active compounds in DGNTD had strong binding activity to core protein receptors. CONCLUSIONS The active compounds of DGNTD may achieve the purpose of treating gout by acting on the core target (CASP8, CXCL8, FOS, IL1B, IL6, JUN, PTGS2, STAT1, MMP1, TNF) to regulate cell metabolism, proliferation and apoptosis, and improve inflammatory response, which is the result of multi-component, multi-target and multi-pathway interaction. It provides an idea for the development of new combined drugs for gout.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Di Luo
- Microscopic Orthopaedic, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Bo Xu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- * Correspondence: Bo Xu, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong 250000, China (e-mail: )
| |
Collapse
|
34
|
An ultra-sensitive luteolin sensor based on Co-doped nitrogen-containing carbon framework/MoS2-MWCNTs composite for natural sample detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Yu Z, Cao Y, Kan R, Ji H, Zhao W, Wu S, Liu J, Shiuan D. Identification of egg protein-derived peptides as xanthine oxidase inhibitors: virtual hydrolysis, molecular docking, and in vitro activity evaluation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Vijeesh V, Vysakh A, Jisha N, Latha M. Multispectroscopic binding studies and in silico docking analysis of interactions of malic acid with xanthine oxidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Hou C, Sha W, Li Y, Yao M, Ren J. A modified xanthine oxidase cell model for screening of antihyperuricemic functional compounds. Food Funct 2022; 13:10546-10557. [PMID: 36155703 DOI: 10.1039/d2fo00297c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperuricemia is a purine metabolism disorder, with increasing prevalence worldwide. Here, a high throughput cell model for screening of antihyperuricemic compounds was set up. Human kidney cells (HK2 cells) were stimulated with adenosine and the resulting supernatant and lysate were then analyzed using high performance liquid chromatography (HPLC). The results showed that hypoxanthine content was increased in both HK2 cells supernatant and xanthine oxidase (XO)-overexpressing HK2 cells lysate, but no uric acid was detected due to lower endogenous XO content in these cells. Exogenous XO was added to the supernatant, and then used to evaluate the antihyperuricemic activity of Febuxostat and two the previously identified peptides, Pro-Gly-Ala-Cys-Ser-Asn (PGACSN) and Trp-Met-Leu (WML). By adding exogenous XO, this combined-adenosine-XO-induced hyperuricemia model was optimized and established, and the Febuxostat and peptides were confirmed to significantly reduce uric acid production in the HK2 cells supernatant (p < 0.05). Therefore, this cell model could be recommended for screening potential bioactive antihyperuricemic compounds.
Collapse
Affiliation(s)
- Chuanli Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wangqian Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yujuan Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease and China State Key Laboratory of Respiratory Disease, Guangzhou 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Huangpu District, Guangzhou, 510663, China
| |
Collapse
|
38
|
Wang L, Wang Y, Chen M, Zhu Y, Qin Y, Zhou Y. Tetrabutylammonium bromide-based hydrophobic deep eutectic solvent for the extraction and separation of dihydromyricetin from vine tea and its inhibitory efficiency against xanthine oxidase. RSC Adv 2022; 12:28659-28676. [PMID: 36320535 PMCID: PMC9540247 DOI: 10.1039/d2ra04266e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, deep eutectic solvent oscillation-assisted extraction (DES-OS) combined with macroporous resin adsorption and desorption technology was used to achieve the rapid green extraction and separation of the characteristic component dihydromyricetin (DMY) from vine tea. Multivariate data analysis showed that the DES system composed of tetrabutylammonium bromide (N444Br) and pyruvic acid (molar ratio 1 : 2) had good extraction performance for DMY. The influence parameters of DES-OS were studied, and optimized by the single-factor test and response surface methodology (RSM) with Box–Behnken design (BBD). The extraction model of DMY was established and verified. The results showed that the extraction yield of DMY could reach 40.1 mg g−1 under the optimal conditions (DES water contents of 71.18%, extraction time of 2.80 h, extraction temperature of 46.40 °C), which is in good agreement with the predicted value. In addition, Fourier transform infrared spectroscopy (FT-IR) was used to characterize the solvent before and after extraction. Scanning electron microscopy (SEM) results further confirmed that tetrabutylammonium bromide:pyruvate enhanced the destruction of the cell wall structure, resulting in the release of more DMY. Furthermore, different macroporous resins were selected for the separation of DMY for the DES-OS extract, and it was found that the DM301 resin had the ideal recovery performance under optimized dynamic condition. Finally, the product was found to have an inhibitory effect against xanthine oxidase (XO) as a mixed-type competitive inhibitor with IC50 values of (5.79 ± 0.22) × 10−5 mol L−1. The inhibitory mechanisms of DMY on XO were explored by enzyme kinetics, spectroscopy, molecular docking and molecular dynamics analysis approaches, which provided a theoretical basis for the above inhibition assays. In this study, deep eutectic solvent oscillation-assisted extraction (DES-OS) combined with macroporous resin adsorption and desorption technology was used to achieve the rapid green extraction and separation of dihydromyricetin (DMY) from vine tea.![]()
