1
|
Seebunrueng K, Tamuang S, Jarujamrus P, Saengsuwan S, Patdhanagul N, Areerob Y, Sansuk S, Srijaranai S. Eco-friendly thermosensitive magnetic-molecularly-imprinted polymer adsorbent in dispersive solid-phase microextraction for gas chromatographic determination of organophosphorus pesticides in fruit samples. Food Chem 2024; 430:137069. [PMID: 37562262 DOI: 10.1016/j.foodchem.2023.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
A thermosensitive magnetic-molecularly-imprinted polymer (TMMIP) was successfully prepared in an aqueous medium. The TMMIP was applied as an effective adsorbent in dispersive solid-phase microextraction for the selective enrichment of five organophosphorus pesticides (OPPs; diazinon, fenitrothion, fenthion, parathion-ethyl, and ethion) before analysis by gas chromatography. The polymerization was performed using mixed-valence iron hydroxide nanoparticles as the magnetic support, N-isopropyl acrylamide as the thermosensitive monomer, ethion as the template, and methacrylic acid as the functional monomer. The adsorption and desorption mechanisms of OPPs depend on their interactions with the adsorbents and solution temperature. Our methodology provides good linearity (0.50-2000 µgL-1), with a correlation determination of R2 > 0.9980, low limit of detection (0.25-0.50 µgL-1), low limit of quantitation (0.50-1.50 μg L-1), and high precision (%RSD < 7%). The developed method demonstrates excellent applicability for accurately and efficiently determining OPP residuals in fruit and vegetable samples with good recoveries (93-117%).
Collapse
Affiliation(s)
- Ketsarin Seebunrueng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Suparb Tamuang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nopbhasinthu Patdhanagul
- General Science Department, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon 47000, Thailand
| | - Yonrapach Areerob
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Atef Abdel Fatah M, Abd El-Moghny MG, El-Deab MS, Mohamed El Nashar R. Application of molecularly imprinted electrochemical sensor for trace analysis of Metribuzin herbicide in food samples. Food Chem 2023; 404:134708. [DOI: 10.1016/j.foodchem.2022.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
3
|
Shafiei-Navid S, Hosseinzadeh R, Ghani M. Solid-phase extraction of nonsteroidal anti-inflammatory drugs in urine and water samples using acidic calix[4]arene intercalated in LDH followed by quantification via HPLC-UV. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Mikrochim Acta 2022; 189:461. [DOI: 10.1007/s00604-022-05562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
|
5
|
Öter Ç, Zorer ÖS. Synthesis and characterization of a molecularly ımprinted polymer adsorbent for selective solid-phase extraction from wastewater of propineb. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shahhoseini F, Azizi A, S.Bottaro C. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Farajzadeh MA, Niazi S, Sattari Dabbagh M. Development of a magnetic dispersive solid phase extraction method by employing folic acid magnetic nanoparticles as an effective, green, and reliable sorbent followed by dispersive liquid-liquid microextraction for the extraction and preconcentration of seven pesticides from fruit juices. Mikrochim Acta 2021; 188:314. [PMID: 34462821 DOI: 10.1007/s00604-021-04970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Folic acid magnetic nanoparticles have been prepared and utilized as an effective and reliable sorbent in magnetic dispersive solid phase extraction combined with dispersive liquid-liquid microextraction for the extraction of seven pesticides from different juices before their determination by gas chromatography-flame ionization detector. The sorbent is prepared through ball milling process using a proper mixture of folic acid and magnetic iron oxide. Characterization of the sorbent was done with X-ray diffraction pattern, scanning electron microscopy, and vibrating sample magnetometry. In the current study, limits of detection were in the range 0.12-0.33 μg L-1. Relative standard deviations at a concentration of 40 μg L-1 of each analyte were in the ranges of 2.15-5.14% for intra-day (n = 6) and 3.78-6.91% for inter-day (n = 4) precisions. Extraction recoveries and enrichment factors were obtained in the ranges of 70-88 % and 566-708, respectively. The performance of the method was evaluated by determination the selected pesticides in different samples. Graphical Abstract.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. .,Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Shokoufeh Niazi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
