1
|
Liu X, Li J, Chen R, Xie X, Mao F, Sun Z, He Z, Cao H, Zhang S, Liu X. Colorimetric and chemiluminescent enzyme immunoassays based on the alkaline phosphatase-tagged single-chain variable fragment fusion tracer for detecting zearalenone in agro-products. Food Chem 2024; 443:138569. [PMID: 38306906 DOI: 10.1016/j.foodchem.2024.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin and seriously threatens food safety, which requires rapid and sensitive detection methods for monitoring ZEN in agro-products. Herein, an alkaline phosphatase-tagged single-chain variable fragment fusion protein (ALP-scFv) was used as a bifunctional tracer to develop a colorimetric enzyme immunoassay (CEIA) and a chemiluminescent enzyme immunoassay (CLEIA) for ZEN. In addition, the interactions between scFv and ZEN were exploited by computer-assisted simulation, and four key amino acid sites were preliminarily identified. After optimization, the CEIA and CLEIA exhibited a limit of detection of 0.02 and 0.006 ng/mL, respectively. Furthermore, both methods showed favorable accuracy in recovery experiments and good selectivity in cross reactions. Moreover, the detection results of the actual samples from both methods correlated well with those from high-performance liquid chromatography. Overall, the ALP-scFv fusion tracer-based CEIA and CLEIA are demonstrated as reliable tools for ZEN detection in food.
Collapse
Affiliation(s)
- Xinmiao Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiao Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Runmin Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Li HZ, Yang C, Qian HL, Xu ST, Yan XP. Pore Size Adjustment Strategy for the Fabrication of Molecularly Imprinted Covalent Organic Framework Nanospheres at Room Temperature for Selective Extraction of Zearalenone in Cereal Samples. Anal Chem 2024; 96:3561-3568. [PMID: 38372135 DOI: 10.1021/acs.analchem.3c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Covalent organic frameworks (COFs) are attractive adsorbents for sample pretreatment due to their unique structure and properties. However, the selectivity of COFs for the extraction of hazardous compounds is still limited due to the lack of specific interactions between COFs and targets. Herein, we report a pore size adjustment strategy for room-temperature synthesis of molecularly imprinted COF (MICOF) for selective extraction of zearalenone (ZEN) in complex food samples. The three-dimensional building block tetra(4-aminophenyl) methane was used as a functional monomer, while dialdehyde monomers with different numbers of benzene ring were used to adjust the pore size of MICOF to match with the size of ZEN molecules. The prepared MICOF gave the largest adsorption capacity of 177.2 mg g-1 and the highest imprinting factor of 10.1 for ZEN so far. MICOF was used as the adsorbent for dispersed solid-phase extraction in combination with high-performance liquid chromatography for the determination of trace ZEN in cereals. The high selectivity of the developed method allows simple aqueous standard calibration for the matrix effect-free determination of ZEN in food samples. The limit of detection and the recoveries of the developed method were 0.21 μg kg-1 and 93.7-101.4%, respectively. The precision for the determination of ZEN was less than 3.8% (RSD, n = 6). The developed method is promising for the selective determination of ZEN in complex matrices.
Collapse
Affiliation(s)
- Hao-Ze Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Li S, Zhang S, Li X, Zhou S, Ma J, Zhao X, Zhang Q, Yin X. Determination of multi-mycotoxins in vegetable oil via liquid chromatography-high resolution mass spectrometry assisted by a complementary liquid-liquid extraction. Food Chem X 2023; 20:100887. [PMID: 38144739 PMCID: PMC10740109 DOI: 10.1016/j.fochx.2023.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 12/26/2023] Open
Abstract
The simultaneous determination of multi-mycotoxins in food commodities are highly desirable due to their potential toxic effects and mass consumption of foods. Herein, liquid chromatography-quadrupole exactive orbitrap mass spectrometry was proposed to analyze multi-mycotoxins in commercial vegetable oils. Specifically, the method featured a successive liquid-liquid extraction process, in which the complementary solvents consisted of acetonitrile and water were optimized. Resultantly, matrix effects were reduced greatly. External calibration approach revealed good quantification property for each analyte. Under optimal conditions, the recovery ranging from 80.8% to 109.7%, relative standard deviation less than 11.7%, and good limit of quantification (0.35 to 45.4 ng/g) were achieved. The high accuracy of proposed method was also validated. The detection of 20 commercial vegetable oils revealed that aflatoxins B1 and B2, zearalenone were observed in 10 real samples. The as-developed method is simple and low-cost, which merits the wide applications for scanning mycotoxins in oil matrices.
