1
|
Shu W, Shi W, Xie H, Wang S, Zhang Q, Ouyang K, Xiao F, Zhao Q. Non-covalent interaction of rice protein and polyphenols: The effects on their emulsions. Food Chem 2025; 479:143732. [PMID: 40073562 DOI: 10.1016/j.foodchem.2025.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
In this study, we investigated the non-covalent interaction mechanism between rice protein (RP) and three polyphenols with different concentrations (ferulic acid FA, gallic acid GA, and tannic acid TA) and their effects on the structure and emulsion stability of the proteins. Hydrophobic forces dominated the binding of RP to the polyphenols, and the reaction was heat-absorbing. The three polyphenols are bound to RP in the form of static quenching to form a non-covalent complex, and during the binding process, the RP provides one binding site. RP-polyphenol complexes, particularly RP-GA, enhanced ABTS scavenging and FRAP reduction. Polyphenols improved RP emulsion oxidative stability, inhibiting lipid oxidation and enhancing emulsion rheology and interfacial structure. RP-GA was most effective, maintaining low POV. These findings support the potential applications of RP-polyphenol noncovalent complexes in food processing.
Collapse
Affiliation(s)
- Weitong Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Hexiang Xie
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Fangjie Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China.
| |
Collapse
|
2
|
Purohit K, Pathak R, Hayes E, Sunna A. Novel bioactive peptides from ginger rhizome: Integrating in silico and in vitro analysis with mechanistic insights through molecular docking. Food Chem 2025; 484:144432. [PMID: 40279907 DOI: 10.1016/j.foodchem.2025.144432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Ginger (Zingiber officinale) is widely recognised for its functional benefits, primarily attributed to its diverse phytochemicals. However, its proteome remains largely unexplored. This study hypothesised that isolated peptides may exhibit different bioactivities or more targeted mechanisms of action and could be investigated at a molecular level. Proteins were enzymatically hydrolysed under five conditions, and peptides were identified using LC-MS/MS. In silico screening suggested antioxidant, ACE-inhibitory, and antibacterial properties, further assessed through molecular docking and in vitro validation. 41 potentially bioactive peptides were identified. In vitro assays confirmed these properties for selected peptides, P1 (GSPVWIIPEPT), P2 (FASYPVKK), P3 (GPEKIFYDGPYL), and P4 (IAISPSYPIK). Notably, P4 exhibited potent mixed-type ACE-inhibition and bacteriostatic effects. Molecular docking provided mechanistic insights into these interactions. These findings highlight ginger as a promising source of bioactive peptides while underscoring the need to complement AI tools with in vitro and in vivo validations due to observed discrepancies.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia
| | - Rachana Pathak
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia
| | - Evan Hayes
- Factors Group Australia, Sydney, NSW 2116, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Zheng X, Fu Z, Qu H, Lu H, Jiang N, Liu N, Li M, Wang Z. Hybrid hydrolysates of soy protein and lactoferrin exerts synergistic antioxidant and anti-fatigue effect by modulating Keap1/Nrf2/HO-1 pathways. Int J Biol Macromol 2025; 307:142151. [PMID: 40101822 DOI: 10.1016/j.ijbiomac.2025.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Oxidative stress is an important cause of exercise fatigue formation. Nutritional intervention is an important way to modulate exercise fatigue. Lactoferrin (LF) and soybean protein (SP) are potential antioxidant bioactive components. Our findings demonstrate that SP-LF hybrid hydrolysates had effective 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging activity and iron ion reducing ability. The synergistic effect between these hybrid hydrolysates were found to be superior to the single hydrolysate in terms of antioxidant level by the joint index analysis. These hybrid hydrolysates are characterized by high levels of amino acids with potential anti-fatigue effect: tyrosine (Tyr), phenylalanine (Phe), hydrophobic amino acid (HAAs) and branched-chain amino acids (BCAAs). In murine models, hybrid hydrolysates significantly prolonged weight-bearing swimming time, increased muscle/liver glycogen levels, decreased lactate, urea nitrogen, and malondialdehyde levels, and increased glutathione peroxidase, superoxide dismutase, catalase and ATPase activities. Pearson's correlation analysis established significant associations between antioxidant capacity and anti-fatigue efficacy. It alleviated fatigue through activating the Keap1/Nrf2/HO-1 signaling pathway, while increasing the expression levels of PGC-1α. These results collectively suggest that SP-LF hybrid hydrolysates demonstrate significant synergistic antioxidant and anti-fatigue activity and could be incorporated into functional foods as a dietary supplement to reduce fatigue.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Zeshi Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Haowen Qu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Hongliang Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Nanyue Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Fernandez Cunha M, Coscueta ER, Brassesco ME, Almada F, Gonçalves D, Pintado MM. Bioprospecting Bioactive Peptides in Halobatrachus didactylus Body Mucus: From In Silico Insights to Essential In Vitro Validation. Mar Drugs 2025; 23:82. [PMID: 39997206 PMCID: PMC11857211 DOI: 10.3390/md23020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Fish body mucus plays a protective role, especially in Halobatrachus didactylus, which inhabits intertidal zones vulnerable to anthropogenic contaminants. In silico predicted bioactive peptides were identified in its body mucus, namely, EDNSELGQETPTLR (HdKTLR), DPPNPKNL (HdKNL), PAPPPPPP (HdPPP), VYPFPGPLPN (HdVLPN), and PFPGPLPN (HdLPN). These peptides were studied in vitro for bioactivities and aggregation behavior under different ionic strengths and pH values. Size exclusion chromatography revealed significant peptide aggregation at 344 mM and 700 mM ionic strengths at pH 7.0, decreasing at pH 3.0 and pH 5.0. Although none exhibited antimicrobial properties, they inhibited Pseudomonas aeruginosa biofilm formation. Notably, HdVLPN demonstrated potential antioxidant activity (ORAC: 1.560 μmol TE/μmol of peptide; ABTS: 1.755 μmol TE/μmol of peptide) as well as HdLPN (ORAC: 0.195 μmol TE/μmol of peptide; ABTS: 0.128 μmol TE/μmol of peptide). Antioxidant activity decreased at pH 5.0 and pH 3.0. Interactions between the peptides and mucus synergistically enhanced antioxidant effects. HdVLPN and HdLPN were non-toxic to Caco-2 and HaCaT cells at 100 μg of peptide/mL. HdPPP showed potential antihypertensive and antidiabetic effects, with IC50 values of 557 μg of peptide/mL for ACE inhibition and 1700 μg of peptide/mL for α-glucosidase inhibition. This study highlights the importance of validating peptide bioactivities in vitro, considering their native environment (mucus), and bioprospecting novel bioactive molecules while promoting species conservation.
Collapse
Affiliation(s)
- Marta Fernandez Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.F.C.); (M.E.B.); (M.M.P.)
| | - Ezequiel R. Coscueta
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.F.C.); (M.E.B.); (M.M.P.)
| | - María Emilia Brassesco
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.F.C.); (M.E.B.); (M.M.P.)
| | - Frederico Almada
- MARE—Marine and Environmental Sciences Centre, ISPA Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco, 34, 1149-041 Lisbon, Portugal
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, Macau SAR, China;
| | - Maria Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.F.C.); (M.E.B.); (M.M.P.)
| |
Collapse
|
5
|
Ye J, Bounds A, Crumpton M, Long M, McDonough H, Srikhirisawan I, Gao S. Potential Mechanisms of Lactate Dehydrogenase and Bovine Serum Albumin Proteins as Antioxidants: A Mixed Experimental-Computational Study. Biochem Res Int 2025; 2025:9638644. [PMID: 39963554 PMCID: PMC11832265 DOI: 10.1155/bri/9638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Proteins have shown varying degrees of antioxidant activity. This study examined the potential mechanisms of interactions between proteins and radicals using chemical kinetics and computational methods. The study quantified the antioxidant activity of lactate dehydrogenase (LDH) and bovine serum albumin (BSA) through Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. BSA was about seven times and LDH 12 times more potent as antioxidants for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) than they were for peroxyl radicals. According to the evaluation of Trolox equivalents (TE) of 20 proteinogenic amino acids, tryptophan (with a TE value of 101 μmol TE/μmol) exhibited the highest antioxidant activity for ABTS•-, followed by tyrosine (38.7 μmol TE/μmol) and cysteine (30.5 μmol TE/μmol), lysine (0.193 μmol TE/μmol), arginine (0.0325 μmol TE/μmol), valine (0.0280 μmol TE/μmol), histidine (0.00689 μmol TE/μmol), and leucine (0.00560 μmol TE/μmol). The EC50 showed a similar order with a swap between valine and histidine. The antioxidant activity of the amino acids and proteins was temperature dependent. The rate laws, activation energy, and pre-exponential factor A of these reactions provided information on the reaction mechanisms, i.e., a biomolecular elementary step for the reaction of ABTS•- with amino acids tryptophan, tyrosine, cysteine, or protein LDH, and a more complicated mechanism for BSA. The presence of -NH- or hydroxyl groups on aromatic rings enhanced the antioxidant ability of tryptophan and tyrosine. LDH's antioxidant activity did not affect its enzymatic activity, indicating that the radical reaction likely happened on the protein's surface without significantly altering its conformation. The molecular modeling and visualization showed potential reaction sites on the proteins' accessible tryptophan and tyrosine residues. However, the mere surface exposure of tryptophan and tyrosine does not guarantee their antioxidant activities.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Amy Bounds
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Madeline Crumpton
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Mallory Long
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Haley McDonough
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Isabella Srikhirisawan
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Shanzhen Gao
- Department of Computer Information Systems, Virginia State University, Petersburg, Virginia, USA
| |
Collapse
|
6
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
7
|
Jiang J, Luo J, Zheng W, Liu J, Jiang H, Wu C, Bai H. Establishment of fingerprint of phenolic compounds in Semen Ziziphi Spinosae and study on the spectrum-effect relationship based on different preceding cropping areas. Front Chem 2025; 12:1520586. [PMID: 39831032 PMCID: PMC11739076 DOI: 10.3389/fchem.2024.1520586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects. Variety differences were explored through chemical pattern recognition, and the spectrum-effect relationship between the fingerprint spectra of SZS and antioxidant activity was investigated using Pearson correlation analysis, grey relational analysis, and other methods. A total of 17 peaks were observed, among which 4 peaks were identified. They are gallic acid, catechin, spinosin, and scutellarin. The 22 SZS samples could be categorized into 3 groups, with cluster analysis and principal component analysis results being largely consistent. Spinosin, a marker compound of SZS, is a crucial contributor to the total antioxidant activity. In conclusion, the spectrum-effect relationship between phenolic compounds and the antioxidant activity of SZS was established, and the main characteristic components affecting antioxidant activity were identified, providing a reference for the quality evaluation of SZS and the development of its products.
