1
|
Prata C, Zalambani C, Rossi F, Rossello S, Cerchiara T, Cappadone C, Malucelli E. Nutrients and Nutraceuticals from Vitis vinifera L. Pomace: Biological Activities, Valorization, and Potential Applications. Nutrients 2025; 17:583. [PMID: 39940441 PMCID: PMC11820150 DOI: 10.3390/nu17030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Grape pomace, also known as wine pomace, is a by-product of winemaking that has traditionally been discarded. However, recent studies have highlighted its rich nutritional and bioactive potential, positioning it as a promising resource for various applications in the functional food, pharmaceutical, and cosmetic sectors. This review explores the nutrient and nutraceutical contents of grape pomace, including its high levels of polyphenols, dietary fiber, vitamins, minerals, and melatonin. The biological activities of grape pomace, such as antioxidant, anti-inflammatory, antimicrobial, and anticancer effects, are also discussed, emphasizing its potential as raw material endowed with multifunctional properties. Additionally, the valorization of grape pomace as a food supplement and for the development of cosmetics is examined, focusing on its incorporation into dietary products and skincare formulations. The growing interest in the sustainable utilization of grape pomace is underscored, highlighting its significant role in promoting human health and contributing to a circular economy.
Collapse
Affiliation(s)
- Cecilia Prata
- Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (C.P.); (C.Z.)
| | - Chiara Zalambani
- Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (C.P.); (C.Z.)
| | - Francesca Rossi
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (F.R.); (E.M.)
| | - Simone Rossello
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy;
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy;
| | - Concettina Cappadone
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (F.R.); (E.M.)
| | - Emil Malucelli
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (F.R.); (E.M.)
| |
Collapse
|
2
|
Wang C, You Y, Huang W, Zhan J. The high-value and sustainable utilization of grape pomace: A review. Food Chem X 2024; 24:101845. [PMID: 39386151 PMCID: PMC11462180 DOI: 10.1016/j.fochx.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
A large portion of global grape production has been utilized for wine production, accompanied by tremendous pressure to dispose grape pomace. To achieve circular economy, the high-value recycling of grape pomace must be considered. The social level barriers to circular economy promotion are also important constraints, like the acceptability of upcycled products. The main components of grape pomace and their utilization are summarized, and critical reviews of green extraction methods analyzed the key points of grape pomace recycling process to achieve the goal of sustainability in the production process, culminating in discussions of the factors affecting the acceptability of upcycled products. Grape pomace bioactive substances have higher added value. To realize its green extraction, various emerging technologies need to be made a comprehensive choice. Nevertheless, the acceptability of upcycled products is influenced by personal, context and product factors, optimizing them is essential to remove the constraints of circular economy development.
Collapse
Affiliation(s)
- Changsen Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Rastija V, Drenjančević M, Kujundžić T, Zmaić L, Karnaš M. The Antidiabetic Effect of Grape Skin Extracts of Selected Indigenous Croatian White Grapevine Varieties. Foods 2024; 13:4143. [PMID: 39767085 PMCID: PMC11675538 DOI: 10.3390/foods13244143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Grape skin is an excellent bioactive compound source with numerous beneficial health effects. This study aimed to determine and compare the antidiabetic potential of the grape skin of indigenous Croatian white grapevine varieties. The grape skin extracts (GSEs) were assessed for total polyphenols, antioxidant activity, and inhibition potential against α-amylase and α-glucosidase, enzymes responsible for carbohydrate metabolism. GSE of variety "Svetokriška belina" has the highest total phenols (TP) content (1404.87 mg of gallic acid equivalent), the highest antioxidant capacity against DPPH (544.82 mg ascorbic acid equivalent), and the highest inhibitory activity against α-amylase (99.60%). α-glucosidase was best inhibited by the variety "Kozjak" (93.53%), followed by a significantly lower inhibition by the GSE of "Svetokriška belina" (89.64%). The principal component analysis (PCA) revealed the relationship among the grape varieties by their inhibition potential, where the first PC explained 71.34% of the variation. Indigenous Croatian white grapevine varieties have great potential for developing new natural supplements to prevent and treat diabetes.
Collapse
Affiliation(s)
- Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (V.R.); (M.D.); (T.K.)
| | - Mato Drenjančević
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (V.R.); (M.D.); (T.K.)
| | - Toni Kujundžić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (V.R.); (M.D.); (T.K.)
| | - Luka Zmaić
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (V.R.); (M.D.); (T.K.)
| |
Collapse
|
4
|
da Costa KCM, Oliveira LDS, Silva JC, Santana TS, de Freitas RA, Bressan AFM, Gómez-Alonso S, Pérez-Navarro J, Pertuzatti PB, Giachini FR. Enhancing Vascular Health and Lowering Blood Pressure in Spontaneously Hypertensive Rats through Syrah Grape ( Vitis vinifera) Pomace: The Role of Phenolic Compounds. Nutrients 2024; 16:2312. [PMID: 39064756 PMCID: PMC11279649 DOI: 10.3390/nu16142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The beneficial properties of wine by-products include actions that help prevent and treat cardiovascular conditions such as hypertension, primarily due to their antioxidant effects. Novel pharmacotherapies are being developed to treat arterial hypertension, including investigations into natural products exhibiting biological activity, necessitating rigorous evaluation of their efficacy and safety. This study aimed to identify and quantify phenolic compounds in Syrah (Vitis vinifera) grapes grown in the Brazilian Cerrado and their presence in winemaking by-products. It also examined the effects of grape pomace on blood pressure. METHODS Fresh grapes, pomace, and lees, were subjected to spectrophotometric determination of total phenolic compounds, followed by identification and quantification using HPLC-DAD-ESI-MSn. Normotensive male rats (Wistar) and spontaneously hypertensive rats (SHR) received grape pomace-enriched (150 or 300 mg/kg/day, 14 days) or standard chow. Indirect arterial pressure was assessed, while vascular reactivity was evaluated in mesenteric resistance arteries. RESULTS Pomace samples exhibited higher total phenolic compound concentrations than grapes or lees. Seven derivatives of hydroxycinnamic acids and twenty-one flavonols were identified. Quercetin-3-glucoside and ethyl caffeate were the most abundant phenolic compounds. Grape pomace-enriched chow demonstrated a dose-dependent hypotensive effect in rats. CONCLUSION the abundance of flavonols and hydroxycinnamic acids, combined with their hypotensive effects, underscores the therapeutic potential of fine wine-making by-products produced in the Brazilian Cerrado.