Collapse
Affiliation(s)
- Shuangqing Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Siyao Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaomin Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Shukun Zhou
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Jiahui Ma
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaotong Zhao
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qinghe Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Xiong Yin
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
4
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023; 55:316-329. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
5
|
Pradanas-González F, Aragoneses-Cazorla R, Merino-Sierra MÁ, Andrade-Bartolomé E, Navarro-Villoslada F, Benito-Peña E, Moreno-Bondi MC. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food Chem 2023; 429:136846. [PMID: 37467670 DOI: 10.1016/j.foodchem.2023.136846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this work, we developed an environmentally friendly liquid-liquid microextraction method using a natural deep eutectic solvent in combination with liquid chromatography for the simultaneous determination of four mycotoxins (deoxynivalenol, alternariol, ochratoxin A and zearalenone) in edible vegetable oils. A chemometric approach assessed the effect of the operational parameters on the mycotoxin extraction efficiency. The extracts were analyzed by HPLC coupled with a diode array and fluorescence detector. The optimum NADES composition resulted in the highest extraction recoveries, and it was applied to coextract the target mycotoxins in several types of edible vegetable oils without using hazardous solvents or requiring further clean-up. The limits of detection ranged from 0.07 to 300 µg kg-1, and recoveries were close to 100%, except for zearalenone (viz. 35%), with relative standard deviations below 9% in all cases. The proposed method was validated following the European Commission 2002/657/EC and 2006/401/EC.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rubén Aragoneses-Cazorla
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Miguel Ángel Merino-Sierra
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Elena Andrade-Bartolomé
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
6
|
Lou Y, Xu Q, Chen J, Yang S, Zhu Z, Chen D. Advancements in Sample Preparation Methods for the Chromatographic and Mass Spectrometric Determination of Zearalenone and Its Metabolites in Food: An Overview. Foods 2023; 12:3558. [PMID: 37835213 PMCID: PMC10572225 DOI: 10.3390/foods12193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zearalenone and its metabolites are mycotoxins generated by Fusarium species while crops are growing and can typically be found in various foods, posing a risk to human health. Governments have implemented stricter regulations concerning the permissible levels of zearalenone in food products to safeguard public health. Stricter regulations on zearalenone levels in food have been implemented. However, detecting zearalenone and its metabolites remains challenging due to sample complexity and interference. Surprisingly few reviews of sample preparation methods for zearalenone in food have appeared in the past decade. In this overview, we outline the most recent developments in the sample pre-treatment technology of zearalenone and its metabolites in food samples based on chromatography-mass spectrometry methods since 2012. This review covers some prominent technologies, such as liquid-liquid extraction-based methods, solid-phase extraction-based methods, and QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction, providing valuable insights into their advantages and limitations for potential applications. The assessment of the methods discussed, along with an overview of current challenges and prospects, will guide researchers in advancing the field and ensuring safer food quality for consumers worldwide.
Collapse
Affiliation(s)
- Yifeng Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Qingyang Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Jiaqi Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Zheng Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Manjula N, Pulikkutty S, Chen SM. 3D flower-like ceria silver co-doped zinc oxide catalyst assembled by nanorod for electrochemical sensing of zearalenone in food samples. Food Chem 2023; 416:135777. [PMID: 36893646 DOI: 10.1016/j.foodchem.2023.135777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
To ensure food safety and quality, the development of rapid detection of mycotoxins using sensitive and accurate methods is essential. Zearalenone is one of the mycotoxins found in cereals, and its toxicity poses a serious risk to humans. For this concern, a simple ceria silver co doped zinc oxide (Ce-Ag/ZnO) catalyst was prepared by coprecipitation approach. The physical properties of the catalyst were characterized by XRD, FTIR, XPS, FESEM, and TEM. The Ce-Ag/ZnO catalyst was used as an electrode material for the detection of ZEN in food samples due to its synergistic effect and high catalytic activity. The sensor exhibits good catalytic performance with a detection limit of 0.26 µg/mL. Moreover, the efficiency of the prepared sensor was confirmed by selectivity in interference studies and real-time analysis in food samples. Our research is an essential technique for using trimetallic heterostructures to study the construction of sensors.
Collapse
Affiliation(s)
- Natesan Manjula
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East 8 Road, Taipei 106, Taiwan, ROC
| | - Subramaniyan Pulikkutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East 8 Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East 8 Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
8
|
Moya-Cavas T, Navarro-Villoslada F, Lucas Urraca J, Antonio Serrano L, Orellana G, Cruz Moreno-Bondi M. Simultaneous determination of zearalenone and alternariol mycotoxins in oil samples using mixed molecularly imprinted polymer beads. Food Chem 2023; 412:135538. [PMID: 36738530 DOI: 10.1016/j.foodchem.2023.135538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
This work reports the optimization of a method using Molecularly Imprinted Polymers (MIPs) for the simultaneous determination of zearalenone and alternariol mycotoxins. The method was optimized using a chemometric approach where in the optimized conditions, the cartridges with a mixture (50:50, w/w) of both MIPs, were loaded with 30 mL of sample, washed with 2 mL of ACN/water (20/80, v/v) and eluted with 2.5 mL of trifluoroacetic acid/MeOH (3/97, v/v). The extracts were analyzed by HPLC coupled to a fluorescence detector (FLD). The optimized method has been applied and validated to the analysis of the mycotoxins in maize, sunflower and olive oils samples with a limit of detection of 5 and 2 µg kg-1, respectively. Recoveries were in the range of 94 % to 108 % (RSD < 6 %) for zearalenone and 92 % to 113 % (RSD < 5 %) for alternariol. The results were confirmed by HPLC-MS/MS.
Collapse
Affiliation(s)
- Tamara Moya-Cavas
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Javier Lucas Urraca
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Luis Antonio Serrano
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| |
Collapse
|
9
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
10
|
Qin G, Wei Y, Zhou Q, Wang H, Wei Y, Lao S, Luo L, Mo R, Chen Y, Yang Y, He J, Li H. A sensitive MnO 2 nanosheet sensing platform based on a fluorescence aptamer sensor for the detection of zearalenone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4872-4878. [PMID: 36416138 DOI: 10.1039/d2ay01589g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An aptamer sensor based on manganese dioxide (MnO2) nanosheets was developed for the detection of zearalenone (ZEN). The ZEN aptamer was modified at the 5'-end by a 6-carboxyfluorescein (6-FAM) fluorophore with self-assembly on MnO2 nanosheets. Interaction of the 6-FAM fluorophore at the 5'-end of the ZEN aptamer with the MnO2 nanosheet lowered fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of ZEN into the sensing system resulted in hybridization with the ZEN aptamer, forming a stable G-quadruplex/ZEN, which exhibited a low affinity for the MnO2 nanosheet surface. The distance between the 6-FAM fluorophore and MnO2 nanosheet hampered FRET, with a consequent strong FL signal. Under the optimal experimental conditions, the FL intensity of the sensing system showed a good linear correlation with ZEN concentration in the range of 1.5-10.0 ng mL-1, and a detection limit (S/N = 3) of 0.68 ng mL-1. The sensing system delivered enhanced specificity for the detection of ZEN, and can find wide application in the detection of other toxins by replacing the sequence of the recognition aptamer.