Collapse
Affiliation(s)
- Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Meixu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| | - Yaoyao Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| | - Yuchuan Qin
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of ForestryHangzhou 310023China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and TechnologyHangzhou 310023China
| |
Collapse
|
39
|
Zhou H, Bie S, Li J, Yuan L, Zhou L. Comparison on inhibitory effect and mechanism of inhibitors on sPPO and mPPO purified from ‘Lijiang snow’ peach by combining multispectroscopic analysis, molecular docking and molecular dynamics simulation. Food Chem 2022; 400:134048. [DOI: 10.1016/j.foodchem.2022.134048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
|
40
|
The inhibitory kinetics and mechanism of quercetin-3-O-rhamnoside and chlorogenic acid derived from Smilax china L. EtOAc fraction on xanthine oxidase. Int J Biol Macromol 2022; 213:447-455. [PMID: 35660039 DOI: 10.1016/j.ijbiomac.2022.05.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/13/2023]
Abstract
Smilax china L. showed various biological activities mainly due to its phenolic components; however, the mechanism of isolated phenolic fraction against xanthine oxidase (XO) has not been investigated. Quercetin-3-O-rhamnoside (QORh) and chlorogenic acid (CGA) extracted from Smilax china L. ethyl acetate fraction was analyzed for its XO inhibitory kinetics and mechanism using multispectroscopic methods and molecular docking techniques. QORh and CGA reversibly inhibited XO activity in competitive and non-competitive modes, respectively. The bioactive compounds bound with XO were dominated mainly by hydrogen bonds and van der Waals forces to form QORh-XO, and CGA-XO complexes with one affinity binding site. The synchronous fluorescence, circular dichroism, three-dimensional (3D) fluorescence, and Fourier transform infrared spectra exhibited that XO binding with QORh or CGA leads to the secondary and tertiary structural variation of the protein. Additionally, molecular docking further revealed that QORh binds to the active site of XO and forms hydrogen coupling with amino acid residues. The results showed that QORh and CGA had inhibitory activity on XO, which might be further used to modify the bioactive compounds and improve their efficacy to treat gout.
Collapse
|
41
|
Characterization of xanthine oxidase inhibitory activities of phenols from pickled radish with molecular simulation. Food Chem X 2022; 14:100343. [PMID: 35634221 PMCID: PMC9136259 DOI: 10.1016/j.fochx.2022.100343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The 2,6-Dihydroxyacetophenone (DHAP), 4-Hydroxyphenethyl alcohol (4-HPEA), and 4-Hydroxybenzaldehyde (HBA) in pickled radish showed a good affinity for xanthine oxidase (XOD) in the molecular docking results. DHAP, 4-HPEA and HBA inhibit in vitro XOD enzymatic activity by affecting secondary structure and hydrophobic groups, IC50 were: 1.24 ± 0.02 mM, 24.52 ± 0.8 mM, and 2.67 ± 0.9 µM, respectively. DHAP, 4-HPEA and HBA reduce xanthine-induced high uric acid levels in BRL 3A cells by inhibiting XOD enzyme activity (p < 0.05).
Pickled radish is a general source of natural bioactive compounds that include phenols. Here, we used molecular docking, fluorescence quenching, circular dichroism spectroscopy and molecular dynamics simulations to identify potential inhibitors against xanthine oxidase from a library of pickled radish compounds. The most effective compounds were selected for validation through in vitro experiments including enzyme activity inhibition tests, and cell-based assays. Molecular docking results revealed that 2,6-Dihydroxyacetophenone, 4-Hydroxyphenethyl alcohol, and 4-Hydroxybenzaldehyde exhibited significant effects on xanthine oxidase inhibition. Three phenols have varying degrees of inhibition on xanthine oxidase, which is driven by hydrophobic interactions and hydrogen bonds and affects the secondary structure and hydrophobic homeostasis of xanthine oxidase. The stability of xanthine oxidase inhibition by three phenols was analyzed by molecular dynamics simulation. Finally, cellular experiments confirmed that three phenols reduced uric acid levels by inhibiting the xanthine oxidase enzyme activity of BRL 3A cells.