Collapse
Affiliation(s)
- Junfeng Jiang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Jun Luo
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Wenyu Zheng
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Jiayi Liu
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Cuiyun Wu
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Hongjin Bai
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
8
|
Wu Y, Zhao M, Li S, Liu S, Gao S, Liu R, Wu M, Yu H, Ge Q. Storage Stability Enhancement of Lactic Acid Beverage Using Anti-MDA Lactiplantibacillus plantarum NJAU-01: The Antioxidant's Role. Foods 2024; 14:52. [PMID: 39796342 PMCID: PMC11720519 DOI: 10.3390/foods14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the inhibitory efficacy of Lactiplantibacillus plantarum NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage. The beverage demonstrated an elevated antioxidant capacity and efficiently eliminated MDA. Additionally, the NJAU-01 lactic acid beverage could be stored at 4 °C for 21 days, exhibiting stable sensory attributes and strong resistance against lipid peroxidation. The study yielded insights into the role of NJAU-01 in improving the storage stability of lactic acid beverages thereby contributing to a deeper understanding of the specific mechanisms by which probiotics enhance beverage quality. These findings can facilitate a more effective utilization of this knowledge in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China (S.G.); (R.L.); (M.W.); (H.Y.)
| |
Collapse
|
9
|
Ma D, Zhang X, Mahmood N, Zhao Q, Li Y, Zhang S. Utilization of soybean protein isolate hydrolysates as carriers: Improved encapsulation efficiency and stability of curcumin. Food Chem 2024; 467:141920. [PMID: 39662249 DOI: 10.1016/j.foodchem.2024.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to explore the potential of soybean protein isolate hydrolysates (SPIH) prepared via Alcalase as delivery carriers and develop novel SPIH-Cur nanoparticles. Hydrolysis caused the varying degrees degradation in the 7S and 11S subunits, significantly enhancing SPI's antioxidant activity. The reduction in particle size and the exposure of hydrophobic groups in SPIH contributed to the formation of stable SPIH-Cur nanoparticles, due to their well binding capacity to curcumin (Cur). The 30 min SPIH-Cur sample exhibited the highest encapsulation efficiency (83.09 %), owing to its high binding affinity (Ka = 9.56 × 103 M-1). Encapsulation by SPIH also significantly improved Cur's thermal and light stability. Moreover, FTIR, fluorescence spectra, and molecular docking analyses revealed that the formation of SPIH-Cur were primarily driven by hydrophobic forces and hydrogen bonds. Above results provide a foundation for fabricating nanoparticles that deliver lipophilic bioactive compounds with high encapsulation efficiency and stability derived from SPIH.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Leo CH, Ong ES. Recent advances in the combination of organic solvent-free extraction, chemical standardization, antioxidant assay, and cell culture metabolomics for functional food and its by-product. Crit Rev Food Sci Nutr 2024; 64:11919-11933. [PMID: 37574586 DOI: 10.1080/10408398.2023.2245040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore, Singapore
| | - Eng Shi Ong
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
| |
Collapse
|
11
|
Sharma D, Gite S, Tuohy MG. Exploring the Physicochemical Characteristics of Marine Protein Hydrolysates and the Impact of In Vitro Gastrointestinal Digestion on Their Bioactivity. Mar Drugs 2024; 22:452. [PMID: 39452860 PMCID: PMC11509636 DOI: 10.3390/md22100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Fish protein hydrolysates (FPHs) were obtained from different fish sources using a combination of microbial enzymes. The industrially produced FPHs from blue whiting (Micromesistius poutassou) and sprat (Sprattus sprattus) were compared to freeze-dried FPHs generated in-house from hake (Merluccius merluccius) and mackerel (Scomber scombrus) in terms of their physicochemical composition and functionality. Significant differences (p < 0.05) were observed in the protein, moisture, and ash contents of the FPHs, with the majority having high levels of protein (73.24-89.31%). Fractions that were more extensively hydrolysed exhibited a high solubility index (74.05-98.99%) at different pHs. Blue whiting protein hydrolysate-B (BWPH-B) had the highest foaming capacity at pH 4 (146.98 ± 4.28%) and foam stability over 5 min (90-100%) at pH 4, 6, and 8. The emulsifying capacity ranged from 61.11-108.90 m2/g, while emulsion stability was 37.82-76.99% at 0.5% (w/v) concentration. In terms of peptide bioactivity, sprat protein hydrolysate (SPH) had the strongest overall reducing power. The highest Cu2+ chelating activity was exhibited by hake protein hydrolysate (HPH) and mackerel protein hydrolysate (MPH), with IC50 values of 0.66 and 0.78 mg protein/mL, respectively, while blue whiting protein hydrolysate-A (BWPH-A) had the highest activity against Fe2+ (IC50 = 1.89 mg protein/mL). SPH scavenged DPPH and ABTS radicals best with IC50 values of 0.73 and 2.76 mg protein/mL, respectively. All FPHs displayed noteworthy scavenging activity against hydroxyl radicals, with IC50 values ranging from 0.48-3.46 mg protein/mL. SPH and MPH showed the highest scavenging potential against superoxide radicals with IC50 values of 1.75 and 2.53 mg protein/mL and against hydrogen peroxide with 2.22 and 3.66 mg protein/mL, respectively. While inhibition of α-glucosidase was not observed, the IC50 values against α-amylase ranged from 8.81-18.42 mg protein/mL, with SPH displaying the highest activity. The stability of FPHs following simulated gastrointestinal digestion (SGID) showed an irregular trend. Overall, the findings suggest that marine-derived protein hydrolysates may serve as good sources of natural nutraceuticals with antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Deepanshi Sharma
- Molecular Glycobiotechnology Group, Biochemistry, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland;
| | - Snehal Gite
- Bio-Marine Ingredients Ireland, Unit 9, Lough Egish Food Park, Co., A75 WR82 Monaghan, Ireland
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland;
- Ryan Institute and MaREI, SFI Research Centre for Energy, Climate and Marine Research and Innovation, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
12
|
Wan X, Shahrear S, Chew SW, Vilaplana F, Mäkelä MR. Discovery of alkaline laccases from basidiomycete fungi through machine learning-based approach. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:120. [PMID: 39261970 PMCID: PMC11391777 DOI: 10.1186/s13068-024-02566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Laccases can oxidize a broad spectrum of substrates, offering promising applications in various sectors, such as bioremediation, biomass fractionation in future biorefineries, and synthesis of biochemicals and biopolymers. However, laccase discovery and optimization with a desirable pH optimum remains a challenge due to the labor-intensive and time-consuming nature of the traditional laboratory methods. RESULTS This study presents a machine learning (ML)-integrated approach for predicting pH optima of basidiomycete fungal laccases, utilizing a small, curated dataset against a vast metagenomic data. Comparative computational analyses unveiled the structural and pH-dependent solubility differences between acidic and neutral-alkaline laccases, helping us understand the molecular bases of enzyme pH optimum. The pH profiling of the two ML-predicted alkaline laccase candidates from the basidiomycete fungus Lepista nuda further validated our computational approach, showing the accuracy of this comprehensive method. CONCLUSIONS This study uncovers the efficacy of ML in the prediction of enzyme pH optimum from minimal datasets, marking a significant step towards harnessing computational tools for systematic screening of enzymes for biotechnology applications.
Collapse
Affiliation(s)
- Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Sazzad Shahrear
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland
| | - Shea Wen Chew
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullbacken 21, 11421, Stockholm, Sweden
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland.
