1
|
Carbonell-Rozas L, Dreolin N, Foddy H, Dall'Asta C. Enhancing pyrrolizidine alkaloid separation and detection: LC-MS/MS method development and integration of ion mobility spectrometry into the LC-HRMS workflow. J Chromatogr A 2025; 1748:465863. [PMID: 40101659 DOI: 10.1016/j.chroma.2025.465863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Pyrrolizidine alkaloids (PAs) are plant toxins occurring in different foodstuffs, including teas, herbal infusions and species. Additionally, PAs may be transferred to honey and pollen when honeybees come into contact with contaminated plants. Due to their adverse effect, PAs occurrence in food must be controlled to ensure public health. Nevertheless, the presence of numeours PA epimers complicates their chromatographic separation and detection. In this regard, a method using liquid chromatography coupled with tandem mass spectrosmetry (LC-MS/MS) has been developed allowing the separation of 31 out of the 35 regulated PAs, which was sucessfully validated in different food matrices such as herbal infusions, spices and honey. Afterwards, travelling wave ion mobility spectrometry hyphenated with quadrupole time-of-flight mass spectrometry (TWIMS-QTOF) was evaluated to improve the analytical performance of PAs determination. Thus, collision cross section (CCS) values of PAs have been therefore obtained for the first time. The CCS library for PAs was also compared with predicted values by machine learning and with those meassured in real food matrices (bias <2 %). In addition, an in-house library was used in the suspect screening of PAs to complement the targeted analysis of the studied samples, all of which tested positive for several PAs.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, Parma 43124, Italy.
| | - Nicola Dreolin
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Henry Foddy
- Waters Corporation, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, Parma 43124, Italy
| |
Collapse
|
2
|
Lin R, Peng J, Zhu Y, Dong S, Jiang X, Shen D, Li J, Zhu P, Mao J, Wang N, He K. Quantitative Analysis of Pyrrolizidine Alkaloids in Food Matrices and Plant-Derived Samples Using UHPLC-MS/MS. Foods 2025; 14:1147. [PMID: 40238287 PMCID: PMC11989101 DOI: 10.3390/foods14071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a class of nitrogen-containing basic organic compounds that are frequently detected in foods and herbal medicines. Owing to their potential hepatotoxic, genotoxic, and carcinogenic properties, PAs have become a significant focus for monitoring global food safety. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the detection and analysis of three foods (tea, honey, and milk) susceptible to PA contamination. This optimized method effectively separated and detected three types of PAs, namely, three pairs of isomers and two pairs of chiral compounds. The limits of detection (LODs) and limits of quantification (LOQs) were determined to be 0.015-0.75 and 0.05-2.5 µg/kg, respectively, with the relative standard deviations (RSDs) of both the interday and intraday precisions remaining below 15%. The average PA recoveries from the honey, milk, and tea matrices fell within the ranges of 64.5-103.4, 65.2-112.2, and 67.6-107.6%, respectively. This method was also applied to 77 samples collected from 33 prefecture-level cities across 16 provinces and included 40 tea, 6 milk, 8 honey, 14 spice, and 9 herbal medicine samples. At least one PA was detected in twenty-three of the samples, with herbal medicines exhibiting the highest total PA content. The obtained results indicate that the developed method demonstrated good repeatability and stability in the detection and quantitative analyses of PAs in food- and plant-derived samples. This method is therefore expected to provide reliable technical support for food safety risk monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Na Wang
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100850, China; (R.L.); (J.P.); (Y.Z.); (S.D.); (X.J.); (D.S.); (J.L.); (P.Z.); (J.M.)
| |
Collapse
|
3
|
Vera-Baquero FL, Casado N, Morante-Zarcero S, Sierra I. Improving the food safety of bakery products by simultaneously monitoring the occurrence of pyrrolizidine, tropane and opium alkaloids. Food Chem 2024; 460:140769. [PMID: 39126947 DOI: 10.1016/j.foodchem.2024.140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The exponential number of food alerts about concerning levels of some plant-alkaloids, such as pyrrolizidine, tropane and opium alkaloids, have stressed the need to monitor their occurrence in foods to avoid toxic health effects derived from their intake. Therefore, analytical strategies to simultaneously monitor the occurrence of these alkaloids should be developed to ensure food safety an comply with regulations. Accordingly, this work proposes an efficient multicomponent analytical strategy for the simultaneous extraction of these alkaloids from commercial bakery products. The analytical method was validated and applied to the analysis of 15 samples, revealing that 100% of them contained at least one of the target alkaloids, in some cases exceeding the maximum limits legislated. Moreover, in two samples the 3 different alkaloid families were detected. These results confirm the importance of simultaneously monitoring these alkaloids in food and highlight also considering some opium alkaloids in current legislation.
Collapse
Affiliation(s)
- Fernando L Vera-Baquero
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - Natalia Casado
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - Sonia Morante-Zarcero
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, Spain.
| |
Collapse
|
4
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
5
|
Chen Y, Li L, Xu J, Liu Y, Xie Y, Xiong A, Wang Z, Yang L. Mass spectrometric analysis strategies for pyrrolizidine alkaloids. Food Chem 2024; 445:138748. [PMID: 38422865 DOI: 10.1016/j.foodchem.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Li J, Chen Y, Yu K, Zhang M, Li Q, Tang S, Liu Y, Li H, Zhang Z. Rapid chemical characterization and pharmacological mechanism of Fining Granules in the treatment of chronic bronchitis based on UHPLC-Q-exactive orbitrap mass spectrometer and network pharmacology. Heliyon 2024; 10:e31804. [PMID: 38845898 PMCID: PMC11154603 DOI: 10.1016/j.heliyon.2024.e31804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background Senecio cannabifolius Less. is a perennial herb belonging to the Compositae family that has been used in traditional medicine as an antitussive and expectorant for treating chronic bronchitis and acute respiratory infections. Traditionally, Feining Granules are prepared from water extracts of the raw plant material. However, the chemical composition and pharmacological mechanisms of Feining Granules have not been thoroughly investigated. Methods A systematic strategy for the rapid detection and identification of the constituents of Feining Granules was developed using ultrahigh-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (MS) with parallel reaction monitoring. Results Overall, 162 compounds, including flavonoids, alkaloids, organic acids, and others, were identified unambiguously and tentatively by comparing the retention times and MS fragmentation with reference standards and literature data. Ninety-nine of these were reported for the first time to the best of our knowledge. Network pharmacology suggests that Feining Granules can be used to treat chronic bronchitis as they contain active components associated with the ALB, VEGFA, and SRC target genes influenced by HIF-1, VEGF, and other signaling pathways. Conclusion These results provide information that can help understand the effective substances of S. cannabifolius Less. and improve quality control.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuqi Chen
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Qing Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yanlan Liu
- Nursing School, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Hui Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
7
|
Luca SV, Zengin G, Kulinowski Ł, Sinan KI, Skalicka-Woźniak K, Trifan A. Phytochemical profiling and bioactivity assessment of underutilized Symphytum species in comparison with Symphytum officinale. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3971-3981. [PMID: 38252561 DOI: 10.1002/jsfa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/21/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Symphytum (comfrey) genus, particularly Symphytum officinale, has been empirically used in folk medicine mainly for its potent anti-inflammatory properties. In an attempt to shed light on the valorization of less known taxa, the current study evaluated the metabolite profile and antioxidant and enzyme inhibitory effects of nine Symphytum species. RESULTS Phenolic acids, flavonoids and pyrrolizidine alkaloids were the most representative compounds in all comfrey samples. Hierarchical cluster analysis revealed that, within the roots, S. grandiflorum was slightly different from S. ibericum, S. caucasicum and the remaining species. Within the aerial parts, S. caucasicum and S. asperum differed from the other samples. All Symphytum species showed good antioxidant and enzyme inhibitory activities, as evaluated in DPPH (up to 50.17 mg Trolox equivalents (TE) g-1), ABTS (up to 49.92 mg TE g-1), cupric reducing antioxidant capacity (CUPRAC, up to 92.93 mg TE g-1), ferric reducing antioxidant power (FRAP, up to 53.63 mg TE g-1), acetylcholinesterase (AChE, up to 0.52 mg galanthamine equivalents (GALAE) g-1), butyrylcholinesterase (BChE, up to 0.96 mg GALAE g-1), tyrosinase (up to 13.58 mg kojic acid equivalents g-1) and glucosidase (up to 0.28 mmol acarbose equivalents g-1) tests. Pearson correlation analysis revealed potential links between danshensu and ABTS/FRAP/CUPRAC, quercetin-O-hexoside and DPPH/CUPRAC, or rabdosiin and anti-BChE activity. CONCLUSIONS By assessing for the first time in a comparative manner the phytochemical-biological profile of a considerably high number of Symphytum samples, this study unveils the potential use of less common comfrey species as novel phytopharmaceutical or agricultural raw materials. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
8
|
Tábuas B, Cruz Barros S, Diogo C, Cavaleiro C, Sanches Silva A. Pyrrolizidine Alkaloids in Foods, Herbal Drugs, and Food Supplements: Chemistry, Metabolism, Toxicological Significance, Analytical Methods, Occurrence, and Challenges for Future. Toxins (Basel) 2024; 16:79. [PMID: 38393157 PMCID: PMC10892171 DOI: 10.3390/toxins16020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.