Collapse
|
42
|
Vijeesh V, Vysakh A, Jisha N, Latha MS. In vitro enzyme inhibition and in vivo anti-hyperuricemic potential of eugenol: An experimental approach. Drug Dev Ind Pharm 2022; 47:1998-2003. [PMID: 35616220 DOI: 10.1080/03639045.2022.2083156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Xanthine oxidase (XO) was accountable for the uric acid synthesis in the body and is considered as a prominent therapeutic target in urate lowering treatment. Eugenol is a natural compound commonly found in the clove, cinnamon etc. and have various biological activities. This study was designed to examine the anti-hyperuricemic effect of eugenol by in vitro and in vivo studies. Potassium oxonate (PO) was used to induce hyperuricemia in Wistar rats. Different doses of eugenol (1.25, 2.5 and 5mg/kg bwt orally) were used for the treatment and various biological function markers (renal, hepatic and hematological) were analyzed. The IC50 value obtained for eugenol was 3.51 ± 0.002 μM. The kinetic studies revealed that the eugenol exhibited a mixed type of inhibition. Abnormality in the levels of various biological function markers were observed in the PO treated rats. Upon the eugenol treatment, those biological function markers were retained near to its normal values. The study proved the anti-hyperuricemic potential of eugenol against the PO induced hyperuricemia model.
Collapse
Affiliation(s)
- V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| |
Collapse
|
43
|
Feng S, Wu S, Xie F, Yang CS, Shao P. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Du H, Li SJ. Inhibition of porphyra polysaccharide on xanthine oxidase activity and its inhibition mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120446. [PMID: 34628362 DOI: 10.1016/j.saa.2021.120446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Xanthine oxidase (XO) is a purine catabolic enzyme related to hyperuricemia and gout. Porphyra polysaccharide (PP) is a kind of sulfated polysaccharide with potent biological activity. Herein, the interaction mechanism between PP and XO was studied by enzyme kinetics and multi-spectroscopy methods for the first time. Inhibition kinetics assay showed that PP reversibly inhibited XO activity in a mixed competitive manner with an IC50 of 10.53 ± 0.69 mg/ml. Fluorescence titration studies and thermodynamic parameter calculations revealed that PP could spontaneously bind to XO through hydrophobic interactions, with a class of binding site. Circular dichroism analysis demonstrated that PP induced secondary structure rearrangement and conformational change of XO. Molecular docking further revealed that PP inserted into the hydrophobic cavity of XO, occupying the catalytic center, leading to the inhibition of XO activity. This study may provide new insights into the inhibitory mechanism of PP as a promising XO inhibitor.
Collapse
Affiliation(s)
- Hongyan Du
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Shu Jie Li
- Department of Biophysics, School of Physical Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| |
Collapse
|
45
|
Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico - in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv 2022; 12:2843-2872. [PMID: 35425287 PMCID: PMC8979054 DOI: 10.1039/d1ra08011c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 01/19/2023] Open
Abstract
Xanthine oxidase (XO) has been well-recognized as a validated target for the treatment of hyperuricemia and gout. Currently, there are two drugs in clinical use that shut down XO overactivity, allopurinol and febuxostat; however, detrimental side effects restrict their applications. Propolis is a unique natural adhesive biomass of structurally variable and biologically active metabolites that exert remarkable health benefits. Moreover, combination drug therapy has become a promising pharmacotherapeutic strategy directed for reformulating existing drugs into new combination entities with potentiating therapeutic impacts. In this study, computer-aided molecular docking and MD simulations accompanied by biochemical testing were used for mining novel pharmacologically active chemical entities from Egyptian propolis to combat hyperuricemia. Further, with a view to decrease the potential toxicity of synthetic drugs and enhance efficacy, propolis hits were subjected to combination analysis with each of allopurinol and febuxostat. More specifically, Glide docking was utilized for a structure-based virtual screening of in-house datasets comprising various Egyptian propolis metabolites. Rosmarinic acid, luteolin, techtochrysin and isoferulic acid were the most promising virtual hits. In vitro XO inhibitory assays demonstrated the ability of these hits to significantly inhibit XO in a dose-dependent manner. Molecular docking and MD simulations revealed a cooperative binding mode between the discovered hits and standard XO inhibitors within the active site. Subsequently, the most promising hits were tested in a fixed-ratio combination setting with allopurinol and febuxostat separately to assess their combined effects on XO catalytic inhibition. The binary combination of each techtochrysin and rosmarinic acid with febuxostat displayed maximal synergy at lower effect levels. In contrast, individually, techtochrysin and rosmarinic acid with allopurinol cooperated synergistically at high dose levels. Taken together, the suggested strategy seems imperative to ensure a steady supply of new therapeutic options sourced from Egyptian propolis to regress the development of hyperuricemia.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ali M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University Kayseri 38039 Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| |
