1
|
Karaogul E, Ugurtay A. Unveiling modeling and SEM/XRD insights into enhanced antibacterial, antioxidant, and bioactive potentials of Micro-encapsulated Pistacia vera hull extract. Food Chem 2025; 477:143510. [PMID: 40048936 DOI: 10.1016/j.foodchem.2025.143510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
The study aimed to investigate the effects and properties of micro-encapsulation (Mc) of bioactive extracts from Pistacia vera hull (Pv-He) using response surface methodology (RSM) for mathematical modeling-optimization (MMO). The independent variables optimized were temperature (T:120-180 °C), extract dilution (Eks-Dl:0-4), maltodextrin/gum arabic (MDx/GA:20-80 %), and extract-to-wall blend (W-Rt:5-20 g) in spray-drying. The variables significantly influenced water activity (Wa, P < .01 for T), wettability (Wt, P < .0001 for W-Rt), hausner-ratio (Hr, P < .05 for T, P < .001 for W-Rt), efficiency (Efc%, P < .01 for W-Rt), shikimic acid (Sh-Ac, P < .0001 for Eks-Dl/W-Rt), Mc-yield (Mc-Yd), mass (MD) and bulk density (BD), and carr-index (CI). Linear models fit well for Wa, Wt, and Sh-Ac, while quadratic models were better for Hr and Efc%. Optimal conditions were T:150 °C, Eks-Dl:0, MDx/GA:20 %, and W-Rt:20 g, achieving a desirability of 0.992. Predicted values were compared with experimental and nanoencapsulated (Nc) Pv-He. Mc exhibited significantly higher bioactive properties than Nc. Total phenolic (TPC; 21.44 vs. 0.54 mgGAE/gDW), flavonoid (TFC; 16.84 vs. 0.15 mgQrc/gDW), and tannin (TCT; 23.09 vs. 0 mg/gDW) contents were determined. Mc-Sp enhanced antioxidant performance, showing superior DPPH&ABTS results. The antimicrobial activity of Mc showed good antibacterial effects, with inhibition zones ranging from 13.57 to 20.46 mm and minimum inhibitory concentrations from 14.55 to 485 μg/mL, comparable to antibiotics. SEM revealed regular, micron-sized microspherical structures with smooth, unsplit walls, indicating strong coating material performance. XRD showed a high proportion of amorphous materials in Nc, suggesting less ordered structures. Encapsulation effectively enriched bioactive components in Pv-He, with optimized parameters improving efficacy and performance.
Collapse
Affiliation(s)
- Eyyup Karaogul
- Harran University, Faculty of Engineering, Department of Food Engineering, Şanliurfa, Turkey.
| | - Abdulhalik Ugurtay
- Harran University, Faculty of Engineering, Department of Food Engineering, Şanliurfa, Turkey
| |
Collapse
|
2
|
Alikhani S, Ghanati F, Hajebrahimi Z, Soleimani M, Najar N, Khalili E. Soluble sugars maintain redox homeostasis and accelerate the growth of cultured Malva neglecta cells under 2D-clinorotation. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154489. [PMID: 40199185 DOI: 10.1016/j.jplph.2025.154489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
In addition to their nutritional role, carbohydrates play essential roles in metabolism, growth, development, and response to the environment. In the present study, the effects of clinorotation on structural and soluble sugar metabolism and the redox system were investigated in cultured Malva neglecta cells. A rapidly growing cell line was established from leaf explants of M. neglecta on a solidified LS medium, and the cells were exposed to 2D-clinostat for 7 days. Clinorotation significantly increased monosaccharide content, including glucose, fructose, rhamnose, mannose, and xylose, while reducing sucrose levels compared to control groups. The activities of pectin methylesterase (PME) and β-1, 3-glucanase increased, whereas those of covalently wall-bound peroxidase (CPO) and polyphenol oxidase (PPO) decreased. This reduction, along with a decrease in callose, cellulose, and phenolic acid content, likely accelerated cell growth by reducing cell wall crosslinking and stiffness. The content of reactive oxygen/nitrogen species i.e., hydrogen peroxide (H2O2), hydroxyl radical (.OH), and nitric oxide (NO) radicals significantly decreased in response to clinorotation compared with 1g-grown cells. Hierarchical cluster analysis revealed a strong negative correlation between NO and catalase (CAT) activity. The observed decrease in these oxidants can be attributed, at least in part, to the increased content of soluble sugars through the oxidative pentose-phosphate pathway or tricarboxylic acid cycle (TCA), and more significantly, to the enhancement of catalase activity and flavonoid content.
Collapse
Affiliation(s)
- Somayeh Alikhani
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, POB 14115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, POB 14115-154, Tehran, Iran.
| | - Zahra Hajebrahimi
- Khayyam Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Maryam Soleimani
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, POB 14115-154, Tehran, Iran
| | - Naba Najar
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, POB 14115-154, Tehran, Iran
| | - Elham Khalili
- Department of Electrical and Engineering and Physical Science, Center of Vision Speech, and Processing, University of Surrey, United Kingdom
| |
Collapse
|
3
|
Mirzaei Z, Zarei S, Sayadi A, Hosseiniara R, Karimabad MN, Mahmoodi M. Combination effects of Pistachio hull and carfilzomib on NF-κB p65, MDR1, MRP1, and Caspase3 gene expression in breast cancer cell line. BMC Complement Med Ther 2025; 25:15. [PMID: 39844241 PMCID: PMC11752740 DOI: 10.1186/s12906-024-04716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the synergistic effects of the chemotherapy drug Carfilzomib (CFZ) and Pistachio hull extract on the SK-BR3 breast cancer cell line. METHODS In this experimental study, we evaluated the effect of Pistachio hull extract and CFZ as standalone treatments on cell viability using the MTT assay at 24- and 48-hours post-treatment. Following this, we conducted combination therapy analyses to assess the potential synergistic relationship between Pistachio hull extract and CFZ after 24- and 48-hours of treatment on both the SK-BR3 breast cancer cell line and the MCF10A normal cell line. We utilized real-time PCR to measure the expression levels of MDR1, MRP1, NF-κB p65, and Caspase3 genes. Additionally, the NF-κB p65 transcription factor was evaluated using ELISA after 24- and 48-hours. RESULTS The MTT assay revealed IC50 values of 2.014 mg/mL and 1.031 mg/mL in the SK-BR3 cell line, and 3.265 mg/mL and 2.994 mg/mL in the MCF10A cell line at 24- and 48-hours post-treatment with Pistachio hull extract. CFZ concentrations of 0.181 × 10- 3 mg/mL and 0.0057 × 10- 3 mg/mL in the SK-BR3 cell line, as well as 5.54 × 10- 3 mg/mL and 2.51 × 10- 3 mg/mL in the MCF10A cell line, inhibited growth by up to 50%. The analysis of combination therapy indicated a synergistic effect between the two treatments after both 24- and 48-hours of exposure. Real-time PCR results demonstrated significant alterations in the expression of MDR1, MRP1, NF-κB p65, and Caspase3 genes, along with changes in NF-κB p65 protein levels in both cell lines following treatment with Pistachio hull extract, CFZ, or their combination compared to the control group (p < 0.05). CONCLUSION The findings highlight the effectiveness of CFZ as a proteasome inhibitor when used in conjunction with Pistachio hull extract in breast cancer cell lines. Therefore, both CFZ and Pistachio hull extract, whether administered alone or in combination, represent promising molecular targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Mirzaei
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmadreza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
5
|
Seker G, Akbas MY. Evaluation of bioactivities of Pistacia vera L. hull extracts as a potential antimicrobial and antioxidant natural source. FOOD SCI TECHNOL INT 2024; 30:722-730. [PMID: 37552931 DOI: 10.1177/10820132231193478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Pistacia vera L. hull, a the major byproduct of pistachio processing, is a source of functional compounds with antioxidant and antimicrobial activities. The extraction of these natural compounds from pistachio hulls and their use instead of synthetic chemicals has gained great attention. In this work, the phytochemical contents and antioxidant and antimicrobial activities of pistachio hull ethanolic (PVE) and aqueous (PVD) extracts obtained by microwave-assisted extraction (MAE) were investigated. Gallic acid (1.9 and 1.5 mg/g dw), quercetin (0.025 and 0.009 mg/g dw), total phenolic (23.3 and 14.7 mg GAE/g dw) and flavonoid (5.0 and 2.9 mg QE/g dw) contents and antioxidant activities (SC50 0.63 and 0.56 mg/mL) of PVE and PVD extracts were determined, respectively. The extracts exhibited antimicrobial effects against Enterococcus faecalis, Staphylococcus aureus, Streptococcus uberis, Bacillus cereus, and Bacillus subtilis. Minimal inhibitory concentrations (MICs, 0.8-49.0 and 9.6-82.5 mg/mL) and the minimal bactericidal concentrations (MBCs, 1.3-99.1 and 15.5-150.0 mg/mL) of PVE and PVD extracts were determined, respectively. Kill curves revealed that PVE and PVD extracts could inhibit the growth of bacteria. It was shown that PVE and PVD extracts could represent a good economical source of functional and bioactive compounds.