Collapse
Affiliation(s)
- Kelly C. M. da Costa
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Lorrayne de S. Oliveira
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Júlia C. Silva
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Taynara S. Santana
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Raiany A. de Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Alecsander F. M. Bressan
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Sérgio Gómez-Alonso
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - José Pérez-Navarro
- Regional Institute of Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain (J.P.-N.)
| | - Paula B. Pertuzatti
- Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
| | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78060-900, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiania 74690-900, Brazil
| |
Collapse
|
5
|
Tapia PE, Silva AM, Delerue-Matos C, Moreira M, Rodrigues F, Torres Carro R, Santi MD, Ortega MG, Blázquez MA, Arena ME, Alberto MR. Exploring the Phytochemical Composition and the Bioactive Properties of Malbec and Torrontés Wine Pomaces from the Calchaquíes Valleys (Argentina) for Their Sustainable Exploitation. Foods 2024; 13:1795. [PMID: 38928737 PMCID: PMC11202820 DOI: 10.3390/foods13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Hydroalcoholic extracts from Malbec and Torrontés wine pomaces (Vitis vinifera L.) originating from the high-altitude vineyards of Argentina's Calchaquí Valleys were characterized. Total phenolics, hydroxycinnamic acids, orthodiphenols, anthocyanins, non-flavonoid phenolics, total flavonoids, flavones/flavonols, flavanones/dihydroflavonols, and tannins were quantified through spectrophotometric methods, with the Malbec extract exhibiting higher concentrations in most of phytochemical groups when compared to Torrontés. HPLC-DAD identified more than 30 phenolic compounds in both extracts. Malbec displayed superior antiradical activity (ABTS cation, nitric oxide, and superoxide anion radicals), reduction power (iron, copper, and phosphomolybdenum), hypochlorite scavenging, and iron chelating ability compared to Torrontés. The cytotoxicity assessments revealed that Torrontés affected the viability of HT29-MTX and Caco-2 colon cancer cells by 70% and 50%, respectively, at the highest tested concentration (1 mg/mL). At the same time, both extracts did not demonstrate acute toxicity in Artemia salina or in red blood cell assays at 500 µg/mL. Both extracts inhibited the lipoxygenase enzyme (IC50: 154.7 and 784.7 µg/mL for Malbec and Torrontés), with Malbec also reducing the tyrosinase activity (IC50: 89.9 µg/mL), and neither inhibited the xanthine oxidase. The substantial phenolic content and diverse biological activities in the Calchaquí Valleys' pomaces underline their potentialities to be valorized for pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Pablo Ezequiel Tapia
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina; (P.E.T.); (R.T.C.); (M.R.A.)
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.M.S.); (C.D.-M.); (M.M.); (F.R.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.M.S.); (C.D.-M.); (M.M.); (F.R.)
| | - Manuela Moreira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.M.S.); (C.D.-M.); (M.M.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.M.S.); (C.D.-M.); (M.M.); (F.R.)
| | - Romina Torres Carro
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina; (P.E.T.); (R.T.C.); (M.R.A.)
| | - María Daniela Santi
- Farmacognosia, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (M.D.S.); (M.G.O.)
| | - María Gabriela Ortega
- Farmacognosia, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (M.D.S.); (M.G.O.)
| | - María Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, Avd. Vicent Andrés Es-tellés s/n, 46100 Burjasot, Valencia, Spain;
| | - Mario Eduardo Arena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina; (P.E.T.); (R.T.C.); (M.R.A.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
| | - María Rosa Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET–UNT, Avenida N Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina; (P.E.T.); (R.T.C.); (M.R.A.)
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
| |
Collapse
|
6
|
Martín-Mateos MJ, Delgado-Adámez J, Moreno-Cardona D, Valdés-Sánchez ME, Ramírez-Bernabé MR. Application of White-Wine-Pomace-Derived Ingredients in Extending Storage Stability of Fresh Pork Burgers. Foods 2023; 12:4468. [PMID: 38137272 PMCID: PMC10743004 DOI: 10.3390/foods12244468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
White wine pomace, a by-product from winemaking, was stabilized after the application of thermal blanching (with the aim of deactivating the polyphenoloxidase enzyme), milling, and processing by hydrostatic high-pressure treatment (with the aim of reducing initial microbial loads while preserving phenolic compounds content). The valorized pomace (VP) ingredient was added at different proportions to pork burgers (0.5%, 1%, and 3% w/w) to improve their preservation, and the effect was compared to those produced by sulfites and with a control (without sulfites or VP). Burgers were vacuum-packed and refrigerated for 7 days. Microbiological, color, oxidation, and sensory parameters were analyzed. Neither sulfites nor VP reduced the microbial development of most microorganism groups evaluated (p > 0.05); however, both prevented coliform growth during storage (p < 0.01). The use of sulfites prevented the discoloration of burgers during storage, while VP had no effect (p < 0.001). On the contrary, VP limited lipid and protein oxidation development during storage (p > 0.05), while sulfites had no effect. Therefore, the use of VP from white wine production could have an antioxidant effect but a limited antimicrobial or color-protective effect for the preservation of pork burgers.
Collapse
Affiliation(s)
| | | | | | | | - M. Rosario Ramírez-Bernabé
- Technological Agri-Food Institute (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06071 Badajoz, Spain; (M.J.M.-M.); (J.D.-A.); (D.M.-C.); (M.E.V.-S.)
| |
Collapse
|
7
|
Silva FT, Fonseca LM, Bruni GP, Crizel RL, Oliveira EG, Zavareze EDR, Dias ARG. Absorbent bioactive aerogels based on germinated wheat starch and grape skin extract. Int J Biol Macromol 2023; 249:126108. [PMID: 37536415 DOI: 10.1016/j.ijbiomac.2023.126108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
This study aimed to produce water-absorbent bioactive aerogels using biodegradable raw materials, wheat starch and poly ethylene oxide (PEO), and derived from agro-industrial residues (grape skin) obtained in the wine industry. The aerogels were produced using germinated wheat starch (GWS), with and without PEO, and incorporating grape skin extract (GSE) at concentrations of 5 and 10 % (w/w). The GSE was evaluated for total and individual phenolic compounds, anthocyanins, and antioxidant activity. The starch aerogels were characterized for morphology, density, porosity, functional groups by FT-IR, relative crystallinity and diffraction pattern, water absorption capacity, antioxidant activity, and in vitro release profile of phenolic compounds in food simulant medium. The total phenolic compounds in GSE was 226.25 ± 0.01 mg equivalent of gallic acid/g GSE. The aerogels showed low density and high porosity. All aerogels demonstrated high water absorption capacity (581.4 to 997.5 %). The antioxidant activity of the aerogels increased with increasing GSE concentration and the addition of PEO. The aerogels could release GSE gradually for up to 120 days in the hydrophilic simulant medium and 240 h for the hydrophobic medium. Starch-based aerogels with GSE showed potential to be applied as exudate absorbers with antioxidant activity to develop active food packaging.