10
|
Fan M, Gan T, Yin G, Cheng F, Zhao N. Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos. RSC Adv 2021; 11:27845-27854. [PMID: 35480778 PMCID: PMC9037794 DOI: 10.1039/d1ra05537b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/31/2023] Open
Abstract
As one of the most widely used organophosphorus pesticides, chlorpyrifos (CPF) is toxic to humans. However, the rapid, effective and sensitive detection of CPF is still a challenge. In this paper, a novel molecularly imprinted phosphorescent sensor with a core–shell structure (Mn:ZnS QDs@ZIF-8@MIP) using Mn:ZnS quantum dots (QDs) as phosphorescent emitters was prepared for the highly sensitive and selective detection of CPF, and a simple and rapid room-temperature phosphorescence (RTP) detection method for CPF was proposed. For the prepared Mn:ZnS QDs@ZIF-8@MIP, Mn:ZnS QDs had good phosphorescence emission characteristics, ZIF-8 as support materials was used to improve the dispersibility of Mn:ZnS QDs, and molecularly imprinted polymer (MIP) on the surface of ZIF-8 was used to improve the selectivity of Mn:ZnS QDs for CPF. Under the optimal response conditions, the RTP intensity of Mn:ZnS QDs@ZIF-8@MIP showed a rapid response to CPF (less than 5 min), the RTP intensity ratio of P0/P had a good linear relationship with the concentration of CPF in the range of 0–80 μM, and the detection limit of this method was 0.89 μM with the correlation coefficient of 0.99. Moreover, this simple and rapid method has been successfully used to detect CPF in real water samples with satisfactory results, and the recoveries ranged from 92% to 105% with a relative standard deviation of less than 1%. This method combines the advantages of phosphorescence emission and molecular imprinting, and greatly reduces the potential interferences of competitive substances, background fluorescence and scattered light, which opens up a broad prospect for the highly sensitive and selective detection of pollutants in water based on molecularly imprinted phosphorescent sensors. As one of the most widely used organophosphorus pesticides, chlorpyrifos (CPF) is toxic to humans, and Mn:ZnS QDs@ZIF-8@MIP are prepared for the highly sensitive and selective detection of CPF.![]()
Collapse
Affiliation(s)
- Mengxi Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| | | | - Nanjing Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China .,Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences 350 Shu Shan Hu Road Hefei Anhui 230031 China +86 6551 5591530 +86 551 65593691.,Key Laboratory of Optical Monitoring Technology for Environment Hefei Anhui Province 230021 China
| |
Collapse
|
11
|
Liu Y, Lian Z, Li F, Majid A, Wang J. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. MARINE POLLUTION BULLETIN 2021; 169:112541. [PMID: 34052587 DOI: 10.1016/j.marpolbul.2021.112541] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 05/17/2023]
Abstract
Molecular imprinting technology (MIT) has been considered as an attractive method to produce artificial receptors with the memory of size, shape and functional groups of the templates and has become an emerging technique with the potential in various fields due to recognitive specificity, high efficient selectivity and mechanical stability, which can effectively remove background interference and is suitable for the pre-treatment and analysis of trace level substances in complex matrix samples. Nearly 100 papers about the application of MIT in the detection of marine pollutants were found through Science Citation Index Expanded (SCIE). On this basis, combined with the application of MIT in other fields, the pre-treatment process of marine environmental samples was summarized and the potential of four types of different molecularly imprinted materials in the pre-treatment and detection of marine organic pollutants (including antibiotics, triazines, organic dyes, hormones and shellfish toxins) samples was evaluated, which provides the innovative configurations and progressive applications for the analysis of marine samples, and also highlights future trends and perspectives in the emerging research field.