Collapse
Affiliation(s)
- Gamze Seker
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
6
|
El Hajj J, Karam L, Jaber A, Cheble E, Akoury E, Kobeissy PH, Ibrahim JN, Yassin A. Evaluation of Antiproliferative Potentials Associated with the Volatile Compounds of Lantana camara Flowers: Selective In Vitro Activity. Molecules 2024; 29:5431. [PMID: 39598820 PMCID: PMC11597665 DOI: 10.3390/molecules29225431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Probing the chemical profiles and biological activities of medicinal plants is important for the discovery of new potent therapeutic products. Our study deciphers the chemical composition of the essential oils (EOs) obtained from three different flowers of Lantana camara and evaluates their antioxidant and anticancer activities. This work represents the first study of EOs obtained from this plant and is based particularly on the difference in flower color. In addition, no other reports dealing specifically with the antitumor effects of such flower-derived EOs have been described in the literature. The collected flowers, white, pink, and orange, were extracted by hydrodistillation to yield EO1, EO2, and EO3 respectively. Gas chromatography-mass spectroscopy was primarily employed to identify the existing volatile compounds in the samples. Their antioxidant activities were screened through both DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assays and FRAP (ferric-reducing antioxidant power) assays. The antiproliferative effects were evaluated on two distinct breast cancer cell lines, MCF-7 and MDA-MB-231, and compared to a normal human breast cell line, MCF-10A, using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay. All EOs showed notable antioxidant potential attributed to the active phytochemical compounds, with results being supported by a positive correlation between such activity and the total phenolic and flavonoid content. The most eminent, EO1, revealed a selective dose-dependent antiproliferative effect in both breast cancer cell lines, thus reflecting its potent role as an anticancer agent. We suggest that this highly selective activity is associated with the presence of bicyclogermacrene and epi-bicyclosesquiphellandrene in its chemical composition.
Collapse
Affiliation(s)
- Jennifer El Hajj
- RDMPN Laboratory, Faculty of Pharmacy, Lebanese University, Beirut BP 14/6573, Lebanon; (J.E.H.); (E.C.)
| | - Louna Karam
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (L.K.); (P.H.K.); (J.-N.I.)
| | - Ali Jaber
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon;
| | - Edmond Cheble
- RDMPN Laboratory, Faculty of Pharmacy, Lebanese University, Beirut BP 14/6573, Lebanon; (J.E.H.); (E.C.)
| | - Elias Akoury
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon;
| | - Philippe Hussein Kobeissy
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (L.K.); (P.H.K.); (J.-N.I.)
| | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (L.K.); (P.H.K.); (J.-N.I.)
| | - Ali Yassin
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102-2801, Lebanon;
| |
Collapse
|
7
|
Avitabile M, Mirpoor SF, Esposito S, Merola G, Mariniello L, Patanè GT, Barreca D, Giosafatto CVL. Manufacture of Bioplastics Prepared from Chitosan Functionalized with Callistemon citrinus Extract. Polymers (Basel) 2024; 16:2693. [PMID: 39408406 PMCID: PMC11478412 DOI: 10.3390/polym16192693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The exploration of natural resources in bioplastics has advanced the development of bio-based materials. Utilizing the casting, chitosan (CH)-based films were manufactured with different glycerol (GLY) percentages (from 0 to 50% w/w of CH) and anthocyanin-enriched fractions (from 0 to 5% of w/w CH) of acidified ethanol extract of Callistemon citrinus flowers (CCE). Callistemon citrinus is an ornamental plant known for its bioactive compounds endowed with health benefits. The hydrocolloid films showed promising mechanical properties. The 30% GLY + 5% CCE film achieved an elongation at break of 57.4%, comparable to the 50% GLY film while possessing enhanced tensile strength and Young's modulus. The CCE, rich in antioxidants, acted as a plasticizer, improving films' flexibility and manageability. The films exhibit hydrophilic characteristics with moisture content and uptake values reflecting their water-absorbing capacity, while films with 30% GLY and 5% CCE exhibit enhanced hydrophobicity. In addition, CCE characterization reveals significant polyphenol content (734.45 mg GAE/g), highlighting its antioxidant capacity. Moreover, CCE supplies remarkable antioxidant properties to the films. These findings suggest the potential of these bioplastics for industrial applications as a sustainable solution to traditional plastics and in reducing environmental impact while preventing oxidative reactions in packaged products.
Collapse
Affiliation(s)
- Marika Avitabile
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.A.); (S.E.); (G.M.); (L.M.)
| | - Seyedeh Fatemeh Mirpoor
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK;
| | - Sefora Esposito
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.A.); (S.E.); (G.M.); (L.M.)
| | - Giusi Merola
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.A.); (S.E.); (G.M.); (L.M.)
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.A.); (S.E.); (G.M.); (L.M.)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (G.T.P.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (G.T.P.); (D.B.)
| | | |
Collapse
|
8
|
Baali F, Boudjelal A, Smeriglio A, Righi N, Djemouai N, Deghima A, Bouafia Z, Trombetta D. Phlomis crinita Cav. From Algeria: A source of bioactive compounds possessing antioxidant and wound healing activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118295. [PMID: 38710460 DOI: 10.1016/j.jep.2024.118295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, β-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 μg/mL and a moderate iron chelating activity (IC50 327.44 μg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.
Collapse
Affiliation(s)
- Faiza Baali
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria.
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Nadjat Righi
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria.
| | - Nadjette Djemouai
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria; Microbial Systems Biology Laboratory (LBSM), Higher Normal School of Kouba, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Amirouche Deghima
- Department of Nature and Life Sciences, Faculty of Exact Nature and Life Sciences, University of Biskra, 7000, Algeria.
| | - Zineb Bouafia
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
9
|
Mahafel N, Vaezi Z, Barzegar M, Hekmat A, Naderi-Manesh H. Synergistic antibacterial effect of the pistachio green hull extract-loaded porphysome decorated with 4-nitroimidazole against bacteria. J Liposome Res 2024; 34:475-488. [PMID: 38252419 DOI: 10.1080/08982104.2024.2304755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
'Active targeting' refers to modifying a nanocarrier's surface with targeting ligands. This study introduced an efficient approach for immobilizing imidazole-based drugs onto the metallated-porphyrin complex within the porphysome nanocarrier. To enhance cellular and bacterial uptake, a Ni-porphyrin with a fatty acid tail was synthesized and placed in the bilayer center of DPPC, facilitating receptor-mediated endocytosis. The Ni-porphyrin in the head group of the Ni-porphyrin-tail was placed superficially in the polar region of the membrane. Spherical unilamellar vesicle formation (DPPC: Ni-porphyrin-tail 4:1 mole ratio), as metallo-porphysome, was achieved through supramolecular self-assembly in an aqueous buffer. These vesicles exhibited a diameter of 279 ± 7 nm and a zeta potential of -15.3 ± 2.5 mV, showcasing their unique cytocompatibility. Nitroimidazole was decorated on the surface of metallo-porphysomes and pistachio green hull extract (PGHE) was loaded into the carrier for synergistic activity against (E. coli) and (S. aureus) bacteria strains. The physicochemical properties of Nitroimidazole-porphysome-PGHE, including size, zeta potential, morphology, loading efficiency, and release profile under various pH and temperature conditions in simulated gastrointestinal fluids were characterized. This combination therapy prevented bacterial cell attachment and biofilm formation in Caco-2 cells, as colon epithelial cells. The remarkable benefit of this system is that it does not affect cell viability even at 0.5 mg/ml. This study demonstrates the potential of a new co-delivery system using biocompatible metallo-porphysomes to decrease bacterial infections.
Collapse
Affiliation(s)
- Nastaran Mahafel
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Fatemi A, Najafi A, Razavi R, Jafarzadeh S. Characterizing the antioxidant and antifungal properties of nano-encapsulated pistachio hull extract in fenugreek seed gum to maintain the quality and safety of fresh pistachio. Food Sci Nutr 2024; 12:5561-5571. [PMID: 39139972 PMCID: PMC11317734 DOI: 10.1002/fsn3.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/15/2024] Open
Abstract
The quality of pistachio, one of the export products of Iran, will be decreased during storage as a result of mold spoilage, toxins production, and oil oxidation. This study aimed to investigate the capability of pistachio hull extract (PHE) loaded in fenugreek seed gum (FSG):whey protein isolate (WPI) nanoemulsion to control oil oxidation, and fungi growth in fresh pistachio nut during storage at 4°C. The total anthocyanin and total phenolic content of the PHE were 125.44 μg/g and 675.18 mg/g, respectively. The DPPH radical scavenging activity of PHE at 100 ppm was higher than that of tert-butylhydroquinon (TBHQ). In comparison with other concentrations, 50 ppm showed the strongest antifungal activity against Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius. All nanoemulsions have a mean size lower than 265 nm. The polydispersity index (PDI) of different nanoemulsions was lower than 0.3, and a negative zeta potential was observed. The encapsulation efficiency was higher than 67.0% and all nanoemulsions had spherical morphology. The pistachio nuts were coated with different coating solutions containing 0 and 100 ppm of PHE and stored at 4°C for 8 weeks. The results showed that the pistachio sample coated with a composite coating of WPI and FSG containing 100 ppm of PHE has a higher moisture content and lower changes in L*, a*, and b* indexes, oil oxidation, fungi development, and total mold and yeast count. This treatment exhibited higher overall acceptance than other samples at the end of storage time. The results of this study suggest the use of biodegradable coatings enriched with natural extracts that have high antioxidant and antifungal activities.
Collapse
Affiliation(s)
- Ali Fatemi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UnversityDamghanSemnanIran
| | - Ali Najafi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UnversityDamghanSemnanIran
| | - Razie Razavi
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariMazandaranIran
| | - Shima Jafarzadeh
- Centre for Sustainable BioproductsDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
11
|
Roudbari M, Barzegar M, Sahari MA, Gavlighi HA. Formulation of functional gummy candies containing natural antioxidants and stevia. Heliyon 2024; 10:e31581. [PMID: 38841479 PMCID: PMC11152653 DOI: 10.1016/j.heliyon.2024.e31581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The research aimed to enhance the nutritional value of gummy candies by incorporating pistachio green hull extract (PGHE), stevia, and starch into the formulations. The gummy candies formulations were optimized using PGHE (1-5 %), stevia (0.013-0.040 %) and gelatin-to-starch ratio (9:1, 2:8, and 3:7) by response surface methodology (RSM), central composite design (CCD), with six center points. The physicochemical and textural properties of the gummy candies were assessed. Three optimal formulations were determined, which were preferred by the majority of panelists. One of them was selected for testing total phenolic content (680.31 ± 0.6 mg GAE/100g gummy candy), antioxidant activity (IC50 = 277 μg/mL), FTIR analysis, morphology examination, and storage stability. This study resulted in the development of gummy candies that not only offer a reduced-sugar product (50 %; equal to 12 % of sucrose) with high antioxidant activity but also eliminate the need for artificial flavors and synthetic colorants in the formulation.