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
13
|
Shi W, Xie H, Ouyang K, Wang S, Xiong H, Woo MW, Zhao Q. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Food Chem 2024; 450:139241. [PMID: 38636382 DOI: 10.1016/j.foodchem.2024.139241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The characteristics of the crosslinking between rice protein (RP) and ferulic acid (FA), gallic acid (GA), or tannin acid (TA) by covalent binding of Laccase and non-covalent binding were evaluated. The RP-polyphenol complexes greatly improved the functionality of RP. The covalent effect with higher polyphenol binding equivalence showed higher emulsion activity than the non-covalent effect. The solubility, and antioxidant activity of covalent binding were higher than that of non-covalent binding in the RP-FA group, but there was a contrasting behavior in the RP-GA group. The RP-FA was most soluble in conjugates, while the RP-GA had the highest solubility in mixtures. It was found that the covalent complexes were more stable in the intestinal tract. The content of polyphenols in the RP-TA group was rapidly increased at the later intestinal digestion, which indicated the high polyphenol-protective effect in this group. Meanwhile, the RP-TA group showed high reducing power but low digestibility.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
14
|
Nan YD, Mu BD, Ge CX, Chen SQ, Cui MX, Li HM, Zhao CC, Wang J, Piao CX, Li GH. Exploring the novel antioxidant peptides in low-salt dry-cured ham: Preparation, purification, identification and molecular docking. Food Chem 2024; 446:138697. [PMID: 38402773 DOI: 10.1016/j.foodchem.2024.138697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Dry-cured ham is important source of bioactive peptides. In this study, the antioxidant activities of peptides and components from low and fully salted dry-cured hams were compared by peptidomics. And novel antioxidant peptides were identified and characterized. The results showed that the peptides (<3 KDa) extracted from low-salt dry-cured ham had higher antioxidant activity. Therefore, the antioxidant peptides in low-salt dry-cured ham were further characterized and the mechanism of their antioxidant activity was investigated. From the five candidate peptides selected, we found DWPDARGIWHND (DD12) to be highly stable, non-sensitizing, and non-toxic with the highest free radical scavenging activity. Molecular docking predicted that DD12 interacted with Keap1 through hydrogen-bond formation and hydrophobic interactions, suggesting that DD12 had good cellular antioxidant activity. DD12 peptide can bind to DPPH• and ABTS•+, resulting in strong free radical scavenging activity. Our findings support the development and application of natural antioxidant peptides in dry-cured ham.
Collapse
Affiliation(s)
- Ying-Dao Nan
- Integration Science College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Bai-de Mu
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Xin Ge
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Si-Qi Chen
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Ming-Xun Cui
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Hong-Mei Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chang-Cheng Zhao
- Life Sciences College, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juan Wang
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China
| | - Chun-Xiang Piao
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Guan-Hao Li
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef, Ministry of Agriculture and Rural Affairs, Integration Science College, Agricultural College, Yanbian University, Yanji, Jilin Province 133000, China.
| |
Collapse
|
15
|
Hou Y, Chen X, Zhang M, Yang S, Liao A, Pan L, Wang Z, Shen X, Yuan X, Huang J. Selenium-Chelating Peptide Derived from Wheat Gluten: In Vitro Functional Properties. Foods 2024; 13:1819. [PMID: 38928761 PMCID: PMC11203129 DOI: 10.3390/foods13121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The efficacy of selenium-chelating polypeptides derived from wheat protein hydrolysate (WPH-Se) includes enhancing antioxidant capacity, increasing bioavailability, promoting nutrient absorption, and improving overall health. This study aimed to enhance the bioavailability and functional benefits of exogenous selenium by chelating with wheat gluten protein peptides, thereby creating bioactive peptides with potentially higher antioxidant capabilities. In this study, WPH-Se was prepared with wheat peptide and selenium at a mass ratio of 2:1, under a reaction system at pH 8.0 and 80 °C. The in vitro antioxidant activity of WPH-Se was evaluated by determining the DPPH, OH, and ABTS radical scavenging rate and reducing capacity under different conditions, and the composition of free amino acids and bioavailability were also investigated at various digestion stages. The results showed that WPH-Se possessed significant antioxidant activities under different conditions, and DPPH, OH, and ABTS radical scavenging rates and reducing capacity remained high at different temperatures and pH values. During gastrointestinal digestion in vitro, both the individual digestate and the final digestate maintained high DPPH, OH, and ABTS radical scavenging rates and reducing capacity, indicating that WPH-Se was able to withstand gastrointestinal digestion and exert antioxidant effects. Post-digestion, there was a marked elevation in tryptophan, cysteine, and essential amino acids, along with the maintenance of high selenium content in the gastrointestinal tract. These findings indicate that WPH-Se, with its enhanced selenium and amino acid profile, serves as a promising ingredient for dietary selenium and antioxidant supplementation, potentially enhancing the nutritional value and functional benefits of wheat gluten peptides.
Collapse
Affiliation(s)
- Yinchen Hou
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Xinyang Chen
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Mingyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Shengru Yang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Aimei Liao
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Long Pan
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| | - Zhen Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
| | - Xiaolin Shen
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Xiaoqing Yuan
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China; (S.Y.); (X.S.); (X.Y.)
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (Y.H.); (X.C.); (M.Z.); (A.L.); (L.P.); (Z.W.)
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang 461000, China
| |
Collapse
|
16
|
Xiao C, Li XG, Zhao M. Bioactive peptides as a novel strategy to prevent alcoholic liver injury. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:243-274. [PMID: 38906588 DOI: 10.1016/bs.afnr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.
Collapse
Affiliation(s)
- Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China.
| | - Xiang-Guang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China.
| |
Collapse
|
17
|
Choi S, Han S, Lee S, Kim J, Kim J, Kang DK. Synergistic Antioxidant and Anti-Inflammatory Effects of Phenolic Acid-Conjugated Glutamine-Histidine-Glycine-Valine (QHGV) Peptides Derived from Oysters ( Crassostrea talienwhanensis). Antioxidants (Basel) 2024; 13:447. [PMID: 38671896 PMCID: PMC11047712 DOI: 10.3390/antiox13040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The glutamine-histidine-glycine-valine (QHGV), a peptide derived from oysters, exhibits antioxidant activity and is being actively researched as a potential pharmaceutical and functional cosmetic ingredient. In this study, we synthesized the QHGV peptide and explored the hitherto unknown anti-inflammatory effects of QHGV. The antioxidant property was also characterized by conjugating with various naturally derived phenolic acids, such as caffeic, gallic, ferulic, sinapinic, and vanillic acids. Conjugation with phenolic acids not only enhanced the antioxidant activity of QHGV but also diminished the lipopolysaccharide-induced generation of reactive oxygen species (ROS) in the murine macrophage cell line, RAW 264.7. The reduction in the levels of reactive oxygen species led to the reduced mRNA expression of inducible nitric oxide synthase (iNos) and cyclooxygenase 2 (Cox-2), resulting in an anti-inflammatory effect through the inhibition of the phosphorylation of mitogen-activated protein kinase, including extracellular signal-activated protein kinase, c-Jun NH2-terminal kinase, and p38. Furthermore, the phenolic acid-conjugated peptides increased the mRNA and protein levels of collagen type I, indicative of a wrinkle-improvement effect. The phenolic acid conjugates of the peptide were not cytotoxic to human keratinocytes such as HaCaT cells. These results suggest that phenolic acid conjugation can enhance the potential of peptides as drug and cosmetic resources.
Collapse
Affiliation(s)
- Soyun Choi
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Sohee Han
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Seungmi Lee
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Jongmin Kim
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Jinho Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
- Bioplastic Research Center, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Iacopetta D, Ceramella J, Scumaci D, Catalano A, Sinicropi MS, Tundis R, Alcaro S, Borges F. An Update on Recent Studies Focusing on the Antioxidant Properties of Salvia Species. Antioxidants (Basel) 2023; 12:2106. [PMID: 38136225 PMCID: PMC10740915 DOI: 10.3390/antiox12122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nutrition has crucial effects and a significant role in disease prevention. Recently, nutraceuticals have attracted much attention in scientific research due to their pleiotropic effects and relatively non-toxic behavior. Among the biological effects displayed by plants belonging to the Lamiaceae family, such as antibacterial, anticancer, anti-inflammatory, and anticholinesterase, sage is well known for its antioxidant properties and is a rich source of numerous compounds that are biologically active, amongst them polyphenols, with more than 160 types identified. In this review we summarized some of the significant studies published in the last decade reporting the most employed extraction methods and the different assays that are useful for establishing the antioxidant properties of some sage species. Even though the scientific literature contains plenty of data regarding the antioxidant properties of many sage species, further studies are needed in order to gain a deeper understanding of the mechanism of action and the compounds responsible for their antioxidant activity. Finally, it should be taken into account that the data on the antioxidant properties of sage extracts are often difficult to compare with each other, since a series of variables in the extraction procedures, the type of assay used, and standardization may affect the final result.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Domenica Scumaci
- Laboratory of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, “S Venuta” Campus, 88100 Catanzaro, Italy;
- Research Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, “S Venuta” Campus, 88100 Catanzaro, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (R.T.)