Collapse
Affiliation(s)
- Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, China
| | - Fangfang Li
- Shandong Institute for Food and Drug Control, Jinan 250000, China
| | - Abdul Majid
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Development of a dispersive solid phase extraction method based on in situ formation of adsorbent followed by dispersive liquid–liquid microextraction for extraction of some pesticide residues in fruit juice samples. J Chromatogr A 2020; 1627:461398. [DOI: 10.1016/j.chroma.2020.461398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
|
15
|
Self-Assembled Three-Dimensional Microporous rGO/PNT/Fe3O4 Hydrogel Sorbent for Magnetic Preconcentration of Multi-Residue Insecticides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this work was to develop a highly selective, sensitive, and reliable method for multi-residual analysis. A three-dimensional microporous reduced graphene oxide/polypyrrole nanotube/magnetite hydrogel (3D-rGOPFH) composite was synthesized and utilized as a magnetic solid-phase extraction (MSPE) sorbent to preconcentrate thirteen insecticides, including five organophosphorus (isocarbophos, quinalphos, phorate, chlorpyrifos, and phosalone), two carbamates (pirimor and carbaryl), two triazoles (myclobutanil and diniconazole), two pyrethroids (lambda-cyhalothrin and bifenthrin), and two organochlorines (2, 4′-DDT and mirex), from vegetables, followed by gas chromatography-tandem mass spectrometry. This method exhibited several major advantages, including simultaneous enrichment of different types of insecticides, no matrix effect, high sensitivity, and ease of operation. This is ascribed to the beneficial effects of 3D-rGOPFH, including the large specific surface (237 m2 g−1), multiple adsorption interactions (hydrogen bonding, electrostatic, π–π stacking and hydrophobic interaction force), appropriate pore size distribution (1–10 nm), and the good paramagnetic property. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–100 ng g−1 with determination coefficients of 0.9975–0.9998; limit of detections of 0.006–0.03 ng g−1; and the intra-day and inter-day relative standard deviations were 2.8–7.1% and 3.5–8.8%, respectively. Recoveries were within the range of 79.2 to 109.4% for tomato, cucumber, and pakchoi samples at the fortification levels of 5, 25, and 50 ng g−1. This effective and robust method can be applied for determining multi-classes of insecticide residues in vegetables.
Collapse
|
16
|
Arias PG, Martínez-Pérez-Cejuela H, Combès A, Pichon V, Pereira E, Herrero-Martínez JM, Bravo M. Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. J Chromatogr A 2020; 1626:461346. [DOI: 10.1016/j.chroma.2020.461346] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
|
17
|
Manafi Khoshmanesh S, Hamishehkar H, Razmi H. Trace analysis of organophosphorus pesticide residues in fruit juices and vegetables by an electrochemically fabricated solid-phase microextraction fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3268-3276. [PMID: 32930190 DOI: 10.1039/d0ay00626b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a solid-phase microextraction pencil lead fiber coated with a layer-by-layer graphenized graphite/graphene oxide/polyaniline nanocomposite (GG/GO/PANI) was fabricated by an in situ electrochemical technique for the trace analysis of organophosphorus pesticide residues in packed grape and apple juice and also fresh tomato samples. The effects of various parameters, including the type of desorption solvent, adsorption time, desorption time, pH, salt addition, and stirring rate, on the extraction efficiency of the studied pesticides were investigated and accordingly, these parameters were optimized. The proposed fiber demonstrated desirable linear ranges (0.01-300 μg L-1) with good correlation coefficients (R2 ≥ 0.996) as well as low limits of detection (0.003-0.03 μg L-1) for the studied pesticides. The relative standard deviations (n = 5) for the extraction of 50 μg L-1 of each analyte were less than 7 and 11.5% for inter and intra-day precisions, respectively. This fast, facile, and repeatable electrochemical fabrication method produced a porous and homogeneous coating. The proposed fiber demonstrated good extraction efficiency, high stability, and long life-time despite being low cost. The successful application of the proposed fiber for the trace determination of pesticides in complex food matrices was proven by the satisfactory relative recoveries of 80.7-116.5%.