Collapse
Affiliation(s)
- Mozhgan Roudbari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| |
Collapse
|
12
|
Kepekci RA, Şekeroğlu G, Alhveis I. Development of bioactive and environmentally friendly chitosan-based film using waste of pistachio dehulling process as a novel promising food packaging material. Int J Biol Macromol 2024; 272:132866. [PMID: 38844283 DOI: 10.1016/j.ijbiomac.2024.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Chitosan films containing different amounts of pistachio hull methanol extract (PHE) (2 %, 4 %, 8 % w/v) were produced. LC-MS/MS analysis demonstrated that tannic acid (207.74 mg/g PHE), gallic acid (46.63 mg/g PHE), protocatechuic acid (27.79 mg/g PHE), quinic acid (16.41 mg/g PHE), isoquercitrin (15.2 mg/g PHE) were the most abundant phenolic compounds in PHE. The biological activity test results indicated that PHE enhanced the antioxidant and antibacterial activities of chitosan films. Chitosan-based films with 8 % PHE showed significant antimicrobial activity on all microorganisms tested. Chitosan films containing even the lowest concentration of PHE effectively inhibited DPPH free radicals, indicating a significant antioxidant activity. The increase in the amount of PHE caused a decrease in the L* value and an increase in the a* and b* values. It was found that the tensile strength and elongation at break of the films containing PHE were higher than those of the control film. Chitosan film with 4 % PHE exhibited the highest values of tensile strength (10.72 ± 1.06 MPa) and elongation at break (198.57 ± 10.34 %). FTIR analysis showed that PHE modified the intermolecular interactions in the film matrix, leading to the expansion of the CC bond and an increase in the intensity of the CO bands. Thermal analysis displayed that chitosan films incorporating PHE exhibited higher thermal stability compared to control films. PHE can be used as a bioactive supportive material in food packaging.
Collapse
Affiliation(s)
- Remziye Aysun Kepekci
- Department of Biology, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey.
| | - Gülten Şekeroğlu
- Department of Food Processing, Naci Topçuoğlu Vocational School, Gaziantep University, Gaziantep, Turkey
| | - Iman Alhveis
- Department of Biology, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
13
|
Barekat S, Nasirpour A, Keramat J, Dinari M, Sedaghat Doost A, Van der Meeren P. Extraction of phenolic compounds from walnut green husk ( Juglans regia L.) by Salting-Out extraction method. Prep Biochem Biotechnol 2024; 54:680-690. [PMID: 37950423 DOI: 10.1080/10826068.2023.2273481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Some factors in the salting-out extraction (SOE) method play a major role. The aim of this study was to investigate the interaction effects of the phase forming components and consequently select the best conditions to achieve a highly efficient recovery of phenolic compounds from walnut green husks (Juglans regia L.) using mixtures of ethanol and aqueous ammonium sulfate solutions. According to the results that were analyzed by response surface methodology, the optimal extraction conditions were obtained at ethanol: salt: water ratio of 34.8: 15.1: 54.4 (w/w) at a pH of 6-6.5 and 25 °C. At the optimal conditions, the overall phenolic and flavonoid content, and antioxidant activity were significantly higher than obtained by the conventional method. In addition, at a higher scale (i.e., 5 kg), similar results were obtained. Thus, it can be concluded that SOE has the potential to be scaled up for the simultaneous separation and purification of compounds from plant biomass. This paper is addressing extraction techniques, measurement, and characterization of new natural phenolic compounds from an agricultural by-product and valorization of waste.
Collapse
Affiliation(s)
- Sorour Barekat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
14
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
15
|
Falahati-Pour SK, Torabizadeh SA, Baghery F, Noroozi-Karimabad M. Pistacia vera and its Combination with Cisplatin: A Potential Anticancer Candidate by Modulating Apoptotic Genes. Anticancer Agents Med Chem 2024; 24:1233-1240. [PMID: 38963105 DOI: 10.2174/0118715206296649240625072637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Many bioactive phytochemicals have essential significance for handling various diseases and developing new drugs. The aim was to investigate the anti-tumor activity and the underlying mechanisms of pistachio pericarp extract (PPE) and pistachio kernel extract (PKE) alone and combined with cisplatin (CP) in the treatment of prostate cancer. METHODS The effects of the PPE, PKE, and CP alone and PPE and PKE in combination with CP (PPE+CP and PKE+CP) on the proliferation of PC-3 cells were determined using the MTT assay. The fold changes of BAX, BCL-2, P53, KLK2, TNF, TGF, and NANOG expression against β-actin were determined by real-time technique. Data were analyzed by two-way ANOVA and repeated measure tests. RESULTS These research results indicated that a greater anti-proliferative effect of the PPE and PKE was shown in combination with CP compared with treatments using the PPE and PKE or CP alone. The extracts and Cisplatin in vitro had good synergistic effects on the inhibition of the proliferation of PC-3 cells. The IC50 values of PKE+CP were 4.141, 2.140, and 0.884 ug/mL, and PPE+CP were 2.754, 2.061, and 0.753 ug/mL after 24 h, 48 h, and 72 h treatment, respectively. Also, this result presented that the mRNA expression of BAX and P53 increased, and BCL-2, KLK2, TNF, TGF, and NANOG decreased in PC-3 cells. CONCLUSIONS The finding of this research showed for the first time the anti-carcinogenesis effects of separately and in the combination of PPE, PKE, and CP on the PC-3 prostate cancer cells via modulating some genes and that it may be nominated for the herbal anti-cancer medications.
Collapse
Affiliation(s)
| | - Seyedeh Atekeh Torabizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Baghery
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojgan Noroozi-Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
16
|
Smeriglio A, Ingegneri M, Germanò MP, Miori L, Battistini G, Betuzzi F, Malaspina P, Trombetta D, Cornara L. Pharmacognostic Evaluation of Monarda didyma L. Growing in Trentino (Northern Italy) for Cosmeceutical Applications. PLANTS (BASEL, SWITZERLAND) 2023; 13:112. [PMID: 38202420 PMCID: PMC10780350 DOI: 10.3390/plants13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Monarda didyma L. (Lamiaceae) is a medicinal and aromatic herb native to eastern North America and now is also cultivated in Northern Italy, which shows terminal heads of bright scarlet-red flowers, subtended by a whorl of red-tinged leafy bracts. Starting from 2018, M. didyma flowering tops have been included in the Belfrit List of botanicals. However, to date studies on the crude extract of this plant are still lacking. The aim of the present study was to investigate the morphological and anatomical features of the flowering tops and the phytochemical profile of their ethanolic and hydroglyceric extracts (EE and HGE, respectively). HGE was the richest in total phenols (105.75 ± 5.91 vs. 64.22 ± 3.45 mg/100 mL) and especially in flavonoids (71.60 ± 5.09 vs. 47.70 ± 1.27 mg/100 mL), as confirmed also by LC-DAD-ESI-MS. Fifty-three polyphenols were identified and quantified. Even if they showed a common polyphenolic profile, EE and HGE showed quantitative differences. Flavan-3-ols and anthocyanins were the most expressed metabolites in HGE, whereas flavonols were the most expressed metabolites in EE. These features confer to HGE the highest antioxidant, anti-inflammatory, and anti-angiogenic properties, detected by several in vitro and in vivo assays, highlighting a promising use of this plant extract for skincare applications.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Luigi Miori
- Areaderma S.r.l., Via per Trento 16, 38042 Baselga di Pinè, Italy; (L.M.); (G.B.)
| | - Giulia Battistini
- Areaderma S.r.l., Via per Trento 16, 38042 Baselga di Pinè, Italy; (L.M.); (G.B.)
| | - Federica Betuzzi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| | - Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| |
Collapse
|
17
|
Shahdadi F, Khorasani S, Salehi-Sardoei A, Fallahnajmabadi F, Fazeli-Nasab B, Sayyed RZ. GC-MS profiling of Pistachio vera L., and effect of antioxidant and antimicrobial compounds of it's essential oil compared to chemical counterparts. Sci Rep 2023; 13:21694. [PMID: 38066078 PMCID: PMC10709598 DOI: 10.1038/s41598-023-48844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
All elements of the pistachio tree are considered raw pistachio by-products. The soft hull makes up the majority of these by-products. It contains proteins, fats, minerals, vitamins, phenolics contents (TPC), and antioxidants. Early smiling pistachios are one of the most important sources of pistachio contamination with aflatoxin in the garden and processing stages. The present study aimed to evaluate pistachio hull essential oil (EO) composition, and antioxidant and antimicrobial properties under in vitro conditions. TPC, antioxidant, and antimicrobial activity were measured using the Folin-Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method, and serial dilution titration method, respectively. A gas chromatography system with a mass spectrometer (GC-MS) was utilized to determine the chemical components of the EO. The findings revealed that the quantity of TPC and anti-radical activity in IC50 were 245.43 mg gallic acid/mL and 206.32 µL/L, respectively. The free radical absorption activity of DPPH (%) increased with EO content. The inhibitory activity of EO on Staphylococcus aureus and Bacillus subtilis was much lower than that of streptomycin and penicillin. Aspergillus flavus was effectively inhibited by pistachio hull EO, comparable to fluconazole. The results obtained from GC-MS showed that the major compounds in pistachio hull essential oil include α-pinene (47.36%), terpinolene (10.57%), limonene (9.13%), and L-bornyl acetate (8.57%). The findings indicated that pistachio hull EO has potent antibacterial and antioxidant components and can be employed as a natural antimicrobial and antioxidant in food systems.