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science SRL, Academic Spinoff, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| |
Collapse
|
19
|
Marcet I, Carpintero M, Rendueles M, Díaz M. Antioxidant Activity of Egg Yolk Protein Hydrolysates Obtained by Enzymatic and Sub-Critical Water Hydrolysis. Molecules 2023; 28:7836. [PMID: 38067564 PMCID: PMC10708546 DOI: 10.3390/molecules28237836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Obtaining peptides with antioxidant properties by enzymatic hydrolysis has been widely described; however, the use of non-enzymatic methods to obtain peptides with antioxidant capacities has been poorly investigated. In this study, non-soluble proteins obtained from delipidated egg yolk granules were hydrolyzed with trypsin, and with a non-enzymatic method using sub-critical water hydrolysis under a non-oxidizing (nitrogen) and oxidizing (oxygen) atmosphere. The effect of the sub-critical water hydrolysis on the amino acids' composition of the hydrolysates was assessed. Furthermore, the antioxidant capacities of the hydrolysates were evaluated using the ABTS•+ scavenging assay, the DPPH radical scavenging activity assay, and by measuring the reducing power of the peptides, the peptides' ferrous ion chelating capacities, and the antioxidant effect of the peptides on beef homogenates. The hydrolysate obtained by sub-critical water hydrolysis under a nitrogen stream showed similar or better results in the antioxidant tests than those obtained using trypsin hydrolysis, except in the ferrous chelating capacity, where the trypsin hydrolysate showed the best performance. The oxidizing environment promoted by the oxygen in the other sub-critical water hydrolysis method tested produced the peptides with the lowest antioxidant capacities, due to changes in the primary structure of the peptides. These results suggest that the sub-critical water hydrolysis method under a nitrogen stream, in comparison with the enzymatic hydrolysis, is a reliable method to obtain peptides with good antioxidant capacities.
Collapse
Affiliation(s)
| | | | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain; (I.M.); (M.C.); (M.D.)
| | | |
Collapse
|
20
|
Nha Tran TT, Thuan Tran TD, Thuy Bui TT. Integration of machine learning in 3D-QSAR CoMSIA models for the identification of lipid antioxidant peptides. RSC Adv 2023; 13:33707-33720. [PMID: 38020021 PMCID: PMC10654693 DOI: 10.1039/d3ra06690h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The comparative molecular similarity indices analysis (CoMSIA) method is a widely used 3D-quantitative structure-activity relationship (QSAR) approach in the field of medicinal chemistry and drug design. However, relying solely on the Partial Least Square algorithm to build models using numerous CoMSIA indices has, in some cases, led to statistically underperforming models. This issue has also affected 3D-CoMSIA models constructed for the ferric thiocyanate (FTC) dataset from linoleic antioxidant measurements. In this study, a novel modeling routine has been developed incorporating various machine learning (ML) techniques to explore different options for feature selection, model fitting, and tuning algorithms with the ultimate goal of arriving at optimal 3D-CoMSIA models with high predictivity for the FTC activity. Recursive Feature Selection and SelectFromModel techniques were applied for feature selection, resulting in a significant improvement in model fitting and predictivity (R2, RCV2, and R2_test) of 24 estimators. However, these selection methods did not fully address the problem of overfitting and, in some instances, even exacerbated it. On the other hand, hyperparameter tuning for tree-based models resulted in dissimilar levels of model generalization for four tree-based models. GB-RFE coupled with GBR (hyperparameters: learning_rate = 0.01, max_depth = 2, n_estimators = 500, subsample = 0.5) was the only combination that effectively mitigated overfitting and demonstrated superior performance (RCV2 of 0.690, R2_test of 0.759, and R2 of 0.872) compared to the best linear model, PLS (with RCV2 of 0.653, R2_test of 0.575, and R2 of 0.755). Therefore, it was subsequently utilized to screen potential antioxidants among a range of Tryptophyllin L tripeptide fragments, leading to the synthesis and testing of three peptides: F-P-5Htp, F-P-W, and P-5Htp-L. These peptides exhibited promising activity levels, with FTC values of 4.2 ± 0.12, 4.4 ± 0.11, and 1.72 ± 0.15, respectively.
Collapse
Affiliation(s)
- Thi Thanh Nha Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thi Dieu Thuan Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thi Thu Thuy Bui
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
21
|
Xue Z, Liu J, Li Q, Yao Y, Yang Y, Ran C, Zhang Z, Zhou Z. Synthesis of lipoic acid ferulate and evaluation of its ability to preserve fish oil from oxidation during accelerated storage. Food Chem X 2023; 19:100802. [PMID: 37780313 PMCID: PMC10534146 DOI: 10.1016/j.fochx.2023.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Lipoic acid ferulate (LAF) was synthesized and its anti-free radical ability in vitro was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) assays. Protective effects of LAF in stabilizing fish oil were tested, compared to antioxidants such as lipoic acid, ferulic acid and tert-butylhydroxyquinone (TBHQ) by measuring peroxide values, thiobarbituric acid reactants, p-anisidine values, nuclear magnetic resonance (NMR) spectra and gas chromatography-mass spectrometry (GC-MS) spectra of fish oil during accelerated storage (12 days, 80 °C). The inhibitory effect of these antioxidants on fish oil oxidation followed the order TBHQ ≧ LAF > ferulic acid > lipoic acid. In addition, the omega-3 polyunsaturated fatty acids were the first to be oxidized. The formation of oxidation products followed a first-order kinetic model, and the addition of LAF effectively reduced the reaction rate constants. Therefore, LAF can effectively slow down the formation of oxidative products and prolong the shelf life of fish oil.
Collapse
Affiliation(s)
- Zhiyong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Juan Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuanyuan Yao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yalin Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Ran
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China
| |
Collapse
|
22
|
Qiu P, Chen J, Wu J, Wang Q, Hu Y, Li X, Shi H, Wang X. The effect of anthocyanin from Dioscorea alata L. after purification, identification on antioxidant capacity in mice. Food Sci Nutr 2023; 11:6106-6115. [PMID: 37823123 PMCID: PMC10563728 DOI: 10.1002/fsn3.3547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 10/13/2023] Open
Abstract
Increasing findings devote to searching for natural active compositions as additives to ameliorate health status. Anthocyanin, water-soluble natural pigment, has been concerned due to its favorable antioxidant activity. In this study, we purified anthocyanin from Dioscorea alata L., identified its compounds, and evaluated its antioxidant properties. The results indicated that the purity of anthocyanin increased to 39.59 ± 1.56%, 60.18 ± 1.97%, and 81.08 ± 1.97% after purification via AB-8 macroporous resin, Sep-Pak C18 solid phase, and LH-20 Sephadex stepwise. Ultra-performance liquid chromatography tandem mass spectrometer results indicated that paeoniflorin-3,5-O-dihexoside, petunin-3-O-feruloyl-glucoside-5-O-glucoside, cyanidin-3-O-feruloyl glucoside-5-O-glucoside, cyanidin-3-O-sophoroside, and petunin-3,5-O-dihexoside were the major compounds. The purified anthocyanin exhibited stronger antioxidant activity than the unpurified extract and ascorbic acid, whereas weaker than that of cyanidin-3-O-glucoside in general, which was assessed using DPPH, ABTS, and Fe3+ reducing capacity methods. Moreover, the purified anthocyanin increased GSH-Px, total antioxidant capacity, and superoxide dismutase activities and decreased malondialdehyde concentration on serum in mice after administering lipopolysaccharide for 24 h (p < .05). To summarize, the purified anthocyanin boasts more outstanding antioxidant properties than that of crude extracts. These results provide a reference with source of anthocyanin and it is conducive to use Dioscorea alata L. resources.
Collapse
Affiliation(s)
- Pingfei Qiu
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Junpu Chen
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Junlong Wu
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Qin Wang
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Yanrong Hu
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Xiaochun Li
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Huiyu Shi
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| | - Xuemei Wang
- Animal Nutrition, Reproduction and Breeding Laboratory, School of Animal Science and TechnologyHainan UniversityHaikouChina
| |
Collapse
|
23
|
Zlotnikov ID, Belogurova NG, Poddubnaya IV, Kudryashova EV. Mucosal Adhesive Chitosan Nanogel Formulations of Antibiotics and Adjuvants (Terpenoids, Flavonoids, etc.) and Their Potential for the Treatment of Infectious Diseases of the Gastrointestinal Tract. Pharmaceutics 2023; 15:2353. [PMID: 37765322 PMCID: PMC10535539 DOI: 10.3390/pharmaceutics15092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited. Chitosan and nanogels based on chitosan presumably are not absorbed from the gastrointestinal tract and are known to adhere to the mucus. Therefore, they can serve as a basis for the local delivery of antibacterial drugs, increasing their exposure at the predominant location of therapeutic targets, thus improving the risk/benefit ratio. We have used E. coli ATCC 25922 (as a screening model of pathogenic bacteria) and Lactobacilli (as a model of a normal microbiome) to study the antibacterial activity of antibacterial drugs entrapped in a chitosan nanogel. Classical antibiotics were studied in a monotherapeutic regimen as well as in combination with individual terpenoids and flavonoids as adjuvants. It has been shown that levofloxacin (LF) in combination with zephirol demonstrate synergistic effects against E. coli (cell viability decreased by about 50%) and, surprisingly, a much weaker effect against Lactobacilli. A number of other combinations of antibiotic + adjuvant were also shown to be effective. Using FTIR and UV spectroscopy, it has been confirmed that chitosan nanogels with the drug are well adsorbed on the mucosal model, providing prolonged release at the target location. Using an ABTS assay, the antioxidant properties of flavonoids and other drugs are shown, which are potentially necessary to minimize the harmful effects of toxins and radicals produced by pathogens. In vivo experiments (on sturgeon fish) showed the effective action of antibacterial formulations developed based on LF in chitosan nanogels for up to 11 days. Thus, chitosan nanogels loaded with a combination of drugs and adjuvants can be considered as a new strategy for the treatment of infectious diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Irina V. Poddubnaya
- Research Laboratory of Aquatic Environment Protection and Ichthyopathology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410005 Saratov, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
24
|
He W, Huang X, Kelimu A, Li W, Cui C. Streamlined Efficient Synthesis and Antioxidant Activity of γ-[Glutamyl] (n≥1)-tryptophan Peptides by Glutaminase from Bacillus amyloliquefaciens. Molecules 2023; 28:4944. [PMID: 37446606 DOI: 10.3390/molecules28134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH•, ABTS•+ and O2•--scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 μg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications.
