1
|
Li T, Le HM, Handoyo R, Pagliano E, Hu Y. Development of non-targeted volatilomics with solid-phase microextraction for the authentication of plant-based milk alternatives. Talanta 2025; 294:128239. [PMID: 40334514 DOI: 10.1016/j.talanta.2025.128239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/30/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The demand for plant-based milk alternatives (PBMA) has increased substantially, especially among consumers allergic and/or intolerant to animal dairy products and consumers attentive to environmental sustainability. Concurrent with market expansion and higher production costs, fraudulent activities involving PBMA are of great concern. In order to validate authenticity of PBMA products, a headspace solid-phase microextraction gas chromatography mass spectrometry method (HS-SPME-GC-MS) was developed and optimized to differentiate 8 types of PBMA (i.e., almonds, cashews, hazelnuts, walnuts, oats, peanuts, pistachios, and macadamias) on the basis of their volatile metabolic profile (i.e., volatilome). A total of 80 samples (i.e., 10 replicates for each type of PBMA) were analyzed using HS-SPME-GC-MS and subjected to data preprocessing and classification model construction using machine learning algorithms. Approximately 143 volatile compounds were identified based on the MS-DIAL database (Version: 4.9.221218). Three machine learning algorithms were tested and among them, Support Vector Machine (SVM) achieved the best performance (100 % and 98.8 % accuracy for calibration and for cross-validation), followed by Random Forest (RF, 100 % and 94.3 %), and k-Nearest Neighbor (kNN, 98.8 % and 88.8 %). To further validate robustness, additional 32 samples (i.e., 4 biological replicates for each type of PBMA) were prepared, analyzed and identified with these models. SVM achieved an accuracy of 100 %, followed by RF (96.9 %) and kNN (90.6 %). RF yielded comparable accuracy with respect to SVM, but offered further information about features contributing substantially to classification. Hence, RF led to the identification of the top 30 most relevant volatile metabolites. A simplified RF model, constructed using only these 30 features, achieved a calibration accuracy of 100 %, cross-validation accuracy of 96.5 %, and validation accuracy of 96.9 %, indicating a great potential for these 30 metabolic features to be used as markers for (targeted) authentication. Harnessing the power of the non-targeted HS-SPME-GC-MS and machine learning, a highly accurate and reliable workflow for the authentication of PBMA was established. This method is reliable for the authentication of PBMA, ensures the integrity of the products, and can protect the health of consumers and the economy of this emerging area.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Hieu Minh Le
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Renato Handoyo
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Enea Pagliano
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; Metrology Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada.
| | - Yaxi Hu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
2
|
Sun H, Yang M, Olajide TM, Wang M, Qian M, He Y, Liao X, Huang J. Evaluating the impact of different processing methods on the flavor characteristics of Gorgon Euryale seeds using electronic tongue, electronic nose, gas chromatography-mass spectrometry, and gas chromatography-ion mobility spectrometry. J Food Sci 2025; 90:e70019. [PMID: 39898925 DOI: 10.1111/1750-3841.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
This study evaluated the volatile organic compounds (VOCs) and taste properties of Gorgon Euryale seeds processed by five methods (steaming, boiling, microwaving, roasting, and stir-frying) using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). A total of 44 and 40 VOCs were identified by GC-MS and GC-IMS, respectively. Pyrazines (2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine) and furans (2-pentylfuran, 2-ethylfuran) played a major role in the baked aroma characteristics of roasted and stir-fried Gorgon Euryale seeds. Six and seven marker compounds were identified by Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) models for GC-MS and GC-IMS based on 12 VOCs with odor activity value > 1 and 18 VOCs with relative odor activity value > 0.1, respectively. OPLS-DA and principal component analysis score plots of the E-tongue and E-nose demonstrated that samples could be effectively distinguished in terms of flavor. This research provides a comprehensive basis for evaluating the impact of processing methods on the changes in flavor of Gorgon Euryale seeds. PRACTICAL APPLICATION: This work demonstrates that the use of E-tongue, E-nose, HS-SPME-GC-MS, and GC-IMS has the capability to thoroughly analyze the flavor profile of Gorgon Euryale seeds at both macro and micro levels. This approach effectively distinguishes Gorgon Euryale products subjected to different processing treatments and provides a reliable reference for evaluating and identifying the flavor quality of Gorgon Euryale seeds.
Collapse
Affiliation(s)
- Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Mingzhu Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Mingji Qian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Chen Y, Oliveira WS, Dias FFG, Ismail BP. Impact of a Novel Two-Phase Natural Deep Eutectic Solvent-Assisted Extraction on the Structural, Functional, and Flavor Properties of Hemp Protein Isolates. PLANTS (BASEL, SWITZERLAND) 2025; 14:274. [PMID: 39861627 PMCID: PMC11768760 DOI: 10.3390/plants14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods. Accordingly, a two-phase natural deep eutectic solvent (NADES)-assisted extraction was evaluated as a solvent-free alternative for co-extracting protein and oil from full-fat hemp flour. In comparison to the reference hemp protein isolate (R-HPI), produced from hexane-defatted flour following conventional alkaline extraction, NADES-extracted hemp protein isolate (N-HPI) had significantly higher protein extraction yield and purity. N-HPI exhibited enhanced surface charge, lower hydrophobicity, and thus higher solubility at an acidic pH compared to R-HPI. N-HPI had a higher abundance of edestin and lower levels of vicilin-like proteins, which contributed to superior gelation compared to R-HPI. N-HPI, compared to R-HPI, contained lower levels of lipid-derived off-flavor compounds, such as aldehydes, alcohols, and ketones. These findings highlighted, for the first time, the potential of a two-phase NADES-assisted extraction as a sustainable alternate and effective process for producing high-quality, functional hemp protein. The development of such a green process is an impetus for broadening the applications of hemp protein in food systems.
Collapse
Affiliation(s)
| | | | - Fernanda F. G. Dias
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.C.); (W.S.O.)
| | - Baraem P. Ismail
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.C.); (W.S.O.)
| |
Collapse
|
4
|
Russo G, Scocca P, Gelosia M, Fabbrizi G, Giannoni T, Urbani S, Esposto S, Nicolini A. Poly(3-hydroxybutyrate) production for food packaging from biomass derived carbohydrates by cupriavidus necator DSM 545. Enzyme Microb Technol 2024; 181:110516. [PMID: 39303458 DOI: 10.1016/j.enzmictec.2024.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. Cupriavidus necator DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore C. necator DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.
Collapse
Affiliation(s)
- Gianfrancesco Russo
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Paola Scocca
- University of Perugia, Piazza Università 1, Perugia 06123, Italy
| | - Mattia Gelosia
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy.
| | - Giacomo Fabbrizi
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Tommaso Giannoni
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Stefania Urbani
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Sonia Esposto
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Andrea Nicolini
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| |
Collapse
|
5
|
Pucci M, Akıllıoğlu HG, Bevilacqua M, Abate G, Lund MN. Investigation of Maillard reaction products in plant-based milk alternatives. Food Res Int 2024; 198:115418. [PMID: 39643377 DOI: 10.1016/j.foodres.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Over the past decade, plant-based milk alternatives (PBMAs) have gained increasing popularity. Several processing technologies, including heat treatment, are usually employed during their production in order to replicate the properties of cow's milk. These processes can trigger the Maillard reaction, producing Maillard reaction products (MRPs) and amino acid cross-links, which may alter the nutritional profile and digestibility of PBMAs. This study investigates PBMAs available in the Scandinavian market to assess their MRP and amino acid cross-link concentrations, aiming to understand the relationship between the formation of these heat-induced compounds and the specific chemical composition of individual PBMAs. Two types of UHT-treated cow's milk and ten UHT-processed PBMAs from different brands were analyzed. Quantitative analyses included early-stage MRPs (Amadori products detected as furosine), intermediate MRPs (α-dicarbonyl compounds and furans), advanced glycation end products (AGEs), acrylamide, and amino acid cross-links (lanthionine and lysinoalanine). Protein, carbohydrate, and amino acid profiles were also assessed using LC-MS and HPLC methods. PBMAs were found to differ substantially in carbohydrate and protein content, with soy-based drinks containing higher protein and rice and oat drinks having more carbohydrates. Essential amino acid (EAA) levels were found lower in all PBMAs, impacting their nutritional quality. MRP levels, such as furosine and AGEs, varied across PBMAs, indicating different heat-processing intensities. Specific α-dicarbonyl compounds, like 3-deoxyglucosone, were more concentrated in PBMAs than in UHT-treated cow's milk, and compounds like HMF, furfural, and acrylamide were also found in some PBMAs. Finally, correlations were observed between sugar content, α-dicarbonyls, and AGEs, which offer insights into possible chemical transformations in PBMAs during processing.
