1
|
Liu L, Barber E, Kellow NJ, Williamson G. Improving quercetin bioavailability: A systematic review and meta-analysis of human intervention studies. Food Chem 2025; 477:143630. [PMID: 40037045 DOI: 10.1016/j.foodchem.2025.143630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
This systematic review evaluated a total of 31 included human intervention studies that have assessed methods to improve quercetin bioavailability from different formulations and food matrices using urine or blood samples up to July 2024. The bioavailability of quercetin in humans was affected by several factors. 1) Chemical structure: Quercetin-3-O-oligoglucosides exhibited 2-fold higher bioavailability than quercetin-3-O-glucoside, 10-fold higher than quercetin-3-O-rutinoside and ∼ 20-fold higher than quercetin aglycone. 2) Modification of physicochemical properties: In comparison to quercetin aglycone, the quercetin-3-O-glucoside-γ-cyclodextrin inclusion complex showed a 10.8-fold increase in bioavailability, while the self-emulsifying fenugreek galactomannans and lecithin encapsulation, and lecithin phytosome, showed a 62- and 20.1-fold increase, respectively. 3) Food matrix effects: the addition of dietary fats and fibre increased bioavailability by ∼2-fold. This review summarises key factors that enhance quercetin bioavailability, contributing to the development of more effective and practical quercetin supplements or functional foods for better bioactivity of quercetin in humans.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Elizabeth Barber
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia.
| |
Collapse
|
2
|
Huang W, Liu Q, Ning J. Effect of tea stems on the quality formation of large-leaf yellow tea: Sensomics and flavoromics approaches. Food Chem X 2024; 24:101794. [PMID: 39290754 PMCID: PMC11406333 DOI: 10.1016/j.fochx.2024.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In this study, the stems (ST) and leaves (LT) isolated from Large-leaf yellow tea (LYT) were used for sensory evaluation and quantitative analysis of flavor metabolites by sensomics and flavoromics. The results showed that the flavors of ST and LT in LYT were significantly different, and ST had stronger roasty and nutty aroma and sweet taste, which was mainly due to the accumulation of higher theanine and soluble monosaccharides in ST, and provided more substrates for the production of more pyrazine by the Maillard reaction; whereas LT contributed to the mellow and thick taste quality of LYT, and the abundance of catechins and caffeine were the main reason. The metabolic patterns of flavor metabolites indicated that the flavor differences between ST and LT were mainly due to biological metabolism in tea plants. This study provides the selection of raw materials for LYT in the future and product development of tea stems.
Collapse
Affiliation(s)
- Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Xu Y, Zhou Q, Wang X, Meng X, Zhang Z, Zhang X, Zhang X, Niu S, Chen G, Liu L, Shen T. Metabolome and transcriptomics analyses reveal quality differences between Camellia tachangensis F. C. Zhang and C. sinensis (L.) O. Kunzte. PLoS One 2024; 19:e0314595. [PMID: 39637125 PMCID: PMC11620563 DOI: 10.1371/journal.pone.0314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Tea ranks among the top three most beloved non-alcoholic beverages worldwide and boasts significant economic and health benefits. In addition to Camellia sinensis (L.) O. Kuntze, and other Camellia plants in China are consumed by residents as tea drinks, which also have important economic value. The present study introduces one of the wild tea species, namely, Camellia tachangensis F. C. Zhang. We analyzed changes in metabolite abundance and gene expression patterns of C. tachangensis and C. sinensis using metabonomics and transcriptomics. We found 1056 metabolites, including 256 differential metabolites (67 upregulated and 189 downregulated). Additionally, transcriptome analysis revealed 8049 differentially expressed genes, with 4418 upregulated and 3631 downregulated genes. C. sinensis boasts a notable abundance of Amino acids, which can be attributed to its specific genetic makeup. In Theanine and Caffeine metabolic pathways, the levels of the majority of amino acids and caffeine tend to decrease. In Flavonoid biosynthesis, the levels of the Flavanone Fustin and Epicatechin are higher in C. tachangensis, while Epigallocatechin and Gallocatechin levels are higher in C. sinensis. This indicates that the metabolic components of C. sinensis and C. tachangensis are not identical, which may result in a unique flavor.
Collapse
Affiliation(s)
- Yunfei Xu
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
| | - Qihang Zhou
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
| | - Xinglin Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xingpan Meng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhengdong Zhang
- College of Computer Science, Guiyang University, Guiyang, China
| | - Xu Zhang
- Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang, China
| | - Ximin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Suzhen Niu
- Institute of Agricultural and biological engineering, Guizhou University, Guiyang, China
| | - Guiping Chen
- School of International Education, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Tie Shen
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
Feng W, Zhou H, Xiong Z, Sheng C, Xia D, Zhang J, Li T, Wei Y, Deng WW, Ning J. Exploring the effect of different tea varieties on the quality of Lu'an Guapian tea based on metabolomics and molecular sensory science. Food Chem X 2024; 23:101534. [PMID: 38911473 PMCID: PMC11192980 DOI: 10.1016/j.fochx.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Lu'an Guapian (LAGP) tea is one of the most famous teas in China. However, research on its suitable processing varieties is still lacking. This study analyzed the quality of LAGP tea made from three different tea varieties, namely, 'Anhui1' (AH1), 'Quntizhong' (QTZ), and 'Shuchazao' (SCZ), using molecular sensory science and metabolomics techniques. The results showed that AH1 had a strong floral aroma and the strongest umami flavor, while QTZ had a distinct roasted aroma and a mellow taste. SCZ had a cooked corn-like aroma and the highest bitterness and astringency owing to the high tea polyphenol contents and low free amino acid contents. The study also identified 12 key aroma-active compounds, with trans-beta-ionone and 2-ethyl-3,5-dimethyl-pyrazine contributing the most to floral and roasted aromas, respectively. The results of this study provide a theoretical and practical basis for selecting and breeding high-quality varieties of LAGP tea and stabilizing its quality.
Collapse
Affiliation(s)
- Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huan Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
5
|
Ong CB, Annuar MSM. Potentialities of Tannase-Treated Green Tea Extract in Nutraceutical and Therapeutic Applications. Appl Biochem Biotechnol 2024; 196:7534-7553. [PMID: 38713339 DOI: 10.1007/s12010-024-04946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Green tea has garnered widespread interest in the past decades due to its content of health-beneficial polyphenols and catechins, besides reportedly exhibiting activities for the prevention, and possibly treatment, of many modern-life-associated afflictions. Hence, the functional food potential of health-beneficial beverages such as green tea is widely and commercially promoted. Biotransformation of green tea extract using enzymes such as tannase ostensibly enhances its beneficial well-being properties and disease-preventing functionalities. The tannase-treated green tea catechins may exhibit enhanced, amongst others, antioxidant, anti-tumour, anti-wrinkle, anti-inflammatory, anti-obesity and anti-sarcopenia properties compared to native green tea extract. Nonetheless, the health benefits and therapeutic and toxicological effects associated with these compounds, before and after tannase treatment, present a scientific gap for detailed studies. Accordingly, the review surveys the literature from the late twentieth century until the year 2023 related to the aforementioned important aspects.