Collapse
Affiliation(s)
- Bruna Tábuas
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, 4485-655 Vila do Conde, Portugal
| | - Catarina Diogo
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Center for Study in Animal Science (CECA), Institute of Sciences, Technologies and Agro-Environment of the University of Porto (ICETA), University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
9
|
Letsyo E, Madilo FK, Effah-Manu L. Pyrrolizidine alkaloid contamination of food in Africa: A review of current trends and implications. Heliyon 2024; 10:e24055. [PMID: 38230234 PMCID: PMC10789634 DOI: 10.1016/j.heliyon.2024.e24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) contamination of foodstuffs has become a topical issue in recent years on account of its potential hepatotoxicity to consumers. This review therefore highlights human exposure to PAs across Africa, focusing on their occurrence, current trends of food contamination, and their associated health implications. A comprehensive search of peer-scientific literature and relevant databases, PubMed, Google Scholar, Science Direct, Web of Science and Scopus, was conducted from 2001 to 2023 focusing mainly on foodstuffs, including grains, herbs, teas, honey, and livestock products. The findings revealed that PA contamination is a prevalent issue in several African countries, with the primary sources of contamination attributed to the consumption of honey and the use of PA plants as herbs in food preparations. Additionally, poor farming practices have been found to influence the presence and levels of PAs in foodstuffs. To mitigate PA contamination in food and safeguarding public health across the continent, several strategies are proposed, including the implementation of stringent regulatory and quality control measures, adoption of Good Agricultural Practices, and public awareness campaigns to educate producers, consumers and beekeepers about the risks associated with PA-contaminated food products.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Liticia Effah-Manu
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
10
|
Hungerford NL, Zawawi N, Zhu T(E, Carter SJ, Melksham KJ, Fletcher MT. Analysis of Pyrrolizidine Alkaloids in Stingless Bee Honey and Identification of a Botanical Source as Ageratum conyzoides. Toxins (Basel) 2024; 16:40. [PMID: 38251258 PMCID: PMC10819179 DOI: 10.3390/toxins16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds.
Collapse
Affiliation(s)
- Natasha L. Hungerford
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Norhasnida Zawawi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tianqi (Evonne) Zhu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Steve J. Carter
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Kevin J. Melksham
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Mary T. Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| |
Collapse
|
11
|
Rollo E, Catellani D, Dall'Asta C, Suman M. QuEChERS method combined to liquid chromatography high-resolution mass spectrometry for the accurate and sensitive simultaneous determination of pyrrolizidine and tropane alkaloids in cereals and spices. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4969. [PMID: 37604670 DOI: 10.1002/jms.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023]
Abstract
Within the last decades, in the EU, there has been an increasing interest in toxic plant alkaloids as food contaminants, especially after the continuous and growing consumption of plant-based foods compared with food of animal origin. In this regard, the once neglected presence of these tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs) has recently been reconsidered by the European Food Safety Authority, highlighting the lack of data and the need to develop risk assessment strategies. For this reason, the emphasis has been placed on detecting their occurrence in food through the development of accurate and sensitive analytical methods to achieve the determination of these compounds. The present study aims to elaborate and validate an analytical method based on QuEChERS sample preparation approach, exploiting the UHPLC coupled to the HRMS to simultaneously identify and quantify 21 PAs and two TAs in cereals and spices. For TAs, the obtained limit of detection (LOD) is 0.1 μg·kg-1 and the limit of quantification (LOQ) is 0.4 μg·kg-1 , while for PAs, the LODs values ranging between 0.2 to 0.3 μg·kg-1 and the LOQ, between 0.4 and 0.8 μg·kg-1 , ensuring compliance with the recently established European Regulations. Several commercial samples were analysed to further verify the applicability of this comprehensive analytical approach.
Collapse
Affiliation(s)
- Eleonora Rollo
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dante Catellani
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
| | | | - Michele Suman
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| |
Collapse
|
12
|
Gumus ZP. Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS. Foods 2023; 12:3572. [PMID: 37835225 PMCID: PMC10572649 DOI: 10.3390/foods12193572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Collapse
Affiliation(s)
- Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey
| |
Collapse
|
13
|
Grazina L, Mafra I, Monaci L, Amaral JS. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr Rev Food Sci Food Saf 2023; 22:3870-3909. [PMID: 37548598 DOI: 10.1111/1541-4337.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Linda Monaci
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Bari, Italy
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
14
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023; 54:2915-2939. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Pyrrolizidine alkaloids in borage (Borago officinalis): Comprehensive profiling and development of a validated LC-MS/MS method for quantification. Talanta 2023; 258:124425. [PMID: 36924638 DOI: 10.1016/j.talanta.2023.124425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Pyrrolizidine alkaloids (PA) from borage (Borago officinalis) consumed as herb and tea, may pose a food safety risk. Therefore, the European Union (EU) set maximum levels of PA in borage, among other foodstuffs, which are applicable since July 1st, 2022. Here, a comprehensive LC-MS/MS based profiling of PA and their N-oxides (PANO) in B. officinalis leaves is presented. Based on these results a targeted, quantitative LC-MS/MS method for the determination of individual PA/PANO present in borage was developed. Chromatographic separation was achieved for all PA/PANO detected in B. officinalis. An easy and fast extraction procedure was developed using a design of experiments approach (DOE). The most efficient extraction was achieved using 0.2% formic acid in 10% methanol at a temperature of 47.5 °C for 60 min. The final method was validated and showed good overall accuracy (recoveries 85-121%) and precision (RDS ≤11%). The method was applied to B. officinalis leave material, demonstrating its suitability for the intended purpose. In these borage samples, the acetylated forms, which are not regulated by EU, were among the quantitatively most relevant PA.
Collapse
|
16
|
Profiling of pyrrolizidine alkaloids using a retronecine-based untargeted metabolomics approach coupled to the quantitation of the retronecine-core in medicinal plants using UHPLC-QTOF. J Pharm Biomed Anal 2023; 224:115171. [PMID: 36459765 DOI: 10.1016/j.jpba.2022.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of high toxicological relevance. Several PA quantitative methodologies were developed based on a limited number of certified standards, including time consuming solid phase extraction (SPE) purification steps. Herein, we shed light on the variability of PA in herbal extracts and propose a quantification methodology based on ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) for the evaluation of the total PA content as retronecine-equivalents (RE) directly from crude matrices. Particularly in the focus of the investigation were Alkanna spp. (Boraginaceae), which possess a wide range of pharmaceutical properties. In addition, a comparative PA screening of crude and SPE enriched extracts was performed and PA-containing plants from Fabaceae and Compositae families were included to demonstrate universal applicability. In total, 105 PA were identified using HRMSe experiments, specific MS/MS fragmentation PA patterns, a customized in-house library and literature data. Among them, 18 glycosidic PA derivatives were reported for the first time in literature. Using a hierarchical clustering approach, PA distribution in herbal extracts was shown to be family-dependent and significantly different among species. This was further supported by the results of the total PA concentrations, obtained using a retronecine/heliotridine/internal standard-based targeted UHPLC-HRMS quantification method, which varied from 8.64 ± 0.08-3096.28 ± 273.72 μg RE/g extract dry weight in shoots extracts of Alkanna spp. and leaves extracts of Crotalaria retusa L. respectively. Worth mentioning is that the procedure allowed to quantify PA in Alkanna spp. If the procedure based on 35 specific PA recommended by European regulations had been used, results would have been equal to zero for the four species since none were observed in Alkanna spp. Finally, by combining the RE results with the corresponding dereplication results, a customized correction factor for each extract (ranging from 2.12 to 2.48) was assessed leading to a more accurate estimate of the PA content regardless of the molecular weight of each PA. The present methodology will facilitate PA quantification directly from crude extracts and avoid the underestimation the real PA content due to limited availabilty of authentic reference compounds in botanical extracts used in phytomedicines or food supplements/cosmetics.