Collapse
Affiliation(s)
- Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marta Bevilacqua
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marianne Nissen Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
de Menezes AV, de Souza DA, de Lima DP, Neta MTSL, Almeida-Souza TH, Dos Santos Rodrigues RN, Sandes RDD, Mishima MDV, Narain N, de Almeida AQ, Martino HSD, de Carvalho IMM. Fatty acids and volatile compound of cooked green licuri (Syagrus coronata) and naturally ripe licuri almonds from native flora, popularly consumed in Brazil. Food Res Int 2024; 191:114735. [PMID: 39059967 DOI: 10.1016/j.foodres.2024.114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The present study was carried out to investigate the proximate composition, fatty acid (FA) profile and volatile compounds (VC) of cooked green licuri (Syagrus coronata) - an unripe stage that is then cooked - and naturally ripe licuri almonds. The FA profiles were determined by gas chromatography (GC) and the VC composition was evaluated using headspace-solid-phase microextraction coupled with GC-MS. The cooked green licuri presented higher moisture, and lower contents of ashes, proteins and lipids than naturally ripe licuri almonds. The FA profiles of cooked green licuri and naturally ripe licuri almonds showed that saturated FAs were predominant (80%) in both samples, and the concentrations of lauric, palmitic, and oleic acids in naturally ripe licuri almonds were higher than those in cooked green licuri. Limonene was the predominant compound in naturally ripe licuri almonds. The main class of VC in the cooked green licuri were aldehydes, with 3-methyl-butanal and furfural being the main species. Alcohols, such as 3-methyl-butanol and 2-heptanol, were the main class of VC in naturally ripe licuri almonds. Among the volatile compounds, 1-hexanol and 2-nonanone contributed to the aroma of cooked green licuri almonds, whereas 2-heptanone, ethanol, and limonene contributed to the aroma of naturally ripe licuri almonds (almonds not subjected to any cooking process). In a word, cooked green licuri and naturally riped licuri almonds, despite having different proximate compositions, present similar fatty acid profile and distinct aromatic characteristics. Therefore, cooked green licuri and naturally riped licuri almonds are an alternative source of nutrient and could be investigated for the use in the food industry to enhance flavor and aroma to new products.
Collapse
Affiliation(s)
- Anely Vieira de Menezes
- Post-Graduate Program in Nutrition Sciences, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Daniel Alves de Souza
- Post-Graduate Program in Nutrition Sciences, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - Daniele Pinto de Lima
- Post-Graduate Program in Nutrition Sciences, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | | | | | | | - Rafael Donizete Dutra Sandes
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | - André Quintão de Almeida
- Department of Agricultural Engineering, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil
| | | | | |
Collapse
|
7
|
He M, Dai H, Xu J, Peng X, Al-Romaima A, Qiu M. Generation, degradation mechanism, and toxicity evaluation of pigmented compounds in Leucosceptrum canum nectar. Food Chem 2024; 446:138894. [PMID: 38442679 DOI: 10.1016/j.foodchem.2024.138894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Leucosceptrum canum nectar (LCN) emerges as a novel food resource, distinguished by its unique dark brown hue. This study delves into the composition and toxicity assessment of novel pigments within LCN. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS) and chemical synthesis, seventeen 2,5-di-(N-(-)-prolyl)-para-benzoquinone (DPBQ) analogs in LCN were identified. These compounds are synthesized in LCN via the Michael addition reaction, utilizing p-benzoquinone (BQ), derived from phenol metabolism, and amino acids as substrates in an alkaline environment (pH = 8.47 ± 0.06) facilitated by dissolved ammonia and the presence of alkaloids. Analytical techniques, including principal component analysis (PCA), orthogonal partial least squares discrimination analysis (OPLS-DA), and volcano plot analysis, were employed to investigate DPBQ analog degradation within the nectar and honey's unique environments. Toxicity assays revealed that DPBQ analogs exhibited no toxicity, displaying a significant difference in toxicity compared to the precursor compound BQ at concentrations exceeding 25 μM.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiaxin Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
8
|
Peng S, Li Y, Liu H, Tuo Y, Dang J, Wang W, You H, Du S, Wang L, Ding L. Influence of germination and roasting on the characteristic volatile organic compounds of quinoa using sensory evaluation, E-nose, HS-GC-IMS, and HS-SPME-GC-MS. Food Chem X 2024; 22:101441. [PMID: 38756471 PMCID: PMC11096820 DOI: 10.1016/j.fochx.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/23/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to investigate the effects of germination and roasting on the flavor of quinoa. Firstly, the aroma of quinoa and germinated quinoa roasted under different conditions was analyzed using sensory evaluation and electronic nose (E-nose). Results showed that the best favorable aroma of quinoa and germinated quinoa was obtained when roasted at 160 °C for 15 min. Then, a total of 34 and 80 volatile organic compounds (VOCs) of quinoa and germinated quinoa roasted at 160 °C for 15 min were determined using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Germination and roasting effectively reduced the contents of VOCs that produced undesirable flavor. Moreover, germination improved the floral aromas, while roasting mainly produced caramel, cocoa, and roasted nut aromas of quinoa. This study indicated that germination and roasting treatments might serve as promising processing methods to improve the flavor of quinoa.
Collapse
Affiliation(s)
- Siwang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yiju Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Yuanrong Tuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jiamin Dang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Haixi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang 712100, PR China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang 712100, PR China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
9
|
Yang L, Liu L, Ji L, Jiang C, Jiang Z, Li D, Yang Z, Cai W, Zhou Q, Lei J, Li P, Jia Y, Liu J, Xu H, Hu J. Analysis of differences in aroma and sensory characteristics of the mainstream smoke of six cigars. Heliyon 2024; 10:e26630. [PMID: 38434019 PMCID: PMC10906419 DOI: 10.1016/j.heliyon.2024.e26630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Cigars have unique aroma and style characteristics. In order to clarify the differences of aroma components between domestic and imported cigars and the material basis of the stylistic characteristics of different cigars, gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were used to compare and analyze the aroma components in the mainstream smoke of four domestic cigars and two imported cigars. The GC-MS results showed that a total of 97 aroma components were measured in the smoke of the six cigars, and the types of aroma components were similar, but there were differences in their contents. In comparison with those of domestic cigars, imported cigars had suitable nicotine content, and higher contents of phytol, neophytadiene, 3-methylpentanoic acid, and (+)-δ-cadinene. To further explore the differences in the aroma components of the six cigars, GC-MS data combined with chemometrics were used to screen out 14 key aroma components based on P-value (P) < 0.05, Variable Importance Projection (VIP) > 1, and Aroma Activity Values (OAV) > 1. The key aroma components of each cigar were obtained, Snow Dream No. 5: cedrol; Wangguan Guocui: 6-methyl-5-hepten-2-one, pyridine, 2-ethyl-6-methylpyrazine; General Achileus No. 3: p-cresol, 2-methylbutyraldehyde, methyl cyclopentenolone; Montecristo No. 4: cedrol, 2-methylbutyraldehyde, guaiacol, 4-vinylguaiacol, methyl cyclopentenolone; Romeo y Julieta Wide Churchills: cedrol, 2,6-dimethylpyrazine, 2-ethyl-6-methylpyrazine, 2-heptanone, phenethyl alcohol; Great Wall No. 2: p-cresol, phenethyl alcohol, geranylacetone, methyl cyclopentenolone, dihydroactinidiolide. The odor descriptors of these compounds were consistent with the aroma profiles that were prominent in the senses of each cigar. This experiment initially explored the differences in aroma composition and style characteristics of cigars and provided data to support the quality improvement of domestic cigars.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Lulu Liu
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Lingbo Ji
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Chenxi Jiang
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Zhongrong Jiang
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Dongliang Li
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Zhen Yang
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Wen Cai
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Quanwei Zhou
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| | - Jinshan Lei
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Pinhe Li
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yuhong Jia
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Jie Liu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Heng Xu
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Jun Hu
- Key Laboratory in Flavor & Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
- Cigar Technology Innovation Center in Tobacco Industry, Chengdu, China
| |
Collapse
|
10
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
11
|
Wang X, Liu Y, Peng N, Yu H, Ma Y, Zhang M, Wang Y, Wang Y, Gao W. Allelopathy and Identification of Volatile Components from the Roots and Aerial Parts of Astragalus mongholicus Bunge. PLANTS (BASEL, SWITZERLAND) 2024; 13:317. [PMID: 38276773 PMCID: PMC10819805 DOI: 10.3390/plants13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The volatile compounds produced by plants play an important role in plant growth, plant communication, and resistance to biological and abiotic stresses. Astragalus membranaceus var. mongholicus (AM) is a perennial herbaceous plant (Leguminosae) that is widely cultivated in northwest China. The bioactive compounds in its root have shown various pharmacological activities. Root rot disease caused by Fusarium spp. often occurs in AM planting with increasing severity in continuous monoculture. It is currently still unclear what are the effects of the volatile compounds produced by fresh AM on itself, other crops cultivated on the same field after AM, pathogen, and rhizobia. In this study, we found that seed germination and seedling growth of AM, lettuce (Lactuca sativa L.), and wheat (Triticum aestivum L.) could be affected if they were in an enclosed space with fresh AM tissue. Additionally, 90 volatile compounds were identified by SPME-GC-MS from whole AM plant during the vegetative growth, 36 of which were specific to aerial parts of AM (stems and leaves, AMA), 17 to roots (AMR), and 37 were found in both AMA and AMR. To further identify the allelopathic effects of these volatile compounds, five compounds (1-hexanol, (E)-2-hexenal, (E,E)-2,4-decadienal, hexanal, and eugenol) with relatively high content in AM were tested on three receptor plants and two microorganisms. We found that (E,E)-2,4-decadienal and (E)-2-hexenal showed significant inhibitory effects on the growth of AM and lettuce. One-hexanol and hexanal suppressed the growth of wheat, while eugenol showed a similar effect on all three plant species. Moreover, the activities of these compounds were dose dependent. Notably, we discovered that (E)-2-hexenal and eugenol also inhibited the growth of the pathogen Fusarium solani by as high as 100%. Meanwhile, all five compounds tested suppressed the rhizobia Sinorhizobium fredii. In summary, this study furthered our understanding of the comprehensive allelopathic effects of the main volatile components of AM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.W.); (Y.L.); (N.P.); (H.Y.); (Y.M.); (M.Z.); (Y.W.); (Y.W.)
