1
|
Zhang H, Liu S, Ma Z, Huang H, Zheng L, Tian Y, Zhong Q. Microbial succession and organic acid metabolism during spontaneous calamondin fermentation: The vital role of Pichia. Food Res Int 2025; 209:116200. [PMID: 40253168 DOI: 10.1016/j.foodres.2025.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Calamondin (Citrus microcarpa) is rich in bioactive components, indicating potential for fermented calamondin fruit (FCF) development with improved flavor and bioactivity. However, reports on this are limited. This study systematically analyzed changes in physicochemical properties, phenolic/flavor compounds, enzyme inhibition rates, and microbial community structure during FCF spontaneous fermentation. Results indicated significant changes in organic acid profiles during FCF spontaneous fermentation. The inhibition rate of digestion-related enzymes increased, correlating with phenolic compound composition changes. Additionally, the fermentation improved the flavor profile of FCF, including isoamyl acetate and ethyl acetate formation. The microbial community revealed succession patterns with Acetobacter and Pichia as core genera. Variations in organic acids influenced fungal community succession, particularly Pichia. Additionally, a Pichia terricola strain (QJJY1) was isolated; genomic analysis linked it to carbohydrate and amino acid metabolism. Simulated fermentation demonstrated P. terricola QJJY1's role in regulating organic acid profiles, shedding light on its impact on microbial and metabolite profiles during FCF fermentation. This study offers insights into the high-value utilization of calamondin resources and development of new fermented products.
Collapse
Affiliation(s)
- Hongjian Zhang
- Hainan University, HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, Haikou City 570228, Hainan Province, People's Republic of China; Hainan Institute of Grain and Oil Science, Qionghai City 571400, Hainan Province, People's Republic of China
| | - Shuaiguang Liu
- Hainan Institute of Grain and Oil Science, Qionghai City 571400, Hainan Province, People's Republic of China
| | - Zewei Ma
- Hainan Institute of Grain and Oil Science, Qionghai City 571400, Hainan Province, People's Republic of China
| | - Huan Huang
- Hainan Institute of Grain and Oil Science, Qionghai City 571400, Hainan Province, People's Republic of China
| | - Lianhe Zheng
- Hainan Institute of Grain and Oil Science, Qionghai City 571400, Hainan Province, People's Republic of China
| | - Yan Tian
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Science and Engineering, Hainan University, Haikou City 570228, Hainan Province, People's Republic of China.
| | - Qiuping Zhong
- Hainan University, HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, Haikou City 570228, Hainan Province, People's Republic of China
| |
Collapse
|
2
|
Ali SA, AL-Mousawi ZAH, AL-Rikaby AA, Farouk SM, Elnesr SS. Ameliorative Effect of Artemisia absinthium Ethanolic Extract Against Sodium Fluoride Toxicity in Rat Testes: Histological and Physiological Study. Vet Sci 2025; 12:371. [PMID: 40284873 PMCID: PMC12031291 DOI: 10.3390/vetsci12040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
This study aimed to investigate the effect of Artemisia absinthium extract on testicular dysfunction in rats and explain the involvement of the androgen receptor signaling pathway as a biomarker in maintaining fertility during sodium fluoride (NaF) treatment. Thirty-two male rats were divided equally into four groups and received treatment for 60 days. The control group (I) received normal saline; group II received Artemisia extract at 100 mg/kg b.w.; group III received NaF at 12 mg/kg b.w. orally; and group IV received NaF (12 mg/kg b.w.) and Artemisia extract (100 mg/kg b.w.). The testis weights and the lipid peroxidation, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were estimated. The genital organs were prepared and immunoreacted with a receptor. Histomorphometric analyses were performed to obtain the diameter of the seminiferous tubules and the height of the germinal epithelia in the testes. The results showed that exposure to NaF caused a significant increase in testis weight and malondialdehyde (MDA) and a decrease in serum LH, FSH, and testosterone concentrations compared to the control group, while extract administration induced an increase in the levels of these hormones in group IV. Testicular histological and histomorphometric changes were observed in group III: degenerative seminiferous tubules with vascular congestion, disorganization of the germinal layer, and decreased seminiferous tubule diameter and germinal epithelium height. The expression of androgen receptors in the testes of the NaF-treated rats was significantly reduced. In contrast, these testicular histological changes were ameliorated in rats treated with the extract. The results allow us to conclude that the administration of Artemisia absinthium confers positive effects on male reproductive function by inhibiting fluoride, maybe via ameliorative testicular function.