Collapse
Affiliation(s)
- Fatemeh Shahdadi
- Food Science and Technology Department, Faculty of Agriculture, University of Jiroft, Jiroft, 7867155311, Iran
| | - Sepideh Khorasani
- Food Science and Technology Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616913439, Iran
| | - Ali Salehi-Sardoei
- Department of Horticulture, Faculty of Plant Production, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran
| | | | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, 9861335884, Iran.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKVS Commerce College, Shahada, 425409, India.
| |
Collapse
|
18
|
Mohamadi M, Dousdampanis P, Ahmadi Z, Pourmasumi S, Naderi M, Zainodini N, Nazari A. Nut consumption and urogenital and genital, gastrointestinal and women-related cancers: Assessment and review. Chronic Dis Transl Med 2023; 9:277-287. [PMID: 37915385 PMCID: PMC10617366 DOI: 10.1002/cdt3.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 11/03/2023] Open
Abstract
The prevalence of cancer, especially in industrial countries, is a major problem for health and treatment systems. Cancer can affect the quality of life of all family members and has many negative effects on the community. Despite many advances in cancer treatment, this disease is still a major worldwide problem. There is strong evidence that dietary habits are effective in protecting against cancer and even helping in the disease treatment progress. Nuts with various biologically-active compounds, such as vitamins, phytosterols, isoflavones, flavonoids, and polyphenols have been reported to possess anticarcinogenic properties. Accordingly, this review provides an insight into the association between nut consumption and the prevention of some cancers. We considered the cancers related to the urogenital and genital tract, gastrointestinal tract, as well as women-related cancers. Both cell culture examinations and experimental animal studies alongside observational epidemiological studies demonstrated that regular consumption of a nut-enriched diet is able to reduce the risk of these cancers.
Collapse
Affiliation(s)
- Maryam Mohamadi
- Occupational Safety and Health Research Center, NICICOWorld safety organization and Rafsanjan University of Medical SciencesRafsanjanIran
| | | | - Zahra Ahmadi
- Pistachio Safety Research CenterRafsanjan University of Medical SciencesRafsanjanIran
| | - Soheila Pourmasumi
- Social Determinants of Health Research CenterRafsanjan University of Medical SciencesRafsanjanIran
- Clinical Research Development Unit, Ali‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
| | - Monavare Naderi
- Vice Chancellor for Research and TechnologyRafsanjan University of Medical SciencesRafsanjanIran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| | - Alireza Nazari
- Department of Surgery, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
19
|
Cornara L, Malaspina P, Betuzzi F, Di Gristina E, D'Arrigo M, Ingegneri M, Trombetta D, Smeriglio A. The Influence of Pedo-Climatic Conditions on the Micromorphological, Phytochemical Features, and Biological Properties of Leaves of Saponaria sicula Raf. Int J Mol Sci 2023; 24:11693. [PMID: 37511452 PMCID: PMC10380904 DOI: 10.3390/ijms241411693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Saponaria sicula Raf. grows in Sicily, Sardinia, and Algeria on limestone cliffs and volcanic sands 1300-2500 m above sea level. The aim of the present study was to investigate how the pedo-climatic conditions influence the micromorphological, phytochemical, and biological properties of Sicilian S. sicula leaves collected in the Madonie Mountains (SsM) and on Etna Mt (SsE). Micromorphological investigations revealed that leaves from SsM had a higher amount of calcium oxalate druses in the mesophyll and a more intense blue-green staining with Toluidine blue O, indicating a higher content of polyphenols. These data were confirmed by phytochemical analyses carried out on hydroalcoholic extracts, which showed a higher content of total phenols (8.56 ± 0.57 g GAE/100 g DE) and flavonoids (6.09 ± 0.17 g RE/100 g DE) in SsM. Sixty-four compounds were identified by LC-DAD-ESI-MS analysis with propelargonidin dimer as the most abundant compound (10.49% and 10.19% in SsM and SsE, respectively). The higher polyphenol content of SsM leaves matches also with their biological activity, identifying SsM extract as the strongest plant complex (IC50 2.75-477.30 µg/mL). In conclusion, the present study experimentally demonstrates that not only climatic differences but also soil characteristics affect the micromorphological, phytochemical, and biological features of this plant species.
Collapse
Affiliation(s)
- Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| | - Paola Malaspina
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| | - Federica Betuzzi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy
| | - Emilio Di Gristina
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Manuela D'Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| |
Collapse
|
20
|
Gharibi S, Matkowski A, Sarfaraz D, Mirhendi H, Fakhim H, Szumny A, Rahimmalek M. Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti- Candida Activities and Nutritional Properties in Different Pistachio ( Pistacia vera L.) Hull Cultivars. Molecules 2023; 28:4772. [PMID: 37375327 DOI: 10.3390/molecules28124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The use of by-products from the agri-food industry is a promising approach for production of value-added, polyphenol-rich dietary supplements or natural pharmaceutical preparations. During pistachio nut processing, a great amount of husk is removed, leaving large biomass for potential re-use. The present study compares antiglycative, antioxidant, and antifungal activities as well as nutritional values of 12 genotypes belonging to four pistachio cultivars. Antioxidant activity was measured using DPPH and ABTS assays. Antiglycative activity was evaluated as inhibition of advanced glycation end product (AGE) formation in the bovine serum albumin/methylglyoxal model. HPLC analysis was performed to determine the major phenolic compounds. Cyanidin-3-O-galactoside (120.81-181.94 mg/100 g DW), gallic acid (27.89-45.25), catechin (7.2-11.01), and eriodictyol-7-O-glucoside (7.23-16.02) were the major components. Among genotypes, the highest total flavonol content (14.8 mg quercetin equivalents/g DW) and total phenolic content (262 mg tannic acid equivalent/g DW) were in KAL1 (Kaleghouchi) and FAN2 (Fandoghi), respectively. The highest antioxidant (EC50 = 375 μg/mL) and anti-glycative activities were obtained for Fan1. Furthermore, potent inhibitory activity against Candida species was recorded with MIC values of 3.12-12.5 µg/mL. The oil content ranged from 5.4% in Fan2 to 7.6% in Akb1. The nutritional parameters of the tested cultivars were highly variable: crude protein (9.8-15.8%), ADF (acid detergent fiber 11.9-18.2%), NDF (neutral detergent fiber, 14.8-25.6%), and condensed tannins (1.74-2.86%). Finally, cyanidin-3-O-galactoside was considered an effective compound responsible for antioxidant and anti-glycative activities.
Collapse
Affiliation(s)
- Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Danial Sarfaraz
- Department of Plant Breeding, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Mehdi Rahimmalek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
21
|
Askari N, Asadi F, Nazer A, Falahati-pour SK. Anti-aging effects of the pistachio Extract on Mesenchymal Stem Cells proliferation and telomerase activity. Arch Gerontol Geriatr 2023; 111:105016. [PMID: 37031654 DOI: 10.1016/j.archger.2023.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Using mesenchymal stem cells (MSCs) is a promising method in regenerative medicine. Limited proliferation and aging process of MSC are the most common problems in MSCs application. In the present study, we intend to investigate the anti-aging properties of pistachio pericarp in bone marrow-derived MSCs of old male rats. MATERIALS AND METHODS First, 1000, 2000, and 3000 µg/mL AEPP were used to treat MSCs derived from bone marrow for 24 h at 37 °C. Then, cell viability, population doubling time, the percentage of senescent cells, telomere length, telomerase activity, and the expression of TRF1 and RAP1 when bone marrow-derived MSCs treated with AEPP were investigated. RESULTS The results showed that cell viability increased when MSCs derived from bone marrow were treated with 2000 and 3000 µg/mL AEPP, indicating this extract may stimulate proliferation. The population doubling time was also enhanced with an increase in AEPP concentration. Importantly, an increase in AEPP concentration significantly reduced senescent cell percentage. Telomere length, telomerase activity, and the expression of anti-aging genes were significantly increased with the increase of AEPP dose. CONCLUSION Taken together, AEPP has been used as a natural compound with excellent proliferation and anti-aging ability in MSCs. As new therapeutic candidates with promising effects, it can be used with high safety by multiplying cells and delaying the aging process. However, more studies are needed and the anti-aging effects of this extract should be well confirmed in animal models and clinical trials.
Collapse
|
22
|
The Essential Oil of Citrus lumia Risso and Poit. ‘Pyriformis’ Shows Promising Antioxidant, Anti-Inflammatory, and Neuromodulatory Effects. Int J Mol Sci 2023; 24:ijms24065534. [PMID: 36982606 PMCID: PMC10058370 DOI: 10.3390/ijms24065534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Citrus lumia Risso and Poit. ‘Pyriformis’ are horticultural varieties of Citrus lumia Risso. The fruit is very fragrant and pear-shaped, with a bitter juice, a floral flavor, and a very thick rind. The flavedo shows enlarged (0.74 × 1.16 mm), spherical and ellipsoidal secretory cavities containing the essential oil (EO), visible using light microscopy, and more evident using scanning electron microscopy. The GC-FID and GC-MS analyses of the EO showed a phytochemical profile characterized by the predominance of D-limonene (93.67%). The EO showed interesting antioxidant and anti-inflammatory activities (IC50 0.07–2.06 mg/mL), as evaluated by the in vitro cell-free enzymatic and non-enzymatic assays. To evaluate the effect on the neuronal functional activity, the embryonic cortical neuronal networks grown on multi-electrode array chips were exposed to non-cytotoxic concentrations of the EO (5–200 µg/mL). The spontaneous neuronal activity was recorded and the mean firing rate, mean burst rate, percentage of spikes in a burst, mean burst durations and inter-spike intervals within a burst parameter were calculated. The EO induced strong and concentration-dependent neuroinhibitory effects, with IC50 ranging between 11.4–31.1 µg/mL. Furthermore, it showed an acetylcholinesterase inhibitory activity (IC50 0.19 mg/mL), which is promising for controlling some of the key symptoms of neurodegenerative diseases such as memory and cognitive concerns.