| |
Collapse
|
12
|
Jia X, Zhou Q, Huang D, Zhang N, Qu S, An Q, Wang Q, Ren J, Zhang H, Pan S, Fan G. Insight into the comparison of key aroma-active compounds between camellia oils from different processing technology. Food Chem 2024; 430:137090. [PMID: 37557030 DOI: 10.1016/j.foodchem.2023.137090] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Currently, the difference between key odorants of camellia oils from different processing technology (i.e., extra virgin camellia oil (EVCO), virgin camellia oil (VCO), fragrant camellia oil (FCO)) is unclear. In this study, a total of 91 odorants were identified by comprehensive two-dimensional gas chromatography and quadrupole mass spectrometry (GC × GC-qMS). The headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) provided fingerprint information for 57 odorants distinguished between EVCO, VCO, and FCO. Moreover, 76 odorants were shown flavor dilution (FD) factors range from 1 to 729, and fruity esters (ethyl 2-hydroxypropanoate, ethyl decanoate, and ethyl phenylacetate) with FD factors ≥ 27 and odor activity values ≥ 1 are the unique odorants in EVCO. (E, E)-2,4-Heptadienal, (E, E)-2,4-nonadienal, and d-limonene are the aroma-active compounds in VCO. While furfural and 3-ethyl-2,5-dimethylpyrazine with FD factors ≥ 243 are the major contributors to roasted and nutty odor in FCO. This work provides aroma markers for quality assessment of camellia oils.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Dou Huang
- Guangzhou Ingenious Laboratory Technology Co., Ltd., Guangzhou 510530, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Sun X, Wan Y, Liu W, Wei C. Effects of different extraction methods on volatile profiles of flaxseed oils. J Food Sci 2023; 88:4988-5001. [PMID: 37872781 DOI: 10.1111/1750-3841.16787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
To investigate the effects of different extraction methods on volatile compounds in flaxseed oil (FSO), we first carried out solvent extraction, cold pressing, and hot pressing treatments of flaxseed [Linum usitatissimum (L.)], then applied the headspace-gas chromatography-ion mobility spectrometry technology to identify the volatile substance compositions, and established flavor fingerprints of solvent-extracted FSO, cold-pressed FSO, and hot-pressed FSO. In total, 81 volatile compounds were detected, including 27 aldehydes, 14 alcohols, 13 ketones, 9 heterocycles, 8 esters, 5 acids, 4 hydrocarbons, and 1 sulfur compound (dimethyl disulfide). Extraction methods had a great influence on the volatile profile of FSO. Solvent-extracted FSO had more sweet, mild, floral, and sour volatile profiles, cold-pressed FSO had stronger volatile profiles of winey, spicy, and fatty, and hot-pressed FSO had green, grass, and plastic volatile profiles. Principal component analysis and Euclidean distance demonstrated that the volatile compounds of three FSO samples could be clearly distinguished. Of note, the cold-pressed FSO and hot-pressed FSO had similar volatile profiles, and they were different from solvent-extracted FSO. This study could provide some guidance for improving the flavor quality of FSO and selecting the proper extraction method for FSO productions. PRACTICAL APPLICATION: Practical Application: This study shows extraction methods significantly affect the formation of aroma characteristics in flaxseed oil (FSO), and it provides theoretical guidance for production to use the appropriate extraction methods for high-quality FSO.
Collapse
Affiliation(s)
- Xuelian Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yilai Wan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyu Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Oil Deep Processing and Nutrition Safety Innovation Team, Xinjiang Academy of Agricultral and Reclamation Science, Shihezi, Xinjiang, China
| | - Changqing Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, Xinjiang, China
- Oil Deep Processing and Nutrition Safety Innovation Team, Xinjiang Academy of Agricultral and Reclamation Science, Shihezi, Xinjiang, China
| |
Collapse
|
14
|
Ribeiro SR, Dos Santos ID, Klein B, Thewes FR, Pinton MB, Campagnol PCB, Brackmann A, Both V, Wagner R. Higher CO 2 during controlled atmosphere storage of unshelled 'Barton' pecans or carnauba wax coating: Effect on the quality after long-term storage at two temperatures. Food Res Int 2023; 169:112854. [PMID: 37254428 DOI: 10.1016/j.foodres.2023.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023]
Abstract
Pecan nuts, a healthy food, have shown an increased demand for consumption. Therefore, there must be a certain level of care to avoid quality losses, which are primarily influenced by storage conditions and time. This study evaluates the effects of long-term controlled atmosphere (CA) storage with low O2 partial pressure (pO2 - 2 kPa), combined or not with high CO2 (pCO2 - 40 or 80 kPa), carnauba wax coating (CW), and ambient atmosphere (AMB; control) at 10 and 20 °C, on unshelled 'Barton' pecan nut quality. Color, water activity (Aw), moisture content (MC), and oxidation markers, such as peroxide value (PV), acidity value (AV), TBARS, and volatile compounds (VC) were evaluated. Storage up to twelve months at 10 °C and with CA (regardless of the temperature) ensured higher luminosity and color parameter b* ("golden") and a lower a* parameter ("reddish"). The MC ranged from 2.8 to 3.6%, irrespective of storage conditions, for up to twelve months, which is suitable. The AMB at 10 °C ensured lower AV, TBARS, and PV compared to the CW treatment. Furthermore, CA with low pO2 and high pCO2, even at 20 °C, guaranteed lower AV, TBARS, and PV. Storage at 20 °C increased characteristic VCs of lipid oxidation (aldehydes, acids, alcohols, ketones, lactones, and esters, especially with CW coating). However, all conditions at 10 °C and with pCO2 (even associated at 20 °C) reduced the presence of these VCs. The CW used as a coating on the pecans did not show satisfactory results and should not be recommended for pecan storage at these applied conditions. Our findings showed that low pO2 and high pCO2 maintain better pecan quality than O2 ambient (20 kPa), even at temperatures above refrigeration (20 °C). Nevertheless, there were no significant differences between 40 and 80 kPa CO2.
Collapse
Affiliation(s)
- Stephanie Reis Ribeiro
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Ingrid Duarte Dos Santos
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Bruna Klein
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Flavio Roberto Thewes
- Department of Plant Science, Postharvest Research Center, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Mariana Basso Pinton
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Paulo Cezar Bastianello Campagnol
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Auri Brackmann
- Department of Plant Science, Postharvest Research Center, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Vanderlei Both
- Department of Plant Science, Postharvest Research Center, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Roraima Avenue 1000, Camobi, Santa Maria 97105-900, RS, Brazil.
| |
Collapse
|
15
|
Aruwajoye NN, Buthelezi NMD, Mditshwa A, Tesfay SZ, Magwaza LS. Assessing the Impact of Roasting Temperatures on Biochemical and Sensory Quality of Macadamia Nuts ( Macadamia integrifolia). Foods 2023; 12:foods12112116. [PMID: 37297359 DOI: 10.3390/foods12112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Depending on the temperature regime used during roasting, the biochemical and sensory characteristics of macadamia nuts can change. 'A4' and 'Beaumont' were used as model cultivars to examine how roasting temperatures affected the chemical and sensory quality of macadamia nuts. Using a hot air oven dryer, macadamia kernels were roasted at 50, 75, 100, 125, and 150 °C for 15 min. The quantity of phenols, flavonoids, and antioxidants in kernels roasted at 50, 75, and 100 °C was significant (p < 0.001); however, these kernels also had high levels of moisture content, oxidation-sensitive unsaturated fatty acids (UFAs), and peroxide value (PV), and poor sensory quality. Low moisture content, flavonoids, phenols, antioxidants, fatty acid (FA) compositions, high PV, and poor sensory quality-i.e., excessive browning, an exceptionally crunchy texture, and a bitter flavor-were all characteristics of kernels roasted at 150 °C. With a perfect crispy texture, a rich brown color, and a strong nutty flavor, kernels roasted at 125 °C had lower PV; higher oxidation-resistant UFA compositions; considerable concentrations of flavonoids, phenols, and antioxidants; and good sensory quality. Therefore, 'A4' and 'Beaumont' kernels could be roasted at 125 °C for use in the industry to improve kernel quality and palatability.
Collapse
Affiliation(s)
- Noluthando Noxolo Aruwajoye
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Nana Millicent Duduzile Buthelezi
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 235, Medunsa, Ga-Rankuwa 0204, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Samson Zeray Tesfay
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
16
|
Wang W, Smith DJ, Ngo H, Jin ZT, Mitchell AE, Fan X. Lipid Oxidation and Volatile Compounds of Almonds as Affected by Gaseous Chlorine Dioxide Treatment to Reduce Salmonella Populations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5345-5357. [PMID: 36946919 DOI: 10.1021/acs.jafc.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of gaseous chlorine dioxide (ClO2) treatment, applied to inactivate Salmonella, on lipid oxidation, volatile compounds, and chlorate levels of dehulled almonds were evaluated during a 3 month accelerated storage at 39 °C. At treatment levels that yielded a 2.91 log reduction of Salmonella, ClO2 promoted lipid oxidation as indicated by increased peroxide values, total acid number, conjugated dienes, and thiobarbituric acid-reactive substances. Furthermore, several chlorine-containing volatile compounds including trichloromethane, 1-chloro-2-propanol, 1,1,1-trichloro-2-propanol, and 1,3-dichloro-2-propanol were identified in ClO2-treated samples. However, all the volatile chlorine-containing compounds decreased during the 3 months of storage. Chlorate (26.4 ± 5.1 μg/g) was found on the ClO2-treated samples. The amounts of non-ethanol alcohols, aldehydes, and carboxylic acids increased following ClO2 treatments. Some volatiles such as 2,3-butanediol that were present in non-treated samples became non-detectable during post-ClO2 treatment storage. Overall, our results demonstrated that gaseous ClO2 treatment promoted lipid oxidation, generation of volatiles of lipid origin, and several chlorine-containing compounds.