Collapse
Affiliation(s)
- Guoxin Qin
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yuanwen Wei
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Qifeng Zhou
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Haijun Wang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yuning Wei
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shuibing Lao
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Renfu Mo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yongxian Chen
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yuxia Yang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jie He
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Huiling Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
11
|
Luo S, Liu Y, Guo Q, Wang X, Tian Y, Yang W, Li J, Chen Y. Determination of Zearalenone and Its Derivatives in Feed by Gas Chromatography-Mass Spectrometry with Immunoaffinity Column Cleanup and Isotope Dilution. Toxins (Basel) 2022; 14:toxins14110764. [PMID: 36356014 PMCID: PMC9697342 DOI: 10.3390/toxins14110764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, a gas chromatography-mass spectrometry (GC-MS) method was established for the determination of zearalenone and its five derivatives in feed, including zearalanone, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol. An effective immunoaffinity column was prepared for sample purification, which was followed by the silane derivatization of the eluate after an immunoaffinity chromatography analysis for target compounds by GC-MS. Matrix effects were corrected by an isotope internal standard of zearalenone in this method. The six analytes had a good linear relationship in the range of 2-500 ng/mL, and the correlation coefficients were all greater than 0.99. The limits of detection (LODs) and limits of quantification (LOQs) were less than 1.5 μg/kg and 5.0 μg/kg, respectively. The average spike recoveries for the six feed matrices ranged from 89.6% to 112.3% with relative standard deviations (RSDs) less than 12.6%. Twenty actual feed samples were analyzed using the established method, and at least one target was detected. The established GC-MS method was proven to be reliable and suitable for the determination of zearalenone and its derivatives in feed.
Collapse
Affiliation(s)
- Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Guo
- Clover Technology Group Inc., Beijing 100044, China
| | - Xiong Wang
- Clover Technology Group Inc., Beijing 100044, China
| | - Ying Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| |
Collapse
|
12
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
13
|
XIAO G, YUAN L, LUO C, LUO X, HUANG Y. [Simultaneous determination of seven dimethylcyclosiloxanes in cosmetics of different formulation systems by gel permeation chromatography purification-gas chromatography-tandem mass spectrometry]. Se Pu 2022; 40:576-583. [PMID: 35616203 PMCID: PMC9404057 DOI: 10.3724/sp.j.1123.2021.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 11/25/2022] Open
Abstract
At present, the addition of dimethylcyclosiloxanes (DMCs) in cosmetics is being debated and no substantial progress has been made in their safety risk assessment because of the lack of a suitable analytical method. Therefore, it is of theoretical and practical significance to establish a method suitable for the determination of DMCs in cosmetics with different formulation systems. Accordingly, a method based on gel permeation chromatography (GPC) purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the determination of seven DMCs in cosmetics. The cosmetic samples were extracted by ethyl acetate-cyclohexane (1∶1, v/v), purified by gel permeation chromatography, separated on a DB-5ms column (30.0 m×0.25 mm×0.25 μm), confirmed and detected by gas chromatography-tandem mass spectrometry in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with n-hexadecane as the internal standard. Experiments were carried out using n-tetradecane, n-hexadecane, and n-octadecane as the internal standards, and based on the retention time in GPC and GC, n-hexadecane was found to be the suitable choice for further analyses. The extraction efficiency for the target compounds was tested in different solvents such as methanol, n-hexane, acetonitrile, ethyl acetate, and ethyl acetate-cyclohexane (1∶1, v/v). Given the high recovery, ethyl acetate-cyclohexane (1∶1, v/v) was selected as the extraction solvent for analyses. Among the three purification methods (analysis without purification, solid-phase extraction (SPE), and GPC purification), GPC was selected as the best method because of the minimal matrix interference to the target compounds. Under the optimized conditions, the seven DMCs showed good linearities in the range of 0.05-1.0 mg/L. The correlation coefficients (r) were 0.994-0.998, which were greater than the required of the specification (r≥0.990). The limits of detection (LODs, S/N=3) were 0.04-0.08 mg/kg, and the limits of quantification (LOQs, S/N=3) were 0.12-0.24 mg/kg. According to the cosmetic matrix in different formulation systems, standard addition recovery tests at three levels of low, medium, and high were carried out. The average recovery rates of the targets were 85.3%-108.8%. The relative standard deviations (RSDs, n=6) were 3.1%-9.4%. The established method was also employed for the analysis of cosmetics in the market, and octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) were detected at various levels in the cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, and good reproducibility, and it allows for the determination of seven DMCs in cosmetics with different formulation systems. The establishment of this method provides a basis for the quality supervision and inspection of DMCs in cosmetics in China, in addition to providing technical support for follow-up health and safety evaluation.