Collapse
|
17
|
Osman A, Chittiboyina AG, Avula B, Ali Z, Adams SJ, Khan IA. Quality Consistency of Herbal Products: Chemical Evaluation. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:163-219. [PMID: 37392312 DOI: 10.1007/978-3-031-26768-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The widespread utility of herbal products has been rising considerably worldwide, including both developed and developing countries, leading to the rapid growth of their availability in the United States and globally. This substantial increase in consumption of herbal products has witnessed the emergence of adverse effects upon oral administration of certain of these products, and thus has raised safety concerns. The adverse effects caused by the consumption of certain botanical medicines occur primarily as a result of the poor quality of plant raw materials or the finished products, which inherently may affect safety and/or efficacy. The poor quality of some herbal products can be attributed to a lack of proper quality assurance and quality control. A high demand for herbal products that surpasses production, combined with a desire for maximizing profits, along with a lack of rigorous quality control within some manufacturing facilities have led to the emergence of quality inconsistencies. The underlying causes for this involve the misidentification of plant species, or their substitution, adulteration, or contamination with harmful ingredients. Analytical assessments have revealed there to be frequent and significant compositional variations between marketed herbal products. The inconsistency of the quality of herbal products can be ascribed essentially to the inconsistency of the botanical raw material quality used to manufacture the products. Thus, the quality assurance and the quality control of the botanical raw materials is may contribute significantly to improving the quality and consistency of the quality of the end products. The current chapter focuses on the chemical evaluation of quality and consistency of herbal products, including botanical dietary supplements. Different techniques, instruments, applications, and methods used in identifying, quantifying, and generating chemical fingerprints and chemical profiles of the ingredients of the herbal products will be described. The strengths and weaknesses of the various techniques available will be addressed. Limitations of the other approaches including morphological or microscopic analysis and DNA-based analysis will be presented.
Collapse
Affiliation(s)
- Ahmed Osman
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Sebastian J Adams
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
18
|
Li AP, Shi YP. Effect of Adulteration on Quality and Preliminary Risk Assessment of the Decoction Pieces of Farfarae Flos Based on the Determination of Hepatotoxic Pyrrolizidine Alkaloids by UHPLC-MS/MS. J AOAC Int 2022; 106:192-204. [PMID: 35866688 DOI: 10.1093/jaoacint/qsac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Farfarae Flos (FF) is a frequently used traditional herbal medicine with outstanding antitussive actions. The adulteration of FF decoction pieces is common. OBJECTIVE This study aimed to study the effect of adulteration on the safety and quality of FF decoction pieces. METHODS The proportion of impurities was conducted by cone quartering method. A simple and accurate ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established to simultaneous determinate three pyrrolizidine alkaloids (PAs) as endogenous toxic compounds in FF. The traditional medicinal parts (flower bud), impurities (pedicel and rhizome) and unselected samples were determined respectively. The values of estimated daily intake (EDI) and margin of exposure (MOE) were used for risk assessment. RESULTS Twenty batches of samples were collected from different habitats, and the proportion of impurities ranged from 17.51% to 41.27%. Pedicel and rhizome were the main impurities, accounting for more than 87.40% of the total impurities. The content of PAs in impurities was significantly higher. The EDI value range was 5.34 to 16.59 μg/kg bw/day, which was much higher than the standard safety value of 7.00 × 10-3 μg/kg bw/day. The MOE values ranges for life long time and shorter exposure were 14.29 to 44.37 and 371.53 to 1153.63, respectively, indicating that at least 80% of the samples had safety risks. Correlation analysis showed that the proportion of adulterated impurities had significant correlation with the values of EDI and MOE. CONCLUSIONS Adulteration of non medicinal parts may significantly increase the risk of medications of FF decoction pieces. HIGHLIGHTS This study provides an efficient methodology reference for the control of PAs and a basis for adulteration to affect the safety and quality of FF decoction pieces.
Collapse
Affiliation(s)
- An-Ping Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China.,Gansu Institute for Drug Control, Key Laboratory for Quality Control of Chinese Medicinal Materials and Decoction Pieces, National Medical Products Administration (NMPA), Lanzhou 730000, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China
| |
Collapse
|
19
|
T. M. C, P. I. SJ, G. N, R. M. N, R. Z. M. Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cantero T. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Silva Junior P. I.
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immuneresponse and cell signaling (CeTICS/CEPID), Butantan Institute, Sao Paulo, Brazil
| | - Negri G.
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Sao Paulo, Brazil
| | - Nascimento R. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Mendonça R. Z.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
20
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
21
|
Wang H, Wang Q, Lai A, Zhu J, Huang X, Hu G. Multi-Response Optimization of Pyrrolizidine Alkaloids Removal from Chrysanthemum morifolium by High-Pressure Extraction. Foods 2022; 11:foods11233827. [PMID: 36496634 PMCID: PMC9737379 DOI: 10.3390/foods11233827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
As an ingredient in various foods, Chrysanthemum morifolium flower is popular due to its multiple health benefits. Pyrrolizidine alkaloids (PAs) are hepatotoxic secondary metabolites in Chrysanthemum family. Effects of high-pressure extraction (HPE) on PAs removal efficiency, as well as the retention efficiency of functional components, including chlorogenic acid, luteolin-7-β-D-glucopyranoside, 3,5-dicaffeyl quinic acid and total flavonoids, were investigated and optimized using response surface methodology (RSM). Pressure (0.1-200 MPa), numbers of cycles (1-5) and acetic acid concentration (0-10%) were chosen as the independent variables. The results indicated that the pressure was the most significant factors affecting all responses. The optimum HPE for removing Pas and retaining functional components were set at 124 MPa, with one cycle and with an acetic acid concentration of 10%. After comparing the experimental optimum values and predicted optimum values, the validity of RSM model was proved.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Qiang Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Aiping Lai
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Jiahong Zhu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
| | - Xiuzhu Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, 22 Maizidian Road, Beijing 100125, China
- Correspondence: (X.H.); (G.H.); Tel.: +86-010-59194067 (X.H.); +86-571-86417319 (G.H.)
| | - Guixian Hu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Deshengzhong Road, Hangzhou 310021, China
- Correspondence: (X.H.); (G.H.); Tel.: +86-010-59194067 (X.H.); +86-571-86417319 (G.H.)
| |
Collapse
|
22
|
Metabolite Production in Alkanna tinctoria Links Plant Development with the Recruitment of Individual Members of Microbiome Thriving at the Root-Soil Interface. mSystems 2022; 7:e0045122. [PMID: 36069453 PMCID: PMC9601132 DOI: 10.1128/msystems.00451-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plants are naturally associated with diverse microbial communities, which play significant roles in plant performance, such as growth promotion or fending off pathogens. The roots of Alkanna tinctoria L. are rich in naphthoquinones, particularly the medicinally used enantiomers alkannin and shikonin and their derivatives. Former studies already have shown that microorganisms may modulate plant metabolism. To further investigate the potential interaction between A. tinctoria and associated microorganisms, we performed a greenhouse experiment in which A. tinctoria plants were grown in the presence of three distinct soil microbiomes. At four defined plant developmental stages, we made an in-depth assessment of bacterial and fungal root-associated microbiomes as well as all extracted primary and secondary metabolite content of root material. Our results showed that the plant developmental stage was the most important driver influencing the plant metabolite content, revealing peak contents of alkannin/shikonin derivatives at the fruiting stage. Plant root microbial diversity was influenced both by bulk soil origin and to a small extent by the developmental stage. The performed correlation analyses and cooccurrence networks on the measured metabolite content and the abundance of individual bacterial and fungal taxa suggested a dynamic and at times positive or negative relationship between root-associated microorganisms and root metabolism. In particular, the bacterial genera Labrys and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium as well as four species of the fungal genus Penicillium were found to be positively correlated with higher content of alkannins. IMPORTANCE Previous studies have shown that individual, isolated microorganisms may influence secondary metabolism of plants and induce or stimulate the production of medicinally relevant secondary metabolism. Here, we analyzed the microbiome-metabolome linkage of the medicinal plant Alkanna tinctoria, which is known to produce valuable compounds, particularly the naphthoquinones alkannin and shikonin and their derivatives. A detailed bacterial and fungal microbiome and metabolome analysis of A. tinctoria roots revealed that the plant developmental stage influenced root metabolite production, whereas soil inoculants from three different geographical origins in which plants were grown shaped root-associated microbiota. Metabolomes of plant roots of the same developmental stage across different soils were highly similar, pinpointing to plant maturity as the primary driver of secondary metabolite production. Correlation and network analyses identified bacterial and fungal taxa showing a positive relationship between root-associated microorganisms and root metabolism. In particular, the bacterial genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Labrys as well as the fungal species of genus Penicillium were found to be positively correlated with higher content of alkannins.