Collapse
Affiliation(s)
- Sara Manafi Khoshmanesh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
18
|
Mokhtari N, Torbati M, Farajzadeh MA, Afshar Mogaddam MR. Synthesis and characterization of phosphocholine chloride-based three-component deep eutectic solvent: application in dispersive liquid-liquid microextraction for determination of organothiophosphate pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2364-2371. [PMID: 31853973 DOI: 10.1002/jsfa.10203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A new type of deep eutectic solvent based on three components using phosphate salts has been synthesized, characterized, and applied in the extraction of eight organothiophosphate pesticides from honey samples. In this study, the deep eutectic solvent was prepared from phosphocholine choline chloride as a hydrogen bond acceptor and dichloroacetic acid and decanoic acid as hydrogen bond donors. The method consisted of two steps in which initially the analytes were extracted from the samples into a water-miscible organic solvent. In the second step, the extracted phase was mixed with the prepared deep eutectic solvent and the mixture was used in the following dispersive liquid-liquid microextraction method. RESULTS The method was validated under optimal conditions, and it was found that it has low limits of detection (0.05-0.10 ng g-1 ) and quantification (0.19-0.36 ng g-1 ), good linearity (r2 ≥ 0.994), broad linearity (0.36-1000 ng g-1 ), and satisfactory repeatability (relative standard deviation ≤10% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 2 ng g-1 of each analyte). CONCLUSION The proposed method was applied in different honey samples, and malathion was found at a concentration of 29 ng g-1 in one sample. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasser Mokhtari
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin, Turkey
| | | |
Collapse
|
19
|
Wang W, Gong Z, Yang S, Xiong T, Wang D, Fan M. Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta 2020; 208:120435. [DOI: 10.1016/j.talanta.2019.120435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
|
20
|
Plasmon-active optical fiber functionalized by metal organic framework for pesticide detection. Talanta 2020; 208:120480. [DOI: 10.1016/j.talanta.2019.120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022]
|
21
|
Xiang X, Wang Y, Zhang X, Huang M, Li X, Pan S. Multifiber solid‐phase microextraction using different molecularly imprinted coatings for simultaneous selective extraction and sensitive determination of organophosphorus pesticides. J Sep Sci 2020; 43:756-765. [DOI: 10.1002/jssc.201900994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaozhe Xiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Yulong Wang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Xiaowei Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Mingquan Huang
- China Light Industry Key Laboratory of Liquor Quality and SafetyBeijing Technology and Business University Beijing P. R. China
| | - Xiujuan Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)College of Food Science & TechnologyHuazhong Agricultural University Wuhan P. R. China
| |
Collapse
|
22
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
24
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Musarurwa H, Chimuka L, Tavengwa NT. Green pre-concentration techniques during pesticide analysis in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:770-780. [PMID: 31250698 DOI: 10.1080/03601234.2019.1633213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ever-increasing demand for determining pesticides at low concentration levels in different food matrices requires a preliminary step of pre-concentration which is considered a crucial stage. Recently, the parameter of "greenness" during sample pre-concentration of pesticides in food matrices is as important as selectivity in order to avoid using harmful organic solvents during sample preparation. Developing new green pre-concentration techniques is one of the key subjects. Thus, to reduce the impact on the environment during trace analysis of pesticides in food matrices, new developments in pre-concentration have gone in three separate directions: the search for more environmentally friendly solvents, miniaturization and development of solvent-free pre-concentration techniques. Eco-friendly solvents such as supercritical fluids, ionic liquids and natural deep eutectic solvents have been developed for use as extraction solvents during pre-concentration of pesticides in food matrices. Also, miniaturized pre-concentration techniques such as QuEChERS, dispersive liquid-liquid micro-extraction and hollow-fiber liquid-phase micro-extraction have been used during trace analysis of pesticides in food samples as well as solvent-free techniques such as solid-phase micro-extraction and stir bar sorptive extraction. All these developments which are aimed at ensuring that pesticide pre-concentration in different food matrices is green are critically reviewed in this paper.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, University of Venda , Thohoyandou , South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand , Johannesburg , South Africa
| | | |
Collapse
|
26
|
Zhou T, Ding L, Che G, Jiang W, Sang L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Farooq S, Nie J, Cheng Y, Yan Z, Li J, Bacha SAS, Mushtaq A, Zhang H. Molecularly imprinted polymers' application in pesticide residue detection. Analyst 2019; 143:3971-3989. [PMID: 30058662 DOI: 10.1039/c8an00907d] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) are produced using molecular imprinting technology (MIT) and have specific analyte-binding abilities and unique properties, including chemical and thermal stability, reusability, high selectivity, and high sensitivity. The application of MIPs in the detection of pesticides represents an advance and a superior scientific approach owing to their detection and characterization of trace levels in comparison with other methods. In this review, we have summarized the pre-treatment extraction of pesticides with different types of molecularly imprinted polymer for the detection of single and multiple pesticides by elaborating upon their specific extraction efficiency. The importance of different polymerization methods, functional monomers and cross-linkers is highlighted. The aim of this study is to investigate the importance of the application of MIPs in the detection of pesticides and recent advances in the last few years to overcome the limitations of previously developed methods. Existing restrictions and required future aspects are discussed.