Collapse
Affiliation(s)
- Francine Tavares Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Graziella Pinheiro Bruni
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Rosane Lopes Crizel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | | | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
8
|
Moutinho J, Gouvinhas I, Domínguez-Perles R, Barros A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023; 28:molecules28093885. [PMID: 37175294 PMCID: PMC10180386 DOI: 10.3390/molecules28093885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
This study aims to take advantage of the wine industry by-products and extract bioactive compounds from grape pomace by applying methodologies susceptible to be integrated easily into industrial workflows because of the association with standard instrumentation and facilities, while the main factors affecting the efficiency of the process have been optimized. The sampling consisted of two grape varieties: 'Touriga Nacional' and 'Sousão'. A response surface methodology (RSM) method was used to optimize the extraction conditions based on three independent variables according to the chemical characteristics and stability/lability traits associated with polyphenols; the main bioactive phytochemical in grape pomace: solvent (50%, 70%, and 90% ethanol); temperature (20 °C, 40 °C, and 60 °C); and pH (0.5% HCl, 2% HCl, and 3.5% HCl). The phytochemical profile, as well as the radical scavenging and reducing powers were determined on 27 different samples. The highest yield and antioxidant activity corresponded to extracts obtained at 60 °C using 3.5% HCl and 70% ethanol. The values for total phenols and flavonoids were 44.93 mg of gallic acid equivalents (GAE) and 22.95 mg of catechins equivalents (CE) per gram, respectively. Concerning the evaluation of antioxidant capacity using various assays such as ABTS, DPPH, and FRAP, the results obtained were 0.30, 0.43, and 0.36 mmol of Trolox equivalent antioxidant capacity (TEAC) per gram, correspondingly. The analysis of the extract obtained with the best extraction performance using these parameters via High-Performance Liquid Chromatography-Mass Spectrometry has been also performed, allowing us to identify fourteen (14) compounds, including phenolic acids (n = 3), flavonols (n = 7), and anthocyanins (n = 4). As a result of this process, the best conditions for the production of a natural and environmentally friendly dye, not only avoiding waste but also reusing these by-products, were achieved.
Collapse
Affiliation(s)
- Joana Moutinho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science and Technology, CEBAS, CSIC, University Campus of Espinardo-25, 30100 Murcia, Spain
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023; 28:342. [PMID: 36615534 PMCID: PMC9823944 DOI: 10.3390/molecules28010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.
Collapse
Affiliation(s)
- Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Terenzio Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
10
|
Xie G, Shen J, Luo J, Li D, Tao Y, Song C, Han Y. Simultaneous extraction and preliminary purification of polyphenols from grape pomace using an aqueous two-phase system exposed to ultrasound irradiation: Process characterization and simulation. Front Nutr 2022; 9:993475. [PMID: 36451741 PMCID: PMC9702536 DOI: 10.3389/fnut.2022.993475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 07/19/2024] Open
Abstract
In this study, an ultrasound-assisted aqueous two-phase (ATP) extraction method was used for the extraction and purification of phenolic compounds from grape pomace. The effect of acoustic energy densities (AED, 41.1, 63.5, 96.1, 111.2 W/L) and temperatures (20, 30, 40°C) on the yield of phenolics was investigated. An artificial neural network (ANN) was successfully used to correlate the extraction parameters with phenolic yield. Then, a diffusion model based on Fick's second law was used to model the mass transfer process during ultrasound-assisted ATP extraction and evaluate the effective diffusion coefficient of phenolics. The results revealed the increase in AED, and the temperature increased the effective diffusivity of phenolics. The HPLC analysis of anthocyanins and flavonols showed that ultrasound significantly increased the extraction yield of anthocyanins compared with the traditional method. High amounts of rutin and myricetin were recovered using the ATPS systems. Sugars were mainly distributed in the bottom phase, whereas phenolics were located in the top phase. Conclusively, ultrasound-assisted aqueous two-phase (ATP) extraction can be used as an effective method to achieve the simultaneous separation and preliminary purification of phenolics from grape pomace.
Collapse
Affiliation(s)
- Guangjie Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Shen
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ji Luo
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dandan Li
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Tao
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changnian Song
- College of Horticulture of Nanjing agricultural University, Nanjing, China
| | - Yongbin Han
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Ma H, Hou A, Tang J, Zhong A, Li K, Xiao Y, Li Z. Antioxidant Activity of Vitis davidii Foex Seed and Its Effects on Gut Microbiota during Colonic Fermentation after In Vitro Simulated Digestion. Foods 2022; 11:foods11172615. [PMID: 36076800 PMCID: PMC9455166 DOI: 10.3390/foods11172615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 μg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.
Collapse
Affiliation(s)
- Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jiaojiao Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aiai Zhong
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Correspondence: (Y.X.); (Z.L.); Tel.: +86-731-8461-7007 (Z.L.)
| |
Collapse
|
13
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
14
|
Sánchez-Gomar I, Benítez-Camacho J, Cejudo-Bastante C, Casas L, Moreno-Luna R, Mantell C, Durán-Ruiz MC. Pro-Angiogenic Effects of Natural Antioxidants Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. Antioxidants (Basel) 2022; 11:antiox11050851. [PMID: 35624715 PMCID: PMC9137485 DOI: 10.3390/antiox11050851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, mainly triggered by the formation of atherosclerotic plaques that reduce blood flow. Angiogenic cell therapy based on endothelial colony forming cells (ECFCs) constitutes a promising alternative to promote vascular revascularization; however, under the oxidative environment that prevails in ischemic areas, these cells become impaired. Thus, it is necessary to investigate strategies to enhance their regenerative properties. Antioxidant substances, such as polyphenols, have been shown to be useful for this purpose. In the current study we evaluated the potential of mango leaves, olive leaves and red grape pomace extracts, rich in polyphenols, to promote ECFC reparative effects. For this, aqueous and ethanolic extracts of the aforementioned raw materials were obtained by pressurized liquid extraction (PLE). After evaluating the polyphenol content and the antioxidant activity, in vitro assays were carried out, and we found that ethanolic extracts at low concentrations improved angiogenic capacities of ECFCs and reduced proliferation, apoptosis, and the inflammatory response of these cells. Overall, mango leaves ethanolic extract provided the most promising results, but all three extracts ameliorated the functionality of ECFCs.
Collapse
Affiliation(s)
- Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Cristina Cejudo-Bastante
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Lourdes Casas
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Casimiro Mantell
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| |
Collapse
|
15
|
Caponio GR, Noviello M, Calabrese FM, Gambacorta G, Giannelli G, De Angelis M. Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds. Antioxidants (Basel) 2022; 11:567. [PMID: 35326217 PMCID: PMC8944823 DOI: 10.3390/antiox11030567] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Grape pomace (GP), a major byproduct obtained from the winemaking process, is characterized by a high amount of phenolic compounds and secondary plant metabolites, with potential beneficial effects on human health. Therefore, GP is a source of bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activity. As people are paying more attention to sustainability, in this work, we evaluate two different extractions (aqueous and hydroalcoholic) of GP bioactive compounds. In vitro simulated gastrointestinal digestion of the GP extracts was performed to improve the bioavailability and bioaccessibility of polyphenols. The antioxidant activity (ABTS and DPPH assays) and the phenolic characterization of the extracts by UHPLC-DAD were evaluated. The antimicrobial effects of GP antioxidants in combination with a probiotic (Lactiplantibacillus plantarum) on the growth of pathogenic microorganisms (Escherichia coli, Bacillus megaterium, and Listeria monocytogenes) were evaluated. As a result, an increase of antioxidant activity of aqueous GP extracts during the gastrointestinal digestion, and a contextual decrease of hydroalcoholic extracts, were detected. The main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, flavonoids, and stilbenes. Despite lower antioxidant activity, due to the presence of antimicrobial active compounds, the aqueous extracts inhibited the growth of pathogens.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| |
Collapse
|
16
|
Kim JW, Kim SH, Mariappan R, Moon D, Kim J, Yoon SP. Anti-cancer effects of the aqueous extract of Orostachys japonica A. Berger on 5-fluorouracil-resistant colorectal cancer via MAPK signalling pathways in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114412. [PMID: 34265383 DOI: 10.1016/j.jep.2021.114412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonica A. Berger, also known as Wa-song in Korea, has traditionally been used as a folk medicine, but the potential anti-cancer effects of aqueous extract of Orostachys japonica (OJe) have not yet been thoroughly investigated. AIM OF THE STUDY To evaluate the anti-cancer effects of OJe, its possible mechanisms of action were investigated in 5-fluorouracil (5-FU) resistant SNU-C5/5-FUR colorectal cancer cells. MATERIALS AND METHODS The functional compounds of OJe were identified with high performance liquid chromatography. The anti-cancer effects of OJe in SNU-C5/5-FUR cells were investigated by a cell viability assays, flow cytometry analysis, and a subcutaneous xenograft model employing BALB/c-nude mice. Possible signalling pathways were assayed with Western blotting. RESULTS OJe (250 μg/ml) showed anti-cancer effects in SNU-C5/5-FUR cells, that were mediated via apoptosis as well as cell cycle arrest at the G0/G1 phase. Gallic acid and (-)-epicatechin, the major functional components of OJe, induced cell cycle arrest. OJe treatment (250 mg/kg, p.o.) produced a significant anti-proliferative effect in the xenograft model via decreased β-catenin/GSK3β and increased p27 expression. OJe treatment significantly activated ERK and p38 both in vitro and in vivo. CONCLUSIONS These results suggest that OJe has anti-proliferative effects on 5-FU-resistant colorectal cancer cells via regulation of MAPK signalling pathways.