Collapse
Affiliation(s)
- Wenli Wang
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - David J Smith
- U. S. Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd., Fargo, North Dakota 58102, USA
| | - Helen Ngo
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Zhonglin Tony Jin
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | - Xuetong Fan
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
17
|
Sun L, Qi Y, Meng M, Cui K. Comparative Study on the Volatile Organic Compounds and Characteristic Flavor Fingerprints of Five Varieties of Walnut Oil in Northwest China Using Using Headspace Gas Chromatography-Ion Mobility Spectrometry. Molecules 2023; 28:molecules28072949. [PMID: 37049712 PMCID: PMC10096422 DOI: 10.3390/molecules28072949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Odor is an important characteristic of walnut oil; walnut oil aromas from different varieties smell differently. In order to compare the differences of volatile flavor characteristics in different varieties of walnut oil, the volatile organic compounds (VOCs) of walnut oil from five different walnut varieties in Northwest China were detected and analyzed using headspace gas chromatography–ion mobility spectrometry (HS–GC–IMS). The results showed that 41 VOCs in total were identified in walnut oil from five different varieties, including 14 aldehydes, 8 alcohols, 4 ketones, and 2 esters. Walnut oil (WO) extracted from the “Zha343” variety was most abundant in VOCs. The relative odor activity value (ROAV) analysis showed that aldehydes were the main aroma substances of walnut oil; specifically, hexanal, pentanal, and heptanal were the most abundant. Fingerprints and heat map analysis indicated that WO extracted from the “Xin2”, “185”, “Xin’guang”, and “Zha343” varieties, but not from the “Xinfeng” variety, had characteristic markers. The relative content differences of eight key VOCs in WO from five varieties can be directly compared by Kruskal–Wallis tests, among which the distribution four substances, hexanal (M), hexanal (D), pentanal (M), (E)-2-hexanal (M), presented extremely significant differences (P<0.01). According to the results of the principal component analysis (PCA), WO extracted from the “Zha343” variety was distinct from the other four varieties; in addition, WO extracted from the “Xin2” variety exhibited similarity to WO extracted from the “185” variety, and WO extracted from the “Xinfeng” variety showed similarity to WO extracted from the “Xin’guang” variety. These results reveal that there are certain differences in the VOCs extracted from five different WO varieties, making it feasible to distinguish different varieties of walnut oil or to rapidly detect walnut oil quality based on its volatile substances profile.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yanlong Qi
- Comprehensive Experimental Field of Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- Correspondence:
| | - Meng Meng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Kuanbo Cui
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| |
Collapse
|
18
|
Kessler JC, Vieira V, Martins IM, Manrique YA, Ferreira P, Calhelha RC, Afonso A, Barros L, Rodrigues AE, Dias MM. The potential of almonds, hazelnuts, and walnuts SFE-CO 2 extracts as sources of bread flavouring ingredients. Food Chem 2023; 417:135845. [PMID: 36924720 DOI: 10.1016/j.foodchem.2023.135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Nuts have been part of the human diet since our early ancestors, and their use goes beyond nutritional purposes, for example, as aromatic sources for dairy products. This work explores the potential of almond (Prunus dulcis (Mill.) DA Webb), hazelnut (Corylus avellana L.), and walnut (Juglans regia L.) extracts as sources of food flavouring agents, suggesting a new added-value application for lower quality or excess production fruits. The extracts were obtained by supercritical fluid extraction with carbon dioxide and characterized by: quantification of the volatile fraction by HS-SPME GC-MS; sensory perception and description; and cytotoxicity against Vero cells. All extracts revealed potential as flavouring ingredients due to terpene abundance. No significant differences were observed for the minimal sensory perception, in which the odour threshold values ranged from 8.3 × 10-4 to 6.9 × 10-3 μg·mL-1 for walnuts and almonds extracts, respectively. In contrast, the cytotoxic potential differed significantly among the extracts, and P. dulcis extract presented lower cytotoxicity. Notes as woody, fresh, and green were identified in the volatile intensifiers obtained from the P. dulcis extract. Thus, almond extract was identified as the most promising ingredient to increase the sensory value of food products, namely bread. This potential was verified by an increase in the odour perception of bread after adding 4 μL of extract to each 100 g of bread dough. The quantified eucalyptol and d-limonene terpenes - found in the P. dulcis extract - have improved the release of the pleasant and natural volatile compounds from bread crust and crumb compared to the control bread chemical and sensory profiles.
Collapse
Affiliation(s)
- Júlia C Kessler
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Vanessa Vieira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; Deifil Technology Lda., Rua do Talho 80 - Serzedelo, 4830-704 Póvoa de Lanhoso, Portugal.
| | - Isabel M Martins
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| | - Yaidelin A Manrique
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| | - Patrícia Ferreira
- Deifil Technology Lda., Rua do Talho 80 - Serzedelo, 4830-704 Póvoa de Lanhoso, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Andreia Afonso
- Deifil Technology Lda., Rua do Talho 80 - Serzedelo, 4830-704 Póvoa de Lanhoso, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| | - Madalena M Dias
- LSRE-LCM - Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
19
|
Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life. Foods 2023; 12:foods12051087. [PMID: 36900602 PMCID: PMC10000526 DOI: 10.3390/foods12051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The purpose of this experimentation was to study the evolution of the quality of two types of blast-frozen ready-to-(h)eat meals, tortellini and a vegetable soup, during a short shelf life of 70 days. The analyses, performed in order to identify any variations resulting either from the freezing process or from the subsequent storage, carried out at the temperatures of -30 °C and -18 °C, respectively, examined the consistency of the tortellini and the soup, the acidity and the peroxide value of the oil extracted from them, the phenols and carotenoids present in the soup, the volatile compounds in the tortellini and the soup, and a sensory analysis of both products. The results showed that, during the 70 days of shelf life, there was no variation in the texture of the tortellini, but there were changes in the consistency of the soup, which decreased as the days of storage went on. Furthermore, statistically significant increases (p < 0.05) in the acidity and in the peroxide value of the oil of the soup were observed during the storage period; however, no statistically significant difference (p > 0.05) in the peroxide value of the oil of the tortellini was found. Moreover, no quantitative changes were observed in the phenolic compounds and carotenoids in the soup or in the volatile substances of either product. Finally, the sensory analysis confirmed, together with the chemical data, that the blast-freezing process adopted was suitable to maintain the good quality of these fresh meals, even if some technical modifications (in particular, lower freezing temperatures) should be adopted to improve the final quality of the products.
Collapse
|
20
|
Kang MJ, Suh JH. Metabolomics as a tool to evaluate nut quality and safety. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Li Y, Gao C, Wang Y, Fan M, Wang L, Qian H. Analysis of the aroma volatile compounds in different stabilized rice bran during storage. Food Chem 2022; 405:134753. [DOI: 10.1016/j.foodchem.2022.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
22
|
Jiao Q, Lin B, Mao Y, Jiang H, Guan X, Li R, Wang S. Effects of combined radio frequency heating with oven baking on product quality of sweet potato. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the present investigation, the main purpose of the research was to reveal the differences among the almond genotypes in terms of their physicochemical properties, volatile composition, fatty acid, and mineral profile. For that reason, ten different almond genotypes originated from different countries were subjected to relevant analysis. The results showed that the total oil, protein, and ash levels of the almond samples ranged between 30.84–41.43%, 17.43–22.72%, and 2.90–3.40%, respectively. Additionally, total phenolic content of the samples was in the range of 38.7–101.03 mg GAE/100 g sample. It was revealed that the almond samples were rich in monounsaturated fatty acids, and oleic acid was the major one with levels of 61.22–77.63%. For all samples, potassium, magnesium, and phosphorus were the major minerals, and the highest concentration was for potassium with levels of 6192.08–11,046.05 mg/kg. Volatile profile analysis showed that the toluene, 4-octanone, pinacol, and 2-methylpentanal were the dominant volatile compounds for all almond genotypes. The results revealed that the different almond varieties showed significant differences depending on the origin.