Collapse
|
14
|
Identification of olive oil in vegetable blend oil by one-dimensional convolutional neural network combined with Raman spectroscopy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hua Q, Liu Z, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Magnetic immunochromatographic assay with smartphone-based readout device for the on-site detection of zearalenone in cereals. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Stability of a calibrant as certified reference material for determination of trans-zearalenone by high performance liquid chromatography-diode array detection-triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 2022; 414:3631-3641. [PMID: 35305116 DOI: 10.1007/s00216-022-04002-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
In this study, a trans-zearalenone (trans-ZEN) calibrant in acetonitrile as certified reference material (CRM) was prepared and intensively investigated the stability by high performance liquid chromatography coupled diode array detection and triple quadrupole tandem mass spectrometry (HPLC-DAD-MS/MS). The photoisomerization and degradation of main component and related impurities in trans-ZEN calibrant CRM was studied in detail under different light conditions such as UV light (254 nm), sunlight, and visible light. Trans-ZEN in acetonitrile was confirmed a significant shift toward cis-ZEN up to a 52% cis-isomerization rate after exposing to UV light (254 nm) in transparent ampule for 1 day. The unsaturated double bond photosensitive groups of trans-ZEN and cis-ZEN will further undergo photoreaction to generate more isomers and related products with the increase of UV irradiation time. The calibrant in amber ampules was relatively stable after exposing to sunlight for 28 days, with only 0.35% cis-isomer observed. The results indicated that trans-ZEN solution calibrant should be packed in amber ampules to avoid UV rays. Thermal stability test exhibited this calibrant was stable over 6 weeks even at 60 °C. Trans-ZEN was found to be more stable in acetonitrile than in methanol since an unknown impurity was observed in methanol after 6 weeks placed at 25 °C. The stability study of trans-ZEN calibrant provided a basis for the usage, storage, and transportation of the CRM. A concentration and expanded uncertainty of the trans-ZEN calibrant CRM of 11.01 ± 0.18 µg/mL was developed.
Collapse
|
17
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
18
|
Lijalem YG, Gab-Allah MA, Choi K, Kim B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem 2022; 384:132483. [PMID: 35202990 DOI: 10.1016/j.foodchem.2022.132483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022]
Abstract
A method using isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) was developed for the accurate determination of zearalenone (ZEN) and its five major metabolites in corn. 13C- or 2H-labeled analogues of the target mycotoxins were used as internal standards. As the immunoaffinity columns used demonstrated selectivity to a specific chiral isomer of a racemic mixture of zearalanone-d6, a clean-up cartridge without stereoselectivity (Mycosep 226 column) was selected for the same recovery of the analyte and its internal standard with adequate elimination of matrix interferences. The method demonstrated sufficient selectivity, sensitivity, accuracy and precision over a concentration range of 20-400 µg/kg. The limit of detections and limit of quantifications were 0.14-0.33 µg/kg and 0.45-1.11 µg/kg, respectively. The accuracy values were 96.7%-103.6%, with intra and inter-day precisions of less than 3% and 4%, respectively. The expanded measurement uncertainty was less than 7% (with a 95% confidence level).
Collapse
Affiliation(s)
- Yared Getachew Lijalem
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; National Metrology Institute of Ethiopia, Addis Ababa P. O. Box: 5722, Ethiopia
| | - Mohamed A Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Reference Materials Lab, National Institute of Standards, Tersa St, Haram, P. O. Box: 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
19
|
Kholif OT, Sebaei AS, Eissa FI, Elhamalawy OH. Determination of aflatoxins in edible vegetable oils from Egyptian market: Method development, validation, and health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Lin S, Zhao Z, Lv YK, Shen S, Liang SX. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst 2021; 146:7394-7417. [PMID: 34783327 DOI: 10.1039/d1an00988e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rapid and accurate detection of pesticide and veterinary drug residues is a continuing challenge because of the complex matrix effects. Thus, appropriate sample pretreatment is a crucial step for the effective extraction of the analytes and removal of the interferences. Recently, the development of nanomaterial adsorbents has greatly promoted the innovation of food sample pretreatment approaches. Porous organic frameworks (POFs), including polymers of intrinsic microporosity, covalent organic frameworks, hyper crosslinked polymers, conjugated microporous polymers, and porous aromatic frameworks, have been widely utilized due to their tailorable skeletons and pores as well as fascinating features. This review summarizes the recent advances for POFs to be utilized in adsorption and sample preparation of pesticide and veterinary drug residues. In addition, future prospects and challenges are discussed, hoping to offer a reference for further study on POFs in sample pretreatment.
Collapse
Affiliation(s)
- Shumin Lin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China. .,Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shigang Shen
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| |
Collapse
|
21
|
Junsai T, Poapolathep S, Sutjarit S, Giorgi M, Zhang Z, Logrieco AF, Li P, Poapolathep A. Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography-Tandem Mass Spectrometry. Foods 2021; 10:2795. [PMID: 34829076 PMCID: PMC8619327 DOI: 10.3390/foods10112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Samak Sutjarit
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | | | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| |
Collapse
|
22
|
Ma T, Liu K, Yang X, Yang J, Pan M, Wang S. Development of Indirect Competitive ELISA and Visualized Multicolor ELISA Based on Gold Nanorods Growth for the Determination of Zearalenone. Foods 2021; 10:foods10112654. [PMID: 34828935 PMCID: PMC8619891 DOI: 10.3390/foods10112654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, a zearalenone (ZEN) hapten was designed and prepared against the mycotoxin ZEN, and the original coating ZEN-ovalbumin (ZEN-OVA) was prepared by conjugation with OVA. Based on the gold nanorods (AuNRs) of uniform size and stable properties synthesized by the seed-mediated method, the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and the AuNRs growth-based multicolor ELISA for detecting ZEN toxin were further established. Under the optimal experimental conditions, the coating amount of ZEN-OVA: 0.025 μg/well, antibody (Ab) dilution factor: 32,000 times, blocking solution: 0.5% skimmed milk powder, enzyme-labeled secondary Ab diluted 10,000 times, and a pH of the PBS buffer at 7.4, the sensitivity (IC50) of the established ic-ELISA for ZEN detection reached 0.85 ± 0.04 μg/L, and the limit of detection (IC15) reached 0.22 ± 0.08 μg/L. In the multicolor ELISA based on the growth of AuNRs, as the content of ZEN increased, the mixed solution exhibited a significant color change from brownish red to colorless. ZEN concentration as low as 0.1 μg/L can be detected by the naked eye (brown red to dark gray). This study provided an effective analysis strategy for the rapid screening and accurate monitoring of the ZEN contaminant in foods.