Collapse
Affiliation(s)
- Jung Woo Kim
- KIM JUNG WOO R&D Laboratory, Namwon, Jeollabuk-do, 55790, Republic of Korea
| | - Sang Hee Kim
- Division of Creative Food Science for Health, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ramesh Mariappan
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Anatomy, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang-Pil Yoon
- Department of Anatomy, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
17
|
COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-To-Use Extracts from Graševina Grape Pomace. Molecules 2021; 26:molecules26164722. [PMID: 34443311 PMCID: PMC8398964 DOI: 10.3390/molecules26164722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work is to develop an industrially suitable process for the sustainable waste disposal in wine production. The proposed process involves the development of an environmentally friendly method for the isolation of biologically active compounds from Graševina grape pomace according to the green extraction principles, in order to obtain a ready-to-use extract. In this process, deep eutectic solvents (DES) were used as extraction solvents. Aiming to save time in selecting the optimal DES that would provide the most efficient Graševina pomace polyphenols extraction, the user-friendly software COSMOtherm was used and 45 DES were screened. Moreover, the prepared extracts were chemically and biologically characterized to confirm their safety for human application. Computational and experimental results proved the applicability of COSMOtherm in the selection of the optimal DES for the environmentally friendly preparation of the ready-to-use extract from Graševina grape pomace with expected application in the cosmetic industry.
Collapse
|
18
|
Mnisi CM, Mlambo V, Kumanda C, Crafford A. Effect of graded levels of red grape pomace ( Vitis vinifera L.) powder on physiological and meat quality responses of Japanese quail. ACTA AGR SCAND A-AN 2021. [DOI: 10.1080/09064702.2021.1923796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. M. Mnisi
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- Food Security and Safety Niche area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
| | - V. Mlambo
- Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria, South Africa
| | - C. Kumanda
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela, South Africa
| | - A. Crafford
- Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
| |
Collapse
|
19
|
Gerardi G, Cavia-Saiz M, Muñiz P. From winery by-product to healthy product: bioavailability, redox signaling and oxidative stress modulation by wine pomace product. Crit Rev Food Sci Nutr 2021; 62:7427-7448. [PMID: 33951976 DOI: 10.1080/10408398.2021.1914542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The wine pomace is the main winery by-products that suppose an economic and environmental problem and their use as a functional ingredient are being increasingly recognized as a good and inexpensive source of bioactive compounds. In this sense, it is known the potential health properties of wine pomace products in the prevention of disorders associated with oxidative stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, obesity. Those effects are due to the bioactive compounds of wine pomace and the mechanisms concern especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways. This review mainly summarizes the mechanisms of wine pomace products as modulators of oxidative status involved in cell pathologies as well as their potential therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview of the findings related to the wine pomace bioactive compounds profile, their bioavailability and the action mechanisms for maintaining the redox cell balance involved in health benefits. The review suggests an important role for wine pomace product in cardiovascular diseases prevention and their regular food intake may attenuate the development and progression of comorbidities associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
20
|
Silva A, Silva V, Igrejas G, Gaivão I, Aires A, Klibi N, Enes Dapkevicius MDL, Valentão P, Falco V, Poeta P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021; 26:molecules26082331. [PMID: 33923843 PMCID: PMC8073494 DOI: 10.3390/molecules26082331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic-resistance in bacteria has limited the ability to treat bacterial infections, besides increasing their morbidity and mortality at the global scale. The need for alternative solutions to deal with this problem is urgent and has brought about a renewed interest in natural products as sources of potential antimicrobials. The wine industry is responsible for the production of vast amounts of waste and by-products, with associated environmental problems. These residues are rich in bioactive secondary metabolites, especially phenolic compounds. Some phenolics are bacteriostatic/bactericidal against several pathogenic bacteria and may have a synergistic action towards antibiotics, mitigating or reverting bacterial resistance to these drugs. Complex phenolic mixtures, such as those present in winemaking residues (pomace, skins, stalks, leaves, and especially seeds), are even more effective as antimicrobials and could be used in combined therapy, thereby contributing to management of the antibiotic resistance crisis. This review focuses on the potentialities of winemaking by-products, their extracts, and constituents as chemotherapeutic antibacterial agents.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis, Tunis 1008, Tunisia;
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| | - Patrícia Valentão
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Virgílio Falco
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| |
Collapse
|
21
|
Gómez-Mejía E, Mikkelsen LH, Rosales-Conrado N, León-González ME, Madrid Y. A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues. J Chromatogr A 2021; 1644:462128. [PMID: 33845427 DOI: 10.1016/j.chroma.2021.462128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
A simple and efficient low-cost matrix solid phase dispersion (MSPD) extraction assisted by TiO2 nanoparticles and diatomaceous earth has been developed for the extraction of phenolic compounds from grape and grape pomace wastes. Experimental conditions for MSPD extraction were optimized by a factorial design and a surface response methodology. The simultaneous identification and quantification of eight main natural polyphenols (caffeic, p-coumaric, dihydroxybenzoic and gallic acid, rutin, resveratrol, quercetin and catechin) was possible by combining MSPD and capillary liquid chromatography coupled to a diode array detection and a mass simple quadrupole analyzer (cLC-DAD-MS). Good linearity and acceptable LOD (0.05-62 µg·g-1) and LOQ (0.2-207 µg·g-1) were obtained. The quantities of extracted polyphenols were within 2.4 and 333 µg·g-1, with catechin and rutin the most abundant compounds in grape pomace and grape wastes, respectively. Furthermore, considering the prospective uses of the winery bioresidues, the extracts have been characterised in terms of bioactive properties (several antioxidant activities and bacterial inhibition against Staphylococcus aureus, Escherichia coli and Pseudomona aeruginosa) and parameters such as total polyphenol and total flavonoid content. The high antioxidant activity (IC50 5.0 ± 0.4 µg ·g-1 against DPPH radical) and antibacterial activity (2.2 ± 0.3 mg·mL-1) suggests that the methodology developed is efficient, rapid and promising for the extraction of phenolic compounds with potential application as bioactive ingredients in food and cosmetic industries.