Collapse
Affiliation(s)
- Chong-Boon Ong
- School of Science and Psychology, Faculty of Arts and Science, International University of Malaya-Wales, 50480, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
6
|
Yang X, Zou B, Zhang X, Yang J, Bi Z, Huang H, Li Y. A sensor array based on a nanozyme with polyphenol oxidase activity for the identification of tea polyphenols and Chinese green tea. Biosens Bioelectron 2024; 250:116056. [PMID: 38271889 DOI: 10.1016/j.bios.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important. In this work, a novel sensor array based on nanozyme with polyphenol oxidase (PPO) activity is proposed for the identification of tea polyphenols (TPs) and Chinese green tea. The absorption spectra changes of the nanozyme and its substrate in the presence of different TPs were first investigated. The feature spectra were scientifically selected using genetic algorithm (GA), and then a sensor array with 15 sensing units (5 wavelengths × 3 time) was constructed. Combined with the support vector machine (SVM) discriminative model, the discriminative rate of this sensor array was 100% for different concentrations of typical TPs in Chinese green tea with a detection limit of 5 μM. In addition, the identification of different concentrations of the same tea polyphenols and mixed tea polyphenols have also been achieved. Based on the above study, we further developed a facile and efficient new method for the category differentiation and adulteration identification of green tea, and the accuracy of this array was 96.88% and 100% for eight types of green teas and different adulteration ratios of Biluochun, respectively. This work has significance for the rapid discrimination of green tea brands and adulteration.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Bin Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Xinjian Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Jie Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Zhichun Bi
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
7
|
Chen CH, Yang Y, Ke JP, Yang Z, Li JY, Zhang YX, Liu G, Liu Z, Yao G, Bao GH. Novel Flavonol Alkaloids in Green Tea: Synthesis, Detection, and Anti-Alzheimer's Disease Effect in a Transgenic Caenorhabditis elegans CL4176 Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3695-3706. [PMID: 38324412 DOI: 10.1021/acs.jafc.3c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid β (Aβ1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 μM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aβ1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jia-Yi Li
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu-Xing Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guangjin Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhijun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
8
|
Zhang Y, Yan K, Peng Q, Baldermann S, Zhu Y, Dai W, Feng S, Simal-Gandara J, Fu J, Lv H, Lin Z, Shi J. Comprehensive analysis of pigment alterations and associated flavor development in strip and needle green teas. Food Res Int 2024; 175:113713. [PMID: 38128982 DOI: 10.1016/j.foodres.2023.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Strip/needle green teas (SGT/NGT) processed using innovative technologies are in high demand; however, mechanisms behind their color and flavor have not been comprehensively studied. We aimed to reveal the dynamics of major pigmented components (carotenoids, lipids, flavonoids, and Maillard products) and their contributions to the flavor of green teas. The total content of flavonoids in SGT and NGT were 255 ± 4.51 and 201 ± 3.91 mg·g-1, respectively; these values are slightly lower than that in fresh leaves (FLs), resulting in a fresh and sweet aftertaste. In average, carotene content in SGT/NGT (24.8 μg·g-1) was higher than in FL (17.4 μg·g-1), whilst xanthophyll content (603 μg·g-1) decreased to one-half of that in FL (310 μg·g-1). Among the 218 primary metabolites, glutamine, glutamic acid, and arginine were found to accumulate and were dominate contributors for the umami and sweet taste. Notably, more than 96 volatiles were screened and revealed their correlations with carotenoids, lipids, and amino acids. Overall, the synergism between pigments and their non-enzymatic derivates' contribution to GT characterized flavor was illustrated.
Collapse
Affiliation(s)
- Yongcheng Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Kangni Yan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Susanne Baldermann
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou 310024, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E-32004 Ourense, Spain
| | - Jianyu Fu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
9
|
Aydemir ME, Takım K, Yılmaz MA. Characterization of phenolic components of black teas of different origins and the effect of brewing duration on quality properties. Food Sci Nutr 2024; 12:494-507. [PMID: 38268896 PMCID: PMC10804100 DOI: 10.1002/fsn3.3782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 01/26/2024] Open
Abstract
This research aims to identify the phytochemical constituents of 79 different samples of black tea, including varieties from India, Iran (IrT), Turkey (TT), and Sri Lanka. In addition, this study investigates the effect of varying brewing times on the quality characteristics of tea. Therefore, we analyzed the phytochemical content of tea using a novel LC-MS/MS method that we developed, which identifies 53 different phenolic compounds. Furthermore, objective evaluations were conducted on the total phenolic compound, total flavonoid compound, antioxidant activity, and color values at 15, 30, and 60-min brewing intervals. The prevailing phenolic compounds discovered in the corresponding tea classifications were quantitatively analyzed to be quinic acid, epicatechin gallate, epigallocatechin gallate, epicatechin, epigallocatechin, gallic acid, nicotiflorine, and isoquercitrin. The study found that the TT and IrT groups had the richest phytochemical content and the highest antioxidant activity. The Turkish tea group had the highest measurement for the desired red color, which is considered a sensory property. Infusion color, antioxidant activity, and total phenolic and flavonoid contents showed significant increases with prolonged brewing time. It was important to note that the chemical composition of tea varies according to its origin and brewing conditions. Extending the brewing time improved the quality of the tea. It should be noted, however, that longer brewing times result in a more intense release of flavonoids, and this increase may have a pro-oxidant effect.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Basic Sciences of Veterinary Medicine, Faculty of Veterinary MedicineHarran UniversityŞanlıurfaTurkey
| | - Kasım Takım
- Department of Veterinary Food Hygiene and Technology, Faculty of Veterinary MedicineHarran UniversityŞanlıurfaTurkey
| | | |
Collapse
|
10
|
Xu W, Zhao Y, Lv Y, Bouphun T, Jia W, Liao S, Zhu M, Zou Y. Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions. Food Chem X 2023; 19:100863. [PMID: 37780317 PMCID: PMC10534245 DOI: 10.1016/j.fochx.2023.100863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiqiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yating Lv
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand
| | - Wenbao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Mansour FR, Abdallah IA, Bedair A, Hamed M. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem 2023; 55:187-212. [PMID: 37898879 DOI: 10.1080/10408347.2023.2269421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Flavonoids are plant-derived compounds that have several health benefits, including antioxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. Quercetin is a flavonoid that is widely present in various fruits, vegetables, and drinks. Accurate determination of quercetin in different samples is of great importance for its potential health benefits. This review, is an overview of sample preparation and determination methods for quercetin in diverse matrices. Previous research on sample preparation and determination methods for quercetin are summarized, highlighting the advantages and disadvantages of each method and providing insights into recent developments in quercetin sample treatment. Various analytical techniques are discussed including spectroscopic, chromatographic, electrophoretic, and electrochemical methods for the determination of quercetin and its derivatives in different samples. UV-Vis (Ultraviolet-visible) spectrophotometry is simple and inexpensive but lacks selectivity. Chromatographic techniques (HPLC, GC) offer selectivity and sensitivity, while electrophoretic and electrochemical methods provide high resolution and low detection limits, respectively. The aim of this review is to comprehensively explore the determination methods for quercetin and quercetin glycosides in diverse matrices, with emphasis on pharmaceutical and biological samples. The review also provides a theoretical basis for method development and application for the analysis of quercetin and quercetin glycosides in real samples.