Collapse
Affiliation(s)
- Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Magnetic dispersive solid phase extraction of ZEAralenone using Fe3O4@ hydroxy propyl methyl cellulose nanocomposite from wheat flour samples prior to fluorescence determination: Multivariate optimization by Taguchi design. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Lv S, Wu X, Guan J, Yan Y, Ge M, Zhu G. Quantification and Confirmation of Zearalenone Using a LC-MS/MS QTRAP System in Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01987-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. BIOSENSORS-BASEL 2021; 11:bios11020053. [PMID: 33669533 PMCID: PMC7922548 DOI: 10.3390/bios11020053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
This research reports a portable immunochip, based on quartz crystal microbalance (QCM) for label-free, low-cost qualitative detection of zearalenone (ZEN) in food samples. The experimental parameters in the functionalization and working process were evaluated in detail, in order to achieve a high accuracy and sensitivity. Under optimal conditions, the ZEN concentration at an inhibition ratio of 50% and 15% of the proposed QCM immunochip achieved 3.41 µg L−1 and 0.37 µg L−1, respectively. This portable QCM immunochip also exhibited high specificity, no obvious cross-reaction to five structural analogs of ZEN, and showed other mycotoxins. It could finish the whole qualitative measurement within 30 min, showed good stability during the processes of preparation (SD < 5%, n = 9), storage (frequency response >90%, in PBS at 4 °C for 15 days), and application (frequency response >90% after being reused 6 times). The developed QCM immunochip obtained accurate and repeatable recovery results in ZEN analysis in the chosen food samples (corn, wheat flour, soy sauce, and milk), which had a high correlation (R2 = 0.9844) with that achieved by the HPLC–MS/MS method. In short, this work developed a portable, stable, and reproducible QCM immunochip that could be used for rapid, low-cost, and sensitively measurement of ZEN content in real food samples.
Collapse
|
28
|
Mao X, Wu Y, Chen H, Wang Y, Yu B, Shi G. A mix-and-detect method based on colloidal gold immunochromatographic assay for on-site detection of zearalenone in edible oils. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5628-5634. [PMID: 33188663 DOI: 10.1039/d0ay01752c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The common methods to detect zearalenone (ZEN) in edible oils need organic solvents to extract ZEN and then some sample purification process before detection, so, it is not convenient for on-site use. Here a simple method without organic solvents and a sample purification process was developed for the determination of ZEN in edible oils. The detection process only needs mixing oil with a surfactant solution in the indicated ratio and then loading the mixture onto a colloidal gold immunochromatographic (CGI) strip for detection. The optimized surfactant was AEO15 among the seven surfactants studied in this paper. The ZEN residue in edible oil could be quantitatively determined with a detection limit of 44.3 ng g-1, and the working range of the standard curve was from 50 to 800 ng g-1. This method has been successfully applied to the detection of ZEN in plant oils with recoveries ranging from 81 ± 7% to 129 ± 9% for spiked samples. The detection results for the ZEN residue in oil samples from a local market by this method were in good agreement with those obtained by the national standard method.
Collapse
Affiliation(s)
- Xinyi Mao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R.China.
| | - Yuxiang Wu
- Shandong Lvdu Biotechnology Co., Ltd, Shandong 256600, P. R.China
| | - Huitian Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R.China.
| | - Yifan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R.China.
| | - Binger Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R.China.
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R.China.
| |
Collapse
|
29
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
30
|
Li M, Tong Z, Gao X, Zhang L, Li S. Simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper by capillary zone electrophoresis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1388-1398. [PMID: 32546103 DOI: 10.1080/19440049.2020.1769197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, a simple and fast method for simultaneous detection of zearalenone, citrinin, and ochratoxin A utilising capillary zone electrophoresis with an ultraviolet detector was developed. The optimised approach was validated and applied using pepper samples. The proposed method yielded satisfactory linearity between the signal and the mycotoxin concentration in the range of 1.5-150 μg/kg for zearalenone, 4.5-150 μg/kg for citrinin, and 0.8-150 μg/kg for ochratoxin A. The limits of detection for these mycotoxins ranged from 0.3 to 1.5 μg/kg. The corresponding intra- and inter-day precisions were less than 3.5 % and 4.1 %, respectively. Moreover, the matrix effect was also assessed and the result was compared using the capillary zone electrophoresis and high-performance liquid chromatography methods. The developed approach could be used for simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Zaikang Tong
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Xingjun Gao
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Lijun Zhang
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Sha Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
31
|
Wu X, Zhao Z, Tian R, Gao S, Niu Y, Liu H. Exploration of total synchronous fluorescence spectroscopy combined with pre-trained convolutional neural network in the identification and quantification of vegetable oil. Food Chem 2020; 335:127640. [PMID: 32738536 DOI: 10.1016/j.foodchem.2020.127640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
In order to distinguish different vegetable oils, adulterated vegetable oils, and to identify and quantify counterfeit vegetable oils, a method based on a small sample size of total synchronous fluorescence (TSyF) spectra combined with convolutional neural network (CNN) was proposed. Four typical vegetable oils were classified by three ways of fine-tuning the pre-trained CNN, the pre-trained CNN as a feature extractor, and traditional chemometrics. The pre-trained CNN was combined with support vector machines to distinguish adulterated sesame oil and counterfeit sesame oil separately with 100% correct classification rates. The pre-trained CNN combined with partial least square regression was used to predict the level of counterfeit sesame oil. The coefficient of determination for calibration (Rc2) values were all greater than 0.99, and the root mean square errors of validation were 0.81% and 1.72%, respectively. These results show that it is feasible to combine TSyF spectra with CNN for vegetable oil identification.