Collapse
Affiliation(s)
- Wenjiang He
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Xiaoling Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Pankaew C, Supdensong K, Tothong C, Roytrakul S, Phaonakrop N, Kongbangkerd A, Limmongkon A. Combining elicitor treatment of chitosan, methyl jasmonate, and cyclodextrin to induce the generation of immune response bioactive peptides in peanut hairy root culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111670. [PMID: 36914116 DOI: 10.1016/j.plantsci.2023.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The endogenous peptides from peanut hairy root culture were induced upon elicitor treatment with chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT+MeJA+CD. The peptides secreted into the liquid culture medium play an important role in plant signaling and stress responses. By performing gene ontology (GO) analysis, a number of plant proteins involved in biotic and abiotic defense responses were identified, such as endochitinase, defensin, antifungal protein, cationic peroxidase and Bowman-Birk type protease inhibitor A-II. The bioactivity of 14 peptides synthesized from secretome analysis was determined. Peptide BBP1-4, derived from the diverse region of Bowman-Birk type protease inhibitor, displayed high antioxidant activity and mimicked the property of chitinase and β-1,3-glucanase enzymes. The antimicrobial activity against S. aureus, S. typhimurium, and E. coli was evidenced with different peptide concentrations. Additionally, peptide BBP1-4 has the potential to be a useful candidate for an immune response property, as it was found to increase the expression of some pathogenesis-related (PR) proteins and stilbene biosynthesis genes in peanut hairy root tissues. The findings indicate that secreted peptides may play a role in plant responses to both abiotic and biotic stresses. These peptides, which possess bioactive properties, could be considered as potential candidates for use in the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Chanyanut Pankaew
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kanitha Supdensong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chonnikan Tothong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
26
|
Tvrdoňová M, Borovská B, Salayová A, Rončák R, Michalčin P, Bednáriková Z, Gažová Z. Design and synthesis of novel carbohydrate-amino acid hybrids and their antioxidant and anti-β-amyloid aggregation activity. Bioorg Chem 2023; 137:106636. [PMID: 37290376 DOI: 10.1016/j.bioorg.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aβ40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aβ40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aβ fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.
Collapse
Affiliation(s)
- Monika Tvrdoňová
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia.
| | - Barbora Borovská
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Róbert Rončák
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Peter Michalčin
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Zuzana Bednáriková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Zuzana Gažová
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
27
|
Chawla V, Sharma S, Singh Y. Yttrium Oxide Nanoparticle-Loaded, Self-Assembled Peptide Gel with Antibacterial, Anti-Inflammatory, and Proangiogenic Properties for Wound Healing. ACS Biomater Sci Eng 2023; 9:2647-2662. [PMID: 37097124 DOI: 10.1021/acsbiomaterials.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sakshi Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
28
|
Nguyen QD, La QD, Nguyen NN, Nguyen TNL. Green removal of unpleasant volatiles from soapberry ( Sapindus mukorossi) extracts by two-phase microbial fermentation fortified with pomelo peel waste. RSC Adv 2023; 13:13282-13291. [PMID: 37124002 PMCID: PMC10142458 DOI: 10.1039/d3ra01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Soapberry (Sapindus mukorossi Gaertn) is a popular woody plant in Vietnam, often used as a cleaning product due to its ability to wash, foam and emulsify due to high saponin content. In this study, the performance of fermentation by two microbial strains, namely Saccharomyces cerevisiae active dry yeast (ADY) and Levilactobacillus brevis lactic acid bacteria (LB) along with the addition of pomelo peel (flavedo) was evaluated during 15 days in terms of sugar removal, antioxidant and antibacterial activities, foaming power, volatile composition, and sensory acceptability. The results showed that the soluble solid content of original extracts experienced a significant decrease from 14.5% to a stable range of 9.4-11.0% until day 15 for all fermented samples, which correlated with a reduction by approximately 60% in reducing sugars (from 12.52 g L-1 to 4.77-6.56 g L-1). In addition, the saponin content of fermented extracts was in the range of 118.2-145.0 mg L-1 while antioxidant activities were extremely reduced after 15 days of fermentation. Increases in pomelo peel imparted fermented extracts with greater antibacterial activity against Staphylococcus aureus ATCC 6538, Proteus mirabilis ATCC 25933, and Candida albicans ATCC 10231, and LB had higher activity than ADY overall. Regarding the volatile profiles, two main compounds in the original extracts, including trilaurin (75.02%) and 1-dodecanoyl-3-myristoyl glycerol (24.85%), were completely removed and replaced by new alkanes, alkenes, alcohols, esters, and organic acids, and particularly d-limonene (86.34-95.31%) upon pomelo addition. Additionally, the foaming ability and stability of fermented extracts were also enhanced and there was clear distinction between fermented and unfermented samples using principal component analysis based on sensory liking data which showed consumers' preference towards fermented samples with a high percentage of pomelo peel.
Collapse
Affiliation(s)
- Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy La
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Thi-Ngoc-Lan Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
29
|
Wei G, Li X, Wang D, Zhao B, Shi Y, Huang A. Discovery of specific antioxidant peptide from Chinese Dahe black pig and hybrid pig dry-cured hams based on peptidomics strategy. Food Res Int 2023; 166:112610. [PMID: 36914354 DOI: 10.1016/j.foodres.2023.112610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The quality of hams obtained from different pig breeds can vary depending on endogenous antioxidant peptides in the hams. The aims of this study were (i) to investigate the specific peptides in Chinese Dahe black pig ham (DWH) and hybrid pig ham (Yorkshire × Landrace × Dahe black ham, YLDWH) and their antioxidant activity, and (ii) to elucidate the relationship between ham quality and antioxidant peptides. iTRAQ quantitative peptidomic method was used to discover specific peptides of DWH and YLDWH. In addition, in vitro assays were performed to evaluate their antioxidant activity. A total of 73 specific peptides were identified from DWH and YLDWH by LC-MS/MS. Forty-four specific peptides in DWH were primarily hydrolysed from myosin and myoglobin by endopeptidases, while 29 specific peptides in YLDWH were primarily hydrolysed from myosin and troponin-T. Six specific peptides that were statistically significantly different based on their fold changes and P-values were selected for the identification of DWH and YLDWH. DWH-derived specific peptide AGAPDERGPGPAAR (AR14), which had high stability and was non-toxic, had the highest DPPH• and ABTS•+ scavenging activity (IC50 = 1.657 mg/mL and 0.173 mg/mL, respectively) and cellular antioxidant capacity. Molecular docking showed that AR14 interacted with Val369, and Val420 of Keap1 via hydrogen bonds. Furthermore, AR14 bound to DPPH and ABTS through hydrogen bonding and hydrophobic interactions. Together, our results demonstrate that the DWH-derived antioxidant peptide AR14 exhibits the free radical scavenging and cellular antioxidant activity and can be used to preserve ham quality and promote human health.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, PR China
| | - Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Bo Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
30
|
Tran TTV, Nguyen NN, Nguyen QD, Nguyen TP, Lien TN. Gelatin/carboxymethyl cellulose edible films: modification of physical properties by different hydrocolloids and application in beef preservation in combination with shallot waste powder. RSC Adv 2023; 13:10005-10014. [PMID: 37006365 PMCID: PMC10052562 DOI: 10.1039/d3ra00430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, a gelatin/carboxymethyl cellulose (CMC) base formulation was first modified by using different hydrocolloids like oxidized starch (1404), hydroxypropyl starch (1440), locust bean gum, xanthan gum, and guar gum. The properties of modified films were characterized using SEM, FT-IR, XRD and TGA-DSC before selecting of best-modified film for further development with shallot waste powder. SEM images showed that the rough or heterogeneous surface of the base was changed to more even and smooth depending on the hydrocolloids used while FTIR results demonstrated that a new NCO functional group non-existent in the base formulation was found for most of the modified films, implying that the modification led to the formation of this functional group. Compared to other hydrocolloids, the addition of guar gum into the gelatin/CMC base has improved its properties such as better color appearance, higher stability, and less weight loss during thermal degradation, and had minimal effect on the structure of resulting films. Subsequently, the incorporation of spray-dried shallot peel powder into gelatin/CMC/guar gum was conducted to investigate the applicability of edible films in the preservation of raw beef. Antibacterial activity assays revealed that the films can inhibit and kill both Gram-positive and Gram-negative bacteria as well as fungi. It is noteworthy that the addition of 0.5% shallot powder not only effectively decelerated the microbial growth but also destroyed E. coli during 11 days of storage (2.8 log CFU g-1) and the bacterial count was even lower than that of uncoated raw beef on day 0 (3.3 log CFU g-1).