Collapse
Affiliation(s)
- Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Mahmoud Hamed
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| |
Collapse
|
12
|
Hoffmann TD, Kurze E, Liao J, Hoffmann T, Song C, Schwab W. Genome-wide identification of UDP-glycosyltransferases in the tea plant ( Camellia sinensis) and their biochemical and physiological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1191625. [PMID: 37346124 PMCID: PMC10279963 DOI: 10.3389/fpls.2023.1191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Tea (Camellia sinensis) has been an immensely important commercially grown crop for decades. This is due to the presence of essential nutrients and plant secondary metabolites that exhibit beneficial health effects. UDP-glycosyltransferases (UGTs) play an important role in the diversity of such secondary metabolites by catalysing the transfer of an activated sugar donor to acceptor molecules, and thereby creating a huge variety of glycoconjugates. Only in recent years, thanks to the sequencing of the tea plant genome, have there been increased efforts to characterise the UGTs in C. sinensis to gain an understanding of their physiological role and biotechnological potential. Based on the conserved plant secondary product glycosyltransferase (PSPG) motif and the catalytically active histidine in the active site, UGTs of family 1 in C. sinensis are identified here, and shown to cluster into 21 groups in a phylogenetic tree. Building on this, our current understanding of recently characterised C. sinensis UGTs (CsUGTs) is highlighted and a discussion on future perspectives made.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| |
Collapse
|
13
|
Fang WW, Wang KF, Zhou F, Ou-Yang J, Zhang ZY, Liu CW, Zeng HZ, Huang JA, Liu ZH. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food Funct 2023; 14:2668-2683. [PMID: 36883322 DOI: 10.1039/d2fo03577d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long-term stored oolong tea has recently attracted considerable attention concerning its salutary effect. In this study, the anti-obesity effect of different years' oolong tea on high-fat diet-fed mice was compared. Wuyi rock tea of 2001, 2011, and 2020 were chosen to be the representative samples of oolong tea. The results showed that eight-week administration of 2001 Wuyi rock tea (WRT01), 2011 Wuyi rock tea (WRT11), and 2020 Wuyi rock tea (WRT20) extracts (400 mg per kg per d) significantly decreased the body weight and attenuated the obesity in high-fat diet-fed mice. 2001 and 2011 Wuyi rock teas reduced obesity mainly through regulating lipid metabolism and activating the AMPK/SREBP-1 pathway, downregulating the expression of SREBP-1, FAS, and ACC and upregulating CPT-1a expression; while the 2011 and 2020 Wuyi rock teas by moderating the gut microbiota dysbiosis, reshaping the gut microbiota, and promoting the growth of beneficial bacteria, especially Akkermansia. 2011 Wuyi rock tea was proven to be more effective in reducing body weight gain and liver oxidative stress than the others. Collectively, all three Wuyi rock teas of different years alleviated high-fat diet-induced obesity by regulating lipid metabolism and modulating gut microbiota, whereas the emphasis of their internal mechanism is different with different storage ages.
Collapse
Affiliation(s)
- Wen-Wen Fang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Kuo-Fei Wang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jie Ou-Yang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zi-Ying Zhang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Chang-Wei Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Hong-Zhe Zeng
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Green Extraction Techniques for the Determination of Active Ingredients in Tea: Current State, Challenges, and Future Perspectives. SEPARATIONS 2023. [DOI: 10.3390/separations10020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In recent years, the scientific community has turned its attention to the further study and application of green chemistry as well as to sustainable development in reducing the consumption of raw materials, solvents, and energy. The application of green chemistry aims to ensure the protection of the environment and to also, consequently, improve the quality of human life. It offers several benefits, both socially and economically. In the last few decades, new alternative non-conventional green extraction methodologies have been developed for the purposes of the extraction of active ingredient compounds from various raw products. The main objective of this literature review is to present the current knowledge and future perspectives regarding the green extraction of tea species in respect of the isolation of safe active biomolecules, which can be used as commercially available products—both as dietary supplements and pharmaceutical formulations. More specifically, in this literature review, the intention is to investigate several different extraction techniques, such as ultrasonic-assisted extraction, ultrasonic-assisted extraction with DESs, the microwave assisted-extraction method, and the reflux method. These are presented in respect of their role in the isolation of bioactive molecules regarding different tea species. Furthermore, following the literature review conducted in this study, the commonly used green extraction methods were found to be the ultrasound-assisted method and the microwave-assisted method. In addition to these, the use of a green solvent, in regard to its role in the maximum extraction yield of active ingredients in various species of tea, was emphasized. Catechins, alkaloids (such as caffeine), gallic acid, and flavonoids were the main extracted bioactive molecules that were isolated from the several tea species. From this literature review, it can be demonstrated that green tea has been widely studied at a rate of 52% in respect of the included research studies, followed by black tea at 26%, as well as white tea and oolong tea at 11% each. Regarding the determination of the bioactive molecules, the most utilized analytical method was found in the combination of high-performance liquid chromatography (HPLC) with a photodiode array detector (PDA) and mass spectrophotometry (MS) at a usage rate of about 80%. This method was followed by the utilization of UPLC and GC at 12% and 8%, respectively. In the future, it will be necessary to study the combination of green extraction techniques with other industry strategies, such as an encapsulation at the micro and nano scale, for the purposes of preparing stable final products with antioxidant properties where, finally, they can be safely consumed by humans.
Collapse
|
15
|
Yi J, Che H, Ren J, Yu H, Song K, Wang X, Zhao X, Wang X, Li Q. Insights into the interaction of cyclooxygenase and lipoxygenase with natural compound 3,4',5,7-Tetrahydroxyflavone based on multi-spectroscopic and metabolomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121800. [PMID: 36067623 DOI: 10.1016/j.saa.2022.121800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.
Collapse
Affiliation(s)
- Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Jiping Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Kexin Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
16
|
Nejabati HR, Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer's disease. J Food Biochem 2022; 46:e14375. [PMID: 35929364 DOI: 10.1111/jfbc.14375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is largely associated with cognitive disability, amnesia, and abnormal behavior, which accounts for about two third of people with dementia worldwide. A growing body of research demonstrates that AD is connected to several factors, such as aberrant accumulation of amyloid-beta (Aβ), increase in the hyperphosphorylation of Tau protein, and the formation of neurofibrillary tangles, mitochondrial dysfunction, and inordinate production of reactive oxygen species (ROS). Despite remarkable efforts to realize the etiology and pathophysiology of AD, until now, scientists have not developed and introduced medications that can permanently cease the progression of AD. Thus, nowadays, research on the role of natural products in the treatment and prevention of AD has attracted great attention. Kaempferol (KMP), one of the prominent members of flavonols, exerts its ameliorative actions via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. Therefore, in this review article, we outlined the possible effects of KMP in the prevention and treatment of AD. PRACTICAL APPLICATIONS: Kaempferol (KMP) exerts its ameliorative actions against AD via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. The beneficial effects of KMP were addressed in both in vitro and in vivo studies; however, conducting further research can warrant its long-term effects as a safe agent. Therefore, after confirming its favorable functions in the prevention and treatment of AD, it could be used as a safe and effective agent.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10:e15488. [PMID: 36259115 PMCID: PMC9579739 DOI: 10.14814/phy2.15488] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 04/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in relation to incidence and mortality rate and its incidence is considerably increasing annually due to the change in the dietary habit and lifestyle of the world population. Although conventional therapeutic options, such as surgery, chemo- and radiotherapy have profound impacts on the treatment of CRC, dietary therapeutic agents, particularly natural products have been regarded as the safest alternatives for the treatment of CRC. Kaempferol (KMP), a naturally derived flavonol, has been shown to reduce the production of reactive oxygen species (ROS), such as superoxide ions, hydroxyl radicals, and reactive nitrogen species (RNS), especially peroxynitrite. Furthermore, this flavonol inhibits xanthine oxidase (XO) activity and increases the activities of catalase, heme oxygenase-1 (HO), and superoxide dismutase (SOD) in a wide range of cancer and non-cancer cells. Based on several studies, KMP is also a hopeful anticancer which carries out its anticancer action via suppression of angiogenesis, stimulation of apoptosis, and cell cycle arrest. Due to various applications of KMP as an anticancer flavonol, this review article aims to highlight the current knowledge regarding the role of KMP in CRC.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
18
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
20
|
Zhong J, Ren D, Shang Y, Huang S, Li Y, Hu Y, Yi L. Targeted identification of glycosylated flavones and isomers in green tea through integrated ion-filtering strategy and mass-fragmentation characteristics based on the UPLC-Q-Orbitrap-MS/MS platform. Food Chem 2022; 377:131901. [PMID: 34999455 DOI: 10.1016/j.foodchem.2021.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Glycosylated flavones (GFs) are important components of green tea and have various structures and isomers. The annotation of GFs' chemical structures is challenging. Ultrahigh-performance liquid chromatography-high resolution mass spectrometry can provide informative mass ions for GF annotation. However, distinguishing the mass features of GFs from those of thousands of ions is difficult. In this study, integrated ion-filtering strategies for O- and C-glycosyl flavones were constructed, and the mass-fragmentation characteristics were summarized from GF standards. Ultimately, 29 GFs with different types of aglycones and glycosides, connection modes, and locations were annotated. According to principal component analysis and t-test results, significant differences were observed in the contents of 16 components in the two kinds of tea. Among them, the contents of 11 GFs in autumn teas were significantly higher than those in spring teas. This study provided an efficient strategy for isomer annotation in food analysis.