Collapse
Affiliation(s)
- Saqib Farooq
- Institute of Pomology, Chinese Academy of Agricultural Sciences, 98# Xinghai South Street, 125100 Xingcheng, Liaoning Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mansouri E, Sarabi-Jamab M, Ghorani B, Mohajeri SA. Preparation and Characterization of Herbicide Mecoprop Imprinted Polymer and Its Application as a Selective Sorbent in Water Sample. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:657-663. [PMID: 30310948 DOI: 10.1007/s00128-018-2459-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Bulk polymerization method was used to prepare a homogeneous molecularly imprinted polymer (MIP) for the specific extraction of herbicide mecoprop (MCPP). Thereafter, the binding performance of this functional polymer was evaluated under optimal condition, compared to a non-imprinted polymer. From the Scatchard plot analysis, two types of binding sites were detected in the MIP, the high affinity binding sites with a KD (equilibrium dissociation constant) of 6.4 µM and the low affinity ones with a KD of 55.9 µM. In addition, the possibility of using synthesized MIP for MCPP extraction from environmental aqueous samples was explored. The adsorption capacity of MIP in spiked bottled water and groundwater samples showed that the polymer could effectively extract MCPP from bottled water and groundwater (p < 0.05) with the recovery of 70.5% and 65.1%, respectively, demonstrating the potential of imprinted polymers for cost-effective and effective water treatment.
Collapse
Affiliation(s)
- Elaheh Mansouri
- Research Institute of Food Science & Technology, Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology, Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Zhang S, Yang Q, Li Z, Wang W, Zang X, Wang C, Wang Z. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chem 2018; 263:258-264. [DOI: 10.1016/j.foodchem.2018.04.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/29/2022]
|
31
|
Wang P, Sun X, Su X, Wang T. Advancements of molecularly imprinted polymers in the food safety field. Analyst 2018; 141:3540-53. [PMID: 26937495 DOI: 10.1039/c5an01993a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement.
Collapse
Affiliation(s)
- Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Xiaohua Sun
- Institute of Chemistry, China Academy of Science, Beijing 100190, P.R. China and Institute of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaoou Su
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing 100081, P.R. China.