Collapse
|
46
|
Zou F, Li X, Yang R, Zhang R, Zhao X. Effects and underlying mechanisms of food polyphenols in treating gouty arthritis: A review on nutritional intake and joint health. J Food Biochem 2022; 46:e14072. [PMID: 34997623 DOI: 10.1111/jfbc.14072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Gouty arthritis, one of the most severe and common forms of arthritis, is characterized by monosodium urate crystal deposition in joints and surrounding tissues. Epidemiological evidence indicates that gouty arthritis incidence is sharply rising globally. Polyphenols are found in many foods and are secondary metabolites in plant foods. The anti-inflammatory and antioxidant effects of food polyphenols have been extensively studied in many inflammatory chronic diseases. Research has suggested that many food polyphenols have excellent anti-gouty arthritis effects. The mechanisms mainly include (a) inhibiting xanthine oxidase activity; (b) reducing the levels of inflammatory cytokines and chemokines; (c) inhibiting the activation of signaling pathways and the NLRP3 inflammasome; and (d) reducing oxidative stress. This paper reviews the research progress and pathogenesis of gouty arthritis and introduces the mechanisms of food polyphenols in treating gouty arthritis, which aims to explore the potential of functional foods in the treatment of gouty arthritis. PRACTICAL APPLICATIONS: The incidence rate of gouty arthritis has increased sharply worldwide, which has seriously affected people's quality of life. According to the current research progress, food polyphenols alleviate gouty arthritis through anti-inflammatory and antioxidant effects. This paper reviews the research progress and molecular pathogenesis of gouty arthritis and introduces the mechanisms of food-derived polyphenols in the treatment of gouty arthritis, which is helpful to the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofang Li
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Research and Development, Jiahehongsheng (Shenzhen) Health Industry Group, Shenzhen, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
47
|
Loh KE, Chin YS, Safinar Ismail I, Tan HY. Rapid characterisation of xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat. Using metabolomics approach. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:12-22. [PMID: 34000756 DOI: 10.1002/pca.3057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/18/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Hyperuricemia is the key risk factor for gout, in which the elevated uric acid is attributed to the oxidation of hypoxanthine and xanthine to uric acid by xanthine oxidase (XO). Adverse effects of the current treatments lead to an urgent need for safer and more effective alternative from natural resources. OBJECTIVE To compare the metabolite profile of Chrysanthemum morifolium flower fraction with that of its detannified fraction in relation to XO inhibitory activity using a rapid and effective metabolomics approach. METHODS Proton nuclear magnetic resonance (1 H-NMR)-based metabolomics approach coupled with multivariate data analysis was utilised to characterise the XO inhibitors related to the antioxidant properties, total phenolic, and total flavonoid contents of the C. morifolium dried flowers. RESULTS The highest XO inhibitory activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, total phenolic and flavonoid content with strong positive correlation between them were observed in the ethyl acetate (EtOAc) fraction. Detannified EtOAc showed higher XO inhibitory activity than non-detannified EtOAc fraction. A total of 17 metabolites were tentatively identified, of which three namely kaempferol, 4-hydroxybenzoic acid and apigenin, could be suggested to be responsible for the strong XO inhibitory activity. Additive interaction between 4-hydroxybenzoic acid and apigenin (or kaempferol) in XO inhibition was demonstrated in the interaction assay conducted. CONCLUSION Chrysanthemum morifolium dried flower-part could be further explored as a natural XO inhibitor for its anti-hyperuricemic potential. Metabolomics approach served as an effective classification of plant metabolites responsible for XO inhibitory activity, and demonstrated that multiple active compounds can work additively in giving combined inhibitory effects.