Collapse
Affiliation(s)
- Xijun Wu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhilei Zhao
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruiling Tian
- The School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Shibo Gao
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yudong Niu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hailong Liu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
32
|
Liu R, Shi R, Zou W, Chen W, Yin X, Zhao F, Yang Z. Highly sensitive phage-magnetic-chemiluminescent enzyme immunoassay for determination of zearalenone. Food Chem 2020; 325:126905. [PMID: 32387950 DOI: 10.1016/j.foodchem.2020.126905] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022]
Abstract
Here we demonstrate a novel phage-magnetic-chemiluminescent enzyme immunoassay (P-MCLEIA) for detection of zearalenone (ZEN). The P-MCLEIA was more efficient than conventional ELISA through several improvements. In the P-MCLEIA, magnetic nanoparticles were replaced of microplates as solid phases to reduce the whole incubation time within 40 min. Phage-mimotope was replaced of chemosynthetic antigen to improve the sensitivity of immunoassay. Chemiluminescence substrate was replaced of chromogenic substrate to further improve the sensitivity. The IC50 value of P-MCLEIA was 31.4 pg/mL, which was about 11 times lower than that of phage-magnetic-enzyme linked immunosorbent assay (P-MELISA) and 72 times lower than that of conventional ELISA. The LOD of P-MCLEIA was 4.3 pg/mL. Recovery study of P-MCLEIA was performed by analyzing ZEN levels in spiked corn samples, intra- and inter-assay recoveries were 80.0-119.8% and 82.7-112.7%, respectively. Furthermore, parallel analysis of natural corn samples showed a good correlation between the P-MCLEIA and high performance liquid chromatography.
Collapse
Affiliation(s)
- Ruxia Liu
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Ruirui Shi
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Wenting Zou
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Wenhua Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianchao Yin
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fengchun Zhao
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China.
| | - Zhengyou Yang
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
33
|
Pan M, Ma T, Yang J, Li S, Liu S, Wang S. Development of Lateral Flow Immunochromatographic Assays Using Colloidal Au Sphere and Nanorods as Signal Marker for the Determination of Zearalenone in Cereals. Foods 2020; 9:foods9030281. [PMID: 32143348 PMCID: PMC7143912 DOI: 10.3390/foods9030281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
This paper describes the development of lateral flow immunochromatographic assays (ICAs) using colloidal Au sphere (SP) and nanorods (NRs) as signal markers for the determination of zearalenone (ZEN) in cereals. The developed ICAs can detect the analyte ZEN within a short time (10 min), and achieve lower limit of detection (LOD). This is the first time that the AuNRs are used as signal probe in immune test strip for ZEN detection. For colloidal AuSP immunochromatographic analysis (AuSP-ICA), the LODs in solution and spiked cereal sample were 5.0 μg L−1 and 60 μg kg−1, and for AuNRs immunochromatographic analysis (AuNRs-ICA) the two LODs achieved 3.0 μg L−1 and 40 μg kg−1, respectively. These two proposed ICAs have minor cross-reaction to the structural analogs of ZEN, and no cross-reactivity with aflatoxin B1, T-2 toxin, ochratoxin A, deoxynivalenol, fumonisin B1. Both of the developed ICAs can specifically and sensitively detect ZEN in cereals, providing an effective strategy for rapid screening and detection of ZEN in a large number of food samples.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shijie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| |
Collapse
|
34
|
|
35
|
Jantra J, Zór K, Sanders M, De Saeger S, Hedström M, Mattiasson B. Development of an automated flow‐based spectrophotometric immunoassay for continuous detection of zearalenone. Biotechnol Appl Biochem 2020; 67:375-382. [DOI: 10.1002/bab.1876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jongjit Jantra
- Division of BiotechnologyLund University Lund Sweden
- King Mongkut's Institute of Technology LadkrabangPrince of Chumphon Campus Pathiu Chumphon Thailand
| | - Kinga Zór
- Division of BiotechnologyLund University Lund Sweden
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Lyngby Denmark
| | - Melanie Sanders
- Center of Excellence in Mycotoxicology and Public HealthFaculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public HealthFaculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Martin Hedström
- Division of BiotechnologyLund University Lund Sweden
- CapSenze Biosystems AB Lund Sweden
| | - Bo Mattiasson
- Division of BiotechnologyLund University Lund Sweden
- CapSenze Biosystems AB Lund Sweden
| |
Collapse
|
36
|
Han Z, Tang Z, Jiang K, Huang Q, Meng J, Nie D, Zhao Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS 2-Au) for multiplex detection of mycotoxins. Biosens Bioelectron 2019; 150:111894. [PMID: 31761484 DOI: 10.1016/j.bios.2019.111894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Multiple mycotoxin contamination has posed health risks in the area of food safety. In this study, co-reduced molybdenum disulfide and gold nanoparticles (rMoS2-Au) were designed and used for the first time as an efficient platform endowing electrochemical electrodes with superior electron transfer rates, large surface areas and strong abilities to firmly couple with large amounts of different aptamers. After further modification with thionine (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S), a platform enabling sensitive, selective and simultaneous determination of two important mycotoxins, zearalenone (ZEN) and fumonisin B1 (FB1), was achieved. The established aptasensor showed excellent linear relationships (R2 > 0.99) when ZEN and FB1 concentrations were in the range of 1 × 10-3-10 ng mL-1 and 1 × 10-3-1 × 102 ng mL-1, respectively. High sensitivity of ZEN and FB1 with a limit of detection as low as 5 × 10-4 ng mL-1 was obtained with excellent selectivity and stability. The effectiveness of the aptasensor was verified in real maize samples, and satisfactory recoveries were attained. The established platform could be easily expanded to other aptamer-based multiplex screening protocols in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhanmin Tang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
37
|
Chen JN, Lian YJ, Zhou YR, Wang MH, Zhang XQ, Wang JH, Wu YN, Wang ML. Determination of 107 Pesticide Residues in Wolfberry with Acetate-buffered Salt Extraction and Sin-QuEChERS Nano Column Purification Coupled with Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules 2019; 24:molecules24162918. [PMID: 31408943 PMCID: PMC6719108 DOI: 10.3390/molecules24162918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022] Open