Collapse
|
23
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
24
|
Noorolahi Z, Sahari MA, Ahmadi Gavlighi H, Barzegar M. Pistachio green hull extract as natural antioxidant incorporated to omega-3 rich kappa-carrageenan oleogel in dry fermented sausage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Arjeh E, Khodaei SM, Barzegar M, Pirsa S, Karimi Sani I, Rahati S, Mohammadi F. Phenolic compounds of sugar beet ( Beta vulgaris L.): Separation method, chemical characterization, and biological properties. Food Sci Nutr 2022; 10:4238-4246. [PMID: 36514772 PMCID: PMC9731528 DOI: 10.1002/fsn3.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
Sugar beet (Beta vulgaris L.) is a good source of bioactive compounds. However, information on the biological properties of sugar beet root is limited and its beneficial effects have not been completely understood. In this work, 10 phenolic compounds have been separated and identified in various parts of sugar beet for the first time, including the most abundant epicatechin (31.16 ± 1.89 mg/100 g), gallic acid (30.57 ± 2.69 mg/100 g), and quercetin-3-O-rutinoside (30.14 ± 3.63 mg/100 g). The biological activity tests indicated that sugar beet peel potently scavenged the nitric oxide and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals with IC50 values of 88.17 ± 05.14 and 28.77 ± 0.62 μg/ml, respectively. In addition, sugar beet peel exhibited the highest reducing power, IC50 values of 11.98 ± 1.20 μg/ml, and the highest ion-chelating activity, IC50 values of 48.52% and 55.21% for cupric and ferrous ions at 250 μg/ml, respectively. Compared to synthetic antioxidants, sugar beet showed promising biological activities, which could be considered further in future studies.
Collapse
Affiliation(s)
- Edris Arjeh
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Seyedeh Mahsa Khodaei
- Faculty of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Shiva Rahati
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
26
|
Tu S, Wang Z, Zhang W, Li Y, She Y, Du H, Yi C, Qin B, Liu Z. A new technology for rapid determination of isomers of hydroxybenzoic acid by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121313. [PMID: 35598575 DOI: 10.1016/j.saa.2022.121313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the feasibility of using terahertz (THz) technology for the rapid identification of isomers. The time-domain spectra of 2-hydroxybenzoic acid (2-HA), 3-hydroxybenzoic acid (3-HA), and 4-hydroxybenzoic acid (4-HA) were measured by a THz time-domain spectroscopy system (THz-TDS) in the range of 0.3-1.8 THz. Aiming at the isomer classification problem, a THz spectral data classification model based on a variational mode decomposition-particle swarm optimization-support vector machine (VMD-PSO-SVM) method was proposed. Empirical mode decomposition (EMD) and variational mode decomposition (VMD) were used to extract the first eight intrinsic mode functions (IMFs) of the time-domain signal. Principal component analysis (PCA) was used to extract the first 80 principal components of each modal component as the classification feature vector. The particle swarm optimization (PSO) and support vector machine (SVM) algorithms were used to construct 2-, 3-, and 4-HA classification models. We found that the prediction accuracy of the VMD-PSO-SVM model was significantly higher than that of EMD-PSO-SVM model regardless of the modal components. For both EMD and VMD, with the increase in the IMF number, the corresponding classification recognition accuracy tended to decrease. The results showed that the rapid identification model of hydroxybenzoic acid isomers based on THz spectroscopy and SVM was effective and feasible, providing an accurate and rapid method for the chemical synthesis and quality monitoring of biomedicine.
Collapse
Affiliation(s)
- Shan Tu
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China; Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhigang Wang
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wentao Zhang
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yuanpeng Li
- Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yulai She
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hao Du
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Cancan Yi
- Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Qin
- The 34th Research Institute of CETC, Guilin 541004, China
| | - Zhiqiang Liu
- The 34th Research Institute of CETC, Guilin 541004, China
| |
Collapse
|
27
|
Hassan SA, Abbas M, Zia S, Maan AA, Khan MKI, Hassoun A, Shehzad A, Gattin R, Aadil RM. An appealing review of industrial and nutraceutical applications of pistachio waste. Crit Rev Food Sci Nutr 2022; 64:3103-3121. [PMID: 36200872 DOI: 10.1080/10408398.2022.2130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ± 0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ± 0.26%) and proteins (1.80 ± 0.28%) with small amounts of fats (0.04 ± 0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.
Collapse
Affiliation(s)
- Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mueen Abbas
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sania Zia
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Richard Gattin
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
28
|
Effects of Compound Polysaccharides Derived from Astragalus and Glycyrrhiza on Growth Performance, Meat Quality and Antioxidant Function of Broilers Based on Serum Metabolomics and Cecal Microbiota. Antioxidants (Basel) 2022; 11:antiox11101872. [PMID: 36290595 PMCID: PMC9598874 DOI: 10.3390/antiox11101872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation of compound polysaccharides derived from Astragalus and Glycyrrhiza on growth performance, meat quality, antioxidant function, cecal microbiota and serum metabolomics of broilers. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four treatments with six replicates comprising 20 broilers each. Treatments: CON group was the basal diet; ANT group was supplemented with Terramycin calcium; LAG group was supplemented with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG group was supplemented with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides. The results showed that LAG and HAG supplementation increased growth performance, antioxidant function and meat quality compared with the CON group and ANT group and, especially, the effect of LAG treatment was better than HAG. Analysis of cecal microbiota showed that LAG and HAG supplementation altered cecal microbial diversity and composition in broilers. Serum metabolomics analysis showed that a total of 193 differential metabolites were identified in CON and LAG groups, which were mainly enriched in linoleic acid metabolism and glutathione metabolism pathways. Moreover, there was a close correlation between serum metabolites, cecal microbiota and phenotypic indicators. Conclusion: Dietary supplementation of 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides could improve the growth performance, antioxidant function and meat quality of broilers by changing the serum metabolites and cecal microbiota composition.
Collapse
|
29
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
30
|
Yuan W, Zheng B, Li T, Liu RH. Quantification of Phytochemicals, Cellular Antioxidant Activities and Antiproliferative Activities of Raw and Roasted American Pistachios (Pistacia vera L.). Nutrients 2022; 14:nu14153002. [PMID: 35893856 PMCID: PMC9329773 DOI: 10.3390/nu14153002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
The consumption of pistachios has been linked to many potential health benefits. Phytochemicals in pistachios, including phenolics, vitamin E and carotenoids, have been considered to make contributions to the health benefits. The objectives of this study were (1) to explore the phytochemical profiles (total phenolics and total flavonoids, including both free and bound forms), selected phytochemicals, vitamin E and carotenoids of raw and roasted pistachios; (2) to determine total antioxidant activity and cellular antioxidant activity (CAA); and (3) to explore antiproliferative activities of pistachio extracts against human breast, liver and colon cancer cells in vitro. Both raw and roasted pistachios contained high total phenolics, at 479.9 ± 10.2 (raw) and 447.9 ± 9.4 (roasted) mg GAE/100 g, respectively, and high flavonoids, at 178.4 ± 10.6 (raw) and 144.1 ± 7.4 (roasted) mg GAE/100 g, respectively. The contributions of the free form to the total phenolics in pistachios were 82% (raw) and 84% (roasted), respectively, and the contributions of the free form to the total flavonoids in pistachios were 65% (raw) and 70% (roasted), respectively. Gentisic acid and catechin were the major phenolics in raw and roasted pistachios, respectively. Both raw and roasted pistachios had similar total antioxidant activity evaluated by Oxygen-Radical-Scavenging Capacity (ORAC) assay, at 7387.9 ± 467 (raw) and 7375.3 ± 602 (roasted) μmol TE/100 g, respectively. Both raw and roasted pistachio extracts exhibited cellular antioxidant activity inhibiting peroxyradical radical-induced oxidation, with CAA values of 77.39 ± 4.25 (wash) and 253.71 ± 19.18 (no wash) μmol QE/100 g of raw pistachios and 115.62 ± 3.02 (wash) and 216.76 ± 6.6 (no wash) μmol QE/100 g of roasted pistachios. Roasted pistachios contained more vitamin E when compared with raw pistachios, while raw pistachios contained more carotenoids than the roasted pistachios. Additionally, the free form of roasted pistachios extracts exhibited superior antiproliferation activity against HepG2, Caco-2 and MDA-MB-231 cancer cells in a dose-dependent manner, with EC50 34.73 ± 1.64, 36.66 ± 3.3 and 7.41 ± 0.82 mg per mL, respectively. These results provided new knowledge about the phytochemical profiles, antioxidant activity, cellular antioxidant activity and antiproliferative activity of raw and roasted pistachios.
Collapse
Affiliation(s)
- Wang Yuan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China; (W.Y.); (B.Z.)
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China; (W.Y.); (B.Z.)
- Guangdong ERA Food & Life Health Research Institute, Guangzhou 510670, China
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-6235
| |
Collapse
|
31
|
Phenolics and terpenoids change in response to yeast extract and chitosan elicitation in Zataria multiflora cell suspension culture. 3 Biotech 2022; 12:163. [PMID: 35822153 PMCID: PMC9271148 DOI: 10.1007/s13205-022-03235-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/18/2022] [Indexed: 11/01/2022] Open
Abstract
Zataria multiflora is an important medicinal plant with antioxidant and anticancer properties attributed to its phytochemicals. To develop a method for bulk production of valuable phytochemicals, cell suspension culture of Z. multiflora were grown in liquid B5 medium and then treated in their log growth phase with chitosan (0, 10, 20, and 40 mg L-1) and yeast extract (0, 400, 800, and 1200 mg L-1) for 3 days. The levels of hydrogen peroxide (H2O2), nitric oxide (NO), malondialdehyde (MDA), and the main terpenoids and phenylpropanoids in the cell extracts were determined by HPLC and spectrophotometric techniques. The H2O2 and MDA levels significantly increased in the cells treated with both yeast extract and chitosan, while the NO level increased in those exposed to yeast extract. At their highest concentrations, both elicitors significantly increased PAL and TAL activities, as well as phenolic acids and flavonoids contents. Chitosan only induced the production of caffeic acid (22 µg g-1 DW), benzoic acid (2 µg g-1 DW), 4-hydroxy benzoic acid (6 µg g-1 DW), epicatechin (63 µg g-1 DW), and apigenin (5 µg g-1 DW) in the cells, while yeast extract increased the contents of phenylpropanoids gallic acid (50 µg g-1 DW), vanillin (35 µg g-1 DW), salicylic acid (24 µg g-1 DW), catechin (130 µg g-1 DW) and terpenoids carvacrol (7 µg g-1 DW) and thymol (24 µg g-1 DW). In conclusion, changes in the production of phenolics and terpenoids are a defensive mechanism in Z. multiflora cells treated by yeast extract and chitosan. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03235-x.