Collapse
Affiliation(s)
- Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Yong Sin Chin
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hui Yin Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Abdulhafiz F, Farhan Hanif Reduan M, Hamzah Z, Abdul Kari Z, Dawood MA, Mohammed A. Acute Oral Toxicity Assessment and Anti-hyperuricemic Activity of Alocasia longiloba Extracts on Sprague-Dawley Rats. Saudi J Biol Sci 2022; 29:3184-3193. [PMID: 35844413 PMCID: PMC9280170 DOI: 10.1016/j.sjbs.2022.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 01/22/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperuricemia is defined as a metabolic abnormality that occurs when serum uric acid (UA) level is abnormally high in the body. We previously reported that A. longiloba possesses various important phytochemicals and in vitro xanthine oxidase activity. Despite A. longiloba ethnomedicinal benefits, its toxicity and anti-hyperuricemic effects have not been reported. The present study was carried out to ensure the safety and investigate the anti-hyperuricemic effects of A. longiloba fruit and petiole ethanolic extracts on rats. In the acute toxicity study, extracts were orally administered at a dose of 2000 mg/kg bodyweight and closely monitored for 2-week for any toxicity effects. The rats were then sacrificed and samples were collected and analyzed for hematological, biochemical, and histopathological parameters. The anti-hyperuricemic effect of A. longiloba fruit or petiole extract was investigated through determination of UA levels on potassium oxonate (PO)-induced hyperuricemic rats. Extracts or standard drug treatments were orally administrated 1-h after PO administration for 14-day. Animals were euthanized and samples were collected for further experiments. The toxicity results show, no significant changes were observed in behavioral, bodyweight changes in experimental groups compared to the control. Moreover, there were no significant changes in hematological, biochemical, and histological parameters between extracts treated and control group. In the anti-hyperuricemia study, the fruit and petiole extracts treatments significantly reduced the level of UA in serum compared to the hyperuricemic model group. This study demonstrated that the extracts of A. longiloba have anti-hyperuricemic activity and was found to be non-toxic to rats in acute toxicity test.
Collapse
|
49
|
Potential applications and preliminary mechanism of action of dietary polyphenols against hyperuricemia: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Luo LS, Wang Y, Dai LJ, He FX, Zhang JL, Zhou Q. Triterpenoid acids from medicinal mushroom Inonotus obliquus (Chaga) alleviate hyperuricemia and inflammation in hyperuricemic mice: Possible inhibitory effects on xanthine oxidase activity. J Food Biochem 2021; 46:e13932. [PMID: 34528276 DOI: 10.1111/jfbc.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to explore the hypouricemic effect in hyperuricemia mice of triterpenoid acids from Inonotus obliquus (TAIO), and decipher of the underlying xanthine oxidase inhibitory mechanism. Measurement of xanthine oxidase (XO) inhibitory activity was assayed. Organ indexes and serum biochemical indicators were measured in potassium oxonate-induced hyperuricemia mice. Studies showed that TAIO had the strong inhibitory effect on XO activity, and its inhibition type was mixed and reversible. In vivo, TAIO decreased efficiently uric acid level, hepatic XO, serum blood urea nitrogen activities in hyperuricemia mice. Indicating that TAIO may ameliorate kidney damage and relieve inflammation in hyperuricemic mice, and had the inhibitory effect on XO activity. Furthermore, eight triterpenoids were identified by Ultra performance liquid chromatography electrospray quadrupole time of flight mass spectrometry. These findings proved that triterpenoids from Inonotus obliquus would have potential biological characteristics and effect on controlling hyperuricemia and gout as an active supplement. PRACTICAL APPLICATIONS: There are a large amount of evidence indicating that hyperuricemia and gout are related to the hypertension and obesity. And gout and hyperuricemia are also possible connection with cardiovascular disease and metabolic syndrome. Currently, xanthine oxidase is the target of many kinds of chemical drugs at present, but the therapeutic drugs used in clinical medicine will produce more or less side effects. Therefore, the aim of this study was to explore the material basis of effective substances for reducing uric acid in Inonotus obliquus and to evaluate its effect. This study can provide a promising application of Inonotus obliquus in the fields of functional foods or medicines for gout and hyperuricemia.
Collapse
Affiliation(s)
- Lin-Song Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang-Xia He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|