Collapse
Affiliation(s)
- Jiayi Zhong
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Dabing Ren
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Shang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China
| | - Sichen Huang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yan Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongdan Hu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lunzhao Yi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
21
|
Wang S, Zeng T, Zhao S, Zhu Y, Feng C, Zhan J, Li S, Ho CT, Gosslau A. Multifunctional health-promoting effects of oolong tea and its products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr 2022; 63:9580-9604. [PMID: 35468008 DOI: 10.1080/10408398.2022.2067121] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government of Home Science College, Chandigarh, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
23
|
Mei X, Lin C, Wan S, Chen B, Wu H, Zhang L. A Comparative Metabolomic Analysis Reveals Difference Manufacture Suitability in "Yinghong 9" and "Huangyu" Teas ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:767724. [PMID: 34970283 PMCID: PMC8712721 DOI: 10.3389/fpls.2021.767724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
"Yinghong 9" is a widely cultivated large-leaf variety in South China, and the black tea made from it has a high aroma and strong sweet flavor. "Huangyu" is a light-sensitive tea variety with yellow leaves. It was cultivated from the bud-mutation of "Yinghong 9" and has a very low level of chlorophyll during young shoot development. Due to chlorophyll being involved in carbon fixation and assimilation, the changes in photosynthesis might potentially affect the accumulation of flavor metabolites, as well as the quality of "Huangyu" tea. Although "Huangyu" has a golden yellow color and high amino acid content, the mechanism underlying the formation of leaf color and drinking value remains unclear. The widely targeted metabolomics and GC-MS analysis were performed to reveal the differences of key metabolites in fresh and fermented leaves between "Yinghong 9" and "Huangyu." The results showed that tea polyphenols, total chlorophyll, and carotenoids were more abundant in "Yinghong 9." Targeted metabolomics analysis indicated that kaempferol-3-glycoside was more abundant in "Yinghong 9," while "Huangyu" had a higher ratio of kaempferol-3-glucoside to kaempferol-3-galactoside. Compared with "Yinghong 9" fresh leaves, the contents of zeaxanthin and zeaxanthin palmitate were significantly higher in "Huangyu." The contents of α-farnesene, β-cyclocitral, nerolidol, and trans-geranylacetone, which were from carotenoid degradation and involved in flowery-fruity-like flavor in "Huangyu" fermented leaves, were higher than those of "Yinghong 9." Our results indicated that "Huangyu" was suitable for manufacturing non-fermented tea because of its yellow leaf and flowery-fruity-like compounds from carotenoid degradation.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shihua Wan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoyi Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Han Z, Wen M, Zhang H, Zhang L, Wan X, Ho CT. LC-MS based metabolomics and sensory evaluation reveal the critical compounds of different grades of Huangshan Maofeng green tea. Food Chem 2021; 374:131796. [PMID: 34906807 DOI: 10.1016/j.foodchem.2021.131796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023]
Abstract
Six grades of Huangshan Maofeng (HSMF) green tea were studied by LC-MS based metabolomics combined with sensory evaluation on bitterness, astringency and sweet aftertaste. Although there was no significant correlation (p > 0.05) between tea grades and the contents of total polyphenols and flavonoids, non-targeted metabolomics revealed that all grades of tea could be classified into two groups, group 1 (T1, T2) and group 2 (T3, 1, 2, 3). The main marker compounds responsible for distinguishing the two groups were procyanidins, flavonoid glycosides, and four hydrolysable tannins, including monogalloyl glucose, digalloyl glucose, trigalloyl glucose and galloyl-hexahydroxydiphenoyl-glucose. The Pearson correlation coefficients of these hydrolysable tannins with HSMF green tea grades were between 0.82 and 0.95. Furthermore, their Pearson correlation coefficients regarding sweet aftertaste were in the range of 0.73-0.83. This study suggested combination of metabolomics and sensory evaluation could provide an insight in searching for more potential taste-active components.
Collapse
Affiliation(s)
- Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Haiwei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
25
|
Kobylinska N. SIMULTANEOUS IDENTIFICATION, QUANTIFICATION, AND ANALYSIS OF MAIN COMPONENTS OF “HAIRY” ROOT EXTRACTS OF Artemisia annua AND Artemisia tilesii PLANTS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The profiles of polyphenolic phytochemicals in extracts of “hairy” roots of Artemisia tilesii Ledeb. and Artemisia annua L. were studied. Analytical separation and quantification of main components in extracts were evaluated. Methods. “hairy” roots were grown in vitro on Murashige and Skoog medium. High-performance chromatography coupled with different types of detection (photo diode array detection (DAD) and electrospray ionization with ultra-high resolution Qq-Time-of-Flight mass spectrometry) was used to identify and quantify the main biologically active components in ethanol extracts of “hairy” roots. Results. The amount of flavonoids was 94.71–144.33 mg RE/g DW and 33.52–78.00 mg RE/g DW in “hairy” roots of A. annua and A. tilesii, respectively. In most samples of “hairy” roots, the amount of flavonoids was higher than the content in the control plant roots. The presence of Apigenin (0.168 ± 0.003 mg/L and 0.178 ± 0.006 mg/L), Quercetin (0.282 ± 0.005 mg/L and 0.174 ± 0.005 mg/L) in the extracts of A. annua and A. tilesii was shown by reverse-phase HPLC-DAD method. Chlorogenic acid, Kaempferol, and other flavonoids were detected. Conclusions. The developed HPLC-DAD method demonstrated the high percentage of recovery, low limit of detection and quantification (9,11 ng/ml ≤ LOQ ≤16,51 ng/ml), accuracy and correctness. Thus, the method is suitable for the simultaneous quantification of phenolic acids and flavonoids in various plant extracts with short time and high efficiency.
Collapse
|
26
|
Wang YS, Fang MZ, Zheng SD, Cho JG, Yi TH. Identification of Chinese green tea ( Camellia sinensis) marker metabolites using GC/MS and UPLC-QTOF/MS. Food Sci Biotechnol 2021; 30:1293-1301. [PMID: 34721925 DOI: 10.1007/s10068-021-00970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tea is one of the most widely consumed aromatic beverages in the world because of its taste and flavor, as well as due to many potential health beneficial properties. Metabolomics focuses on an in-depth analysis of all metabolites in living organisms. In this study, 29 primary metabolites and 25 secondary metabolites were identified using GC/MS and UPLC-QTOF/MS, respectively. Further, PCA analysis showed conspicuous discrimination for the ten varieties of green tea with metabolite profiling. Among them, organic acids, amino acids, flavan-3-ols, and flavonol glycosides varied greatly through checking the VIP values of the PLS-DA model. Moreover, the intrinsic and/or extrinsic factors characterizing each type of green tea were also discussed. The chemical component marker derived here should be used as an important detection index, while evaluating the tea quality, as well as while establishing the tea quality standard. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00970-4.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China
| | - Min-Zhe Fang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Sheng-Dao Zheng
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Jin-Gyeong Cho
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
27
|
Ntezimana B, Li Y, He C, Yu X, Zhou J, Chen Y, Yu Z, Ni D. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021; 10:foods10112627. [PMID: 34828907 PMCID: PMC8618261 DOI: 10.3390/foods10112627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The present study emphasizes the effect of withering time set at 4 ± 0.5 h (WT4), 6 ± 0.5 h (WT6), 8 ± 0.5 h (WT8), 10 ± 0.5 h (WT10), and 12 ± 0.5 h (WT12) on the sensory qualities, chemical components, and nutritional characteristics of black tea. The sensory evaluation revealed high total quality scores at WT8 and WT10. Polysaccharides, amino acids, and soluble sugars significantly increased with an increase in withering time, and an apparent peak value was obtained at WT10. However, polyphenols, flavonoids, glycosides, organic acids, catechins, alkanoids, and theaflavins decreased with an increase in withering time. With an increase in withering time, the content of aromatic substances showed a trend of increasing first and then decreasing. The peaks of alcohols, aldehydes, and acids appeared at 10 ± 0.5 h, 10 ± 0.5 h, and 8 ± 0.5 h, respectively. The content of esters, ketones, and hydrocarbons showed a downward trend with an increase in withering time. Aroma analysis revealed that withering time could not exceed 10 ± 0.5 h. Black tea withered up to WT10 showed enhanced inhibition of α-glucosidase and α-amylase activity with good sensorial attributes. Glucose uptake inhibition capacity increased up 6 ± 0.5 h and then decreased, while antioxidant capacity decreased with an increase in withering time. The overall results show that the 8 ± 0.5 h to 10 ± 0.5 h withering time could improve black tea quality and nutritional characteristics.