Collapse
Affiliation(s)
- Esther Gómez-Mejía
- Analytical Chemistry Department. Faculty of Chemistry. Universidad Complutense de Madrid. 28040-Madrid, Spain.
| | - Line Hartwig Mikkelsen
- Analytical Chemistry Department. Faculty of Chemistry. Universidad Complutense de Madrid. 28040-Madrid, Spain; Chemical and Biotechnical Science. Business Academy Aarhus, 8260-Viby J, Denmark
| | - Noelia Rosales-Conrado
- Analytical Chemistry Department. Faculty of Chemistry. Universidad Complutense de Madrid. 28040-Madrid, Spain
| | - María Eugenia León-González
- Analytical Chemistry Department. Faculty of Chemistry. Universidad Complutense de Madrid. 28040-Madrid, Spain.
| | - Yolanda Madrid
- Analytical Chemistry Department. Faculty of Chemistry. Universidad Complutense de Madrid. 28040-Madrid, Spain
| |
Collapse
|
22
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
23
|
Gordillo B, Rivero FJ, Jara-Palacios MJ, González-Miret ML, Heredia FJ. Impact of a double post-fermentative maceration with ripe and overripe seeds on the phenolic composition and color stability of Syrah red wines from warm climate. Food Chem 2021; 346:128919. [PMID: 33418420 DOI: 10.1016/j.foodchem.2020.128919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
The post-fermentative double addition of Pedro Ximénez cv seeds obtained from natural matured grapes (ripe seeds, RS) and postharvest sun-dried grapes (overripe seeds, OS) were studied as sustainable enological alternatives to conventional vinification (CW) to improve the stability of Syrah wines produced in a warm climate. The phenolic composition was assessed by rapid resolution liquid chromatography, copigmentation/polymerization processes by spectrophotometry, and color quality and stability by Differential Colorimetry. OSW and RSW wines enriched their total phenolic content, being the effect more pronounced with overripe seeds (by 23% versus 10%). OSW differences were found for gallic acid, monomeric flavan-3-ols, and procyanidins compared to CW, and for (+)-catechin, procyanidin B2-3-O-gallate and the tetramer to RSW. Phenolic changes were related to higher color intensity in seed-added wines. OSW having higher percentage of polymeric pigments maintained for longer time the chromatic improvement, being visually darker and more intense than final CW and RSW.
Collapse
Affiliation(s)
- Belén Gordillo
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Francisco J Rivero
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - M José Jara-Palacios
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - M Lourdes González-Miret
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Francisco J Heredia
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
24
|
Lou W, Li B, Nataliya G. The influence of Cabernet Sauvignon wine grape pomace powder addition on the rheological and microstructural properties of wheat dough. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1981458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wenjuan Lou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Department of Milk and Meat Technology, Sumy National Agrarian University, Sumy, Ukraine
| | - Bo Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Grevtseva Nataliya
- Department of Milk and Meat Technology, Sumy National Agrarian University, Sumy, Ukraine
- Department of Bakery, Confectionary, Pasta and Food Concentrates Technology, Kharkov State University of Food Technology and Trade, Kharkov, Ukraine
| |
Collapse
|
25
|
Gerardi G, Cavia-Saiz M, Rivero-Pérez MD, González-SanJosé ML, Muñiz P. The dose-response effect on polyphenol bioavailability after intake of white and red wine pomace products by Wistar rats. Food Funct 2020; 11:1661-1671. [PMID: 32030390 DOI: 10.1039/c9fo01743g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Wine pomace by-products are an important source of phenolic acids with significant health benefits. However, phenolic acid bioavailability in vivo has been little studied and there are few comparative studies on bioavailability between red and white wine pomace and the effect of intake of different doses. The qualitative and quantitative profile of phenolic acid metabolites in plasma and urine samples from Wistar rats was obtained by gas chromatography/mass detection, after oral administration of four doses (50, 100, 150, and 300 mg) of both the red and the white wine pomace products (rWPP and wWPP, respectively). The antioxidant capacity of the plasma samples assessed by both the ABTS and the FRAP levels was also evaluated. The results showed that neither the bioavailability nor the antioxidant capacity in vivo of the rWPP increased at high doses. However, both parameters were dependent on the intake of the wWPP.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain.
| | | | | | | | | |
Collapse
|
26
|
Grape ( Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020; 9:foods9101360. [PMID: 32992712 PMCID: PMC7599587 DOI: 10.3390/foods9101360] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Wine production is an ancient human activity that generates several by-products, which include some constituents known for their potential in health care and for their role in the food or cosmetic industries. Any variety of grape (Vitis vinifera L.) contains nutrients and bioactive compounds available from their juice or solid parts. Grape seed extract has demonstrated many activities in disease prevention, such as antioxidant effects, which make it a potential source of nutraceuticals. Grape seed is a remarkable winery industry by-product due to the bioactivity of its constituents. Methods for recovery of oil from grape seeds have evolved to improve both the quantity and quality of the yield. Both the lipophilic and hydrophilic chemicals present in the oil of V. vinifera L. make this wine by-product a source of natural nutraceuticals. Food and non-food industries are becoming novel targets of oil obtained from grape seeds given its various properties. This review focuses on the advantages of grape seed oil intake in our diet regarding its chemical composition in industries not related to wine production and the economic and environmental impact of oil production.
Collapse
|
27
|
Fuchs C, Bakuradze T, Steinke R, Grewal R, Eckert GP, Richling E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Rubio FTV, Haminiuk CWI, Martelli-Tosi M, da Silva MP, Makimori GYF, Favaro-Trindade CS. Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res Int 2020; 136:109470. [PMID: 32846555 DOI: 10.1016/j.foodres.2020.109470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
This research approaches the utilization of brewery waste yeast Saccharomyces cerevisiae as a vehicle for the encapsulation and protection of phenolic compounds from Cabernet Sauvignon and Bordeaux grape pomace extracts. The main purpose of this research was to enrich the biomass of yeast to investigate its potential as a novel vehicle for further application as pigment or functional ingredient. The obtained powders presented characteristics appropriated for storage, such as low water activity (<0.289), hygroscopicity (<13.71 g/100 g) and moisture (<7.10%) and particle sizes lower than the sensory perceptible (<11.45 µm). This work proved that yeasts were loaded after spray-drying, thus, they might be considered as biocapsules. Furthermore, the bioaccessibility of encapsulated phenolic compounds from Bordeaux and Cabernet Sauvignon extracts was 34.96% and 14.25% higher compared to their respective free extracts, proving that yeasts are not only biocapsules of easy application, but also a biological material capable of protecting and delivering the compounds during gastrointestinal digestion.