| | - Tie Wang
- Institute of Chemistry, China Academy of Science, Beijing 100190, P.R. China
| |
Collapse
|
32
|
Wang X, He B, Nie J, Yin W, Fa H, Chen C. An enhanced oxime-based biomimetic electrochemical sensor modified with multifunctional AuNPs–Co3O4–NG composites for dimethoate determination. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3516-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Ma JK, Huang XC, Wei SL. Preparation and application of chlorpyrifos molecularly imprinted solid-phase microextraction probes for the residual determination of organophosphorous pesticides in fresh and dry foods. J Sep Sci 2018; 41:3152-3162. [PMID: 29878613 DOI: 10.1002/jssc.201800385] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
A solid-phase microextraction probe was prepared on the surface of a stainless-steel wire through molecular sol-gel imprinting technology using chlorpyrifos as a template molecule, tetraethoxysilane as a sol-gel precursor, and acrylamide and β-cyclodextrin as functional monomers. The polymer was characterized by infrared spectrometry and scanning electron microscopy. Moreover, the selectivity and the parameters including the type and volume of the extraction solvents, ionic strength, pH, temperature, extraction time, stirring speed, and desorption time affecting extraction performance were evaluated. Under the optimum solid-phase microextraction and gas chromatography conditions, the linear ranges were 0.25-25.0 μg/L for chlorpyrifos, quinalphos, triazophos, pirimiphos-methyl, and chlorpyrifos-methyl with the correlation coefficient above 0.99. The detection limits (S/N = 3) were in the range of 0.02-0.07 μg/L and the RSDs were <7.3%. The developed method was successfully used to determine the multi-residues of chlorpyrifos, quinalphos, triazophos, pirimiphos-methyl, and chlorpyrifos-methyl in green peppers and cinnamon with satisfactory recoveries.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| | - Shou-Lian Wei
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, P. R. China
| |
Collapse
|
34
|
Calixarene-Based Miniaturized Solid-Phase Extraction of Trace Triazine Herbicides from the Honey and Milk Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1270-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Boulanouar S, Combès A, Mezzache S, Pichon V. Synthesis and application of molecularly imprinted silica for the selective extraction of some polar organophosphorus pesticides from almond oil. Anal Chim Acta 2018; 1018:35-44. [PMID: 29605132 DOI: 10.1016/j.aca.2018.02.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
The aim of this work was to prepare and evaluate molecularly imprinted polymers obtained by a sol-gel approach for the selective solid-phase extraction (SPE) of organophosphorus pesticides (OPs) from almond oil. The performances of molecularly imprinted silicas (MISs), prepared using different conditions of synthesis, were studied by applying different extraction procedures in order to determine the ability of the MISs to selectively extract ten target OPs. For this, the retention of OPs on MISs in pure media was compared with the retention on a non-imprinted silicas (NISs), used as control sorbent, to prove the presence of specific cavities. The most promising MIS allowed the selective extraction of the 3 most polar OPs among the 10 studied. The capacity was studied and the repeatability of the extraction recovery yield was demonstrated both in pure and real media. This MIS was able to selectively extract fenthion sulfoxide and dimethoate contained in almond oil extract after applying the optimized extraction procedure with recovery yields between 100 and 114%. The estimated limit of quantification (LOQ, S/N = 10), thanks to LC/MS analysis in MRM mode, between 1.2 and 4.6 μg/kg for those OPs in the almond fruits, was more than 10 times lower than the Maximum Residue Levels (MRLs) established by the European Commission. This MIS therefore shows a high potential for the analysis of those two polar OPs at trace levels from almond oils.
Collapse
Affiliation(s)
- Sara Boulanouar
- Dept of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CBI 8231 (CNRS-ESPCI Paris), ESPCI Paris, PSL University, 10 rue Vauquelin, 75 231, Paris Cedex 05, France
| | - Audrey Combès
- Dept of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CBI 8231 (CNRS-ESPCI Paris), ESPCI Paris, PSL University, 10 rue Vauquelin, 75 231, Paris Cedex 05, France
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Valérie Pichon
- Dept of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CBI 8231 (CNRS-ESPCI Paris), ESPCI Paris, PSL University, 10 rue Vauquelin, 75 231, Paris Cedex 05, France; Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
36
|
Hamedi R, B G Aghaie A, Hadjmohammadi MR. Magnetic core micelles as a nanosorbent for the efficient removal and recovery of three organophosphorus pesticides from fruit juice and environmental water samples. J Sep Sci 2018; 41:2037-2045. [PMID: 29377628 DOI: 10.1002/jssc.201701090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 11/11/2022]
Abstract
Sodium dodecyl sulfate coated amino-functionalized magnetic iron oxide nanoparticles were used as an efficient adsorbent for rapid removal and preconcentration of three important organophosphorus pesticides, chlorpyrifos, diazinon and phosalone, by ultrasound-assisted dispersive magnetic solid-phase microextraction. Fabrication of amino-functionalized magnetic nanoparticles was certified by characteristic analyses, including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Affecting parameters on the removal efficiency were investigated and optimized through half-fractional factorial design and Doehlert design, respectively. The analysis of analytes was performed by high-performance liquid chromatography with ultraviolet detection. Under the optimum conditions, extraction recoveries for 20 ng/mL of organophosphorus pesticides were in the range of 84-97% with preconcentration factors in the range of 134-155. Replicating the experiment in above condition for five times gave the relative standard deviations <6%. The calibration curves showed high linearity in the range of 0.2-700 ng/mL and the limits of detection were in the range of 0.08-0.13 ng/mL. The proposed method was successfully applied for both removal and trace determination of these three organophosphorus pesticides in environmental water and fruit juice samples.