Collapse
|
32
|
Anti-Inflammatory and Wound Healing Properties of Leaf and Rhizome Extracts from the Medicinal Plant Peucedanum ostruthium (L.) W. D. J. Koch. Molecules 2022; 27:molecules27134271. [PMID: 35807516 PMCID: PMC9268734 DOI: 10.3390/molecules27134271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Peucedanum ostruthium (L.) W. D. J. Koch (Apiaceae) is a worldwide perennial herb native to the mountains of central Southern Europe. The rhizome has a long tradition in popular medicine, while ethnobotanical surveys have revealed local uses of leaves for superficial injuries. To experimentally validate these uses, plant material was collected in the Gran Paradiso National Park, Aosta Valley, Italy, and the rhizome and leaves were micromorphologically and phytochemically characterized. Polyphenol-enriched hydroalcoholic rhizome and leaf extracts, used in cell-free assays, showed strong and concentration-dependent antioxidant and anti-inflammatory activities. In vitro tests revealed cyclooxygenase and lipoxygenase inhibition by the leaf extract, while the rhizome extract induced only lipoxygenase inhibition. MTT assays on HaCaT keratinocytes and L929 fibroblasts showed low cytotoxicity of extracts. In vitro scratch wound test on HaCaT resulted in a strong induction of wound closure with the leaf extract, while the effect of the rhizome extract was lower. The same test on L929 cells showed similar wound closure induction with both extracts. The results confirmed the traditional medicinal uses of the rhizome as an anti-inflammatory and wound healing remedy for superficial injuries but also highlighted that the leaves can be exploited for these purposes with equal or superior effectiveness.
Collapse
|
33
|
Moreno-Rojas JM, Velasco-Ruiz I, Lovera M, Ordoñez-Díaz JL, Ortiz-Somovilla V, De Santiago E, Arquero O, Pereira-Caro G. Evaluation of Phenolic Profile and Antioxidant Activity of Eleven Pistachio Cultivars ( Pistacia vera L.) Cultivated in Andalusia. Antioxidants (Basel) 2022; 11:antiox11040609. [PMID: 35453293 PMCID: PMC9029509 DOI: 10.3390/antiox11040609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Pistachio (Pistacia vera L.) is a nut with a good adaptability to the Mediterranean conditions of cultivation, specifically in the Andalusian region, becoming an emerging crop. Moreover, it has been getting attention in the past years for the great content of bioactive compounds such as polyphenols. Although some studies have reported the polyphenolic profile of pistachios, most of them have analyzed the hull part, considered as a residue, and not the kernel which is the edible part. Therefore, characterization of eleven varieties of pistachios kernels cultivated in Andalusia and harvested in 2019 and 2020 was carried out by UHPLC-MS (ultra-high-performance liquid chromatography high-resolution mass spectrometry). The identification and quantification of 56 polyphenolic compounds was performed, being the hydroxybenzoic acids group the most abundant with a 71−86% of the total amount followed by flavan-3-ols group that accounted for 8−24%. Moreover, 3,4-dihydroxybenzoic acid was the main compound in most of the varieties, followed by vanillic acid hexoside. Larnaka, Avdat, Aegina, and Mateur presented the highest amount of total polyphenols, while Kalehghouchi, Joley, Lost Hills, Kerman, and Golden Hills were the varieties with the lowest content. Regarding the harvest season, no significant differences (p < 0.01) were found in the total amount of polyphenols between 2019 and 2020. In addition, the antioxidant activity was measured by DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), and ORAC (oxygen radical absorbance capacity) assays, showing a similar trend as that of the polyphenols.
Collapse
Affiliation(s)
- José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - Isabel Velasco-Ruiz
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - María Lovera
- Department of Agri-Food Engineering and Technology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - José Luis Ordoñez-Díaz
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - Víctor Ortiz-Somovilla
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - Elsy De Santiago
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - Octavio Arquero
- Department of Agri-Food Engineering and Technology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality Area, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n, 14004 Córdoba, Spain
| |
Collapse
|
34
|
Aissat AK, Chaher-Bazizi N, Richard T, Kilani-Atmani D, Pedrot E, Renouf E, Atmani D, Valls Fonayet J. Analysis of individual anthocyanins, flavanols, flavonols and other polyphenols in Pistacia lentiscus L. fruits during ripening. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Karaoglu EC, Tarhan L. Pistachio (Pistacia vera L.) hull samples from Turkey: phenolic compounds, antioxidant properties, and cytotoxic activities against HeLa, MCF-7, OE-33, and ACC-201 cancer cell lines. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Microwave-Assisted Extraction Coupled to HPLC-UV Combined with Chemometrics for the Determination of Bioactive Compounds in Pistachio Nuts and the Guarantee of Quality and Authenticity. Molecules 2022; 27:molecules27041435. [PMID: 35209222 PMCID: PMC8875453 DOI: 10.3390/molecules27041435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel microwave-assisted extraction (MAE) methods were developed for the isolation of phenols and tocopherols from pistachio nuts. The extracts were analyzed by reversed-phase high-pressure liquid chromatography coupled with a UV detector (RP-HPLC-UV). In total, eighteen pistachio samples, originating from Greece and Turkey, were analyzed and thirteen phenolic compounds, as well as α-tocopherol, (β + γ)-tocopherol, and δ-tocopherol, were identified. The analytical methods were validated and presented good linearity (r2 > 0.990) and a high recovery rate over the range of 82.4 to 95.3% for phenols, and 93.1 to 96.4% for tocopherols. Repeatablility was calculated over the range 1.8–5.8%RSD for intra-day experiments, and reproducibility over the range 3.2–9.4%RSD for inter-day experiments, respectively. Principal component analysis (PCA) was employed to analyze the differences between the concentrations of the bioactive compounds with respect to geographical origin, while agglomerative hierarchical clustering (AHC) was used to cluster the samples based on their similarity and according to the geographical origin.
Collapse
|
37
|
Harandi H, Falahati-Pour SK, Mahmoodi M, Faramarz S, Maleki H, Nasab FB, Shiri H, Fooladi S, Nematollahi MH. Nanoliposomal formulation of pistachio hull extract: preparation, characterization and anti-cancer evaluation through Bax/Bcl2 modulation. Mol Biol Rep 2022; 49:2735-2743. [PMID: 35037194 DOI: 10.1007/s11033-021-07083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pistachio is one of the main crops in Iran. Pistachio green hull, as a by-product of this fruit, is obtained in large quantities after the processing of pistachios. This novel work was designed to examine the possible anti-cancer impact of the pistachio hull extract in the liposomal form (PHEL) on HepG2 cells. METHODS AND RESULTS The thin-film hydration approach was used for preparing liposomes and the physicochemical features of the liposomes were subsequently characterized. Afterward, apoptosis and the expression of genes related to apoptosis were assessed using flow cytometry assay and quantitative real-time polymerase chain reaction (qPCR), respectively. According to the results, the size range of PHEL was between 198 and 201 nm with a negative surface charge of - 39.2 to - 42.9 mV. As revealed by the flow cytometry results, this liposomal extract exhibits good potential for the induction of apoptosis. Moreover, the qPCR results demonstrated the up-regulation of p53 and Bax expressions and the down-regulation of Bcl-2 expression with an associated Bax/Bcl-2 ratio up-regulation. CONCLUSION The flow cytometry and real-time PCR results indicated the potential of this liposomal extract as an anti-cancer drug candidate for the treatment of liver cancer in the future, and the mitochondrial pathway involving the up-regulation of the Bax/Bcl-2 ratio can mediate its impact.
Collapse
Affiliation(s)
- Hamidreza Harandi
- Department of Biochemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Haniyeh Maleki
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | | | - Hamidreza Shiri
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
38
|
Mandalari G, Barreca D, Gervasi T, Roussell MA, Klein B, Feeney MJ, Carughi A. Pistachio Nuts ( Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. PLANTS (BASEL, SWITZERLAND) 2021; 11:18. [PMID: 35009022 PMCID: PMC8747606 DOI: 10.3390/plants11010018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/24/2023]
Abstract
Epidemiological and clinical studies have indicated positive outcomes related to tree nut consumption. Here, we review the production, nutrient, phytochemical composition and emerging research trends on the health benefits of pistachio nuts (Pistacia vera L.). Pistachios are a good source of protein, fiber, monounsaturated fatty acids, minerals and vitamins, as well as carotenoids, phenolic acids, flavonoids and anthocyanins. Polyphenols in pistachios are important contributors to the antioxidant and anti-inflammatory effect, as demonstrated in vitro and in vivo through animal studies and clinical trials. The antimicrobial and antiviral potential of pistachio polyphenols has also been assessed and could help overcome drug resistance. Pistachio consumption may play a role in cognitive function and has been associated with a positive modulation of the human gut microbiota and beneficial effects on skin health. Pistachio polyphenol extracts may affect enzymes involved in glucose regulation and so type 2 diabetes. Taken together, these data demonstrate the health benefits of including pistachios in the diet. Further studies are required to investigate the mechanisms involved.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy;
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy;
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | | | - Bob Klein
- California Pistachio Research Board, Fresno, CA 93727, USA;
| | - Mary Jo Feeney
- Consultant to the Food and Agriculture Industries, Los Altos Hills, CA 94024, USA;
| | | |
Collapse
|
39
|
Smeriglio A, De Francesco C, Denaro M, Trombetta D. Prickly Pear Betalain-Rich Extracts as New Promising Strategy for Intestinal Inflammation: Plant Complex vs. Main Isolated Bioactive Compounds. Front Pharmacol 2021; 12:722398. [PMID: 34594220 PMCID: PMC8476807 DOI: 10.3389/fphar.2021.722398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, many studies have highlighted the health effects of betalains beyond their use as food dyes. The present study investigated betalain-rich extracts with different colors and their main bioactive compounds in order to provide first evidence as a new promising strategy for intestinal inflammation management. Prickly pear betalain–rich extracts, obtained by a QuEChERS method, have been characterized by LC-DAD-ESI-MS/MS analysis. The potential role of betanin, indicaxanthin, and prickly pear extracts in counteracting the antioxidant and anti-inflammatory events was evaluated by several in vitro cell-free and cell-based assays. Indicaxanthin and betanin represent the most abundant compounds (≥22.27 ± 4.50 and 1.16 ± 0.17 g/100 g dry extract, respectively). Prickly pear extracts showed the strongest antioxidant and anti-inflammatory activities with respect to the pure betalains both on in vitro cell-free and cell-based assays, demonstrating the occurrence of synergistic activity, without any cytotoxicity or alteration of the barrier systems. The release of reactive oxygen species (ROS) and key inflammatory markers (IL-6, IL-8, and NO) was strongly inhibited by both betalains and even more by prickly pear extracts, which showed a similar and sometimes better profile than the reference compounds trolox and dexamethasone in counteracting the IL-1β–induced intestinal inflammation.