Collapse
Affiliation(s)
- Fernanda Thaís Vieira Rubio
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Sede Ecoville, Curitiba, PR, Brazil
| | - Milena Martelli-Tosi
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | | | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil.
| |
Collapse
|
29
|
Kato-Schwartz CG, Corrêa RCG, de Souza Lima D, de Sá-Nakanishi AB, de Almeida Gonçalves G, Seixas FAV, Haminiuk CWI, Barros L, Ferreira ICFR, Bracht A, Peralta RM. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res Int 2020; 137:109462. [PMID: 33233136 DOI: 10.1016/j.foodres.2020.109462] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
A practical approach to control glycemia in diabetes is to use plant natural products that delay hydrolysis of complex sugars and promote the diminution of the release of glucosyl units into the blood plasma. Polyphenolics have been described as being effective in inhibiting amylases and α-glucosidases. Grape pomace is an important sub product of the wine industry, still rich in many compounds such as polyphenolics. In this context, the purpose of this study was to search for possible effects of a grape pomace extract on salivary and pancreatic α-amylases and α-glucosidase, as well as on intestinal glucose absorption. The Merlot grape pomace extract (MGPE) was prepared using a hydroalcoholic mixture (40% ethanol + 60% water). In vitro inhibition was quantified using potato starch (for amylases) and maltose (for α-glucosidase) as substrates. In vivo inhibition was evaluated by running starch and maltose tolerance tests in rats with or without administration of MGPE. Ranking of the extract compounds for its affinity to the α-amylases was accomplished by computer simulations using three different programs. Both α-amylases, pancreatic and salivary, were inhibited by the MGPE. No inhibition on α-glucosidase, however, was detected. The IC50 values were 90 ± 10 μg/mL and 143 ± 15 μg/mL for salivary and pancreatic amylases, respectively. Kinetically this inhibition showed a complex pattern, with multiple binding of the extract constituents to the enzymes. Furthermore, the in silico docking simulations indicated that several phenolic substances, e.g., peonidin-3-O-acetylglucoside, quercetin-3-O-glucuronide and isorhamnetin-3-O-glucoside, besides catechin, were the most likely polyphenols responsible for the α-amylase inhibition caused by MGPE. The hyperglycemic burst, an usual phenomenon that follows starch administration, was substantially inhibited by the MGPE. Our results suggest that the MGPE can be adequate for maintaining normal blood levels after food ingestion.
Collapse
Affiliation(s)
- Camila Gabriel Kato-Schwartz
- Department of Biochemistry, and Post-graduate Program of Food Science, State University of Maringa, Parana 87020-900, Brazil
| | - Rúbia Carvalho Gomes Corrêa
- Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science Technology and Innovation (ICETI), University Center of Maringa (UniCesumar), Parana 87050-390, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Diego de Souza Lima
- Department of Technology, and Post-graduate Program of Molecular and Cell Biology, State University of Maringa, Parana 87020-900, Brazil
| | | | - Geferson de Almeida Gonçalves
- Department of Biochemistry, and Post-graduate Program of Food Science, State University of Maringa, Parana 87020-900, Brazil
| | - Flavio Augusto Vicente Seixas
- Department of Technology, and Post-graduate Program of Molecular and Cell Biology, State University of Maringa, Parana 87020-900, Brazil
| | - Charles W I Haminiuk
- Biotechnology Laboratory, Chemistry and Biology Department, Federal University of Technology - Paraná, 81280-340, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adelar Bracht
- Department of Biochemistry, and Post-graduate Program of Food Science, State University of Maringa, Parana 87020-900, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, and Post-graduate Program of Food Science, State University of Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
30
|
Optimization of acid-extraction of pectic fraction from grape (Vitis vinifera cv. Chardonnay) pomace, a Winery Waste. Int J Biol Macromol 2020; 161:204-213. [PMID: 32522547 DOI: 10.1016/j.ijbiomac.2020.05.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Chardonnay grape pomace was evaluated as a source of pectin. A central composite design was used in order to determine the effect of pH, extraction time (Et) and liquid: solid ratio (LS) on the yield and uronic acid (UA) content of the pectins extracted using boiling HNO3 solution. The optimized extraction condition to reach the maximum yield and UA was pH = 2.08, Et = 135.23 min and LS = 35.11 ml/g, resulting in theoretical yield of 12.8% and UA of 64.4%. The experimental yield of the pectic fraction obtained under the optimized conditions (GPOP) was 11.1% and the UA was 56.8%. GPOP had ~25% glucose. It was treated with α-amylase and amyloglucosidase, resulting in the fraction α-GPOP. The starch-free pectic fraction was composed of 63.5% UA, 7.8% rhamnose, 6.0% arabinose, 13.6% galactose and minor amounts of other neutral monosaccharides. It contained a low-methoxyl pectin (degree of methyl-esterification 18.1%) and had an average molar mass of 154,100 g/mol. It consisted of 55.7% homogalacturonan and 35.2% rhamnogalacturonan I (RG-I). NMR analyses suggest that RG-I portion of α-GPOP is highly branched by short chains or single residues of arabinose and galactose.
Collapse
|
31
|
Martins IM, Macedo GA, Macedo JA. Biotransformed grape pomace as a potential source of anti-inflammatory polyphenolics: Effects in Caco-2 cells. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Parisi V, Vassallo A, Pisano C, Signorino G, Cardile F, Sorrentino M, Colelli F, Fucci A, D’Andrea EL, De Tommasi N, Braca A, De Leo M. A Herbal Mixture from Propolis, Pomegranate, and Grape Pomace Endowed with Anti-Inflammatory Activity in an In Vivo Rheumatoid Arthritis Model. Molecules 2020; 25:molecules25092255. [PMID: 32403241 PMCID: PMC7248927 DOI: 10.3390/molecules25092255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by the production of inflammatory factors. In order to overcome the side effects of currently used anti-inflammatory drugs, several attempts have been made to identify natural products capable of relieving RA symptoms. In this work, a herbal preparation consisting of propolis, pomegranate peel, and Aglianico grape pomace (PPP) extracts (4:1:1) was designed and evaluated for its effect on a murine collagen-induced arthritis (CIA) model. Firstly, the chemical contents of four different Italian propolis collected in the Campania region (Italy) were here reported for the first time. LC-MS analyses showed the presence of 38 constituents, identified in all propolis extracts, belonging to flavonoids and phenolic acids classes. The Pietradefusi extract was the richest one and thus was selected to design the PPP preparation for the in vivo assay. Our results highlight the impact of PPP on RA onset and progression. By using in vivo CIA models, the treatment with PPP resulted in a delayed onset of the disease and alleviated the severity of the clinical symptoms. Furthermore, we demonstrated that early PPP treatment was associated with a reduction in serum levels of IL-17, IL-1b, and IL-17–triggering cytokines.