Abstract
A multi-residue method for the determination of 107 pesticide residues in wolfberry has been developed and validated. Similar pretreatment approaches were compared, and the linearity, matrix effect, analysis limits, precision, stability and accuracy were validated, which verifies the satisfactory performance of this new method. The LODs and LOQs were in the range of 0.14–1.91 µg/kg and 0.46–6.37 µg/kg, respectively. The recovery of analytes at three fortification levels (10 µg/kg, 50 µg/kg, 100 µg/kg) ranged from 63.3–123.0%, 72.0–118.6% and 67.0–118.3%, respectively, with relative standard deviations (RSDs) below 15.0%. The proposed method was applied to the analysis of fifty wolfberry samples collected from supermarkets, pharmacies and farmers’ markets in different cities of Shandong Province. One hundred percent of the samples analyzed included at least one pesticide, and a total of 26 pesticide residues was detected in fifty samples, which mainly were insecticides and bactericide. Several pesticides with higher detection rates were 96% for acetamiprid, 82% for imidacloprid, 54% for thiophanate-methyl, 50% for blasticidin-S, 42% for carbendazim, 42% for tebuconazole and 36% for difenoconazole in wolfberry samples. This study proved the adaptability of the developed method to the detection of multiple pesticide residues in wolfberry and provided basis for the research on the risks to wolfberry health.
Collapse
Affiliation(s)
- Jia-Nan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yu-Jing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yi-Ran Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ming-Hui Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xi-Qing Zhang
- Jieke Testing Service Co., Ltd., Yantai 265231, China
| | - Jian-Hua Wang
- Agricultural College, Shandong Agricultural University, Taian 271018, China
| | - Yong-Ning Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
- China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Ming-Lin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
38
|
Thin-layer MoS2 and thionin composite-based electrochemical sensing platform for rapid and sensitive detection of zearalenone in human biofluids. Biosens Bioelectron 2019; 130:322-329. [DOI: 10.1016/j.bios.2019.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
|
39
|
Li Y, Hu J, Qian M, Wang Q, Zhang H. Degradation of triadimefon and residue levels of metabolite triadimenol: tracing rapeseed from harvesting and storage to household oil processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1484-1491. [PMID: 30126020 DOI: 10.1002/jsfa.9321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Triadimefon is a fungicide used in agriculture to control fungal diseases such as sclerotinia sclerotiorum. RESULTS In field trials, rape plants were sprayed with triadimefon at three different dosages during the flowering period. The degradation of triadimefon and the residue levels of its metabolite, triadimenol, in rapeseed obtained from harvesting, storage, and household oil processing were traced and evaluated. The pesticides were determined by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) at each processing step. Triadimefon degraded completely and only its metabolite, triadimenol, was detected in rapeseed after harvesting. The stability of triadimenol in rapeseed was studied at weekly storage intervals, from 0 to 7 weeks at ambient temperature (25 °C) and freezing temperature (-20 °C), respectively. Storage temperature had an important influence on the residue levels of triadimenol. The processing factor (PF) was defined as the ratio of pesticide residue levels in rapeseed to rapeseed oil levels during household oil processing. The average PF of triadimenol was about 0.96 for a hot pressing technique and 0.88 for a cold pressing technique. CONCLUSION Different storage conditions and food processing could reduce the pesticide level to a greater or lesser extent. However, it is not easy to eliminate or significantly weaken triadimenol once triadimefon has degraded completely. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinghong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou, China
| | - Jing Hu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mingrong Qian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
40
|
Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Mikrochim Acta 2018; 185:238. [PMID: 29594745 DOI: 10.1007/s00604-018-2778-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Abstract
Colloidal gold, quantum dots and polystyrene microspheres were used as labels in three kinds of lateral flow immunochromatographic assays (ICAs) for the detection of zearalenone (ZEN) in cereal samples. The assays allow ZEN to be quantified within 20 min. The LODs are 10 μg·L-1 of ZEN for the colloidal gold-based ICA, and 1 μg·L-1 for both the quantum dot and polystyrene microsphere based ICAs. The respective data are 60 μg·kg-1, 6 μg·kg-1 and 6 μg·kg-1, respectively, for spiked samples and cereals. Only minor cross-sensitivity occurred between ZEN and fusarium toxins, and no cross-sensitivity if found for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. LODs of the three assays are lower than the maximum limits of ZEN set by most standardization agencies. Graphical abstract Schematic presentation of three lateral flow immunochromatographic assays (ICAs) based on the use of (a) colloidal gold (CG), (b) fluorescent quantum dots (QD), and
Collapse
|
41
|
Lee MJ, Kim HJ. Development of an immunoaffinity chromatography and LC-MS/MS method for the determination of 6 zearalenones in animal feed. PLoS One 2018; 13:e0193584. [PMID: 29505591 PMCID: PMC5837099 DOI: 10.1371/journal.pone.0193584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
A novel and simple method for detecting 6 zearalenones in animal feed using liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS) and immunoaffinity columns (IAC) was developed. The chromatographic peaks of the 6 zearalenones were successfully identified by comparing their retention times and mass spectrum with reference standards. The mobile phase was composed of mobile phase A (water) and B (0.5% formic acid in ACN). Method validation was performed with linearity, sensitivity, selectivity, accuracy and precision. The limits of detection (LODs) for the instrument used to study zearalenones ranged from 0.3 to 1.1 μg/kg, and the limits of quantification (LOQs) ranged from 1.0 to 2.2 μg/kg. Average recoveries of the 6 zearalenones ranged from 82.5% to 106.4%. Method replication resulted in intra-day and inter-day peak area variation of <3.8%. The developed method was specific and reliable and is suited for the routine analysis of zearalenones in animal feed.