Collapse
Affiliation(s)
- Raheleh Hamedi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali B G Aghaie
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
37
|
Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018; 176:465-478. [DOI: 10.1016/j.talanta.2017.08.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
|
38
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
39
|
Ensafi AA, Rezaloo F, Rezaei B. Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ali Aasghar Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Fatemeh Rezaloo
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
40
|
Hou X, Wang L, Guo Y. Recent Developments in Solid-phase Microextraction Coatings for Environmental and Biological Analysis. CHEM LETT 2017. [DOI: 10.1246/cl.170366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
41
|
Synthesis and application of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils. J Chromatogr A 2017; 1513:59-68. [DOI: 10.1016/j.chroma.2017.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
|
42
|
Chen G, Jin M, Du P, Zhang C, Cui X, Zhang Y, She Y, Shao H, Jin F, Wang S, Zheng L, Wang J. A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Anal Biochem 2017; 530:87-93. [DOI: 10.1016/j.ab.2017.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023]
|
43
|
Li J, Sun M, Chang Q, Hu X, Kang J, Fan C. Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry. Chromatographia 2017. [DOI: 10.1007/s10337-017-3362-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Pang L, Yang P, Pang R, Lu X, Xiao J, Li S, Zhang H, Zhao J. Ionogel-Based Ionic Liquid Coating for Solid-Phase Microextraction of Organophosphorus Pesticides from Wine and Juice Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal Chim Acta 2017; 974:1-26. [PMID: 28535878 DOI: 10.1016/j.aca.2017.04.042] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023]
Abstract
This paper presents an overview of the recent applications of molecularly imprinted polymers (MIPs) to sample preparation. The review is thought to cover analytical procedures for extraction of contaminants (mainly illegal/noxious organic compounds) from food and environmental matrices, with a particular focus on the various pre-concentration/cleanup techniques, that is offline and online solid-phase extraction (SPE), dispersive SPE (d-SPE), magnetic SPE (MSPE), solid-phase microextraction (SPME) and stir-bar sorptive extraction (SBSE), applied before instrumental quantification. The selectivity and extraction efficiency of MIP-based sorbent phases are critically discussed, also in relation to the physical-chemical properties resulting from the synthetic procedures. A variety of molecularly imprinted sorbents is presented, including hybrid composites embedding carbon nanomaterials and ionic liquids. The analytical performance of MIP materials in sample preparation is commented as function of the complexity of the matrix, and it is compared to that exhibited by (commercial) aspecific and/or immunosorbent phases.
Collapse
Affiliation(s)
- Andrea Speltini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Andrea Scalabrini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
46
|
Zhang Y, Fa HB, He B, Hou CJ, Huo DQ, Xia TC, Yin W. Electrochemical biomimetic sensor based on oxime group-functionalized gold nanoparticles and nitrogen-doped graphene composites for highly selective and sensitive dimethoate determination. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3560-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Li G, Row KH. Recent Applications of Molecularly Imprinted Polymers (MIPs) on Micro-extraction Techniques. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1315823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
48
|
Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction. Anal Chim Acta 2017; 964:96-111. [DOI: 10.1016/j.aca.2017.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022]
|
49
|
One-Step Synthesis of Zirconia and Magnetite Nanocomposite Immobilized Chitosan for Micro-Solid-Phase Extraction of Organophosphorous Pesticides from Juice and Water Samples Prior to Gas Chromatography/Mass Spectroscopy. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-016-0769-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Souza-Silva ÉA, Pawliszyn J. Recent Advances in Solid-Phase Microextraction for Contaminant Analysis in Food Matrices. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|