Collapse
|
23
|
Shi W, Huo X, Ding X, Zhu P, Wan Y, Lu X, Feng R, Yu Q, Wang X. Rapid screening of illegally added drugs in functional food using a miniature ion trap mass spectrometer. Food Chem 2022; 386:132808. [PMID: 35364493 DOI: 10.1016/j.foodchem.2022.132808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
With the expansion of the functional food market, the qualification assessment of these products has become a major challenge, and efficient analytical tools are urgently needed. Here, a miniature mass spectrometer (MS) with self-aspiration capillary electrospray ionization (SACESI) source and ion trap analyzer was developed for rapid screening of various illegally added drugs in functional foods. No chromatographic separation was required, but a simplified two-step pretreatment method was developed to reduce the operational procedures and time consumption of the entire analysis. SACESI source uses capillary action to drive solution injection, which utilizes a simple structure and convenient operation to constitute a kind of disposable MS detection solution. To achieve accurate and automatic identification, an intelligent recognition algorithm with steps of spectrum preprocessing, characteristic peak matching, and support vector machine learning was constructed. The relative accuracy of rapid screening of 31 suspicious drugs in various samples is up to 99.78%. It achieves 100% correct identification for the 55 batches of actual samples captured by on-site inspection, which demonstrates the feasibility of the proposed analytical system and strategy in food safety applications.
Collapse
Affiliation(s)
- Wenyan Shi
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xinming Huo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyue Ding
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiyuan Zhu
- Shenzhen Han Industrial Technologies Co.Ltd., Shenzhen 518055, China
| | - Yutong Wan
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Xinqiong Lu
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Rui Feng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
| | - Quan Yu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Kulinowski Ł, Luca SV, Minceva M, Skalicka-Woźniak K. A review on the ethnobotany, phytochemistry, pharmacology and toxicology of butterbur species (Petasites L.). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115263. [PMID: 35427728 DOI: 10.1016/j.jep.2022.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Petasites (butterbur, Asteraceae) species have been used since Ancient times in the traditional medicine of Asian and European countries to treat central nervous system (migraine), respiratory (asthma, allergic rhinitis, bronchitis, spastic cough), cardiovascular (hypertension), gastrointestinal (ulcers) and genitourinary (dysmenorrhea) disorders. AIM OF THE REVIEW This study summarized and discussed the traditional uses, phytochemical, pharmacological and toxicological aspects of Petasites genus. MATERIALS AND METHODS A systematic search of Petasites in online databases (Scopus, PubMed, ScienceDirect, Google Scholar) was performed, with the aim to find the phytochemical, toxicological and bioactivity studies. The Global Biodiversity Information Facility, Plants of the World Online, World Flora Online and The Plant List databases were used to describe the taxonomy and geographical distribution. RESULTS The detailed phytochemistry of the potentially active compounds of Petasites genus (e.g. sesquiterpenes, pyrrolizidine alkaloids, polyphenols and essential oils components) was presented. The bioactivity studies (cell-free, cell-based, animal, and clinical) including the traditional uses of Petasites (e.g. anti-spasmolytic, hypotensive, anti-asthmatic activities) were addressed and followed by discussion of the main pharmacokinetical and toxicological issues related to the administration of butterbur-based formulations. CONCLUSIONS This review provides a complete overview of the Petasites geographical distribution, traditional use, phytochemistry, bioactivity, and toxicity. More than 200 different sesquiterpenes (eremophilanes, furanoeremophilanes, bakkenolides), 50 phenolic compounds (phenolic acids, flavonoids, lignans) and volatile compounds (monoterpenes, sesquiterpenes) have been reported within the genus. Considering the phytochemical complexity and the polypharmacological potential, there is a growing research interest to extend the current therapeutical applications of Petasites preparations (anti-migraine, anti-allergic) to other human ailments, such as central nervous system, cardiovascular, malignant or microbial diseases. This research pathway is extremely important, especially in the recent context of the pandemic situation, when there is an imperious need for novel drug candidates.
Collapse
Affiliation(s)
- Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093, Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | | |
Collapse
|
25
|
Ye X, Xiong L, Fu Q, Wang B, Wang Y, Zhang K, Yang J, Kantawong F, Kumsaiyai W, Zhou J, Lan C, Wu J, Zeng J. Chemical characterization and DPP-IV inhibitory activity evaluation of tripeptides from Gynura divaricata (L.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115203. [PMID: 35304277 DOI: 10.1016/j.jep.2022.115203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura divaricata (L.) DC. (GD), a herbal medicine, has been used for the prevention and treatment of hyperglycemia in China. However, hypoglycemic ingredients within GD have not yet been well studied. AIM OF THE STUDY The aim of this study was to explore undiscovered compounds with dipeptidyl peptidase IV (DPP-IV) inhibitory activity within GD. MATERIALS AND METHODS A four-step strategy was developed to explore undiscovered DPP-IV inhibitors within GD. First, the components were preliminarily characterized using UHPLC-HRMS combined with a library search. Second, preliminarily characterized compounds were searched for potential bioactivity. Third, a mixture of these preliminarily characterized compounds was isolated and thoroughly characterized based on fragmentation patterns associated with molecular networking. Fourth, the activities of these compounds were verified using DPP-IV inhibitory assay and molecular docking. RESULTS Diprotin A, a tripeptide inhibitor against DPP-IV, was identified. Thereafter, a mixture of twenty-five diprotin A analogs was isolated and characterized, which exhibited IC50 of 0.40 mg/mL for DPP-IV. Molecular docking results also confirmed the interactions between the tripeptide analogs and DPP-IV mainly via H-bonds and hydrophobic interactions. CONCLUSIONS This is the first report of DPP-IV inhibitors within GD. These findings demonstrate that the extract of GD might be beneficial for the treatment of type 2 diabetes mellitus, and is expected to promote further development and utilization of GD in herbal medicine.
Collapse
Affiliation(s)
- Xinyuan Ye
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Binyou Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Yiwei Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Jie Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China; Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Fahsai Kantawong
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Warunee Kumsaiyai
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| |
Collapse
|
26
|
Jansons M, Fedorenko D, Pavlenko R, Berzina Z, Bartkevics V. Nanoflow liquid chromatography mass spectrometry method for quantitative analysis and target ion screening of pyrrolizidine alkaloids in honey, tea, herbal tinctures, and milk. J Chromatogr A 2022; 1676:463269. [PMID: 35763949 DOI: 10.1016/j.chroma.2022.463269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
A method for the determination of pyrrolizidine alkaloids in tea, honey, herbal tinctures, and milk samples was developed by employing nano-LC-MS with high-resolution Orbitrap mass spectrometry. Quantitation was performed using the available analytical standards, and a MS2 target ion screening approach was developed using fragment ions that were specific for pyrrolizidine alkaloids under collision-induced dissociation. Proof of concept was delivered for the screening approach, proposing that the C6H8N+ fragment ion is a highly selective fragment ion for the detection of potential pyrrolizidine alkaloids. The elaborated quantitation was applied for the occurrence study of pyrrolizidine alkaloids in food products available on the Latvian market, including samples of tea (n = 15), honey (n = 40), herbal tinctures (n = 15), and milk (n = 10). The median LOQ over all analytes was 0.33 µg kg-1 in honey, 3.6 µg kg-1 in tea, 3.3 µg kg-1 in herbal tinctures, and 0.32 µg kg-1 in milk. The herbal tinctures samples and milk samples did not contain pyrrolizidine alkaloids above LOQ values. Analytes were detected in 33% of honey and 47% of tea samples. Most common were echimidine, intermedine, and enchinatine N-oxide. Pyrrolizidine alkaloids in tea samples were mainly N-oxides, with the highest total concentration being 215 µg kg-1 among the samples, exceeding the maximum limit of 200 µg kg-1 set by Commission Regulation (EU) 2020/2040. In honey samples, lycopsamine-type alkaloids were detected most frequently, with the highest total concentration equal to 74 µg kg-1. Advantages of the developed nano-LC-MS methods included increased sensitivity in comparison with conventional flow LC-MS, low solvent consumption typical with nano-LC and the novel use of a selective common target ion for detection and discovery of potential pyrrolizidine alkaloids using high resolution mass spectrometry.