Collapse
Affiliation(s)
- A Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - C De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - M Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Physiological response and secondary metabolites of three lavender genotypes under water deficit. Sci Rep 2021; 11:19164. [PMID: 34580379 PMCID: PMC8476503 DOI: 10.1038/s41598-021-98750-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Lavandula genus is a considerable medicinal plant in pharmaceutical and cosmetics industries. Considering increasing threat of drought in the world, it is important to identify genotypes which can tolerate drought. It is also important to characterize quantity and quality of essential oils, and tolerance indicators of these genotypes against drought stress. Therefore, an experiment was conducted in Gorgan University of Agricultural Sciences and Natural Resources, Iran, during 2017 and 2018, to investigate these factors. It was a factorial experiment based on randomized complete block design with two treatments, three genotypes (Lavandula angustifolia cv. Hidcote, Lavandula angustifolia cv. Munstead, and Lavandula stricta), and four levels of drought stress (irrigation regimes) (I1: 100–90% (control), I2: 80–70%, I3: 60–50% and I4: 30–40% of field capacity) which was done with three repetitions. Drought increased amount of proline in leaves, antioxidant activity, activity of catalase, peroxidase, ascorbate peroxidase, and superoxide enzymes, malondialdehyde content, total flavonoids, total phenol, total sugar and essential oil percentage. The PCA analysis of different irrigation regimes showed that in the first component, the best traits are antioxidant enzymes CAT, SOD, APX, while in the second component, only the trait Catalase is the best trait. The results of PCA analysis in lavender genotypes showed that L. stricta exhibits the most affected physiological changes while trying to adjust to changes in the water status of the environment, under the imposed conditions and shows the highest resistance. But it reduced dry weight of aerial parts, relative water content of leaves, and efficacy of essential oil. Lavandula stricta genotype had the highest amount of essential oil, but the highest dry weight of the aerial parts and essential oil yield were related to L. angustifolia cv. Hidcote and L. angustifolia cv. Munstead genotypes. In all evaluated genotypes, with increasing drought stress, monoterpene compounds were decreased and sesquiterpene compounds were increased. Totally it was shown that drought effect on evaluated traits depends on genotype and nature of traits; this indicates that by choosing drought-tolerant genotypes in breeding programs, high quantity and quality of essential oil, as well as tolerance to drought stress can be achieved.
Collapse
|
41
|
Smeriglio A, Denaro M, Trombetta D, Ragusa S, Circosta C. New Insights on Euphorbia dendroides L. ( Euphorbiaceae): Polyphenol Profile and Biological Properties of Hydroalcoholic Extracts from Aerial Parts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1621. [PMID: 34451666 PMCID: PMC8399491 DOI: 10.3390/plants10081621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Euphorbia dendroides L. is a rounded shrub commonly found in the Mediterranean area well-known, since ancient times, for its traditional use. The aim of the present study was to investigate the phytochemical profile as well as the antioxidant and anti-inflammatory properties of flower (FE), leaf (LE), fruit (FrE), and branch (BE) hydroalcoholic extracts. For this purpose, a preliminary phytochemical screening followed by RP-LC-DAD-ESI-MS analysis, as well as several in vitro cell-free colorimetric assays, were carried out. Moreover, the toxicity of the extracts was investigated by the brine shrimp lethality assay. All extracts showed a high content of polyphenols, in particular phenolic acids (chlorogenic acid 0.74-13.80 g/100 g) and flavonoids (rutin 0.05-2.76 g/100 g and isovitexin 8.02 in BE). All the extracts showed strong and concentration-dependent antioxidant and anti-inflammatory activity with, on average, the following order of potency: FE, LE, FrE, and BE. Interestingly, all the extracts investigated did not show any toxicity on Artemia salina. Moreover, the only LD50 found (BE, 8.82 mg/mL) is well above the concentration range, which has been shown the biological properties. Considering this, this study offers the first evidence of the possible use of the polyphenol extracts from the aerial parts of E. dendroides as promising antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.D.); (D.T.); (C.C.)
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.D.); (D.T.); (C.C.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.D.); (D.T.); (C.C.)
| | - Salvatore Ragusa
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.D.); (D.T.); (C.C.)
| |
Collapse
|
42
|
Muscarà C, Smeriglio A, Trombetta D, Mandalari G, La Camera E, Grassi G, Circosta C. Phytochemical characterization and biological properties of two standardized extracts from a non-psychotropic Cannabis sativa L. cannabidiol (CBD)-chemotype. Phytother Res 2021; 35:5269-5281. [PMID: 34173287 PMCID: PMC8518979 DOI: 10.1002/ptr.7201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
The aim of study was to evaluate and compare the phytochemical profile, the antioxidant and antimicrobial properties of two standardized extracts from non-psychotropic (Δ9 -tetrahydrocannabinol ≤0.2%) Cannabis sativa L. var. fibrante rich in cannabidiol (CBD). The two extracts, namely Cannabis Fibrante Hexane Extract 1 (CFHE1) and Cannabis Fibrante Hexane Extract 2 (CFHE2), were obtained by extraction with acidified hexane from dried flowering tops as such and after hydrodistillation of the essential oil, respectively. Gas chromatographic analysis showed that cannabinoids remained the predominant class of compounds in both extracts (82.56% and 86.38%, respectively), whereas a marked depletion of the terpenes occurred. Moreover, liquid chromatographic analysis highlighted a high titer of cannabidiol acid (CBDA) and CBD in CFHE1 and CFHE2, respectively. Both extracts showed a strong and concentration-dependent antioxidant activity and a potent antimicrobial activity against both Staphylococcus aureus ATCC 6538 (MIC and MBC of 4.88 μg/ml for CFHE1, and 4.88 and 19.53 μg/ml, respectively, for CFHE2) and methicillin resistant clinical strains (MIC values between 1.22 and 9.77 μg/ml and MBC values between 4.88 and 78.13 μg/ml). Considering this, the obtained results suggest that standardized extracts of C. sativa var. fibrante could find promising applications as novel antimicrobial agents.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianpaolo Grassi
- Council for Agricultural Research and Economics Research Centre for Cereal and Industrial Crops (CREA-CI) IT, Rovigo, Italy
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Tunisian Pistachio Hull Extracts: Phytochemical Content, Antioxidant Activity, and Foodborne Pathogen Inhibition. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9953545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to discriminate pistachio (Pistacia vera L.) hulls belonging to three different Tunisian geographical origins and extracted separately by hexane, acetone, acetonitrile, and water in terms of phytochemicals and antioxidant and antibacterial activities using multivariate analysis. Significant differences (
) in the phytochemical content, antioxidant, and antifoodborne bacterial activities were detected among the pistachio hulls populations. Pearson correlation, principal component analysis (PCA), hierarchical cluster analysis (HCA), and heat map were used to distinguish the relationship between the different regions on the basis of the biological activities. It was found that the twelve (4 extracts × 3 geographical sources) pistachio hulls extracts could be classified geographically into four distinct groups. To explore the mode of action of the aqueous pistachio hull extract against L. monocytogenes and S. enterica, polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM) and xylose lysine deoxycholate (XLD) broth media were artificially contaminated at 104 CFU/mL. Using linear and general linear models, aqueous pistachio hull extract was demonstrated to control the two dominant food-borne pathogens by suppressing the bacterial growth.