Collapse
Affiliation(s)
- Valentina Parisi
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy;
- Università degli Studi di Salerno, Ph. D. School of Pharmacy, 84084 Fisciano (SA), Italy
| | - Antonio Vassallo
- Dipartimento di Scienze, Università della Basilicata, 85100 Potenza, Italy;
| | - Claudio Pisano
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
- Correspondence: (C.P.); (N.D.T.); Tel.: +39-334-6817269 (C.P.); +39-089-969754 (N.D.T.)
| | - Giacomo Signorino
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Francesco Cardile
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Milena Sorrentino
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Fabiana Colelli
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Alessandra Fucci
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Egildo Luca D’Andrea
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy;
- Correspondence: (C.P.); (N.D.T.); Tel.: +39-334-6817269 (C.P.); +39-089-969754 (N.D.T.)
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy; (A.B.); (M.D.L.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, 56124 Pisa, Italy
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy; (A.B.); (M.D.L.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
33
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
34
|
Salehi B, Vlaisavljevic S, Adetunji CO, Adetunji JB, Kregiel D, Antolak H, Pawlikowska E, Uprety Y, Mileski KS, Devkota HP, Sharifi-Rad J, Das G, Patra JK, Jugran AK, Segura-Carretero A, Contreras MDM. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Li J, Zhang S, Zhang M, Sun B. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box-Behnken design optimization. Journal of Food Science and Technology 2019; 56:4879-4890. [PMID: 31741512 DOI: 10.1007/s13197-019-03958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023]
Abstract
Grape skin can be considered as an excellent and inexpensive source of polyphenol antioxidant compounds. A high-efficiency accelerated solvent extraction (ASE) method was developed for antioxidant polyphenols from grape skin. A three-factors three-level Box-Behnken design by response surface methodology was employed for optimization of extraction parameters in terms of total phenolic content, total anthocyanins content and antioxidant activity. The optimized condition was ethanol concentration of 48.80%, temperature of 50.79 °C and extraction time of 14.82 min. Under these conditions, the highest yields of polyphenol, the total phenolic content (15.24 mg GAE/g), total anthocyanins content (346.68 mg CGE/100 g) in grape skin, were obtained with significant antioxidant properties by DPPH, ABTS and FRAP assays. Moreover, the extracts from various grape skins by ASE, possessed ten main antioxidant polyphenols with the highest concentration of p-hydroxybenzoic acid and malvidin-3-O-glucoside. Compared with conventional solvent extraction, ASE extracted more amounts of polyphenols, exhibited more extraction level with shorter time and higher reproducibility.
Collapse
Affiliation(s)
- Jing Li
- 1School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People's Republic of China
| | - Shuting Zhang
- 2School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People's Republic of China
| | - Minna Zhang
- 1School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People's Republic of China
| | - Baoshan Sun
- 2School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning People's Republic of China.,3Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
| |
Collapse
|
36
|
Lingua MS, Theumer MG, Kruzynski P, Wunderlin DA, Baroni MV. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res Int 2019; 122:496-505. [PMID: 31229105 DOI: 10.1016/j.foodres.2019.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
The primary objective of this study was to assess the changes on phenolic composition and AC (antioxidant capacity) of white grape and its winemaking product, during in vitro gastrointestinal (GI) digestion. Phenolic compounds were evaluated by HPLC-MS/MS. The AC was measured by in vitro (FRAP, ABTS and DPPH) and cellular (Caco-2 cells) assays. Digestion had a reducing effect on phenolic content, being only 31% and 67% of native polyphenols from grapes and wines, respectively, potentially bioaccessible. At same polyphenol concentration, cellular AC of nondigested and digested foods was the same, indicating that changes in phenolic profile did not modify the bioactivity. Phenolic acids, in addition to quercetin, were the most resistant polyphenols to digestion, and would be the most relevant to explain the biological activity of digested foods. Results indicate that the changes occurred in the native phenolic profile of foods as a consequence of GI digestion, do not modify the bioactivity of white grapes and wines.
Collapse
Affiliation(s)
- Mariana S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina
| | - Martín G Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Kruzynski
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel A Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
37
|
Recovery of Oligomeric Proanthocyanidins and Other Phenolic Compounds with Established Bioactivity from Grape Seed By-Products. Molecules 2019; 24:molecules24040677. [PMID: 30769803 PMCID: PMC6413075 DOI: 10.3390/molecules24040677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Grape seeds are a copious part of the grape pomace produced by wine and juice industry and they represent an interesting source of phenolic compounds. Proanthocyanidins (PAs) are the main class of grape seed phenols and are important dietary supplements for their well-known beneficial properties. In this study enriched extracts obtained from Chardonnay and Pignoletto grape seeds were characterized for their proanthocyanidins and other minor phenolic compounds content and composition. Seed PAs were fractionated using Sephadex LH-20, using different ethanol aqueous solutions as mobile phase and analysed by normal phase HPLC-FLD-ESI-MS. Monomers, oligomers up to dodecamers and polymers were recorded in all samples. For both cultivars, the extracts showed a high content in PAs. The determination of other phenolic compounds was carried out using a HPLC-QqQ-ESI-MS and Chardonnay samples reported a greater content compared to Pignoletto samples. Contrary to PAs fraction, extracts obtained with ethanol/water 50/50 (v/v) presented a significant higher phenolic content than the others.
Collapse
|
38
|
Oliveira ALMS, Maciel GM, Rossetto R, Liz MV, Rampazzo Ribeiro V, Haminiuk CWI. Saccharomyces cerevisiae
biosorbed with grape pomace flavonoids: adsorption studies and
in vitro
simulated gastrointestinal digestion. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Lou Mucharski Strafit Oliveira
- Academic Department of Chemistry and Biology (DAQBi) Graduate Program in Environmental Science and Technology (PPGCTA) Federal University of Technology – Paraná Sede Ecoville Curitiba Paraná 81280‐340 Brazil
| | - Giselle Maria Maciel
- Academic Department of Chemistry and Biology (DAQBi) Graduate Program in Environmental Science and Technology (PPGCTA) Federal University of Technology – Paraná Sede Ecoville Curitiba Paraná 81280‐340 Brazil
| | - Raquel Rossetto
- Graduate Program in Food Engineering (PPGEAL) Federal University of Paraná, Polytechnic Centre Curitiba Paraná 81531‐990 Brazil
| | - Marcus Vinicius Liz
- Academic Department of Chemistry and Biology (DAQBi) Graduate Program in Environmental Science and Technology (PPGCTA) Federal University of Technology – Paraná Sede Ecoville Curitiba Paraná 81280‐340 Brazil
| | - Valéria Rampazzo Ribeiro
- Graduate Program in Food Engineering (PPGEAL) Federal University of Paraná, Polytechnic Centre Curitiba Paraná 81531‐990 Brazil
| | - Charles Windson Isidoro Haminiuk
- Academic Department of Chemistry and Biology (DAQBi) Graduate Program in Environmental Science and Technology (PPGCTA) Federal University of Technology – Paraná Sede Ecoville Curitiba Paraná 81280‐340 Brazil
| |
Collapse
|
39
|
Grosu IA, Pistol GC, Taranu I, Marin DE. The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning. Toxins (Basel) 2019; 11:toxins11010025. [PMID: 30626035 PMCID: PMC6356349 DOI: 10.3390/toxins11010025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
The study investigated the effect of grape seed (GS) meal, aflatoxin (AFB1), or their combination on the large intestine microbiota of weanling piglets. Twenty-four piglets were allocated into four groups based on diet composition: (1) Control group; (2) AFB1 (320 g/kg feed) group; (3) GS group (8% inclusion in the diet); (4) AFB1 + GS group. After 30 days of experiment, the colon content was used for microbiota analyses; after isolation of total bacterial genomic DNA, V3/V4 regions of the 16S rRNA amplicons were sequenced using the Illumina MiSeq platform. The raw sequences were analyzed using the v.1.9.1 QIIME pipeline software. 157 numbers of OTUs were identified among all four dietary groups with 26 of them being prevalent above 0.05% in the total relative abundance. GS and AFB1 increase the relative abundance of phylum Bacteroidetes and Proteobacteria, while decreasing the Firmicutes abundance in a synergic manner as compared with the individual treatments. An additive or synergistic action of the two treatments was identified for Lactobacillus, Prevotella and Campylobacter, while rather an antagonistic effect was observed on Lachnospira. The action mechanisms of aflatoxin B1 and grape seed meal that drive the large intestine microbiota to these changes are not known and need further investigations.