Collapse
Affiliation(s)
- Martins Jansons
- Animal Health and Environment "BIOR", Institute of Food Safety, Lejupes iela 3, Riga, LV 1076, Latvia.
| | - Deniss Fedorenko
- Animal Health and Environment "BIOR", Institute of Food Safety, Lejupes iela 3, Riga, LV 1076, Latvia; Faculty of Chemistry, University of Latvia, Jelgavas iela 1, Riga, LV 1004, Latvia
| | - Romans Pavlenko
- Animal Health and Environment "BIOR", Institute of Food Safety, Lejupes iela 3, Riga, LV 1076, Latvia; Faculty of Chemistry, University of Latvia, Jelgavas iela 1, Riga, LV 1004, Latvia
| | - Zane Berzina
- Animal Health and Environment "BIOR", Institute of Food Safety, Lejupes iela 3, Riga, LV 1076, Latvia; Faculty of Chemistry, University of Latvia, Jelgavas iela 1, Riga, LV 1004, Latvia
| | - Vadims Bartkevics
- Animal Health and Environment "BIOR", Institute of Food Safety, Lejupes iela 3, Riga, LV 1076, Latvia; Faculty of Chemistry, University of Latvia, Jelgavas iela 1, Riga, LV 1004, Latvia
| |
Collapse
|
27
|
Han H, Jiang C, Wang C, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
|
29
|
Wang H, Xu X, Wang X, Guo W, Jia W, Zhang F. An analytical strategy for discovering structural analogues of alkaloids in plant food using characteristic structural fragments extraction by high resolution orbitrap mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Keuth O, Humpf HU, Fürst P. Determination of pyrrolizidine alkaloids in tea and honey with automated SPE clean-up and ultra-performance liquid chromatography/tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:149-157. [PMID: 34702137 DOI: 10.1080/19440049.2021.1982149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For routine analytical purpose a method based on a combination of automated solid-phase extraction (SPE) clean-up and detection by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry (UPLC-MS/MS) was developed for the determination of pyrrolizidine alkaloids (PA) in various food commodities. In this survey, honey, tea and herbal infusion samples from local retailers collected in 2012-2015 were obtained and analysed for their PA content. PA concentrations were found in 30% of the honey samples and in 42% of the tea and herbal infusion samples with levels up to 595 µg/kg. The survey included 17 individual PA, and their sum is also reported for each sample.
Collapse
Affiliation(s)
- Oliver Keuth
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany.,Special Analytical Services, Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe-AöR, Münster, Germany
| | - H U Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Fürst
- Special Analytical Services, Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe-AöR, Münster, Germany
| |
Collapse
|
31
|
Jumai A, Rouzimaimaiti R, Zou GA, Aisa HA. Pyrrolizidine alkaloids and unusual millingtojanine A-B from Jacobaea vulgaris (syn. Senecio jacobaea L.). PHYTOCHEMISTRY 2021; 190:112862. [PMID: 34245985 DOI: 10.1016/j.phytochem.2021.112862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Four undescribed pyrrolizidine alkaloids (seneciojanine A-D), two enantiomeric pairs of unusual alkaloids (millingtojanine A-B) with a unique tricyclic core, and nine known pyrrolizidine alkaloids were isolated from whole plant extracts of Jacobaea vulgaris Gaertn. The structures of the undescribed compounds were established by extensive spectroscopic and spectrometric analyses and comparison of theoretical and experimental ECD data. Several of the structures were also confirmed by X-ray diffraction analysis. Seneciojanine A-D possess a rare natural necine moiety with an α,β-unsaturated carbonyl group located at C-3 and a hydroxyl substituent at C-8.
Collapse
Affiliation(s)
- Aikebaier Jumai
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ruxianguli Rouzimaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
32
|
Van Pamel E, Henrottin J, Van Poucke C, Gillard N, Daeseleire E. Multi-Class UHPLC-MS/MS Method for Plant Toxins and Cyanotoxins in Food Supplements and Application for Belgian Market Samples. PLANTA MEDICA 2021; 87:1069-1079. [PMID: 34243208 DOI: 10.1055/a-1517-5828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of plant toxins and/or cyanotoxins in food supplements implies consumer health risks. Therefore, a targeted ultra-high performance liquid chromatographic-tandem mass spectrometric method to detect/quantify 25 toxins simultaneously in food supplement formulations was developed and validated. Full validation for tablets/powders and secondary validation for a liquid and soft gel capsule indicated that most compounds were efficiently extracted (≥ 75%), while others were only partly extracted (18 - 61%). Trueness was fulfilled (70 - 120%), with some exceptions (mostly at the lowest validation level). Intralaboratory repeatability, intra- and interlaboratory reproducibility values of ≤ 20%, ≤ 25%, and ≤ 25% were obtained for most, respectively. Matrix effects were found to be significant for most compounds. Good sensitivity (µg/kg level) was observed for galegin(e), lycopsamine, lycorine, rubiadin, skimmiamine, and vascin(e), in contrast to helveticoside, lucidin, lucidin-3-primveroside, plumbagin(e), and thujone, which were detected at the mg/kg level. The other compounds were characterized by a sensitivity between 10 to 1000 µg/kg. The validated methodology was applied for 52 food supplements (tablets, capsules, liquids/syrup, etc.) purchased from the Belgian market. In more than 25% of the samples, one or more toxins were detected (concentrations determined using standard addition). Lycopsamine, microcystin LR, solamargine, thujone, and vasicin(e) were the most frequently detected toxins. A clear link between the toxins detected and the plant species on the food supplement ingredient list could not always be established. This generic "dilute-and-shoot" procedure can be used for further research on toxins in food supplements and by extension other plant/algae-based food/feed commodities (herbs, edible flowers, etc.).
Collapse
Affiliation(s)
- Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | | | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | | | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| |
Collapse
|
33
|
Zan K, Hu X, Li Y, Wang Y, Jin H, Zuo T, Ma S. Simultaneous determination of eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum by ultra high performance liquid chromatography tandem mass spectrometry and risk assessments based on a real-life exposure scenario. J Sep Sci 2021; 44:3237-3247. [PMID: 34240803 DOI: 10.1002/jssc.202100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/02/2023]
Abstract
Pyrrolizidine alkaloids are toxins having hepatotoxic and carcinogenic effects on human health. A ultra high performance liquid chromatography tandem mass spectrometry technique was developed for the first time for the simultaneous determination of eight pyrrolizidine alkaloids, including four diastereoisomers (intermedine, lycopsamine, rinderine, and echinatine) and their respective N-oxide forms, in different parts of Eupatorium lindleyanum. The risk assessment method for pyrrolizidine alkaloids in Eupatorium lindleyanum was explored using the margin of exposure strategy for the first time based on a real-life exposure scenario. Differences were found in all eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum. Besides, the total levels of pyrrolizidine alkaloids in Eupatorium lindleyanum followed the order of root > flower > stem > leaf. Moreover, the risk assessment data revealed that the deleterious effects on human health were unlikely at exposure times of less than 200, 37, and 12 days during the lifetimes of Eupatorium lindleyanum leaves, stems, and flowers, respectively. This study reported both the contents of and risk associated with Eupatorium lindleyanum pyrrolizidine alkaloids. The comprehensive application of the novel ultra high performance liquid chromatography tandem mass spectrometry technique alongside the risk assessment approach provided a scientific basis for quality evaluation and rational utilization of toxic pyrrolizidine alkaloids in Eupatorium lindleyanum to improve public health safety.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Xiaowen Hu
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Yaolei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Tiantian Zuo
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| |
Collapse
|
34
|
Valese AC, Daguer H, Muller CMO, Molognoni L, da Luz CFP, de Barcellos Falkenberg D, Gonzaga LV, Brugnerotto P, Gorniak SL, Barreto F, Fett R, Costa ACO. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, beehive pollen, and honey by LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:685-694. [PMID: 34264805 DOI: 10.1080/03601234.2021.1943257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents the determination of eight pyrrolizidine alkaloids (PAs) by LC-MS/MS in honeys, pollen, and Senecio brasiliensis (Asteraceae) samples, all from Santa Catarina state, Brazil. In addition, the Box-Behnken design was used to perform an optimized sample preparation on pollens and S. brasiliensis parts. Senecionine and its N-oxide, besides retrorsine N-oxide, were determined in six of the seven honeys samples. Pollen from species of the Asteraceae, Fabaceae, and Boraginaceae families were found with greater predominance in three of the seven honeys samples. In these three honeys samples were also found the highest PAs levels. In beehive pollen, flower, and leaf of S. brasiliensis, the total levels of PAs and their N-oxides reached 221, 14.1 × 104, and 14.8 × 104 mg kg-1, respectively. In honeys, these compounds are chemical contaminants and therefore undesirable when the sum exceeds 71 µg kg-1, according to EFSA. On the other hand, although PAs are naturally present in plant and pollen of some species (Senecio, Crotalaria, Bacharis, Ecchium, Mimosa scabrella, Vernonia), it is important to monitor their levels in plants but also in honeys, and other beehive products since these compounds are transferred to the final product.