Collapse
|
24
|
Vázquez MB, Matencio A, Bianchinotti MV, García-Carmona F, López-Nicolás JM. Enhanced production of 2-phenylethanol by salicylic acid and cyclodextrins in cell suspension cultures of the unexplored filamentous fungus Monochaetinula geoffroeana. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1609-1618. [PMID: 34405402 DOI: 10.1002/jsfa.11497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 2-Phenylethanol (PEA) is a higher aromatic alcohol with a rose-like odor, which is used in several industries. Although PEA can be synthesized, consumers are increasingly concerned about the toxicity of chemically synthesized products, and prefer natural aroma compound. PEA occurs naturally in the environment but concentrations are too low to justify extraction. RESULTS The present study offers a novel biological source of PEA: the filamentous fungi Monochaetinula geoffroeana. We report the highest recorded yield of PEA of fungal origin to date: 6.52 g L-1 . The volatility and low water solubility of PEA can affect its use in many industries, for which reason complexation studies of PEA and cyclodextrins were carried out using the phase solubility technique. PEA formed 1:1 stoichiometric inclusion complexes with natural and modified CDs, the highest encapsulation constant being obtained with MβCD (K1:1 = 299.88 L mol-1 ). The complexation process significantly increased the water solubility of PEA. A computational study showed a high degree of correlation between computed scores and experimental values. Furthermore, this study reports the role of salicylic acid as an effective elicitor for improved PEA production by the studied fungi. Supplementation with 10 μmol L-1 salicylic acid increased PEA production from 6.52 to 10.54 g L-1 . CONCLUSION The best treatment to enhance PEA production by M. geoffroeana under laboratory conditions was to use salicylic acid 10 μmol L-1 . Due to the commercial importance of PEA, further investigation is needed to improve PEA production by M. geoffroeana and to optimize culture conditions in order to standardize yields. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- María Belén Vázquez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Adrián Matencio
- Dipartimento di Chimica, Università degli studi di Torino, Turin, Italy
| | | | - Francisco García-Carmona
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José Manuel López-Nicolás
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
25
|
Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods 2022; 11:foods11040511. [PMID: 35205988 PMCID: PMC8871513 DOI: 10.3390/foods11040511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cooked high-amylose rices, such as Australian wild rice (AWR) varieties, have slower digestion rates, which is nutritionally advantageous, but may have inferior eating qualities. Here, a comparison is made between sensory and starch molecular fine structure properties, and volatile compounds, of polished AWR varieties and some commercial rices (CRs). Starch structural parameters for amylopectin (Ap) and amylose (Am) were obtained using fluorophore-assisted capillary electrophoresis and size-exclusion chromatography. Volatile compounds were putatively using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Sensory properties were evaluated by a trained panel. AWR had a disintegration texture similar to that of Doongara rice, while AWR had a resinous, plastic aroma different from those of commercial rice varieties. Disintegration texture was affected by the amounts of Ap short chains, resinous aroma by 2-heptenal, nonadecane, 2h-pyran, tetrahydro-2-(12-pentadecynyloxy)-, and estra-1,3,5(10)-trien-17β-ol, and plastic aroma by 2-myristynoyl pantetheine, cis-7-hexadecenoic acid, and estra-1,3,5(10)-trien-17β-ol. These findings suggest that sensory properties and starch structures of AWR varieties support their potential for commercialization.
Collapse
|
26
|
Luo KK, Huang G, Mitchell AE. Acceleration of lipid oxidation in raw stored almond kernels in response to postharvest moisture exposure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1155-1164. [PMID: 34329485 PMCID: PMC9291489 DOI: 10.1002/jsfa.11452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Almonds are an important crop in California, and increased yields necessitate that dried in-hull almonds are stored in the field for longer periods, increasing the potential for postharvest moisture exposure (e.g., rain, fog). Processors are increasingly drying these 'wet' almonds to a moisture content of <6% using low heat before the hulling and shelling process in order to reduce mechanical damage to the nutmeat. To date, there is no information on the impact that moisture exposure and drying prior to hulling and shelling has on lipid oxidation and storage shelf life of raw almonds. RESULTS Raw almonds exposed to ≤8% moisture and subsequently dried (MEx) and almonds not exposed to moisture exposure (≤4% moisture; control) were stored under accelerated shelf life conditions and evaluated monthly over 12 months for free fatty acid (FFA) value, peroxide value (PV), and headspace volatiles. At 12 months of accelerated storage, MEx almonds have 1.4 times higher FFA and 3.5 times higher PV than the control, indicating significant oxidative damage. MEx almonds also demonstrated higher levels of headspace volatile compounds related to lipid oxidation (i.e., hexanal, octanal, hexanoic acid) throughout storage. CONCLUSION Drying almonds exposed to postharvest moisture prior to storage results in a higher degree of lipid oxidation during storage and a significant reduction in shelf life. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kathleen K Luo
- Department of Food Science and TechnologyUniversity of California, DavisDavisCAUSA
| | | | - Alyson E Mitchell
- Department of Food Science and TechnologyUniversity of California, DavisDavisCAUSA
| |
Collapse
|
27
|
Hu Y, Zhang Z, Hua B, Tao L, Chen W, Gao Y, Suo J, Yu W, Wu J, Song L. The interaction of temperature and relative humidity affects the main aromatic components in postharvest Torreya grandis nuts. Food Chem 2022; 368:130836. [PMID: 34411862 DOI: 10.1016/j.foodchem.2021.130836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
The postharvest ripening stage is necessary for Torreya grandis (T. grandis) nuts to complete aromatic synthesis, which requires appropriate temperature and relative humidity (RH). Currently, scarce information is available regarding the changes in aroma profiles in T. grandis nuts and the relationship with their response to different environmental conditions. Therefore, the interaction of temperature (20 °C or 30 °C) and relative humidity (70% RH or 90% RH) was investigated on aromatic substances after harvest. The results showed that 56 aromatic components were detected by a gas chromatography-mass spectrometer (GC-MS) and mainly divided into five categories, among which terpenes were the most abundant (56.2-86.7%). Principal component analysis (PCA) showed that both temperature and humidity can affect the aroma composition, and terpenes were mainly influenced by humidity. Specifically, d-limonene occupied the largest proportion of terpenes (63.0-90.8%) and was significantly upregulated by high humidity.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Bin Hua
- Forestry Station of Agricultural Technology Extension Center in Hangzhou Fuyang District, Hangzhou 311400, Zhejiang, China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China; Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.
| |
Collapse
|
28
|
Zhao W, Wang L, Yang F, Zhang N, Fan J, Qin S, Shao T, Xu X, Yan S, Guo H, Li J, Zhao H. Antioxidant activity assessment of Yingjisha sweet almond oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Fan Yang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Ning Zhang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Jiahuan Fan
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Shini Qin
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Tong Shao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Xianao Xu
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Shiyin Yan
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Hongxing Guo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases Tianjin Third Central Hospital. No 83 Jintang Road Tianjin 300170 China
| | - Jianying Li
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| |
Collapse
|
29
|
Wang Z, Zheng C, Huang F, Liu C, Huang Y, Wang W. Effects of Radio Frequency Pretreatment on Quality of Tree Peony Seed Oils: Process Optimization and Comparison with Microwave and Roasting. Foods 2021; 10:foods10123062. [PMID: 34945613 PMCID: PMC8700783 DOI: 10.3390/foods10123062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we explored the technical parameters of tree peony seeds oil (TPSO) after their treatment with radio frequency (RF) at 0 °C-140 °C, and compared the results with microwave (MW) and roasted (RT) pretreatment in terms of their physicochemical properties, bioactivity (fatty acid tocopherols and phytosterols), volatile compounds and antioxidant activity of TPSO. RF (140 °C) pretreatment can effectively destroy the cell structure, substantially increasing oil yield by 15.23%. Tocopherols and phytosterols were enhanced in oil to 51.45 mg/kg and 341.35 mg/kg, respectively. In addition, antioxidant activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) were significantly improved by 33.26 μmol TE/100 g and 65.84 μmol TE/100 g, respectively (p < 0.05). The induction period (IP) value increased by 4.04 times. These results are similar to those of the MW pretreatment. The contents of aromatic compounds were significantly increased, resulting in improved flavors and aromas (roasted, nutty), by RF, MW and RT pretreatments. The three pretreatments significantly enhanced the antioxidant capacities and oxidative stabilities (p < 0.05). The current findings reveal RF to be a potential pretreatment for application in the industrial production of TPSO.
Collapse
|
30
|
Lipan L, Cano-Lamadrid M, Vázquez-Araújo L, Sendra E, Hernández F, Corell M, Moriana A, Carbonell-Barrachina ÁA. How does water stress and roasting temperature affect the physicochemical parameters of almonds? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Abstract
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Collapse
|
32
|
Gonçalves S, Gaivão I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021; 26:5255. [PMID: 34500687 PMCID: PMC8433906 DOI: 10.3390/molecules26175255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.
Collapse
Affiliation(s)
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
33
|
Esposto S, Veneziani G, Taticchi A, Urbani S, Selvaggini R, Sordini B, Daidone L, Gironi G, Servili M. Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices. Antioxidants (Basel) 2021; 10:antiox10091381. [PMID: 34573013 PMCID: PMC8471094 DOI: 10.3390/antiox10091381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
We undertook a qualitative and quantitative assessment of the bioactive compounds, volatile substances, sensory profile, and antioxidant activity of eight different commercial pomegranate juices (PJs) differing by cultivation area, processing (from concentrate (CPJ) or not (NCPJ)), and microbial stabilization. Punicalins were the main ellagitannins, whereas the predominant anthocyanin was cyanidin 3,5-diglucoside, followed by cyanidin 3-glucoside. Total phenols, tannins, hydrolyzable tannins, and anthocyanins in the investigated juices ranged from 1379.9 to 3748.8 mg gallic acid equivalent (GAE)/L, 394.8 to 895.2 mg GAE/L, 150.8 to 2374.2 mg ellagic acid/L, and 0 to 281 mg cyanidin 3-glucoside/L, respectively. Antioxidant activity, determined by DPPH•, FRAP, and ABTS, was positively correlated with the total phenolic compounds and hydrolyzable tannins. Alcohols, acids, and furans were the volatile groups that best described the differences between juices. The most abundant volatile compound was 3-Furfural (8.6–879.9 µg/L) in those juices subjected to the concentration process and to high-temperature short-time (HTST) treatment, whereas it was not present in juice subjected to high-pressure processing (HPP). Processing also affected the juices’ sensory attributes: NCPJs were characterized by ‘red–purple’, ‘pomegranate fruit’, ‘fresh fruit’, and ‘overall intensity’ notes, while in CPJs these notes were not revealed or were masked by those related to heat treatment. Our results provide useful information on the importance of extraction methods and on the overall quality of PJ for the food industry.