Collapse
Affiliation(s)
- Iulian A Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti no. 1, Balotesti, Ilfov 077015, Romania.
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti no. 1, Balotesti, Ilfov 077015, Romania.
| | - Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti no. 1, Balotesti, Ilfov 077015, Romania.
| | - Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti no. 1, Balotesti, Ilfov 077015, Romania.
| |
Collapse
|
40
|
Jara-Palacios MJ, Santisteban A, Gordillo B, Hernanz D, Heredia FJ, Escudero-Gilete ML. Comparative study of red berry pomaces (blueberry, red raspberry, red currant and blackberry) as source of antioxidants and pigments. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3135-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, Brighenti F, Giacco R, Del Rio D, Mena P. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys 2018; 646:1-9. [DOI: 10.1016/j.abb.2018.03.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
42
|
Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res Int 2018; 109:433-439. [PMID: 29803468 DOI: 10.1016/j.foodres.2018.04.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
The effect of in vitro gastrointestinal digestion on phenolic composition and antioxidant activity of different white winemaking byproducts extracts (grape pomace and its parts: seeds, skins and stems) was evaluated. Fourteen individual phenolic compounds were evaluated by UHPLC. The antioxidant activity was measured by DPPH and ORAC assays. Differences on phenolic profile and antioxidant activity were observed depending on the digestion phase, the type of byproduct, the phenolic group and the antioxidant activity assay. In general, digestion had a reducing effect on TPC and antioxidant activity; however, ORAC values of seed and stem extracts increased after digestion and some recovery indexes of the phenolic groups were very high. Results indicate that extracts from white winemaking byproducts are a reliable source of bioaccessible antioxidant compounds, which could be used as functional food ingredients.
Collapse
|
43
|
Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells. Molecules 2018. [PMID: 29518033 PMCID: PMC6017946 DOI: 10.3390/molecules23030611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.
Collapse
|
44
|
Souza AVD, Vieira MRDS, Putti FF. Correlações entre compostos fenólicos e atividade antioxidante em casca e polpa de variedades de uva de mesa. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.10317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Uvas são consideradas excelentes fontes de compostos fenólicos, quando comparadas a outros vegetais; porém, a grande diversidade entre as cultivares resulta em frutos com diferentes características, tanto de sabor quanto de coloração, o que, certamente, está associado com o conteúdo e o perfil de compostos polifenólicos. Cascas e polpas de amostras de uva no ponto de consumo − tipos “Itália”, “Brasil”, “Rubi”, “Thompson” e “Niágara Rosada” − da região de Campinas e Jundiaí, Estado de São Paulo, foram estudadas com o objetivo de avaliar a atividade antioxidante, a atividade enzimática da peroxidase e da polifenoloxidase e os teores de compostos fenólicos e de ácido ascórbico. A fim de verificar as correlações entre as cascas e polpas das variedades e as características, utilizou-se a Correlação de Pearson, a distância generalizada de Mahalanobis (D2) e, por fim, o agrupamento das diferentes respostas através da análise multivariada. Verificou-se que as cascas das uvas analisadas apresentaram correlação positiva com o conteúdo de compostos fenólicos, a atividade da enzima polifenoloxidase e com o teor de ácido ascórbico, exceto a cultivar “Niágara Rosada”, a qual mostrou maiores valores para estas avaliações. Não houve correlação entre o índice de atividade antioxidante com as demais análises realizadas. As cascas se mostraram uma ótima fonte para estes compostos.
Collapse
|
45
|
Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: Kinetics, isotherms and bioaccessibility. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Šporin M, Avbelj M, Kovač B, Možina SS. Quality characteristics of wheat flour dough and bread containing grape pomace flour. FOOD SCI TECHNOL INT 2017; 24:251-263. [DOI: 10.1177/1082013217745398] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wheat bread was enriched with 6%, 10% and 15% dried and milled grape pomace flour from two grape cultivars: ‘Merlot’ and ‘Zelen’. Rheological, textural, sensory and antioxidant properties of the enriched dough and bread were evaluated, and compared to control samples. Grape cultivar had significant impact on the rheological characteristics of the dough, and on the sensory and antioxidant properties of the final bread. Development time and dough stability were longer when ‘Merlot’ grape pomace flour was added compared to ‘Zelen’ grape pomace flour and the control. Grape pomace flour addition affected bread volume, firmness, crumb and crust colour, and odour and taste intensity. Moreover, grape pomace flour addition resulted in a stickier and less springy crumb texture, and some negative sensorial properties, such as increased intensity of aftertaste and sand feeling in the mouth. The phenolic content and antioxidant activity of bread were positively correlated with grape pomace flour addition ( r = 0.987, p = 0.01 and r = 0.941, p = 0.01 between phenolic content and ferric reducing antioxidant power and phenolic content and 2,2-diphenyl-1-picrylhydrazyl, respectively). The highest total phenolic contents were 5.92 mg gallic acid equivalents (GAE)/g dw for ‘Merlot’ and 3.65 mg gallic acid equivalents /g dw for ‘Zelen’, which were seen for the bread prepared with the highest grape pomace flour addition (15%). The highest antioxidant activity determined by the 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays were seen for the bread prepared with the highest ‘Merlot’ grape pomace flour addition (15%). Dough characteristic and sensory profile are strongly influenced by cultivar of grape pomace flour. Based on results of sensory profiling, the variety ‘Zelen’ is suggested for use.
Collapse
Affiliation(s)
- Monika Šporin
- Mlinotest Živilska Industrija d.d., Ajdovščina, Slovenia
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Kovač
- Mlinotest Živilska Industrija d.d., Ajdovščina, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | |
Collapse
|
47
|
Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res Int 2017; 100:435-444. [DOI: 10.1016/j.foodres.2017.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/16/2023]
|
48
|
Corrêa RC, Haminiuk CW, Barros L, Dias MI, Calhelha RC, Kato CG, Correa VG, Peralta RM, Ferreira IC. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
49
|
Etxabide A, Uranga J, Guerrero P, de la Caba K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Majewska M, Lewandowska U. The chemopreventive and anticancer potential against colorectal cancer of polyphenol-rich fruit extracts. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1307388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|