Collapse
Affiliation(s)
- Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
31
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
32
|
Lee M, Kim D, Ji Choi E, Hee Song J, Yong Kang J, Won Lee K, Yoon Chang J. Transcriptome responses of lactic acid bacteria isolated from kimchi under hydrogen peroxide exposure. Food Res Int 2023; 168:112681. [PMID: 37120183 DOI: 10.1016/j.foodres.2023.112681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
In this study, five species of lactic acid bacteria (LAB) isolated from kimchi were analyzed in terms of their potential antioxidant activity. Latilactobacillus curvatus WiKim38, Companilactobacillus allii WiKim39, and Lactococcus lactis WiKim0124 exhibited higher radical scavenging activity, reducing power, and lipid peroxidation inhibition than the reference strain and tolerated hydrogen peroxide (H2O2) exposure up to a concentration of 2.5 mM. To investigate the antioxidant mechanism of LAB strains, transcriptomic and proteomic signatures were compared between the H2O2-exposed and untreated group using RNA sequencing and two-dimensional protein gel electrophoresis. Across all LAB strains, cell membrane responses and metabolic processes were the most prominent in the main categories of gene ontology classification, indicating that cellular components and interactions play an important role in oxidative stress responses. Thus, LAB strains isolated from kimchi could be considered for potential use in functional food production and in antioxidant starter cultures.
Collapse
|
33
|
Gao J, Hu D, Shen Y, Zheng Y, Liang Y. Optimization of ultrasonic-assisted polysaccharide extraction from Hyperici Perforati Herba using response surface methodology and assessment of its antioxidant activity. Int J Biol Macromol 2023; 225:255-265. [PMID: 36334636 DOI: 10.1016/j.ijbiomac.2022.10.260] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
This study performed a comprehensive investigation of Hyperici Perforati Herba polysaccharide (HPHP) regarding the development and optimization of extraction methods, elucidation of structure and characteristics, and determination of antioxidant activities. An ultrasonic-assisted extraction method, which offered advantages in terms of the extraction yield and energy efficiency, was developed by response surface analysis. The following optimum conditions were determined: a crushing degree at 65 mesh, ultrasonic time at 50 min and temperature of 43 °C. Through enzyme-mediated deproteination via the Sevag method, activated carbon depigmentation, and DEAE-52 and Sephadex G-100 column elution, three HPHPs were obtained, and their monosaccharides mainly included mannose, galactose, glucose and arabinose. The molar weights were 8.347, 1.199 and 22.426 kDa, respectively. The HPHP structures were an amorphous aggregate of spherical-like shapes with a rough surface of pores and crevices, which presented characteristic Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of polysaccharides. Their main glucosidic linkage is the α-type configuration. Moreover, HPHPs exhibited strong scavenging activity for DPPH·, ABTS·+, OH· and O2·- radicals; good ferric reducing power; and effective protection against oxidative damage in human cells. Overall, the results of this work underpinned a fundamental understanding of HPHPs, thus providing a potential antioxidant for further research and development.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Yang Shen
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yiying Zheng
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
34
|
Zhou W, Ma H, Dai Y, Du Y, Guo C, Wang J. Architecture of Nanoantioxidant Based on Mesoporous Organosilica Trp-Met-PMO with Dipeptide Skeleton. MATERIALS (BASEL, SWITZERLAND) 2023; 16:638. [PMID: 36676376 PMCID: PMC9863312 DOI: 10.3390/ma16020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
A nanoantioxidant of mesoporous organosilica (Trp-Met-PMO) based on the framework of tryptophan-methionine dipeptide was first designed and constructed by condensation between self-created dipeptide organosilica precursor (Trp-Met-Si) and tetraethyl orthosilicate (TEOS) in alkaline conditions under the template hexadecyl trimethyl ammonium bromide (CTAB). Trp-Met-Si was prepared by the reaction between dipeptide Trp-Met and conventional organosilicon coupling agent isocyanatopropyltriethoxysilane (IPTES) via a multiple-step reaction method. The material Trp-Met-PMO was confirmed by XRD, FT-IR and N2 adsorption-desorption analysis. The material Trp-Met-5-PMO with low amounts of organosilica precursor remained a mesoporous material with well-ordered 2D hexagonal (P6mm) structure. With increasing amounts of organosilica precursor, a mesoporous structure was still formed, as shown in the material Trp-Met-100-PMO with the highest amounts of organosilica precursor. Moreover, pore size distribution, surface area and porosity of Trp-Met-PMO are regulated with different amounts of organosilica precursor Trp-Met-Si. The antioxidant activity of Trp-Met-PMO was evaluated by ABTS free radical-scavenging assay. The results showed that antioxidant activity was largely enhanced with increasing contents of organosilica precusor Trp-Met-Si in the skeleton. The material Trp-Met-40-PMO exhibited maximum scavenging capacity of ABTS free radicals, the inhibition percent was 5.88%. This study provides a design strategy for nanoantioxidant by immobilizing short peptides within the porous framework of mesoporous material.
Collapse
|
35
|
El-Elimat T, Al-Khawlani AR, Al-Sawalha NA, Sa'ed MM, Al-Qiam R, Sharie AHA, Qinna NA. The effect of beetroot juice on airway inflammation in a murine model of asthma. J Food Biochem 2022; 46:e14381. [PMID: 35976974 DOI: 10.1111/jfbc.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
The effects of beetroot juice on airways inflammation, cytokine levels, and oxidative stress biomarkers were evaluated using an allergen-induced murine model of asthma. Ovalbumin (OVA)-sensitized and challenged BALB/c mice were used as an asthma model. BALB/c mice were randomly assigned into four groups: control (Ova sensitization and normal saline challenge), control and beetroot (Ova sensitization and normal saline challenge plus beetroot juice), Ova S/C [Ova sensitization and challenge (Ova S/C)], Ova S/C and beetroot juice (Ova S/C plus beetroot juice). The bronchoalveolar lavage fluid (BALF) was analyzed for total and differential inflammatory cells count. The levels of cytokines [interleukin (IL)-10, IL-13, and IL-18], and oxidative stress biomarkers [glutathione peroxidase (GPx), catalase, and thiobarbituric acid reactive substances (TBARS)] were analyzed in the lung tissue. Simultaneous administration of beetroot juice and Ova S/C significantly increased the total inflammatory cells compared to the control (p = .0001) and Ova S/C (p = .013) groups and significantly increased the number of eosinophils (p ˂ .0001) and macrophages (p ˂ .0001) compared to the control. Moreover, the simultaneous administration of beetroot juice and Ova S/C did not affect the level of IL-10, IL-13, IL-18, GPx, or TBARS compared to the control (p > .05), but it significantly increased the level of catalase (p = .002). Results suggest that beetroot juice aggravates asthma by enhancing airway inflammation. However, it does not affect airway inflammation in healthy mice. PRACTICAL APPLICATIONS: Asthma is a chronic airway inflammatory disease that is characterized by variable degrees of airways inflammation and obstruction. Paradox data are reported in the literature regarding beetroot and asthma. The present study revealed that beetroot juice exacerbates asthma by enhancing airway inflammation. However, it is safe and has no effects on airway inflammation in healthy mice. Patients having asthma or a history of asthma are advised to avoid the consumption of beetroot.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour A Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan M Sa'ed
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reema Al-Qiam
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
36
|
Qian J, Zheng L, Zhao Y, Zhao M. Stability, Bioavailability, and Structure-Activity Relationship of Casein-Derived Peptide YPVEPF with a Sleep-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14947-14958. [PMID: 36383434 DOI: 10.1021/acs.jafc.2c05024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
YPVEPF (Tyr-Pro-Val-Glu-Pro-Phe) is an outstanding sleep-enhancing peptide derived from casein. This study aimed to evaluate the bioavailability of YPVEPF in vitro and in vivo and to explore its structure-activity relationship through a sleep test and cheminformatics. Our results showed that YPVEPF was unstable against gastrointestinal enzymes and almost totally degraded to YPVEP in vitro. However, the pharmaco-kinetics results in vivo showed that the Cmax of YPVEPF was 10.38 ± 4.01 ng/mL at 5 min, and YPVEPF could be detected in the stomach, intestine, and brain at 12.89 ± 0.55, 10.26 ± 0.23, and 2.47 ± 0.55 ng/g, respectively. The main metabolites including YPVEP, YP, PVEPF, and PVEP were identified. We first explored whether the fragment YPVEP also had a strong sleep-enhancing effect, and the sleep-enhancing effects of PVEPF and PVEP (lacking a Tyr residue) significantly decreased compared with those of YPVEPF and YPVEP. Moreover, molecular docking and quantum calculations revealed that the N-terminus Tyr played a dominant role in YPVEPF and YPVEP. They had distinctive self-folding structures and varying electron-withdrawing properties of the groups at the N terminus, allowing different binding modes and electron/proton transfer.