Collapse
Affiliation(s)
- Andressa Camargo Valese
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Heitor Daguer
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | | | - Luciano Molognoni
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Cynthia Fernandes Pinto da Luz
- Center for Research in Palynology, Department of the Environment of São Paulo, Institute of Botany, Sao Paulo, SP, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Silvana Lima Gorniak
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabiano Barreto
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
35
|
Trifan A, Wolfram E, Esslinger N, Grubelnik A, Skalicka-Woźniak K, Minceva M, Luca SV. Globoidnan A, rabdosiin and globoidnan B as new phenolic markers in European-sourced comfrey (Symphytum officinale L.) root samples. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:482-494. [PMID: 33015885 DOI: 10.1002/pca.2996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Symphytum officinale L. (comfrey, Boraginaceae) is a cultivated or spontaneously growing medicinal plant that is traditionally used for the treatment of bone fractures, hematomas, muscle pains and joint pains. A wide range of topical preparations and dried roots for ex tempore applications are marketed in European drug stores or pharmacies. OBJECTIVE The aim of this study was to perform the qualitative and quantitative analysis of pyrrolizidine alkaloids (PAs) and phenolic compounds in the hydroethanolic extracts of 16 commercial comfrey root batches purchased from 12 different European countries. METHODS Liquid chromatography hyphenated with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used for the profiling of PAs and phenolic compounds, whereas LC-MS/MS and liquid chromatography with diode array detection (LC-DAD) were used for their quantification. RESULTS 20 PAs (i.e. intermedine, lycopsamine, acetylintermedine, acetyllycopsamine, symphytine, symphytine-N-oxide), 17 phenolic compounds (i.e. caffeic and rosmarinic acids, rabdosiin, globoidnan A, globoidnan B) and 9 nonphenolic compounds (sugars, organic and fatty acids) were fully or partly annotated in the analysed samples. In addition, the quantitative analyses revealed that globoidnan B, rabdosiin and globoidnan A are new phenolic markers that can be used together with rosmarinic acid and PAs for the quality control of commercial comfrey root batches. CONCLUSIONS This study brings new insights into the phytochemical complexity of S. officinale, revealing not only numerous toxic PAs, but also a significant number of valuable phenolic compounds that could contribute to the bioactivities of comfrey-based preparations.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | | | | | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
36
|
Barny LA, Tasca JA, Sanchez HA, Smith CR, Koptur S, Livshultz T, Minbiole KPC. Chemotaxonomic investigation of Apocynaceae for retronecine-type pyrrolizidine alkaloids using HPLC-MS/MS. PHYTOCHEMISTRY 2021; 185:112662. [PMID: 33774572 DOI: 10.1016/j.phytochem.2021.112662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Apocynaceae are well known for diverse specialized metabolites that are distributed in a phylogenetically informative manner. Pyrrolizidine alkaloids (PAs) have been reported sporadically in one lineage in the family, the APSA clade, but few species have been studied to date. We conducted the first systematic survey of Apocynaceae for retronecine-type PAs, sampling leaves from 231 species from 13 of 16 major lineages within the APSA clade using HPLC-MS/MS. We also followed up preliminary evidence for infra-specific variation of PA detectability in Echites umbellatus Jacq. Four precursor ion scans (PREC) were developed for a high-throughput survey for chemicals containing a structural moiety common to many PAs, the retronecine core. We identified with high confidence PAs in 7 of 8 sampled genera of tribe Echiteae, but not in samples from the closely related Odontadenieae and Mesechiteae, confirming the utility of PAs as a taxonomic character in tribal delimitation. Occurrence of PAs in Malouetieae is reported with moderate confidence in Galactophora schomburgkiana Woodson and Eucorymbia alba Stapf, but currently we have low confidence of their presence in Holarrena pubescens Wall. ex G. Don (the one Malouetieae species where they were previously reported), as well as in Holarrena curtisii King & Gamble and in Kibatalia macrophylla (Pierre ex Hua) Woodson. Candidate PAs in some species of Wrightia R. Br. (Wrightieae) and Marsdenia R. Br. (Marsdenieae) are proposed with moderate confidence, but a subset of the compounds in these taxa presenting with a PA-like fragmentation pattern are more likely to be aminobenzoyl glycosides. Candidate PAs are reported in species with predicted (VXXXD) and unexpected (IXXXN) amino acid motifs in their homospermidine synthase-like genes. Detectability of PAs varies among samples of Echites umbellatus and intra-individual plasticity contributes to this variation. Of toxicological importance, novel potential sources of human exposure to pro-toxic PAs were identified in the medicinal plant, Wrightia tinctoria R.Br., and the food plants, Marsdenia glabra Cost. and Echites panduratus A. DC., warranting immediate further research to elucidate the structures of the candidate PAs identified. Method development and limitations are discussed.
Collapse
Affiliation(s)
- Lea A Barny
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| | - Julia A Tasca
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Hugo A Sanchez
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| | - Chelsea R Smith
- Department of Biodiversity Earth and Environmental Sciences, Drexel University, PA, 19104, USA.
| | - Suzanne Koptur
- Department of Biology, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
| | - Tatyana Livshultz
- Department of Biodiversity Earth and Environmental Sciences, Drexel University, PA, 19104, USA; Department of Botany, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103, USA.
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
37
|
Wang J, Zhang M, Chen L, Qiao Y, Ma S, Sun D, Si J, Liao Y. Determination of Toxic Pyrrolizidine Alkaloids in Traditional Chinese Herbal Medicines by UPLC-MS/MS and Accompanying Risk Assessment for Human Health. Molecules 2021; 26:molecules26061648. [PMID: 33809536 PMCID: PMC8000276 DOI: 10.3390/molecules26061648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/04/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a class of natural toxins with hepatotoxicity, genotoxicity and carcinogenicity. They are endogenous and adulterated toxic components widely found in food and herbal products. In this study, a sensitive and efficient ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was used to detect the PAs in 386 kinds of Chinese herbal medicines recorded in the Chinese Pharmacopoeia (2020). The estimated daily intake (EDI) of 0.007 μg/kg body weight (bw)/day was adopted as the safety baseline. The margin of exposure (MOE) approach was applied to evaluate the chronic exposure risk for the genotoxic and carcinogenic potential of PAs. Results showed that PAs was detected in 271 out of 386 samples with a content of 0.1–25,567.4 μg/kg, and there were 20 samples with EDI values above the baseline, 0.007 μg/kg bw/day. Beyond that, the MOE values for 10 out of 271 positive samples were below 10,000. Considering the actual situation, Haber’s rule was used to assume two weeks exposure every year during lifetime, and still the MOE values for four out of 271 positive samples were under 10,000, indicating these products may have potential health risk. The developed method was successfully applied to detect the PAs-containing Chinese herbal medicines. This study provides convincing data that can support risk management actions in China and a meaningful reference for the rational and safe use of Chinese herbal medicines.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
| | - Meng Zhang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
| | - Lihua Chen
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Qiao
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
| | - Siqi Ma
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
| | - Dian Sun
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
- Correspondence: (J.S.); (Y.L.); Tel.: +86-10-5783-3299 (J.S.); +86-10-5783-3268 (Y.L.)
| | - Yonghong Liao
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (M.Z.); (L.C.); (Y.Q.); (S.M.); (D.S.)
- Correspondence: (J.S.); (Y.L.); Tel.: +86-10-5783-3299 (J.S.); +86-10-5783-3268 (Y.L.)
| |
Collapse
|
38
|
Hama JR, Strobel BW. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142822. [PMID: 33348479 DOI: 10.1016/j.scitotenv.2020.142822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PA)s are natural toxins produced by a variety of plants including ragwort. The PAs present a serious health risk to human and livestock. Although these compounds have been extensively studied in food and feed, little is known regarding their environmental fate. To fill this data gap, we investigated the occurrence of PAs in ragwort plants, soils and surface waters at three locations where ragwort was the dominant plant species to better understand their environmental distribution. The concentrations of PAs were quantified during the full growing season (April-November) and assessed in relation to rain events. PA concentrations ranged from 3.2-6.6 g/kg dry weight (dw) in plants, 0.8-4.0 mg/kg dw in soils, and 6.0-529 μg/L in surface waters. Maximum PA concentrations in the soil (4 mg/kg) and water (529 μg/L) were in mid-May just before flowering. The average distribution of PAs in water was approximately 5 g/10,000 L, compared to the average amounts present in ragwort (506 kg/ha), and soil (1.7 kg/ha). In general, concentrations of PAs increase in the soil and surface water following rain events.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
39
|
Prada F, Stashenko EE, Martínez JR. LC/MS study of the diversity and distribution of pyrrolizidine alkaloids in Crotalaria species growing in Colombia. J Sep Sci 2020; 43:4322-4337. [PMID: 32991052 DOI: 10.1002/jssc.202000776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Hepatotoxic and genotoxic pyrrolizidine alkaloids have been involved in the acute poisoning of animals and humans. Crotalaria (Fabaceae) species contain these alkaloids. In this work, the diversity and distribution of pyrrolizidine alkaloids in roots, leaves, flowers, and seeds of Crotalaria pallida, Crotalaria maypurensis, Crotalaria retusa, Crotalaria spectabilis, Crotalaria incana, and Crotalaria nitens were studied. Matrix solid-phase dispersion and ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry were successfully employed in pyrrolizidine alkaloids extraction and analysis, respectively. Forty-five pyrrolizidine alkaloids were detected and their identification was based on the mass spectrometry accurate mass measurement and fragmentation pattern analysis. The cyclic retronecine-type diesters monocrotaline, crotaleschenine, integerrimine, usaramine, and their N-oxides were predominantly present. Five novel alkaloids were identified for the first time in Crotalaria species, namely 14-hydroxymonocrotaline, 12-acetylcrotaleschenine, 12-acetylmonocrotaline, 12-acetylintegerrimine, and dihydrointegerrimine. Due to a lack of commercially available standards, the response factor of monocrotaline was used for quantification of pyrrolizidine alkaloids and their N-oxides. Seeds and flowers possessed higher pyrrolizidine alkaloids amounts than roots and leaves. Due to their 1,2-unsaturated pyrrolizidine alkaloids content, the ingestion of Crotalaria plant seeds or other parts through herbal products, infusions, or natural remedies is a serious health threat to humans and livestock.