Collapse
|
34
|
Jia X, Deng Q, Yang Y, Xiang X, Zhou X, Tan C, Zhou Q, Huang F. Unraveling of the Aroma-Active Compounds in Virgin Camellia Oil ( Camellia oleifera Abel) Using Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9043-9055. [PMID: 33523671 DOI: 10.1021/acs.jafc.0c07321] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Camellia oil is a popular edible oil in China as a result of its nutritional properties. However, the key odorants of camellia oil remain unclear. In this study, the volatiles of virgin camellia oil (VCO) were extracted by solvent-assisted and non-solvent-assisted methods. A total of 66 volatile compounds were identified using gas chromatography-mass spectrometry-olfactometry, with flavor dilution factors ranging from 1 to 729 via aroma extraction dilution analysis. Among them, 10 odorants were identified for the first time in VCO. Moreover, 41 volatiles were confirmed as aroma-active compounds with odor activity values greater than 1. Aroma recombination and omission studies demonstrated that aldehydes, esters, acids, and heterocyclic compounds significantly contribute to the aroma profiles of VCO. Hexanal, octanal, (E,E)-2,4-heptadienal, (E,E)-2,4-nonadienal, decyl acetate, ethyl benzoate, ethyl 2-methylbutanoate, 2-methylbutyl (Z)-2-methyl-2-butenoate, 2-methylbutanoic acid, hexanoic acid, 2-pentylfuran, and 2-methyl-3-furanthiol could impart roasted-like, nut-like, fat-like, fruit-like, grass-like, and sweat-like odors and were the key odorants in VCO. The lipoxygenase pathway was possibly responsible for the formation of key odorants in VCO. This work provides an extract aroma consistent for virgin camellia oil.
Collapse
Affiliation(s)
- Xiao Jia
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Yini Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xia Xiang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinping Zhou
- Hunan Great Sanxiang Camellia Oil Company, Limited, Hengyang, Hunan 421141, People's Republic of China
| | - Chuanbo Tan
- Hunan Great Sanxiang Camellia Oil Company, Limited, Hengyang, Hunan 421141, People's Republic of China
| | - Qi Zhou
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
35
|
Barral-Martinez M, Fraga-Corral M, Garcia-Perez P, Simal-Gandara J, Prieto MA. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021; 10:foods10081793. [PMID: 34441570 PMCID: PMC8394390 DOI: 10.3390/foods10081793] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
The search for waste minimization and the valorization of by-products are key practices for good management and improved sustainability in the food industry. The production of almonds generates a large amount of waste, most of which is not used. Until now, almonds have been used for their high nutritional value as food, especially almond meat. The other remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. However, interest in these by-products has been increasing as they possess beneficial properties (caused mainly by polyphenols and unsaturated fatty acids) and can be used as new ingredients for the food, cosmetic, and pharmaceutical industries. Therefore, it is important to explore almond’s valorization of by-products for the development of new added-value products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.
Collapse
Affiliation(s)
- Marta Barral-Martinez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (M.B.-M.); (M.F.-C.); (P.G.-P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (M.B.-M.); (M.F.-C.); (P.G.-P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (M.B.-M.); (M.F.-C.); (P.G.-P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (M.B.-M.); (M.F.-C.); (P.G.-P.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (M.B.-M.); (M.F.-C.); (P.G.-P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
36
|
Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021; 10:foods10071611. [PMID: 34359483 PMCID: PMC8308100 DOI: 10.3390/foods10071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
The presence of nuts in diets has notably increased due to their composition, and the presence of antioxidants and their unsaturated fatty acid profile has led to a considerable increase in their consumption. The volatile profile of nuts is important from different points of view. It affects consumer’s selection, influences raw material selection for the production of composite foods, dictates variety selection in breeding programs, and, from a quality perspective, its changes can indicate food degradation or alteration. A review of the published bibliography concerning the determination of volatiles in nuts has been carried out. The information retrieved has been divided into four main sections. First, a discussion on the main volatiles present in nuts is performed; next, a revision of the methods used to determine the volatiles is presented; and, finally, two sections describing how harvesting conditions, healthy state and the thermal treatment of nuts modifies their volatile profile are added. Analysis of the published bibliography denoted the complexity of volatile determination and the different variables that can modify the compounds present in the volatile fraction of nuts.
Collapse
|
37
|
Yang KM, Chao LK, Wu CS, Ye ZS, Chen HC. Headspace Solid-Phase Microextraction Analysis of Volatile Components in Peanut Oil. Molecules 2021; 26:molecules26113306. [PMID: 34072807 PMCID: PMC8197802 DOI: 10.3390/molecules26113306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Peanut oil is favored by consumers due to its rich nutritional value and unique flavor. This study used headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS) to examine the differences in the peanut oil aroma on the basis of variety, roasting temperatures, and pressing components. The results revealed that the optimal conditions for extracting peanut oil were achieved through the use of 50/30 μm DVB/CAR/PDMS fibers at 60 °C for 50 min. The primary compounds present in peanut oil were pyrazines. When peanuts were roasted, the temperature raised from 120 °C to 140 °C and the content of aldehydes in peanut oil increased; however, the content of aldehydes in No. 9 oil at 160 °C decreased. The components of peanut shell oil varied depending on the peanut variety. The most marked difference was observed in terms of the main compound at the two roasting temperatures. This compound was a pyrazine, and the content increased with the roasting temperature in hekei oils. When the roasting temperature was lower, No. 9 oil contained more fatty acid oxidation products such as hexanal, heptanal, and nonanal. When the roasting temperature increased, No. 9 oil contained more furfural and 5-methylfurfural. Heren oil was easier to oxidize and produced nonanal that possessed a fatty aroma.
Collapse
Affiliation(s)
- Kai-Min Yang
- Department of Hospitality Management, Mingdao University, Changhua 523, Taiwan;
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (L.K.C.); (C.-S.W.)
| | - Chin-Sheng Wu
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (L.K.C.); (C.-S.W.)
| | - Zih-Sian Ye
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (L.K.C.); (C.-S.W.)
- Correspondence: (Z.-S.Y.); (H.-C.C.); Tel.: +886-4-2205-3366 (ext. 5306) (Z.-S.Y.); +886-4-2205-3366 (ext. 5310) (H.-C.C.); Fax: +886-4-2236-8557 (H.-C.C.)
| | - Hsin-Chun Chen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan; (L.K.C.); (C.-S.W.)
- Correspondence: (Z.-S.Y.); (H.-C.C.); Tel.: +886-4-2205-3366 (ext. 5306) (Z.-S.Y.); +886-4-2205-3366 (ext. 5310) (H.-C.C.); Fax: +886-4-2236-8557 (H.-C.C.)
| |
Collapse
|
38
|
Ouzir M, Bernoussi SE, Tabyaoui M, Taghzouti K. Almond oil: A comprehensive review of chemical composition, extraction methods, preservation conditions, potential health benefits, and safety. Compr Rev Food Sci Food Saf 2021; 20:3344-3387. [PMID: 34056853 DOI: 10.1111/1541-4337.12752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Almond oil, a rich source of macronutrients and micronutrients, is extracted for food flavorings and the cosmetics industry. In recent years, the need for high-quality and high-quantity production of almond oil for human consumption has been increased. The present review examines the chemical composition of almond oil, storage conditions, and clinical evidence supporting the health benefits of almond oil. From the reviewed studies, it appears that almond oil contains a significant proportion of poly and monounsaturated fatty acids, with oleic acid as the main compound, and an important amount of tocopherol and phytosterol content. Some variations in almond oil composition can be found depending on the kernel's origin and the extraction system used. Some new technologies such as ultrasonic-assisted extraction, supercritical fluid extraction, subcritical fluid extraction, and salt-assisted aqueous extraction have emerged as the most promising extraction techniques that allow eco-friendly and effective recovery of almond oil. This safe oil was reported by several clinical studies to have potential roles in cardiovascular risk management, glucose homeostasis, oxidative stress reduction, neuroprotection, and many dermatologic and cosmetic applications. However, the anticarcinogenic and fertility benefits of almond oil have yet to be experimentally verified.