Collapse
Affiliation(s)
- Bernard Ntezimana
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Chang He
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Xinlei Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Jingtao Zhou
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
| | - Yuqiong Chen
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (B.N.); (Y.L.); (C.H.); (X.Y.); (J.Z.); (Y.C.); (Z.Y.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Fax: +86-27-8728-2010
| |
Collapse
|
28
|
Phenolic, Carotenoid and Saccharide Compositions of Vietnamese Camellia sinensis Teas and Herbal Teas. Molecules 2021; 26:molecules26216496. [PMID: 34770903 PMCID: PMC8587765 DOI: 10.3390/molecules26216496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis) and herbal tea have been recognized as rich sources of bioactive constituents with the ability to exert antioxidant actions. The aims of this study were to analyze phenolic, carotenoid and saccharide contents in a set of Vietnamese tea and herbal tea and compare the results with those of green and black teas marketed in the U.S. In total, 27 phenolics, six carotenoids and chlorophylls, and three saccharides were quantitatively identified. Catechins, quercetin glycosides and chlorogenic acid were the predominating phenolics in the teas, with the concentrations following the order: jasmine/green teas > oolong tea > black tea. Lutein was the dominant carotenoid in the teas and its concentrations were generally found to be higher in the jasmine and green teas than in the oolong and black teas. The study showed that the green teas originating in Vietnam had much higher levels of phenolics and carotenoids than their counterparts stemming from another country. The application of partial least squares discriminant analysis (PLS-DA) as a chemometric tool was able to differentiate phenolic profiles between methanolic extracts and tea infusions. Through principal component analysis (PCA), the similarities and dissimilarities among the jasmine, green, oolong, black teas and herbal teas were depicted.
Collapse
|
29
|
Paquignon T, Scholz M, Zimmermann BF. Can home-brewed Benifuuki green tea deliver health-relevant amounts of 3"-O-methyl epigallocatechin gallate? NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Data on the docking of phytoconstituents of betel plant and matcha green tea on SARS-CoV-2. Data Brief 2021; 36:107049. [PMID: 33869690 PMCID: PMC8043915 DOI: 10.1016/j.dib.2021.107049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Betel (Piper betle L.) and green tea (Camellia sinensis (L) O. Kuntze) have been used for a long time as traditional medicine. The docking of phytoconstituents contained in the betel plant was evaluated against Mpro, and matcha green tea was evaluated against five target receptors of SARS-CoV-2 as follows: spike ectodomain structure (open state), receptor-binding domain (RDB), main protease (Mpro), RNA-dependent RNA polymerase (RdRp), dan papain-like protease (PLpro). The evaluation was carried out based on the value of binding-free energy and the types of interactions of the amino acids at the receptors that interact with the ligands.
Collapse
|
31
|
Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script. SEPARATIONS 2021. [DOI: 10.3390/separations8040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phenolic composition of green tea (Camellia sinensis) varies according to manufacturing processes that result in deglycosylation of glycosylated phenolics and condensation, epimerization, and degalloylation of flavan-3-ols (catechins). Ambiguous phenolic assignments based on UV absorbance alone can occur when the chromatographic peaks overlapped slightly. We established an improved method using an HPLC–UV coupled with a single-quadrupole MS detector (MS1) that can reject false UV peaks after checking the preceding MS1 peaks. Adjusted UV data coded by the Python algorithm were deployed to compare tea phenolics. Performance validation of the MS1 and UV analysis methods for 19 phenolics revealed a sensitivity of 0.17 and 0.47 pmol/injection, limit of detection of 15 and 33 μg/L, limit of quantification of 50 and 110 μg/L, intra-day precision of 5% and 1% relative standard deviation, and trueness of 83–135% and 97–100%, respectively. Our results suggest that the HPLC–UV–MS1 method, which is a low operational cost method, potentially provides the precise phenolic composition of teas.
Collapse
|
32
|
Almatroodi SA, Alsahli MA, Almatroudi A, Verma AK, Aloliqi A, Allemailem KS, Khan AA, Rahmani AH. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021; 26:1315. [PMID: 33804548 PMCID: PMC7957552 DOI: 10.3390/molecules26051315] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphenolic flavonoids are considered natural, non-toxic chemopreventers, which are most commonly derived from plants, fruits, and vegetables. Most of these polyphenolics exhibit remarkable antioxidant, anti-inflammatory, and anticancer properties. Quercetin (Qu) is a chief representative of these polyphenolic compounds, which exhibits excellent antioxidant and anticancer potential, and has attracted the attention of researchers working in the area of cancer biology. Qu can regulate numerous tumor-related activities, such as oxidative stress, angiogenesis, cell cycle, tumor necrosis factor, proliferation, apoptosis, and metastasis. The anticancer properties of Qu mainly occur through the modulation of vascular endothelial growth factor (VEGF), apoptosis, phosphatidyl inositol-3-kinase (P13K)/Akt (proteinase-kinase B)/mTOR (mammalian target of rapamycin), MAPK (mitogen activated protein kinase)/ERK1/2 (extracellular signal-regulated kinase 1/2), and Wnt/β-catenin signaling pathways. The anticancer potential of Qu is documented in numerous in vivo and in vitro studies, involving several animal models and cell lines. Remarkably, this phytochemical possesses toxic activities against cancerous cells only, with limited toxic effects on normal cells. In this review, we present extensive research investigations aimed to discuss the therapeutic potential of Qu in the management of different types of cancers. The anticancer potential of Qu is specifically discussed by focusing its ability to target specific molecular signaling, such as p53, epidermal growth factor receptor (EGFR), VEGF, signal transducer and activator of transcription (STAT), PI3K/Akt, and nuclear factor kappa B (NF-κB) pathways. The anticancer potential of Qu has gained remarkable interest, but the exact mechanism of its action remains unclear. However, this natural compound has great pharmacological potential; it is now believed to be a complementary-or alternative-medicine for the prevention and treatment of different cancers.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 51542, India;
| | - Abdulaziz Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| |
Collapse
|
33
|
Fang ZT, Lv YQ, Song CJ, Jin J, Lu JL, Xu HR, Ye JH. Simultaneous Preparation of Abundant Flavonol Triglycosides from Tea Leaves. Molecules 2020; 25:E5140. [PMID: 33158302 PMCID: PMC7663796 DOI: 10.3390/molecules25215140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Flavonol glycosides are important components of tea leaves, contributing to the bioactivities as well as bitterness and astringency of tea. However, the standards of many flavonol triglycosides are still not available, which restricts both sensory and bioactivity studies on flavonol glycosides. In the present study, we established a simultaneous preparation method of seven flavonol triglycoside individuals from tea leaves, which consisted of two steps: polyamide column enrichment and preparative HPLC isolation. The structures of seven flavonol triglycoside isolates were identified by mass and UV absorption spectra, four of which were further characterized by nuclear magnetic resonance spectra, namely, quercetin-3-O-glucosyl-rhamnosyl-glucoside, quercetin-3-O-rhamnosyl-rhamnosyl-glucoside, kaempferol-3-O-glucosyl-rhamnosyl-glucoside and kaempferol-O-rhamnosyl-rhamnosyl-glucoside. The purities of all isolated flavonol triglycosides were above 95% based on HPLC, and the production yield of total flavonol glycosides from dry tea was 0.487%. Our study provides a preparation method of flavonol triglycosides from tea leaves, with relatively low cost of time and solvent but high production yield.