Collapse
Affiliation(s)
- Mi Jin Lee
- National Agricultural Products Quality Management Service, Kimchun, Republic of Korea
| | - Ho Jin Kim
- National Agricultural Products Quality Management Service, Kimchun, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Luo L, Cui Y, Zhang S, Li L, Suo H, Sun B. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:201-209. [DOI: 10.1016/j.jchromb.2017.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
|
43
|
Li YH, Zhou BL, Qian MR, Wang Q, Zhang H. Transfer and Metabolism of Triadimefon Residues from Rape Flowers to Apicultural Products. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7697345. [PMID: 29057141 PMCID: PMC5606048 DOI: 10.1155/2017/7697345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
This paper presents a study on the transfer and metabolism of triadimefon residues from rape flowers to apicultural products. In the field trials, honeybee colonies were placed in four rape greenhouses treated with triadimefon on standard dosage. Apicultural products (pollen, honey, and royal jelly) were collected on a regular basis. Sample preparation and extraction procedure were established. HPLC/ESI-MS/MS method was validated. The respective residues of triadimefon and metabolite triadimenol were 0.03 ± 0.002 mg/kg and 0.13 ± 0.02 mg/kg in pollen on the 18th day, and both had reached the limits of detection in honey on the 24th day, while they were 0.004 ± 0.0005 mg/kg and 0.010 ± 0.0002 mg/kg in royal jelly on the 22nd day. Mathematical curve fitting studies were further investigated. On the basis of recommended dosage, the degradation half-lives of triadimefon in pollen, honey, and royal jelly were about 0.7, 12.5, and 19.5 days, respectively. Transfer of triadimefon residues from rape flowers to apicultural products diminished over spraying time. The residues of triadimefon and metabolite triadimenol in pollen were about 10 times higher than those in honey and jelly. Time to attain the maximum permissible limit of pollen in the European Union was 14.9 days, predicted from the index function.
Collapse
Affiliation(s)
- Ying-Hong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Bei-Lei Zhou
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ming-Rong Qian
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hu Zhang
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
44
|
|
45
|
Eom T, Cho HD, Kim J, Park M, An J, Kim M, Kim SH, Han SB. Multiclass mycotoxin analysis in edible oils using a simple solvent extraction method and liquid chromatography with tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2011-2022. [DOI: 10.1080/19440049.2017.1363416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taeyong Eom
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Hyun-Deok Cho
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Junghyun Kim
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Mihee Park
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jinyoung An
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Moosung Kim
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Sheen-Hee Kim
- Food Contaminants Division, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| |
Collapse
|
46
|
Zhao Y, Wan LH, Bai XL, Liu YM, Zhang FP, Liu YM, Liao X. Quantification of mycotoxins in vegetable oil by UPLC-MS/MS after magnetic solid-phase extraction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1201-1210. [DOI: 10.1080/19440049.2017.1319074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yan Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Sichuan Willtest Technology Co., Ltd, Chengdu, China
| | - Li-Hong Wan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yi-Ming Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | | | - Yao-Min Liu
- Sichuan Willtest Technology Co., Ltd, Chengdu, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
47
|
Amelin VG, Lavrukhina OI. Food safety assurance using methods of chemical analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Guerre P. Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations. Toxins (Basel) 2016; 8:E350. [PMID: 27886128 PMCID: PMC5198545 DOI: 10.3390/toxins8120350] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to present information about raw materials that can be used in pig and poultry diets and the factors responsible for variations in their mycotoxin contents. The levels of mycotoxins in pig and poultry feeds are calculated based on mycotoxin contamination levels of the raw materials with different diet formulations, to highlight the important role the stage of production and the raw materials used can have on mycotoxins levels in diets. Our analysis focuses on mycotoxins for which maximum tolerated levels or regulatory guidelines exist, and for which sufficient contamination data are available. Raw materials used in feed formulation vary considerably depending on the species of animal, and the stage of production. Mycotoxins are secondary fungal metabolites whose frequency and levels also vary considerably depending on the raw materials used and on the geographic location where they were produced. Although several reviews of existing data and of the literature on worldwide mycotoxin contamination of food and feed are available, the impact of the different raw materials used on feed formulation has not been widely studied.
Collapse
Affiliation(s)
- Philippe Guerre
- Sciences Biologiques et Fonctionnelles, Université de Toulouse, ENVT, Toulouse, F-31076, France.
| |
Collapse
|
49
|
Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1996-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Zhong D, Tang F, Ding M, Mo R, Shen D, Li Z. Simplified Determination of Organophosphorus Pesticides in Camellia Oil. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1217228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Donglian Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
| | - Ming Ding
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P.R. China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|