Collapse
Affiliation(s)
- Fausto Prada
- Center for Chromatography and Mass Spectrometry CROM-MASS, Research Center for Biomolecules CIBIMOL, School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, Research Center for Biomolecules CIBIMOL, School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jairo René Martínez
- Center for Chromatography and Mass Spectrometry CROM-MASS, Research Center for Biomolecules CIBIMOL, School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
40
|
Scupinari T, Mannochio Russo H, Sabino Ferrari AB, da Silva Bolzani V, Dias WP, de Oliveira Nunes E, Hoffmann-Campo CB, Zeraik ML. Crotalaria spectabilis as a source of pyrrolizidine alkaloids and phenolic compounds: HPLC-MS/MS dereplication and monocrotaline quantification of seed and leaf extracts. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:747-755. [PMID: 32428987 DOI: 10.1002/pca.2938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Crotalaria spectabilis is an important species used as a pre-plant cover for soybean crops to control the proliferation of endoparasitic nematodes. Species from the Crotalaria genus are known for presenting pyrrolizidine alkaloids (PAs) in their composition, however, C. spectabilis is still considered chemically under-explored. OBJECTIVE The goal of this manuscript is the development and validation of a method for PAs and flavonoids identification and quantification of C. spectabilis seeds and leaves, a toxic plant used for nematode proliferation control in soil, especially in soybean crops. MATERIALS AND METHODS Seeds and leaves extracts were analysed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the identification of the compounds. RESULTS PAs and phenolic compounds could be identified in both samples based on the MS/MS fragmentation pattern. Molecular formulas of the annotated compounds were confirmed by ultra-high-performace liquid chromatography-quadrupole time-of-flight (UHPLC-QToF), and monocrotaline could also be confirmed by standard comparison. The quantification of monocrotaline was performed by HPLC-MS/MS, resulting in 123 times higher monocrotaline content in seeds than in the leaves, which could explain its efficiency in combating nematode proliferation in soil. CONCLUSION This was the first report of phenolic compounds in C. spectabilis. The current study highlights the importance of C. spectabilis for nematode control due to the presence of toxic PAs, and the employment of analytical techniques for identification and quantification of compounds present in the extracts.
Collapse
Affiliation(s)
- Tamires Scupinari
- Laboratory of Phytochemistry and Biomolecules (LabFitoBio), Department of Chemistry, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Helena Mannochio Russo
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Anna Beatriz Sabino Ferrari
- Laboratory of Phytochemistry and Biomolecules (LabFitoBio), Department of Chemistry, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation - Embrapa Soybean, Londrina, PR, Brazil
| | | | | | - Maria Luiza Zeraik
- Laboratory of Phytochemistry and Biomolecules (LabFitoBio), Department of Chemistry, State University of Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
41
|
Varvouni EF, Zengin G, Graikou K, Ganos C, Mroczek T, Chinou I. Phytochemical analysis and biological evaluation of the aerial parts from Symphytum anatolicum Boiss. and Cynoglottis barrelieri (All.) Vural & Kit Tan (Boraginaceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Izcara S, Casado N, Morante-Zarcero S, Sierra I. A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods 2020; 9:foods9091319. [PMID: 32962136 PMCID: PMC7554850 DOI: 10.3390/foods9091319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent and unexpected food alerts about relatively high amounts of pyrrolizidine alkaloids in oregano samples have stressed the need to develop analytical strategies to ensure food safety in this type of foodstuff. Accordingly, this work presents the development of a miniaturized strategy based on the QuEChERS (quick, easy, cheap, effective, rugged and safe) method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) for the determination of 21 pyrrolizidine alkaloids suggested by the European Food Safety Authority to be monitored in food. The analytical method was properly validated, with overall average recoveries from 77 to 96% and relative standard deviations <13% (n = 9). The method proved to be a sustainable analytical strategy which meets green analytical chemistry principles as it showed good performance by using small amounts of sample (0.2 g), organic solvents (1000 µL), clean-up sorbents (175 mg) and partitioning salts (0.65 g). Its feasibility was verified through the analysis of 23 oregano samples. Of the samples analyzed, 100% were contaminated, with an average concentration of 1254 µg/kg. Lasiocarpine, lasiocarpine N-oxide, europine, europine N-oxide, senecivernine, senecionine, echimidine N-oxide, lycopsamine N-oxide and intermedine N-oxide were the alkaloids which significantly contributed to the contamination of the samples.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Correspondence: ; Tel.: +34-91-488-7018; Fax: +34-91-488-8143
| |
Collapse
|
43
|
Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal Bioanal Chem 2020; 412:7155-7167. [PMID: 32803302 DOI: 10.1007/s00216-020-02848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Setting of maximum limits for a number of plant alkaloids is under discussion in the EU. The novel method developed and optimized in this study enables simultaneous determination of 21 tropane alkaloids (TAs) and 33 pyrrolizidine (PAs) together with their N-oxides (PANOs). For analysis of aqueous-methanolic extract, reversed phase ultra-high-performance liquid chromatography and tandem mass spectrometry (RP-U-HPLC-MS/MS) was employed. The method was validated for frequently contaminated matrices (i) sorghum, (ii) oregano, and (iii) mixed herbal tea. The recoveries at two spiking levels were in the range of 82-115%, 80-106%, and 78-117%, respectively, and repeatabilities were less than 19% for all analyte/matrix combinations. As regards the achieved limits of quantification (LOQ), their values were in the range of 0.5-10 μg kg-1. The crucial problem encountered during method development, co-elution of multiple groups of isomeric alkaloids, was overcome by subsequent sample separation in the second chromatographic system, hydrophilic interaction liquid chromatography (HILIC), providing different separation selectivity. Lycopsamine, echinatine, and indicine (co-elution group 1) and N-oxides of indicine and intermedine (co-elution group 2), which could not be resolved on the commonly used RP column, were possible to separate fully by using the HILIC system.
Collapse
|
44
|
Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem 2020; 334:127472. [PMID: 32721831 DOI: 10.1016/j.foodchem.2020.127472] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring plant toxins associated with severe liver damage if excessive ingestion. Herein, a novel analytical strategy on utilizing direct analysis in real-time mass spectrometry (DART-MS) was developed, and applied in analysis of six representative PAs. The calibration curves in the range of 10-1000 ng·mL-1 were established, and relative standard deviations (RSDs) were less than 10%. The limits of detection (LODs) and limits of quantitation (LOQs) were 0.55-0.85 ng·mL-1 and 1.83-2.82 ng·mL-1, respectively. The feasibility of method was indicated by analysing real samples including Gynura japonica, drug tablets, granules, and fresh cow's milk. Moreover, the results of DART-MS were in good agreement with those observed by high performance liquid chromatography mass spectrometry (HPLC-MS), but consumed less time without chromatographic separation. This research provides a facile fashion for safety assessment of herbal and food products containing PAs and presents promising applications in food, pharmaceutical and clinical analysis.