Collapse
Affiliation(s)
- Zhou-Tao Fang
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| | - Yi-Qing Lv
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| | - Chu-Jun Song
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| | - Jing Jin
- Zhejiang Agricultural Technical Extension Center, 29 Fengqidong Road, Hangzhou 310000, China;
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| | - Hai-Rong Xu
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou 310058, China; (Z.-T.F.); (Y.-Q.L.); (C.-J.S.); (J.-L.L.)
| |
Collapse
|
34
|
Zhong J, Chen N, Huang S, Fan X, Zhang Y, Ren D, Yi L. Chemical profiling and discrimination of green tea and Pu-erh raw tea based on UPLC–Q–Orbitrap–MS/MS and chemometrics. Food Chem 2020; 326:126760. [DOI: 10.1016/j.foodchem.2020.126760] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|
35
|
Mizuta AG, de Menezes JL, Dutra TV, Ferreira TV, Castro JC, da Silva CAJ, Pilau EJ, Machinski Junior M, Abreu Filho BAD. Evaluation of antimicrobial activity of green tea kombucha at two fermentation time points against Alicyclobacillus spp. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Qin L, Guo L, Xu B, Hsueh CC, Jiang M, Chen BY. Exploring community evolutionary characteristics of microbial populations with supplementation of Camellia green tea extracts in microbial fuel cells. J Taiwan Inst Chem Eng 2020; 113:214-222. [PMID: 32904523 PMCID: PMC7455116 DOI: 10.1016/j.jtice.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
This first-attempt study deciphered combined characteristics of species evolution and bioelectricity generation of microbial community in microbial fuel cells (MFCs) supplemented with Camellia green tea (GT) extracts for biomass energy extraction. Prior studies indicated that polyphenols-rich extracts as effective redox mediators (RMs) could exhibit significant electrochemical activities to enhance power generation in MFCs. However, the supplementation of Camellia GT extract obtained at room temperature with significant redox capabilities into MFCs unexpectedly exhibited obvious inhibitory effect towards power generation. This systematic study indicated that the presence of antimicrobial components (especially catechins) in GT extract might significantly alter the distribution of microbial community, in particular a decrease of microbial diversity and evenness. For practical applications to different microbial systems, pre-screening criteria of selecting biocompatible RMs should not only consider their promising redox capabilities (abiotic), but also possible inhibitory potency (biotic) to receptor microbes. Although Camellia tea extract was well-characterized as GRAS energy drink, some contents (e.g., catechins) may still express inhibition towards organisms and further assessment upon biotoxicity may be inevitably required for practice.
Collapse
Affiliation(s)
- Lianjie Qin
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Lili Guo
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
37
|
Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing. SUSTAINABILITY 2020. [DOI: 10.3390/su12145853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fermented tea is traditionally consumed in many Asian countries. In Thailand, the product is made by anaerobic submerged fermentation of semi-mature tea leaves before being made into a ball form. This study aims to investigate the composition of health-associated bioactive compounds in fermented tea balls made from Camellia sinensis var. assamica, which is naturally grown in the forests of northern Thailand. The processing involves steaming semi-mature tea leaves followed by anaerobic fermentation in 2% NaCl solution (1:5 w/v of tea leaves solution). Levels of catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), gallocatechin (GC), flavonols (myricetin, quercetin, and kaempferol), phenolic acids (caffeic acid, chlorogenic acid, coumaric acid, and sinapic acid), total phenolic content, and in vitro antioxidant activity were evaluated in fresh tea leaves, steamed tea leaves, and fermented tea leaves over a period of 60 days’ monitoring. The results indicated that fermented tea balls still contain significant amounts of tea polyphenols, although their processing may result in some loss of most bioactive compounds. The antioxidant activity measured by Ferric Reducing Antioxidant Power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity (ORAC) assays also declined as the fermentation time was extended. However, phenolic acids, including caffeic acid and sinapic acid, contrastingly increased during prolonged fermentation by 74.35% and 171.43% from fresh leaves, respectively.
Collapse
|
38
|
Pinto G, Illiano A, Carpentieri A, Spinelli M, Melchiorre C, Fontanarosa C, di Serio M, Amoresano A. Quantification of Polyphenols and Metals in Chinese Tea Infusions by Mass Spectrometry. Foods 2020; 9:foods9060835. [PMID: 32630507 PMCID: PMC7353651 DOI: 10.3390/foods9060835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical compounds within tea (Camellia sinensis) are characterized by an extensive heterogeneity; some of them are crucial for their protective and defensive role in plants, and are closely connected to the benefits that the consumption of tea can provide. This paper is mainly focused on the characterization of polyphenols (secondary metabolites generally involved in defense against ultraviolet radiation and aggression by pathogens) and metals, extracted from nine Chinese tea samples, by integrating different mass spectrometry methodologies, LC-MS/MS in multiple reaction monitoring (MRM) and inductively coupled plasma mass spectrometry (ICP-MS). Our approach allowed to identify and compare forty polyphenols differently distributed in tea infusions at various fermentation levels. The exploration of polyphenols with nutraceutical potential in tea infusions can widely benefit especially tea-oriented populations. The worldwide consumption of tea requires at the same time a careful monitoring of metals released during the infusion of tea leaves. Metal analysis can provide the identification of many healthy minerals such as potassium, sodium, calcium, magnesium, differently affected by the fermentation of leaves. Our results allowed us: (i) to draw up a polyphenols profile of tea leaves subjected to different fermentation processes; (ii) to identify and quantify metals released from tea leaves during infusion. In this way, we obtained a molecular fingerprint useful for both nutraceutical applications and food control/typization, as well as for frauds detection and counterfeiting.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Anna Illiano
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
- Correspondence:
| | - Andrea Carpentieri
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Michele Spinelli
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Chiara Melchiorre
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Carolina Fontanarosa
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Martino di Serio
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Angela Amoresano
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario Viale delle Medaglie d’Oro, 305, 00136 Roma RM, Italy
| |
Collapse
|
39
|
Tea chemistry – What do and what don’t we know? – A micro review. Food Res Int 2020; 132:109120. [DOI: 10.1016/j.foodres.2020.109120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
|
40
|
Shevchuk A, Megías-Pérez R, Zemedie Y, Kuhnert N. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Res Int 2020; 133:109122. [PMID: 32466950 DOI: 10.1016/j.foodres.2020.109122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
The content of low molecular weight carbohydrates (LMWC) of six types of tea produced from the leaves of Camellia sinensis were analyzed by hydrophilic interaction chromatography (HILIC) coupled to mass spectrometry. Quantities of sucrose, glucose, fructose, myo-inositol, maltose, mannitol, raffinose, galactinol, and stachyose were determined in samples of white, yellow, green, black, oolong, and dark tea. Sucrose was the most abundant carbohydrate in all types of tea. The concentration of all measured carbohydrates except mannitol was lowest in dark tea samples. Correlation analyses using quantitative data of LMWCs, antioxidant activity, and color parameters were performed on black tea samples to evaluate the interaction of different quality parameters. Carbohydrates depletion was observed during tea processing with formation of Amadori compounds with theanine.