Collapse
|
44
|
Paolino D, Mancuso A, Cristiano MC, Froiio F, Lammari N, Celia C, Fresta M. Nanonutraceuticals: The New Frontier of Supplementary Food. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:792. [PMID: 33808823 PMCID: PMC8003744 DOI: 10.3390/nano11030792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, the combination between nanotechnology and nutraceutics has gained the attention of several research groups. Nutraceuticals are considered as active compounds, abundant in natural products, showing beneficial effects on human health. Unfortunately, the uses, and consequently the health benefits, of many nutraceutical products are limited by their unsuitable chemico-physical features. For example, many nutraceuticals are characterized by low water solubility, low stability and high susceptibility to light and oxygen, poor absorption and potential chemical modifications after their administration. Based on the potential efficacy of nutraceuticals and on their limiting features, nanotechnology could be considered a revolutionary innovation in empowering the beneficial properties of nutraceuticals on human health, thus enhancing their efficacy in several diseases. For this reason, nanotechnology could represent a new frontier in supplementary food. In this review, the most recent nanotechnological approaches are discussed, focusing on their ability to improve the bioavailability of the most common nutraceuticals, providing an overview regarding both the advantages and the possible limitations of the use of several nanodelivery systems. In fact, although the efficacy of smart nanocarriers in improving health benefits deriving from nutraceuticals has been widely demonstrated, the conflicting opinions on the mechanism of action of some nanosystems still reduce their applicability in the therapeutic field.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Antonia Mancuso
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Francesca Froiio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy; (D.P.); (M.C.C.); (F.F.)
| | - Narimane Lammari
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria;
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, I-66100 Chieti, Italy;
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy;
| |
Collapse
|
45
|
Determination of the Toxic and Nutrient Element Content of Almonds, Walnuts, Hazelnuts and Pistachios by ICP-AES. SEPARATIONS 2021. [DOI: 10.3390/separations8030028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The trace element content of thirty-two nuts including almonds, walnuts, hazelnuts and pistachios available in a Greek market was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Wet acid digestion using nitric acid (65%) took place in Teflon autoclaves. The limits of detection (LODs) and limits of quantification (LOQs) ranged between 0.01 (Mg)–2.52 (Cu) μg g−1 and 0.02 (Mg)–8.40 (Cu) μg g−1, respectively. Good method linearity (r2 > 0.9990) was observed for each element at the selected emission lines. The metals were quantified and one-way analysis of variance (ANOVA) was used to examine whether or not there were any statistically significant differences among the metal concentrations inside the different nut species.
Collapse
|
46
|
Smeriglio A, D'Angelo V, Denaro M, Trombetta D, Germanò MP. The Hull of Ripe Pistachio Nuts (Pistacia vera L.) as a Source of New Promising Melanogenesis Inhibitors. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:111-117. [PMID: 33635514 DOI: 10.1007/s11130-021-00883-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In the present study an acidified methanol pistachio hull extract was investigated for antioxidant and inhibitory effects on melanin biosynthesis by in vitro and in vivo assays. The chromatographic analysis revealed that cyanidin-3-O-galactoside represents the main compound (98.37%). The pistachio hull extract efficiently inhibits the mono and diphenolase activity of mushroom tyrosinase (IC50= 141.07 and 116.08 μg/mL, respectively) and it was able, thanks to its strong antioxidant and free-radical scavenging activities, to hinder the L-DOPA auto-oxidation in a concentration-dependent manner (125-500 μg/mL). Results of in vivo assay showed that the treatment with pistachio hull extract (10 μg/mL) reduced pigmentation in zebrafish embryos at early stages of development (60.01% of inhibition vs control). In conclusion, these findings suggest that the ripe pistachio hull may be considered as a promising source of antioxidant and skin whitening agents for the development of new products useful in preventing the pigmentation disorders in humans and/or to improve the food quality.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy.
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| |
Collapse
|
47
|
Punvittayagul C, Chariyakornkul A, Sankam P, Wongpoomchai R. Inhibitory Effect of Thai Purple Rice Husk Extract on Chemically Induced Carcinogenesis in Rats. Molecules 2021; 26:E360. [PMID: 33445792 PMCID: PMC7828288 DOI: 10.3390/molecules26020360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the cancer chemopreventive effects of an acidic methanol extract of purple rice husk on chemically induced carcinogenesis in rats. This purple rice husk extract (PRHE) had high polyphenol contents. Vanillic acid was a major phenolic compound in PRHE. Three major anthocyanins found in PRHE were malvidin-3-glucoside, peonidin-3-glucoside and cyanidin-3-glucoside. PRHE was not toxic and clastogenic in rats. The LD50 of PRHE was greater than 2000 mg kg-1 body weight (BW). The oral administration of 300 or 1000 mg kg-1 BW of PRHE for 28 days significantly decreased the number of micronucleated hepatocytes in diethylnitrosamine-initiated rats. The inhibitory mechanisms were associated with the reduction of cytochrome P450 2E1 expression and induction of some detoxifying enzymes in the liver. In addition, treatment with 500 mg kg-1 BW of PRHE for eight weeks did not induce preneoplastic lesions in the liver and colon. It significantly inhibited hepatic glutathione-S-transferase positive foci formation induced by diethylnitrosamine and 1,2-dimethylhydrazine by suppression of hepatocyte proliferation and induction of apoptosis. In conclusion, PRHE did not present toxicity, clastogenicity or carcinogenicity in rats. It exhibited cancer chemopreventive properties against chemically induced early stages rat hepatocarcinogenesis. Anthocyanins and vanillic acid might be candidate anticarcinogenic compounds in purple rice husk.
Collapse
Affiliation(s)
- Charatda Punvittayagul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (A.C.)
- Research Affairs, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (A.C.)
| | - Paweena Sankam
- Sankamphaeng School, Saimun Sankamphaeng, San Kamphaeng, Chiang Mai 50130, Thailand;
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (A.C.)
| |
Collapse
|
48
|
Phytochemical Profile, Safety Assessment and Wound Healing Activity of Artemisia absinthium L. PLANTS 2020; 9:plants9121744. [PMID: 33321822 PMCID: PMC7763807 DOI: 10.3390/plants9121744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
The aim of study was to validate, by in vitro and in vivo studies, the traditional use for wound-healing activity of Artemisia absinthium L. Reversed-phase liquid chromatography coupled with diode array detection and electrospray ion trap mass spectrometry (RP-LC-DAD-ESI-MS) analysis allowed to identify eleven polyphenols with chlorogenic acid as the most abundant compound (3.75 g/100 g of dry extract). After that, antibacterial activity as well as acute dermal and oral toxicity were assessed in animal models. In order to investigate the wound-healing activity of A. absinthium methanol extract, two ointments were formulated (MEO 5% and 10%). The ointment with the highest concentration of plant extract (10%) showed a statistically significant effect on the rats wound contraction, similar to that exerted by the reference drug Cicatryl-Bio. Moreover, A. absinthium methanol extract showed the best antibacterial activity against the Gram-negative Escherichia coli ATCC 10536 (MIC 1.25–2.5 mg/mL) and the Gram-positive Staphylococcus aureus ATCC 6538 (0.31–0.625 mg/mL). The absence of oral and topical toxicity of the treated animals allowed to establish the safety of the ointments. Overall, data collected in the present study support and validate the use of A. absinthium as a wound healing agent in the Algerian traditional medicine.
Collapse
|
49
|
Smeriglio A, Denaro M, D'Angelo V, Germanò MP, Trombetta D. Antioxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Citrus lumia Juice. Front Pharmacol 2020; 11:593506. [PMID: 33343362 PMCID: PMC7744484 DOI: 10.3389/fphar.2020.593506] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus juices are a rich source of bioactive compounds with various and well-known health benefits. The aim of this study was to investigate the polyphenols and ascorbic acid content as well as to investigate the antioxidant, anti-inflammatory and anti-angiogenic properties of the juice of an ancient Mediterranean species, Citrus lumia Risso (CLJ). The antioxidant and anti-inflammatory activities were evaluated by several in vitro cell-free and cell-based assays, whereas two different in vivo models, the chick chorioallantoic membrane (CAM) and the zebrafish embryos, were used to characterize the anti-angiogenic properties. Twenty-eight polyphenols were identified by RP-LC-DAD-ESI-MS analysis (flavonoids 68.82% and phenolic acids 31.18%) with 1-caffeoyl-5-feruloylquinic acid and kaempferol 3′-rhamnoside, which represent the most abundant compounds (25.70 and 23.12%, respectively). HPLC-DAD analysis showed a high ascorbic acid content (352 mg/kg of CLJ), which contributes with polyphenols to the marked and dose-dependent antioxidant and anti-inflammatory properties observed. CLJ showed strong and dose-dependent anti-angiogenic activity as highlighted by the inhibition of blood vessel formation on CAMs and the decrease of endogenous alkaline phosphatase on zebrafish embryos. Moreover, within the concentration range tested, no dead or malformed embryos were recorded. Certainly, further studies are needed to investigate the molecular mechanisms underlying these promising biological effects, but considering the evidence of the present study, the use of CLJ as a ready-to drink safe prevention strategy for inflammatory-based diseases correlated to angiogenesis could be justified.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Muscarà C, Smeriglio A, Trombetta D, Mandalari G, La Camera E, Occhiuto C, Grassi G, Circosta C. Antioxidant and antimicrobial activity of two standardized extracts from a new Chinese accession of non-psychotropic Cannabis sativa L. Phytother Res 2020; 35:1099-1112. [PMID: 33034400 DOI: 10.1002/ptr.6891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to evaluate the antioxidant and antimicrobial properties of two extracts from a new Chinese accession (G-309) of Cannabis sativa L. (Δ9 -tetrahydrocannabinol <0.2%) with high content of propyl side chain phytocannabinoids. Dried flowering tops, as such and after hydrodistillation of the essential oil, were extracted with acidic hexane to produce the Cannabis Chinese hexane extract 1 (CChHE1) and 2 (CChHE2), respectively. The phytochemical profile of CChHE1 and CChHE2 was investigated by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (LC-DAD-ESI-MS/MS) analyses. The antioxidant properties were assessed by several in vitro cell-free assays. The antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria and the yeast Candida albicans. Phytochemical analyses highlighted a high content of cannabidivarinic acid (CBDVA) and tetraydrocannabivarinic acid (THCVA) in CChHE1, and cannabidivarin (CBDV) and tetraydrocannabivarin (THCV) in CChHE2. Both extracts showed remarkable antioxidant activity and strong antimicrobial properties (MIC 39.06 and MBC 39.06-78.13 μg/ml) against both ATCC and methicillin-resistant clinical strains of Staphylococcus aureus. In conclusion, standardized extracts of C. sativa Chinese accession could be promising for their possible use as novel antibacterial agents for the treatment of widespread S. aureus infections.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianpaolo Grassi
- Council for Agricultural Research and Agricultural Economy Analysis - Research Center for Industrialcrops (CREA-CI), Rovigo, Italy
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|