Collapse
|
45
|
Mädge I, Gehling M, Schöne C, Winterhalter P, These A. Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1339-1358. [DOI: 10.1080/19440049.2020.1757166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Inga Mädge
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthias Gehling
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Cindy Schöne
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anja These
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
46
|
Kopp T, Abdel-Tawab M, Mizaikoff B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins (Basel) 2020; 12:E320. [PMID: 32413969 PMCID: PMC7290370 DOI: 10.3390/toxins12050320] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are distributed in plant families of Asteraceae, Boraginaceae, and Fabaceae and serve in the chemical defense mechanism against herbivores. However, they became a matter of concern due to their toxicity associated with the high risk of intake within herbal preparations, e.g., phytopharmaceutical formulations, medicinal teas, or other plant-derived drug products. In 1992, the German Federal Ministry of Health established the first limits of PA content for fourteen medicinal plants. Because of the toxic effects of PAs, the Federal Institute of Risk Assessment (BfR) established more stringent limits in 2011, whereby a daily intake <0.007 µg/kg body weight was recommended and valid until 2018. A threefold higher limit was then advised by BfR. To address consumer safety, there is the need for more efficient extraction procedures along with robust, selective, and sensitive analytical methods to address these concerns. With the increased prevalence of, e.g., phytopharmaceutical formulations, this timely review comprehensively focuses on the most relevant extraction and analysis strategies for each of those fourteen plant genera. While a variety of extraction procedures has been reported, differences in PA content of up to 1110 ppm (0.11% (w/w)) were obtained dependent on the nature of the solvent and the applied extraction technique. It is evident that the efficient extraction of PAs requires further improvements or at least standardization of the extraction conditions. Comparing the various analytical techniques applied regarding selectivity and sensitivity, LC-MS methods appear most suited. This review shows that both standardized extraction and sensitive determination of PAs is required for achieving appropriate safety levels concerning public health in future.
Collapse
Affiliation(s)
- Thomas Kopp
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Boris Mizaikoff
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
47
|
Hungerford NL, Carter SJ, Anuj SR, Tan BLL, Hnatko D, Martin CL, Sharma E, Yin M, Nguyen TTP, Melksham KJ, Fletcher MT. Analysis of Pyrrolizidine Alkaloids in Queensland Honey: Using Low Temperature Chromatography to Resolve Stereoisomers and Identify Botanical Sources by UHPLC-MS/MS. Toxins (Basel) 2019; 11:E726. [PMID: 31835836 PMCID: PMC6950414 DOI: 10.3390/toxins11120726] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a diverse group of plant secondary metabolites with known varied toxicity. Consumption of 1,2-unsaturated PAs has been linked to acute and chronic liver damage, carcinogenicity and death, in livestock and humans, making their presence in food of concern to food regulators in Australia and internationally. In this survey, honey samples sourced from markets and shops in Queensland (Australia), were analysed by high-resolution Orbitrap UHPLC-MS/MS for 30 common PAs. Relationships between the occurrence of pyrrolizidine alkaloids and the botanical origin of the honey are essential as pyrrolizidine alkaloid contamination at up to 3300 ng/g were detected. In this study, the predominant alkaloids detected were isomeric PAs, lycopsamine, indicine and intermedine, exhibiting identical MS/MS spectra, along with lesser amounts of each of their N-oxides. Crucially, chromatographic UHPLC conditions were optimised by operation at low temperature (5 °C) to resolve these key isomeric PAs. Such separation of these isomers by UHPLC, enabled the relative proportions of these PAs present in honey to be compared to alkaloid levels in suspect source plants. Overall plant pyrrolizidine alkaloid profiles were compared to those found in honey samples to help identify the most important plants responsible for honey contamination. The native Australian vines of Parsonsia spp. are proposed as a likely contributor to high levels of lycopsamine in many of the honeys surveyed. Botanical origin information such as this, gained via low temperature chromatographic resolution of isomeric PAs, will be very valuable in identifying region of origin for honey samples.
Collapse
Affiliation(s)
- Natasha L. Hungerford
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| | - Steve J. Carter
- Forensic and Scientific Services, Queensland Health, Brisbane, QLD 4108, Australia; (S.J.C.); (S.R.A.); (B.L.L.T.); (D.H.); (K.J.M.)
| | - Shalona R. Anuj
- Forensic and Scientific Services, Queensland Health, Brisbane, QLD 4108, Australia; (S.J.C.); (S.R.A.); (B.L.L.T.); (D.H.); (K.J.M.)
| | - Benjamin L. L. Tan
- Forensic and Scientific Services, Queensland Health, Brisbane, QLD 4108, Australia; (S.J.C.); (S.R.A.); (B.L.L.T.); (D.H.); (K.J.M.)
| | - Darina Hnatko
- Forensic and Scientific Services, Queensland Health, Brisbane, QLD 4108, Australia; (S.J.C.); (S.R.A.); (B.L.L.T.); (D.H.); (K.J.M.)
| | - Christopher L. Martin
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| | - Elipsha Sharma
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| | - Mukan Yin
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| | - Thao T. P. Nguyen
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| | - Kevin J. Melksham
- Forensic and Scientific Services, Queensland Health, Brisbane, QLD 4108, Australia; (S.J.C.); (S.R.A.); (B.L.L.T.); (D.H.); (K.J.M.)
| | - Mary T. Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.M.); (E.S.); (M.Y.); (T.T.P.N.)
| |
Collapse
|
48
|
Yusakul G, Sakamoto S, Chanpokapaiboon K, Tanaka H, Morimoto S. Preincubation format for a sensitive immunochromatographic assay for monocrotaline, a toxic pyrrolizidine alkaloid. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:653-660. [PMID: 31056786 DOI: 10.1002/pca.2838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Monocrotaline (MCT), which is classified as a 1,2-dehydropyrrolizidine alkaloid (DHPA), is a toxic compound that is mainly produced by Crotalaria spp. MCT contamination in cereals and herbs leads to hepatitis, gastroenteritis, pulmonary vasculitis and hypertension, and different types of cancer. The current analytical methods for MCT are complicated and expensive using liquid chromatography equipped with mass spectrometry detection. OBJECTIVE The aim of this study was to develop a simple and sensitive preincubation format for an immunochromatographic assay (PI-ICA) for MCT detection. METHODOLOGY We conducted the PI-ICA via incubation of an MCT-containing sample with an anti-MCT monoclonal antibody conjugated with colloidal gold before strip dipping. We compared the PI-ICA detection sensitivity with that of the conventional ICA (Conv-ICA) format. RESULTS The PI-ICA was sensitive with a limit of detection (LOD) of 0.61 ng/mL, which is a 16-fold improvement over the Conv-ICA format. These results indicated that the PI-ICA method exhibits high binding specificity for MCT and low cross-reactivity towards retronecine, retrorsine, senecionine and heliotrine. Sample solutions from plants containing MCT and related DHPAs produced positive results via PI-ICA analysis. CONCLUSIONS The proposed PI-ICA system provides a highly sensitive method compared to Conv-ICA. In addition, the developed PI-ICA method is simple and highly effective for detecting MCT contamination.
Collapse
Affiliation(s)
- Gorawit Yusakul
- Drug and Cosmetics Excellence Centre, Walailak University, Nakhon Si Thammarat, Thailand
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Determination and Chemical Profiling of Toxic Pyrrolizidine Alkaloids in Botanical Samples with UPLC–Q-TOFMS. Chromatographia 2019. [DOI: 10.1007/s10337-019-03785-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Fenclova M, Novakova A, Viktorova J, Jonatova P, Dzuman Z, Ruml T, Kren V, Hajslova J, Vitek L, Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci Rep 2019; 9:11118. [PMID: 31366891 PMCID: PMC6668463 DOI: 10.1038/s41598-019-47250-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Herbal-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum), is often used for the treatment of liver diseases. However, serious concerns exist regarding the efficacy, composition, as well as the safety of these over-the-counter preparations. Therefore, the aim of the present study was to investigate the composition as well as chemical and biological safety of 26 milk thistle-based dietary supplements purchased from both the U.S. and Czech markets between 2016 and 2017. The study was focused on a determination of the composition of active ingredients, as well as analyses of possible contaminants including: mycotoxins, plant alkaloids, and pesticide residues, as well as the microbial purity. High-throughput analyses were performed using advanced U-HPLC-HRMS techniques. Large differences in the silymarin content were observed among individual milk thistle preparations, often in contrast with the information provided by the manufacturers. In addition, substantial inter-batch differences in silymarin content were also demonstrated. In all milk thistle preparations tested, large numbers and high concentrations of mycotoxins and several pesticides, as well as the substantial presence of microbiological contamination were detected, pointing to serious safety issues. In conclusion, our results strongly indicate the need for strict controls of the composition, chemical contaminants, as well as the microbiological purity of commercial milk thistle extracts used for the treatment of liver diseases. Poor definition of these preparations together with contamination by biologically active substances may not only account for the inconsistency of clinical observations, but also be responsible for possible herbal-based dietary supplements-induced liver injury.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1082, 14000, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic.
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic.
| |
Collapse
|