Collapse
Affiliation(s)
- Anastasiia Shevchuk
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Roberto Megías-Pérez
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Yeweynwuha Zemedie
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
41
|
Qiu H, Zhu X, Wan H, Xu L, Zhang Q, Hou P, Fan Z, Lyu Y, Ni D, Usadel B, Fernie AR, Wen W. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5483-5495. [PMID: 32302110 DOI: 10.1021/acs.jafc.0c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most popular beverages globally, tea has enormous economic, cultural, and medicinal importance that necessitates a comprehensive metabolomics study of this species. In this study, a large-scale targeted metabolomics analysis on two types of leaf tissues of nine tea cultivars from five representative geographical origins within China was carried out using the liquid chromatography-mass spectrometry technique. RNA-seq-based transcriptomic analysis was in parallel conducted on the same samples, and gene expression and metabolic differentiation between tissues as well as between the multiple tea cultivars were investigated. The data obtained provide an accessible resource for further studies of naturally occurring metabolic variation of tea plants, which will aid in thoroughly interpreting the underlying genetic and molecular mechanisms of biosynthesis of specialized metabolites in this critical species. Candidate genes including a transcription factor (CsMYB5-like), which were highly correlated with both the content of flavonoids and the expression level of genes participating in the phenylpropanoid and flavonoid biosynthesis pathway, were identified as potential targets for quality improvement of tea.
Collapse
Affiliation(s)
- Haiji Qiu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Haoliang Wan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengyi Hou
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Yi Lyu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 710072 Xi'an, Shaanxi, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Björn Usadel
- Institute of Biology 1, BioSC, Rheinisch-Westfaelische Technische Hochschule Aachen, 52056 Aachen, Germany
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Wilhelm Johnen Str, 52024 Jülich, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Candela L, Formato M, Crescente G, Piccolella S, Pacifico S. Coumaroyl Flavonol Glycosides and More in Marketed Green Teas: An Intrinsic Value beyond Much-Lauded Catechins. Molecules 2020; 25:molecules25081765. [PMID: 32290396 PMCID: PMC7221963 DOI: 10.3390/molecules25081765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Marketed green teas (GTs) can highly vary in their chemical composition, due to different origins, processing methods, and a lack of standardization of GT-based products. Consequently, biological activities become difficult to correlate to the presence/content of certain constituents. Herein, ultra-high-performance liquid chromatography (UHPLC) combined with high-resolution tandem mass spectrometry (HR MS/MS) was successfully applied to six commercial GT products, extracted by ethanol sonication, to disclose their polyphenol profile beyond the well-known catechins. The relative abundance of each class of metabolites was correlated to antiradical and antilipoperoxidant data through hierarchical clustering analysis, since it reasonably affects the beneficial properties of the product that reaches the consumer. The thiobarbituric acid reactive substances (TBARS) assay demonstrated that GT extracts effectively counteracted the UV-induced lipoperoxidation of hemp oil, which is highly rich in Polyunsaturated Fatty Acids (PUFAs), and therefore highly unstable. The Relative Antioxidant Capacity Index (RACI) comprehensively emphasized that gunpower and blend in filter GTs appeared to be the less active matrices, and except for a GT-based supplement, the Sencha GT, which was particularly rich in flavonol glycosides, was the most active, followed by Bancha GT.
Collapse
|
43
|
Li C, Zong B, Guo H, Luo Z, He P, Gong S, Fan F. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117697. [PMID: 31699592 DOI: 10.1016/j.saa.2019.117697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
White tea is a special tea product with increasing market demand. The assessment of white tea quality is mainly based on panel sensory by sensory evaluation experts, which is time costly and is limited by many uncertainties. This study established a rapid and accurate method for classification of white teas produced from buds and young leaves and that produced from mature leaves and shoots using near-infrared spectroscopy (NIR). Back propagation neural network modelling and support vector machine (SVM) modelling were compared with six pre-processing methods. The best performance was provided by SVM with particle swarm optimization combined with Savitzky-Golay filter pre-processing method, achieving the accuracy of 98.92% in test samples. The NIR-related chemical compounds of two categories of white teas produced from fresh leaves with different maturity were analyzed, including catechins, alkaloids, amino acids and flavonol glycosides. Compared with chemical component concentration, NIR absorbance had a distinct advantage in quick classification of white teas based on the principal components analysis. In addition, the sensory characteristics of two categories white teas produced from fresh leaves with different maturity were also assessed by panelist. The result showed that characteristics of "umami-like" and "smooth" were more likely present in white teas produced from buds and young leaves, while "woody" and "coarse" characteristics were usually present in white teas produced from mature leaves and shoots. Thus, NIR technique is a rapid and reliable method for discrimination of white teas produced from fresh leaves with different maturity, and is a potential method to discriminate sensory characteristics of white teas.
Collapse
Affiliation(s)
- Chunlin Li
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Bangzheng Zong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Haowei Guo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Zhou Luo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Puming He
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Shuying Gong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| | - Fangyuan Fan
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
44
|
Bell NGA, Smith AJ, Zhu Y, Beishuizen WH, Chen K, Forster D, Ji Y, Knox EA. Molecular level study of hot water extracted green tea buried in soils - a proxy for labile soil organic matter. Sci Rep 2020; 10:1484. [PMID: 32001762 PMCID: PMC6992787 DOI: 10.1038/s41598-020-58325-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
Understanding the composition of soil organic matter (SOM) is vital to our understanding of how soils form, evolve and respond to external stimuli. The shear complexity of SOM, an inseparable mixture of thousands of compounds hinders the determination of structure-function relationships required to explore these processes on a molecular level. Litter bags and soil hot water extracts (HWE) have frequently been used to study the transformation of labile SOM, however these are still too complex to examine beyond compound classes. In this work, a much simpler mixture, HWE buried green tea, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), as a proxy for labile SOM. Changes induced by the burial over 90 days in a grassland, woodland and two peatland sites, one damaged by drainage and one undergoing restoration by drain-blocking, were analysed. Major differences between the extracts were observed on the level of compound classes, molecular formulae and specific molecules. The causes of these differences are discussed with reference to abiotic and biotic processes. Despite the vastly different detection limits of NMR and MS, chemometric analysis of the data yielded identical separation of the samples. These findings provide a basis for the molecular level interrogation of labile SOM and C-cycling processes in soils.
Collapse
Affiliation(s)
- Nicholle G A Bell
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK.
| | - Alan J Smith
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Yufan Zhu
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - William H Beishuizen
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Kangwei Chen
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Dan Forster
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Yiran Ji
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Elizabeth A Knox
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
45
|
Rha CS, Seong H, Jung YS, Jang D, Kwak JG, Kim DO, Han NS. Stability and Fermentability of Green Tea Flavonols in In-Vitro-Simulated Gastrointestinal Digestion and Human Fecal Fermentation. Int J Mol Sci 2019; 20:E5890. [PMID: 31771257 PMCID: PMC6928927 DOI: 10.3390/ijms20235890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Flavonols, the second most abundant flavonoids in green tea, exist mainly in the form of glycosides. Flavonols are known to have a variety of beneficial health effects; however, limited information is available on their fate in the digestive system. We investigated the digestive stability of flavonol aglycones and glycosides from green tea under simulated digestion and anaerobic human fecal fermentation. Green tea fractions rich in flavonol glycosides and aglycones, termed flavonol-glycoside-rich fraction (FLG) and flavonol-aglycone-rich fraction (FLA) hereafter, were obtained after treatment with cellulase and tannase, respectively. Kaempferol and its glycosides were found to be more stable in simulated gastric and intestinal fluids than the derivatives of quercetin and myricetin. Anaerobic human fecal fermentation with FLG and FLA increased the populations of Lactobacilli spp. and Bifidobacteria spp. and generated various organic acids, such as acetate, butyrate, propionate, and lactate, among which butyrate was produced in the highest amount. Our findings indicate that some stable polyphenols have higher bioaccessibilities in the gastrointestinal tract and that their health-modulating effects result from their interactions with microbes in the gut.