Collapse
Affiliation(s)
- Mounir Ouzir
- Group of Research in Physiology and Physiopathology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Higher Institute of Nursing Professions and Health Techniques, ISPITS Beni Mellal, Beni Mellal, Morocco
| | - Sara El Bernoussi
- Laboratory of Materials, Nanotechnology and Environment (LMNE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment (LMNE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Taghzouti
- Group of Research in Physiology and Physiopathology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
39
|
Gao C, Li Y, Pan Q, Fan M, Wang L, Qian H. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Lipan L, Cano-Lamadrid M, Collado-González J, Wojdyło A, López-Lluch D, Moriana A, Carbonell-Barrachina ÁA. Correlation between water stress and phenolic compounds of hydroSOStainable almonds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3065-3070. [PMID: 33135800 DOI: 10.1002/jsfa.10896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Water scarcity is currently affecting many areas of the world, reaching worrying levels in drought areas such as southern Spain. To cope with this issue, researchers in the agricultural sector have implemented deficit irrigation strategies intended to reduce water consumption by increasing fruit quality. Almond is among the most popular tree nuts worldwide and also the most nut cultivated in Spain. Almond consumption, together with other nuts, has been widely associated with improvements in cardiovascular health, metabolic syndrome and diabetes owing to their bioactive compounds such as polyphenols. Water deficit strategies generate hydroSOStainable almonds, raised under water stress conditions, with high content of bioactive compounds. The aim of this work was to study the relationship between water stress, color and polyphenols in hydroSOStainable almonds. For this, instrumental color, total phenolic content and phenolic compounds were measured and correlated using Pearson's correlation. RESULTS The results showed a strong relationship between water stress, color and polyphenols of almonds, showing that increasing water stress in plants up to ~100 MPa × day values of stress integral increase the polyphenols in almonds, leading to a reddish color. CONCLUSION Finally, this research demonstrated that implementing water-saving strategies help to improve the phenolic content and color of hydroSOStainable almonds and also that isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and kaempferol-3-O-glucoside could be important markers of hydroSOStainable almonds (cv. Vairo). Besides, hydroSOStainable almonds could be an important source of phenols, providing 25% of the estimated total polyphenolic daily intake. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group 'Food Quality and Safety, CSA', Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Orihuela, Spain
| | - Marina Cano-Lamadrid
- Department of Agro-Food Technology, Research Group 'Food Quality and Safety, CSA', Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Orihuela, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), University Campus of Espinardo, Murcia, Spain
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - David López-Lluch
- Department of Agroenvironmental Economics, EPSO, UMH, Orihuela, Spain
| | - Alfonso Moriana
- Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Sevilla, Spain
- Unidad Asociada al CSIC de Uso sostenible del suelo y el agua en la agricultura (US-IRNAS), Seville, Spain
| | - Ángel A Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group 'Food Quality and Safety, CSA', Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Orihuela, Spain
| |
Collapse
|
41
|
Shea E, Fernandez-Bayo JD, Pastrana AM, Simmons CW. Identification and evaluation of volatile organic compounds evolved during solarization with almond hull and shell amendments. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:400-412. [PMID: 33320806 DOI: 10.1080/10962247.2020.1846637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Biosolarization is a fumigation alternative that combines solarization with organic amendments to suppress pests and pathogens in agricultural soils. The generation of volatile biopesticides in the soil, stemming from biodegradation of carbon-rich amendments, contributes to pest inactivation. The purpose of this study was to (1) profile volatiles that may contribute to pest control under field conditions and (2) measure volatile compounds that may present nuisance or exposure risks for humans near biosolarized fields where larger-scale anaerobic degradation of residues occurs. Biosolarization was performed using prominent agricultural waste products, hulls and shells from several almond varieties as soil amendments. After 8 days of biosolarization, soil samples were analyzed using solid phase microextraction-gas chromatography coupled to mass spectrometry. Volatile fatty acids and ketones made up 85% of biosolarized soil headspace, but terpenes, alcohols, aldehydes, esters, and sulfides were detected as well. Different almond variety residues produced distinct volatile profiles, and nonpareil-amended soils had a much richer and more diverse profile, as well as a fivefold greater VOC abundance, than pollinator-amended soil. Identified volatiles with low US recommended exposure limits were quantified via internal and external standards, including acetic acid, 2-butanone, butanal, hexanal, and phenylethyl alcohol. Across biosolarization treatments, headspace concentrations of selected compounds did not exceed 1 mg/m3. This study demonstrates that almond processing residues recycled into the soil as biosolarization substrates produce a high diversity of bioactive degradation compounds on a field scale, with low potential of non-target risks to humans.Implications: This manuscript has implications for two policy goals in the state of California: to reduce landfill disposal of organic waste, and to reduce emissions from soil fumigants. Almond hulls and shells are an increasing source of organic waste, and novel recycling strategies must be developed. Here, recycling almond residues as soil amendments promoted the rapid formation of VOCs which may act as alternatives to chemical fumigants. Headspace concentrations of potentially deleterious VOCs produced from treated soil were low, on the order of parts per billion. These results will help achieve policy goals by expanding waste usage and fumigation alternatives.
Collapse
Affiliation(s)
- Emily Shea
- Food Science & Technology, UC Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
42
|
Di Guardo M, Farneti B, Khomenko I, Modica G, Mosca A, Distefano G, Bianco L, Troggio M, Sottile F, La Malfa S, Biasioli F, Gentile A. Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels. HORTICULTURE RESEARCH 2021; 8:27. [PMID: 33518710 PMCID: PMC7848010 DOI: 10.1038/s41438-021-00465-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 05/16/2023]
Abstract
Almond is appreciated for its nutraceutical value and for the aromatic profile of the kernels. In this work, an almond collection composed of 96 Sicilian accessions complemented with 10 widely cultivated cultivars was phenotyped for the production of volatile organic compounds using a proton-transfer time-of-flight mass spectrometer and genotyped using the Illumina Infinium®18 K Peach SNP array. The profiling of the aroma was carried out on fresh and roasted kernels enabling the detection of 150 mass peaks. Sixty eight, for the most related with sulfur compounds, furan containing compounds, and aldehydes formed by Strecker degradation, significantly increased during roasting, while the concentration of fifty-four mass peaks, for the most belonging to alcohols and terpenes, significantly decreased. Four hundred and seventy-one robust SNPs were selected and employed for population genetic studies. Structure analysis detected three subpopulations with the Sicilian accessions characterized by a different genetic stratification compared to those collected in Apulia (South Italy) and the International cultivars. The linkage-disequilibrium (LD) decay across the genome was equal to r2 = 0.083. Furthermore, a high level of collinearity (r2 = 0.96) between almond and peach was registered confirming the high synteny between the two genomes. A preliminary application of a genome-wide association analysis allowed the detection of significant marker-trait associations for 31 fresh and 33 roasted almond mass peaks respectively. An accurate genetic and phenotypic characterization of novel germplasm can represent a valuable tool for the set-up of marker-assisted selection of novel cultivars with an enhanced aromatic profile.
Collapse
Affiliation(s)
- M Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - B Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - I Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - G Modica
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - A Mosca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - G Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy.
| | - L Bianco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - M Troggio
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - F Sottile
- Dipartimento di Architettura, University of Palermo, Viale delle Scienze, Ed. 14 90128, Palermo, Italy
| | - S La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - F Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - A Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
- National Center for Citrus Improvement, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| |
Collapse
|
43
|
Yang X, Zhu K, Guo H, Geng Y, Lv W, Wang S, Guo Y, Qin P, Ren G. Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry. Food Chem 2021; 348:129086. [PMID: 33508608 DOI: 10.1016/j.foodchem.2021.129086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 01/23/2023]
Abstract
Aroma is an important feature of quinoa that influences consumer preferences. Differently coloured quinoa seeds exhibit diverse nutritional characteristics; however, their aromatic profile differences are poorly investigated. The volatile components of 11 quinoa samples were characterized by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 120 peaks were detected, with 61 compounds identified. White quinoa liberated a high concentration of volatiles with grass (n-hexanol) and green ((E)-2-octenal, (E)-2-heptenal, etc.) aromas before and after cooking, respectively. Raw flaxen samples uniquely released a caramel compound (cyclotene) and exhibited several sweet and caramel volatiles (decanal, 5-methyl-furfural, and 2-furfural) after cooking. Additionally, cooked black quinoa exerted more fruity substances (methyl hexanoate and phenylacetaldehyde). Orthogonal partial least square discriminant analysis clearly distinguished the samples before and after cooking and differentiated the seeds into different colours. The results confirm the potential of HS-GC-IMS to evaluate volatiles in quinoa and are meaningful for quinoa consumption.
Collapse
Affiliation(s)
- Xiushi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaili Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huimin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yanlou Geng
- The Semi-arid Agriculture Engineering & Technology Research Centre of P. R. China, Shijiazhuang 050000, China
| | - Wei Lv
- The Semi-arid Agriculture Engineering & Technology Research Centre of P. R. China, Shijiazhuang 050000, China
| | - Siyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
44
|
Luo KK, Chapman DM, Lerno LA, Huang G, Mitchell AE. Influence of post-harvest moisture on roasted almond shelf life and consumer acceptance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:139-150. [PMID: 32614076 DOI: 10.1002/jsfa.10624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The harvest weights of sweet almonds (Prunus dulcis) have significantly increased to meet consumer demand and now exceed processing facility capabilities. Crops are stockpiled for longer periods, increasing the probability of moisture exposure. Wet almonds can be mechanically dried prior to processing; however, it is unclear how this practice influences lipid oxidation, shelf-life, and consumer acceptance. To address this, almonds were exposed to 8% moisture and dried with low heat (ME). Almonds were roasted and stored under accelerated conditions for 12 months and markers of lipid oxidation, headspace volatiles, sensory attributes, and consumer liking were evaluated. RESULTS At 7 months of storage, light roast ME almonds had higher levels of volatiles related to lipid oxidation than non-moisture exposed almonds (NME) and were significantly higher in oxidized, cardboard and painty / solvent flavors. Although untrained consumers did not show significant preferences between the light roast ME and NME almonds, there were quality losses related to lipid oxidation that trained panelists could detect. Dark roast ME almonds demonstrated significant lipid oxidation by 5 months of storage, indicating they will have a compromised shelf life. Findings also indicate that octanal, nonanal, 2-octenal, and hexanoic acid are good indicators of consumer acceptability. CONCLUSION The results of this research illustrate that post-harvest moisture exposure with mechanical drying has a significant effect on the storage quality of roasted almonds and is most pronounced in dark roast products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kathleen K Luo
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | | | - Larry A Lerno
- Food Safety and Measurement Facility, University of California, Davis, Davis, CA, USA
| | | | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
45
|
Silvestri C, Bacchetta L, Bellincontro A, Cristofori V. Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:27-43. [PMID: 32488859 DOI: 10.1002/jsfa.10557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
European hazelnut (Corylus avellana L.) is a major species of interest for nutritional use within the Betulaceae family and its nuts are widely used throughout the world in the chocolate, confectionery, and bakery industries. Recently its cultivation has been expanded in traditional producer countries and established in new places in the southern hemisphere, including Chile, South Africa, and Australia. Introducing hazelnut in new environments could reduce its productivity, lead the trees to experience eco-physiological disorders, and expose the crop to high pressure from common and new pests and diseases. Thus, new approaches in cultivar choice guidance, in the sustainable orchard management and even in nut storage and kernel quality evaluation are urgently required to improve the hazelnut production and processing chain. The main objective of this study was to systematize the published information regarding recent findings about the cultural operations that directly influence nut and kernel quality, support varietal choice for new plantations, and list the recent advances in nut storage and in quality and safety evaluation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristian Silvestri
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Loretta Bacchetta
- Biotechnology and Agroindustrial Division, ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-food and Forest systems. University of Tuscia, Viterbo, Italy
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
46
|
Variability of Chemical Profile in Almonds ( Prunus dulcis) of Different Cultivars and Origins. Foods 2021; 10:foods10010153. [PMID: 33450909 PMCID: PMC7828311 DOI: 10.3390/foods10010153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
Almonds show a great variability in their chemical composition. This variability is a result of the existence of a diverse range of almond cultivars, the self-incompatibility of most almond cultivars, and the heterogeneous harvesting conditions found around the different locations where almons are grown. In the last years, the discrimination among almond cultivars has been the focal point of some research studies to avoid fraud in protected geographical indications in almond products and also for selecting the best cultivars for a specific food application or the most interesting ones from a nutritional point of view. In this work, a revision of the recent research works related to the chemical characterization and classification of almond cultivars from different geographical origins has been carried out. The content of macronutrients, tocopherols, phytosterols, polyphenols, minerals, amino acids, and volatile compounds together with DNA fingerprint have been reported as possible cultivar and origin markers. The analysis of the results showed that no individual almond compound could be considered a universal biomarker to find differences among different almond cultivars. Hence, an adequate selection of variables or the employment of metabolomics and the application of multivariate statistical techniques is necessary when classification studies are carried out to obtain valuable results. Meanwhile, DNA fingerprinting is the perfect tool for compared cultivars based on their genetic origin.