Collapse
Affiliation(s)
- Jingjing Qian
- School of Food Science and Engineering, South China University of Technology, Guangzhou510640, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou510640, China
| | - Yijun Zhao
- Guangdong Huapeptides Biotechnology Co., Ltd., Zhaoqing526000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou510640, China
- College of Food Science and Technology, Central South University of Forestry and Technology, Shaoshan Nan Road No. 498, Changsha410004, People's Republic of China
- Guangdong Huapeptides Biotechnology Co., Ltd., Zhaoqing526000, China
| |
Collapse
|
37
|
Aderinola TA, Alashi AM, Fagbemi TN, Enujiugha VN, Aluko RE. Amino acid composition, mineral profile, free radical scavenging ability, and carbohydrase inhibitory properties of Moringa oleifera seed globulin, hydrolysates, and membrane fractions. J Food Biochem 2022; 46:e14131. [PMID: 35322904 DOI: 10.1111/jfbc.14131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
The nutritional-amino acid profile and mineral element of Moringa oleifera seed globulin (GLO) and its hydrolysates as well as the in vitro bioactive properties-antioxidant, alpha-amylase, and alpha-glucosidase inhibition of the GLO, hydrolysates, and membrane fractions were reported. The results showed that M. oleifera contained significant amounts of essential amino acids (EAA), which are more than the minimum required by the Food and Agricultural Organization for children, except for tryptophan, which was the limiting amino acid. However, hydrolysis mostly led to a reduction in the contents of the EAA. While the process of hydrolysis and the subsequent membrane fractionation produced peptides with improved activities in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical scavenging ability and oxygen radical absorbance capacity, this process produced no activities in superoxide radical scavenging ability, α-amylase, and α-glucosidase inhibitory potentials of some of the hydrolysates and peptides fractions. In summary, M. oleifera seed peptide fraction (<3 kDa) from the alcalase-derived hydrolysate contains potent antioxidants but relatively low in vitro antidiabetic properties. PRACTICAL APPLICATIONS: Several studies have established the ability of proteins, including hydrolysate and peptide fractions to provide some bioactive properties such as antioxidant, antidiabetic, anti-inflammatory among others. However, because protein functionalities are influenced by several factors such as the source, type, processing method employed among others, research has continued to evaluate the bioactivities of proteins under different conditions. In this study, therefore, we reported the impact of processing methods (hydrolysis, enzyme type, and peptide size) on the nutritional, antioxidant, and in vitro antidiabetic properties of M. oleifera seed globulin, its hydrolysates, and membrane fractions. This information plays an important role in the further exploitation of M. oleifera seed proteins in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adeola Monisola Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tayo Nathaniel Fagbemi
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria
| | - Victor Ndigwe Enujiugha
- Department of Food Science and Technology, The Federal University of Technology, Akure, Akure, Nigeria
| | - Rotimi Emmanuel Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Bioassay-Guided Characterization, Antioxidant, Anti-Melanogenic and Anti-Photoaging Activities of Pueraria thunbergiana L. Leaf Extracts in Human Epidermal Keratinocytes (HaCaT) Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Although the roots and flowers of P. thunbergiana are known to have various physiologically active effects, studies on the anti-melanin production and anti-photoaging effects of its leaf extracts and cellular mechanisms are still lacking. In this study, we evaluated the possibility of using Pueraria thunbergiana leaves as a natural material for skin whitening and anti-aging-related functional cosmetics. The 30% ethyl alcohol (EtOH) extract from P. thunbergiana leaves was fractionated using n-hexane, ethyl acetate (EtOAc), butanol, and aqueous solution to measure their whitening, and anti-aging effects. The EtOAc fraction contained a high content of phenolic and flavonoids and showed higher 1,1-diphenyl-2-picryhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activities than the other fractions. It was also confirmed that the EtOAc fraction markedly inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in B16F10 melanoma cells. In addition, the EtOAc fraction showed a protective effect against ultraviolet B (UVB) in HaCaT cells and increased the collagen synthesis that was decreased due to UVB exposure. Matrix metalloproteinase-1 (MMP-1) activity and MMP-1 protein expression were reduced in human epidermal keratinocytes (HaCaT) cells. These results indicate that the EtOAc fraction has superior antioxidant activity, anti-melanogenesis, and anti-photoaging effects compared to the other fractions. Therefore, in this study, we confirmed the potential of P. thunbergiana leaf extract as a functional cosmetic ingredient, and it can be used as basic data for the physiological activity of P. thunbergiana leaf extracts.
Collapse
|
39
|
Yu C, Zheng L, Cai Y, Zhao Q, Zhao M. Desirable characteristics of casein peptides with simultaneously enhanced emulsion forming ability and antioxidative capacity in O/W emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
de Quadros CC, Latorres JM, Michelon M, Salas-Mellado MM, Prentice C. Effect of In Vitro Gastrointestinal Digestion on the Bioactive Properties of Mullet ( Mugil liza) Peptides. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | - Mariano Michelon
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Carlos Prentice
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
41
|
Moazzen A, Öztinen N, Ak-Sakalli E, Koşar M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022; 8:e10467. [PMID: 36091954 PMCID: PMC9459676 DOI: 10.1016/j.heliyon.2022.e10467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 11 hydroxybenzoic acids, 6 hydroxycinnamic acids, 6 flavonoids, and 2 synthetic phenolic antioxidants were evaluated according to their scavenging capacity and structure relationships. The IC50 was calculated for all compounds and the effects of the concentration of antioxidant and the length of the reaction on antioxidant capacity were taken into consideration. Based on the data of tested phenolics some structure-activity relationships were suggested and discussed in detail. Poor correspondence of the results between ABTS+• and DPPH• assays was attained, indicating that the antioxidant properties of each compound differ with regards to the applied method. Nevertheless, it can be argued that the number of electron-donating substituents (-OH and -OCH3) and their configuration has a significant impact on the antioxidant capacity. Undoubtedly, concerns about the reliability of these assays demand further in-depth investigations to give detailed insight into the structure and antioxidant activity relationships.
Collapse
|
42
|
Ozawa H, Miyazawa T, Burdeos GC, Miyazawa T. Biological Functions of Antioxidant Dipeptides. J Nutr Sci Vitaminol (Tokyo) 2022; 68:162-171. [PMID: 35768247 DOI: 10.3177/jnsv.68.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the history of modern nutritional science, understanding antioxidants is one of the major topics. In many cases, food-derived antioxidants have π conjugate or thiol group in their molecular structures because π conjugate stabilizes radical by its delocalization and two thiol groups form a disulfide bond in its antioxidative process. In recent years, antioxidant peptides have received much attention because for their ability to scavenge free radicals, inhibition of lipid peroxidation, chelation of transition metal ions, as well as their additional nutritional value. Among them, dipeptides are attracting much interest as post-amino acids, which have residues in common with amino acids, but also have different physiological properties and functions from those of amino acids. Especially, dipeptides containing moieties of several amino acid (tryptophan, tyrosine, histidine, cysteine, and methionine) possess potent antioxidant activity. This review summarizes previous details of structural property, radical scavenging activity, and biological activity of antioxidant dipeptide. Hopefully, this review will help provide a new insight into the study of the biological functions of antioxidant dipeptides.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| | | | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
43
|
Xiao C, Toldrá F, Zhou F, Mora L, Luo L, Zheng L, Luo D, Zhao M. Chicken-derived tripeptide KPC (Lys-Pro-Cys) stabilizes alcohol dehydrogenase (ADH) through peptide-enzyme interaction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Purification and Identification of Novel Myeloperoxidase Inhibitory Antioxidant Peptides from Tuna ( Thunnas albacares) Protein Hydrolysates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092681. [PMID: 35566036 PMCID: PMC9104108 DOI: 10.3390/molecules27092681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
Antioxidative peptides that inhibit myeloperoxidase (MPO) enzyme activity can effectively defend against oxidative stress damage. The antioxidant peptides from tuna protein were produced using alcalase hydrolysis and purified by ultrafiltration and Sephadex G-15, and the fractions with the highest free radicals scavenging ability and oxygen radical absorbance capacity (ORAC) values were sequenced using HPLC–MS/MS. Fifty-five peptide sequences were identified, 53 of which were successfully docked into MPO. The representative peptide ACGSDGK had better antioxidant activity and inhibition of MPO chlorination and peroxidation than the reference peptide hLF1-11. The docking model further showed intense molecular interactions between ACGSDGK and MPO, including hydrogen bonds, charge, and salt bridge interactions, which occluded the active site and blocked the catalytic activity of MPO. These results suggested that the antioxidant peptide ACGSDGK has the potential to inhibit oxidative stress and alleviate inflammation in vivo because of its inhibitory effect on the MPO enzyme.