Collapse
Affiliation(s)
- Chan-Su Rha
- Vitalbeautie Research Division, Amorepacific R&D Center, Yongin 17074, Korea;
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Korea; (H.S.); (J.-G.K.)
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Jun-Gu Kwak
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Korea; (H.S.); (J.-G.K.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Korea; (H.S.); (J.-G.K.)
| |
Collapse
|
46
|
Simultaneous Optimal Production of Flavonol Aglycones and Degalloylated Catechins from Green Tea Using a Multi-Function Food-Grade Enzyme. Catalysts 2019. [DOI: 10.3390/catal9100861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Green tea (GT) contains well-known phytochemical compounds; namely, it is rich in flavan-3-ols (catechins) and flavonols comprising all glycoside forms. These compounds in GT might show better biological activities after a feasible enzymatic process, and the process on an industrial scale should consider enzyme specificity and cost-effectiveness. (2) Methods: In this study, we evaluated the most effective method for the enzymatic conversion of flavonoids from GT extract. One enzyme derived from Aspergillus niger (molecular weight 80–90 kDa) was ultimately selected, showing two distinct but simultaneous activities: intense glycoside hydrolase activity via deglycosylation and weak tannin acyl hydrolase activity via degalloylation. (3) Results: The optimum conditions for producing flavonol aglycones were pH 4.0 and 50 °C. Myricetin glycosides were cleaved 3.7–7.0 times faster than kaempferol glycosides. Flavonol aglycones were produced effectively by both enzymatic and hydrochloride treatment in a time-course reaction. Enzymatic treatment retained 80% (w/w) catechins, whereas 70% (w/w) of catechins disappeared by hydrochloride treatment. (4) Conclusions: This enzymatic process offers an effective method of conditionally producing flavonol aglycones and de-galloylated catechins from conversion of food-grade enzyme.
Collapse
|
47
|
Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019; 11:E2288. [PMID: 31557798 PMCID: PMC6835347 DOI: 10.3390/nu11102288] [Citation(s) in RCA: 463] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/15/2023] Open
Abstract
Fruit and vegetable intake has been associated with a reduced risk of cardiovascular disease. Quercetin and kaempferol are among the most ubiquitous polyphenols in fruit and vegetables. Most of the quercetin and kaempferol in plants is attached to sugar moieties rather than in the free form. The types and attachments of sugars impact bioavailability, and thus bioactivity. This article aims to review the current literature on the bioavailability of quercetin and kaempferol from food sources and evaluate the potential cardiovascular effects in humans. Foods with the highest concentrations of quercetin and kaempferol in plants are not necessarily the most bioavailable sources. Glucoside conjugates which are found in onions appear to have the highest bioavailability in humans. The absorbed quercetin and kaempferol are rapidly metabolized in the liver and circulate as methyl, glucuronide, and sulfate metabolites. These metabolites can be measured in the blood and urine to assess bioactivity in human trials. The optimal effective dose of quercetin reported to have beneficial effect of lowering blood pressure and inflammation is 500 mg of the aglycone form. Few clinical studies have examined the potential cardiovascular effects of high intakes of quercetin- and kaempferol-rich plants. However, it is possible that a lower dosage from plant sources could be effective due to of its higher bioavailability compared to the aglycone form. Studies are needed to evaluate the potential cardiovascular benefits of plants rich in quercetin and kaempferol glycoside conjugates.
Collapse
Affiliation(s)
- Wijdan M Dabeek
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Melissa Ventura Marra
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
48
|
Lee S, Lee J, Lee H, Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 2019; 43:e13002. [PMID: 31378953 DOI: 10.1111/jfbc.13002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Alcoholic liver diseases has been known to be one of the major health risks worldwide. The purpose of this study was aimed to demonstrate the relative protective effect of quercetin, quercetin-3-glucoside, and rutin on alcohol-induced damage in hepatocytes. The hepatotoxicity, antioxidant enzymatic defense mechanisms, and pro-inflammatory mediators were examined for evaluating the hepatoprotective effects of quercetins in hepG2 cells. The results revealed that quercetin and its glucoside derivatives significantly prevented ethanol-induced hepatotoxicity by decreasing hepatic aminotransferase activities and inflammatory response in HepG2 cells. Moreover, the quercetins significantly induced detoxifying enzymes via the nuclear accumulation of the NF-E2-related factor 2 (Nrf2) and induction of antioxidant response element (ARE) gene. These hepatoprotective activities were observed to be more effective with quercetin aglycone than quercetin glucosides. From the above findings, the present study imply that quercetin aglycone may have a vital function in the therapeutic and preventive strategies of alcoholic liver diseases. PRACTICAL APPLICATIONS: Quercetin is commonly present in fruits and vegetables as aglycone and glucoside-derived forms. In the present study, quercetin and its glycosides was shown to alleviate oxidative stress, glutathione depletion, and pro-inflammatory cytokines in alcohol-induced HepG2 cells via the Nrf2/ARE antioxidant pathway. Moreover, quercetin aglycone had better protective effects against alcohol-induced liver damage in vitro, compared to its glycosylated form. The present study proposed that quercetin aglycone may be a more efficient hepatoprotective agent than its glucoside derivatives such as rutin in the amelioration of alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Seyun Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Hana Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
49
|
Rha CS, Jeong HW, Park S, Lee S, Jung YS, Kim DO. Antioxidative, Anti-Inflammatory, and Anticancer Effects of Purified Flavonol Glycosides and Aglycones in Green Tea. Antioxidants (Basel) 2019; 8:E278. [PMID: 31387266 PMCID: PMC6719943 DOI: 10.3390/antiox8080278] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Extensive research has focused on flavan-3-ols, but information about the bioactivities of green tea flavonols is limited. (2) Methods: In this study, we investigated the antioxidative, anti-inflammatory, and anticancer effects of flavonol glycosides and aglycones from green tea using in vitro cell models. The fractions rich in flavonol glycoside (FLG) and flavonol aglycone (FLA) were obtained from green tea extract after treatment with tannase and cellulase, respectively. (3) Results: FLG and FLA contained 16 and 13 derivatives, respectively, including apigenin, kaempferol, myricetin, and quercetin, determined by mass spectrometry. FLA exhibited higher radical-scavenging activity than that of FLG. FLG and FLA attenuated the levels of intracellular oxidative stress in neuron-like PC-12 cells. The treatment of RAW 264.7 murine macrophages with FLG and FLA significantly reduced the mRNA expression of inflammation-related genes in a dose-dependent manner. Furthermore, FLG and FLA treatments decreased the viability of the colon adenoma cell line DLD-1 and breast cancer cell line E0771. Moreover, the treatment with FLG or FLA combined with paclitaxel had synergistic anticancer effects on the DLD-1 cell line. (4) Conclusions: Flavonols from green tea exerted beneficial effects on health and may be superior to flavan-3-ols.
Collapse
Affiliation(s)
- Chan-Su Rha
- Vitalbeautie Research Division, Amorepacific Corporation R&D Center, Yongin 17074, Korea
| | - Hyun Woo Jeong
- Vitalbeautie Research Division, Amorepacific Corporation R&D Center, Yongin 17074, Korea
| | - Saitbyul Park
- Safety and Regulatory Division, Amorepacific Corporation R&D Center, Yongin 17074, Korea
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon 16229, Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
50
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|