Collapse
|
47
|
Oliveira I, Meyer AS, Afonso S, Sequeira A, Vilela A, Goufo P, Trindade H, Gonçalves B. Effects of Different Processing Treatments on Almond ( Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. PLANTS 2020; 9:plants9111627. [PMID: 33238547 PMCID: PMC7700282 DOI: 10.3390/plants9111627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Almond is one of the most commonly consumed nuts worldwide, with health benefits associated with availability of bioactive compounds and fatty acids. Almond is often eaten raw or after some processing steps. However, the latter can positively or negatively influence chemical and sensorial attributes of almonds. This work was carried out to assess the effects of two processing treatments, namely; roasting and blanching on (i) contents of bioactive compounds, (ii) contents of fatty acids (3) antioxidant activities (4), sensorial characteristics of four neglected Portuguese almond cultivars (Casanova, Molar, Pegarinhos and Refêgo) and two foreign cultivars (Ferragnès and Glorieta). Results showed that in general, levels of bioactive compounds and antioxidant activities increased with roasting and decreased with blanching. Fatty acid profiles of raw kernels of all cultivars were generally identical although Refêgo exhibited a high content of α-linolenic acid. Following roasting and blanching, content of polyunsaturated fatty acids increased while saturated fatty acids, monounsaturated fatty acids and several health lipid indices decreased. Roasting positively affected perception of skin color and sweetness of Ferragnès and Glorieta as well as skin roughness of Molar and Pegarinhos. Blanching on the other hand led to positive changes in textural properties of Refêgo and Pegarinhos. This study reveals the nutritive benefits of consuming neglected almond cultivars in Portugal, and the novel data reported here could be of interest to growers, processing companies and consumers.
Collapse
Affiliation(s)
- Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (S.A.); (P.G.); (H.T.); (B.G.)
- Correspondence:
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU Building 221, DK-2800 Kgs, 2800 Lyngby, Denmark;
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (S.A.); (P.G.); (H.T.); (B.G.)
| | - Alex Sequeira
- Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Alice Vilela
- Biology and Environment Department, CQ-VR, Chemistry Research Centre–Vila Real, Food and Wine Sensory Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (S.A.); (P.G.); (H.T.); (B.G.)
| | - Henrique Trindade
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (S.A.); (P.G.); (H.T.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (S.A.); (P.G.); (H.T.); (B.G.)
| |
Collapse
|
48
|
Lipan L, Cano-Lamadrid M, Vázquez-Araújo L, Łyczko J, Moriana A, Hernández F, García-García E, Carbonell-Barrachina ÁA. Optimization of roasting conditions in hydroSOStainable almonds using volatile and descriptive sensory profiles and consumer acceptance. J Food Sci 2020; 85:3969-3980. [PMID: 33051880 DOI: 10.1111/1750-3841.15481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 11/27/2022]
Abstract
HydroSOStainable almonds are harvested from trees cultivated under controlled water stress by using a regulated deficit irrigation (RDI) strategy. The aim of this study was to investigate consumers' perception to select the best roasting temperature for the hydroSOStainable almonds and its correlation with volatile compounds, descriptive sensory attributes, instrumental color, and texture. Thirty-five volatile compounds were identified and the key compounds for the roasting process were 2,5-dimethylpyrazine, furfural, and trimethyl pyrazine. Pyrazines, furans and, in general, volatiles were higher in hydroSOStainable almonds than in control. Instrumental color and trained panel showed that almonds roasted at 190 °C presented intense color and burnt notes in both irrigation treatments, while almonds roasted at 150 °C were under-roasted. Principal component analysis (PCA) grouped together the samples of the same irrigation treatment, but separated samples roasted at different temperatures. Partial least square regression (PLS) results indicated that consumers overall liking was positively linked to specific volatiles (alkanes, alcohols, aldehydes, and furans) and sensory attributes (sweetness, roasted, almond ID, nutty, hardness, and crispiness), but, negatively correlated with pyrazines, bitterness, astringency, woody, and burnt flavor notes. Penalty analysis showed that almonds roasted at 150 and 190 °C were penalized due to low roasted aroma and soft almonds, and over-roasted samples with too intense color and burn notes, respectively. While no penalization being found for almonds roasted at 170 °C. Overall, roasting at 170 °C for 10 min in a convective oven were the optimum conditions for roasting Vairo almonds. PRACTICAL APPLICATION: This research describes the link between physicochemical and sensory analysis of roasted almonds giving evidence about possible sensory quality markers. Besides, it provides valuable information for the food industry to produce roasted almonds that meet consumer demands and for the agricultural sector by encouraging reduction of irrigation water consumption by almond trees.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety, CSA,", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Alicante, 03312, Spain
| | - Marina Cano-Lamadrid
- Department of Agro-Food Technology, Research Group "Food Quality and Safety, CSA,", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Alicante, 03312, Spain
| | - Laura Vázquez-Araújo
- BCCInnovation, Technological Center in Gastronomy, Donostia-San Sebastián, Gipuzkoa, 20009, Spain.,Basque Culinary Center, Mondragon Unibersitatea, Donostia-San Sebastián, Gipuzkoa, 20009, Spain
| | - Jacek Łyczko
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, 50375, Poland
| | - Alfonso Moriana
- Departamento de Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Sevilla, 41013, Spain.,Unidad Asociada al CSIC de Uso sostenible del suelo y el agua en la agricultura (US-IRNAS), Sevilla, 41013, Spain
| | - Francisca Hernández
- Department of Plant Science and Microbiology, UMH, EPSO, Research Group "Plant Production and Technology", Orihuela, Alicante, 03312, Spain
| | - Elena García-García
- Department of Agro-Food Technology, Research Group "Food Quality and Safety, CSA,", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Alicante, 03312, Spain
| | - Ángel A Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety, CSA,", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Alicante, 03312, Spain
| |
Collapse
|
49
|
Metabolic profiling of flavor compounds in black teas with almond odor during processing. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Román Falcó IP, Prats Moya MS, Maestre Pérez SE, Martín Carratalá ML, Grané Teruel N. Chemometric comparison of almond oxidation rates using kinetic parameters obtained by infrared spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4549-4557. [PMID: 32419165 DOI: 10.1002/jsfa.10513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The study of almond fat stability is essential from a quality control perspective meanly because, in most of the cases, almonds are sold skinned and thermally treated. In this work an alternative method to Rancimat test based on attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectrometry was adapted for checking the induced degradation at 75 °C of seven almond oil cultivars, three of the top Californian producing varieties, and, four traditional cultivars harvested in Spain. RESULTS The thermal oil degradation evolution was followed by measuring the changes in the absorbance of the selected FTIR spectra bands (3470, 3006, 1730, 1630, 988 and 970 cm-1 ). A first-order kinetic behaviour was observed, after an induction time in all bands. CONCLUSIONS Kinetic coefficients and induction times were easily obtained as the absorbance values (from difference spectra) fitted to pseudo-first-order kinetics after the induction time. Principal component analysis was applied to the kinetic parameters to visualize which variables could be useful to classify the almond cultivars based on their resistance to thermal oxidation processes. It was found that selecting only the induction times corresponding to the bands 3470, 3006, 1630 and 970 cm-1 a separate classification of the Californian cultivars from the Spanish ones was possible. Finally, a linear discriminant analysis was assayed using only the four induction times previously selected. Validated classification and correct in 100% of the cases was obtained for all the samples based on their Spanish or Californian origin. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Iván P Román Falcó
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, Alicante, Spain
| | - María Soledad Prats Moya
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, Alicante, Spain
| | - Salvador E Maestre Pérez
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, Alicante, Spain
| | - Maria L Martín Carratalá
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, Alicante, Spain
| | - Nuria Grané Teruel
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, Alicante, Spain
| |
Collapse
|