Collapse
|
45
|
Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals' Scavenging Potential of Onion Varieties Planted under Diverse Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070950. [PMID: 35406930 PMCID: PMC9002954 DOI: 10.3390/plants11070950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Genetic diversity and Agro-climatic conditions contribute significantly to the agronomic and morphological features of the food plant species, and their nutraceutical potential. The present study was intended to evaluate the impact of growing conditions on total phenolic and total flavonoid contents, and in vitro antioxidant potential in the bulbs and leaves of onion varieties planted under diverse environmental conditions. Standard analytical methods were used to quantify total phenolic content (TPC), total flavonoid content (TFC), and free radicals’ scavenging/antioxidant capacity. The impact of climatic and soil conditions was assessed using statistical tools. In general, onion varieties cultivated at three different locations viz. Kalar Kahar, Lahore and Swabi exhibited significant variations in TPC and TFC, and antioxidant activities. The bulbs and leaves of Mustang (V1) variety planted at Lahore and Swabi had significantly (p < 0.05), high levels of TPC (659.5 ± 6.59, and 631.1 ± 8.58 mg GAE/100 g, respectively). However, leaves of Red Orb (V2) and bulbs of Mustang (V1), and Golden Orb (V6), harvested from Kalar Kahar depicted the highest concentration of TFC (432.5 ± 10.3, 303.0 ± 6.67, and 303.0 ± 2.52 mg QE/100 g DW, respectively). Likewise, bulbs of V1 planted at Kalar Kahar, Lahore and Swabi exhibited maximum inhibition of DPPH, ABTS, and H2O2 radicals (79.01 ± 1.49, 65.38 ± 0.99, and 59.76 ± 0.90%, respectively). Golden Orb (V6) harvested from Lahore had the highest scavenging of OH radical (67.40 ± 0.09%). Likewise, bulbs of V1 variety planted at KalarKahar and Swabi had significant capacity to scavenge ferric ions (415.1 ± 10.6 mg GAE/100 g DW), and molybdate ions (213.7 ± 0.00 mg AAE/100 g DW). Conversely, leaves of Amazon (V8), planted at Lahore and Swabi depicted significant levels of DPPH, ABTS, H2O2 radical scavenging (90.69 ± 0.26, 63.55 ± 1.06, 51.86 ± 0.43%, respectively), and reduction of ferric ions (184.2 ± 6.75 mg GAE/100 g DW). V6 leaves harvested from Lahore and that of Super Sarhad (V3) from Swabi showed the highest inhibition of OH radical (61.21 ± 0.79%), and molybdate ions (623.6 ± 0.12 mg AAE/100 g DW), respectively. Pearson correlation and principal component analysis revealed strong relationships of climatic conditions, soil properties and elevation with TPC, TFC and free radicals’ scavenging potential in the bulbs and leaves of onion varieties. The variations in the total phenolic and flavonoid contents, and antioxidant potential of different varieties, and their associations with climatic and soil factors revealed the complexity of the growing conditions and genetic makeup that imposed significant impacts on the synthesis of secondary metabolites and nutraceutical potential of food and medicinal plant species.
Collapse
Affiliation(s)
- Nusrat Bibi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Munir H. Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Nadeem Khan
- Department of Breeding and Genomics, Magnus Kahl Seeds (Pty), 6A Dairy Drive Coburg North, Coburg, VIC 3058, Australia;
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Shakeel Ahmad
- School of Environment, Tsinghua University, Beijing 100048, China;
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
- Correspondence: or
| |
Collapse
|
46
|
Kazlauskaite JA, Ivanauskas L, Marksa M, Bernatoniene J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants (Basel) 2022; 11:435. [PMID: 35204317 PMCID: PMC8868588 DOI: 10.3390/antiox11020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Red clover is the subject of numerous studies because of its antioxidant properties, the positive influence of isoflavones on the health, and its potential use in the prevention and treatment of chronic diseases. The right excipients, such as cyclodextrins, can increase the profile of valuable phenolic compounds in extraction media to obtain rich in antioxidants, extracts that can be used in nutraceuticals production. The aim of this study was to investigate and compare the total phenolic content, flavonoid content, and antioxidant activity of red clover aerial parts, aqueous and ethanolic extracts prepared using traditional and cyclodextrins-assisted methods. The antioxidant activity of the extracts was established using ABTS, DPPH, FRAP, and ABTS-post column methods. It was determined that cyclodextrins significantly increased total phenolic content (compared with control)-using β-cyclodextrin 20.29% (in aqueous samples); γ-cyclodextrin 22.26% (in ethanolic samples). All the samples prepared with excipients demonstrated a strong relationship between total phenolic content and DPPH assay. Study showed that for extraction with water, the highest amounts of phenolic compounds, flavonoids and antioxidant activity will be achieved with β-cyclodextrin, but extractions with ethanol will give the best results with γ-cyclodextrin. Therefore, cyclodextrins are a great and safe tool for obtaining rich, red clover flower extracts that are high in antioxidant activity, which can be used in the pharmaceutical industry for nutraceuticals production.
Collapse
Affiliation(s)
- Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (L.I.); (M.M.)
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
47
|
Martín-Barreiro A, de Marcos S, Galbán J. Gold nanoparticle formation as an indicator of enzymatic methods: colorimetric l-phenylalanine determination. Anal Bioanal Chem 2022; 414:2641-2649. [PMID: 35064303 PMCID: PMC8888390 DOI: 10.1007/s00216-022-03900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
An enzymatic-colorimetric method has been developed based on the reaction between l-phenylalanine (l-Phe) and the l-amino acid oxidase (LAAO) in the presence of Au(III), which has led to the formation of gold nanoparticles. The intensity of the localized surface plasmon resonance (LSPR) band of the generated nanoparticles (550 nm) can be related to the concentration of l-Phe in the sample. The mechanism of the LAAO-l-Phe enzyme reaction in the presence of Au(III) has been studied through the evaluation and optimization of experimental conditions. These studies have reinforced the hypothesis that the catalytic center of the enzyme helps the Au(III) reduction and, thanks to the protein, the Au0 form is stabilized as gold nanoparticles (AuNPs). In the calibration study, a sigmoidal relationship between the concentration of the substrate and the LSPR of the nanoparticles was observed. The linearization of the signal has allowed the determination of l-Phe in the range from 17 to 500 µM with an RSD% (150 μM) of 4.8% (n = 3). The method is free of other amino acid interference normally found in blood plasma. These highly competitive results open the possibility of further development of a rapid method for l-Phe determination based on colorimetry.
Collapse
Affiliation(s)
- Alba Martín-Barreiro
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain
| | - Susana de Marcos
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain.
| | - Javier Galbán
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
48
|
Halder M, Bhatia Y, Singh Y. Self-assembled di- and tripeptide gels for the passive entrapment and pH-responsive, sustained release of an antidiabetic drug, glimepiride. Biomater Sci 2022; 10:2248-2262. [DOI: 10.1039/d2bm00344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes is a global epidemic that poses a severe challenge to public health. The characteristic features of this disease are hyperglycemia and deterioration of the function of pancreatic β-cells, which...
Collapse
|
49
|
Verification of the Conditions for Determination of Antioxidant Activity by ABTS and DPPH Assays-A Practical Approach. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010050. [PMID: 35011274 PMCID: PMC8747050 DOI: 10.3390/molecules27010050] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
The ABTS and DPPH methods are among the most popular assays of antioxidant activity determination. Attempts to adapt them to different analytes and the search for the highest values of antioxidant activity has resulted in a large variety of assay conditions to be presented in the literature, including the way the measurement is made. This makes it difficult to relate the results to real oxidation systems, and often makes it impossible to compare them. Such a comparison is limited in advance by the use of stable radicals that do not exist in nature and that react differently from those generated in food or in vivo. Therefore, it is important to introduce measures aimed at standardizing the conditions of the activity assay, including reaction time and several reaction environments suitable for testing different groups of compounds. In this study, we used natural antioxidants of various structures: phenolic acids, flavonoids, peptides and corresponding amino acids, ascorbic acid and α-tocopherol, and also synthetic analogues of selected compounds. The curves of dependence of the measured absorbance on the concentration of antioxidants were described, the ranges of linearity were determined, and the value of the error made when reading in various ranges of dependencies was estimated. We also determined and compared the activity values using two popular methods (IC50 and TEAC), taking into account different environments and reaction times. Based on the collected data, recommendations were formulated regarding the reaction conditions adapted to the studies of individual groups of antioxidants, and unified reaction times were proposed. Taking into account the state before reaching the equilibrium of antioxidants reacting in a complex manner, this approach may introduce a simplified reference to the competing reaction that occurs in reality.
Collapse
|
50
|
Zhu Z, Chen Y, Jia N, Zhang W, Hou H, Xue C, Wang Y. Identification of three novel antioxidative peptides from Auxenochlorella pyrenoidosa protein hydrolysates based on a peptidomics strategy. Food Chem 2021; 375:131849. [PMID: 34942500 DOI: 10.1016/j.foodchem.2021.131849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Auxenochlorella pyrenoidosa is recognized as a potential sustainable protein material in food industry, however, its application remains still very limited. Herein, this study aimed to investigate the antioxidative properties of Auxenochlorella pyrenoidosa protein hydrolysates and identify novel antioxidative peptides from protein hydrolysates through a workflow mainly including enzymatic hydrolysis, peptidome quantification, quantitative structure-activity relationship (QSAR) modeling, in silico screening, and validation. Three novel antioxidative peptides including AGWACLVG, IDLAY and YPLDL were identified from protein hydrolysates by papain with the hydrolysis time of 4 h, in which, AGWACLVG showed strong 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity with the IC50 value of 68.88 µM and Trolox equivalent antioxidative capacity of 6.20 ± 0.23 mmol TE/g. This study suggested that Auxenochlorella pyrenoidosa protein hydrolysates could be used as potential antioxidative ingredients in food industry, and the identification of novel antioxidative peptides would contribute to the construction of more robust QSAR models in the future.
Collapse
Affiliation(s)
- Zihao Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuyang Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Nan Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenhan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|