Collapse
Affiliation(s)
- Sawsan A. Ali
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah 61004, Iraq;
| | - Zainab A. H. AL-Mousawi
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Basrah, Basrah 61004, Iraq; (Z.A.H.A.-M.); (A.A.A.-R.)
| | - Ahlam A. AL-Rikaby
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Basrah, Basrah 61004, Iraq; (Z.A.H.A.-M.); (A.A.A.-R.)
| | - Sameh Mohamed Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
3
|
Kaya Kartal Y, Ozalp Unal D, Ozkan HI, Hismiogullari AA, Sel T. Antioxidant, Phenolic, Flavonoid, and Mineral Content of L. officinalis and Its Cytotoxic Effect on Human Embryonic Kidney (Hek-293) Cells. Food Sci Nutr 2025; 13:e4608. [PMID: 40109276 PMCID: PMC11921010 DOI: 10.1002/fsn3.4608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/22/2025] Open
Abstract
Cherry laurel (L. officinalis) is a well known natural product and folk medicine in the Black Sea region of Turkey. The aim of this study was to investigate the antioxidant effect, polyphenolic, and mineral content of cherry laurel and the cytotoxic effect of its methanolic extraction on human embryonic kidney cells. The total phenolic content of L. officinalis was found to be 1.28 mg GAE/g, while the flavonoid content was 1.26 mg RE/g. The DPPH scavenging activity was 118.76 μg/g. Total antioxidant capacity was found to be 3.54 mM/100 g and in HPLC analysis only chlorogenic acid (101 μg/g) could be detected, but cyanidin-3-glucoside chloride, resveratrol, vanillic acid, (+)-catechin, and (-)-epicatechin could not. The highest mineral content was found in magnesium levels (46.10 ± 0.57 μg/g), but also contained selenium (9.90 ± 0.78 μg/g), silver (4.46 ± 0.27 μg/g), lead (1.34 ± 0.08 μg/g), zinc (1.31 ± 0.11 μg/g), and copper (0.66 ± 0.05 μg/g). Trace amounts of manganese (0.17 ± 0.02 μg/g) and mercury (0.08 ± 0.01 μg/g) were found in aqueous extraction of L. officinalis but in ethanolic and methanolic extractions these elements could not be detected. In all elements there was a statistically significant increase in water extraction of L. officinalis. Cobalt could not be detected in any of the extractions. The IC50 concentration of L. officinalis on Hek-293 cells was found to be 370 mg/mL. As a conclusion, L. officinalis is rich in chlorogenic acid and is a good antioxidant fruit. The high antioxidant activity, phenolic and flavonoid content, and mineral content are mostly used to decrease oxidative stress; however, it should not be forgotten that antioxidants may also have pro-oxidant effects and should be investigated more on healthy and unhealthy cells.
Collapse
Affiliation(s)
- Yeliz Kaya Kartal
- Ankara University Faculty of Veterinary Medicine Department of Biochemistry Ankara Turkey
| | - Derya Ozalp Unal
- Field Crops Central Research Institute Directorate Ankara Turkey
| | - Halil Ibrahim Ozkan
- Atatürk University Faculty of Medicine Department of Medical Biochemistry Erzurum Turkey
| | | | - Tevhide Sel
- Ankara University Faculty of Veterinary Medicine Department of Biochemistry Ankara Turkey
| |
Collapse
|
4
|
Kiliç CS, Kisla MM, Amasya G, Sengel-Türk CT, Alagöz ZA, Gençler Özkan AM, Ates I, Gümüsok S, Herrera-Bravo J, Sharifi-Rad J, Calina D. Rhoifolin: A promising flavonoid with potent cytotoxic and anticancer properties: molecular mechanisms and therapeutic potential. EXCLI JOURNAL 2025; 24:289-320. [PMID: 40071026 PMCID: PMC11895061 DOI: 10.17179/excli2024-7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Rhoifolin is a flavonoid found in various plant species, especially within the Rutaceae family, and is considered a dietary component due to its presence in edible plants. Its bioactive properties, such as cytotoxic and anticancer activities, have gained significant attention. This review aims to highlight the general properties and diverse bioactivities of rhoifolin, with a particular focus on its cytotoxic and anticancer effects. This is based on a comprehensive literature search, focusing on the presence of rhoifolin in different plant species and its biological activities, particularly its anticancer properties. Rhoifolin is widely distributed in the plant kingdom, especially in Citrus species. It exhibits a variety of bioactivities, including strong cytotoxic and anticancer effects. Recent studies have shown that rhoifolin can induce apoptosis and inhibit cancer cell proliferation, making it a promising candidate for anticancer therapies. Rhoifolin's diverse bioactivities, particularly its cytotoxic and anticancer properties, position it as a potential therapeutic agent. Further detailed investigations into its molecular mechanisms and well-designed clinical studies are needed to fully understand and utilize its therapeutic potential. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ceyda Sibel Kiliç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ceyda Tugba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Zeynep Ates Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ayse Mine Gençler Özkan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University,Tandogan, Türkiye
| | - Safa Gümüsok
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón 092301, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
5
|
Liu Y, Jin Z, Sun D, Zheng J, Xu B, Lan T, Zhao Q, He Y, Li J, Zhang Y, Cui Y. Preparation of monoclonal antibody against rhoifolin and its application in enzyme-linked immunosorbent assay of rhoifolin and diosmin. Talanta 2025; 281:126871. [PMID: 39276572 DOI: 10.1016/j.talanta.2024.126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Both rhoifolin and diosmin belong to flavonoids, which are widely present in citrus. Diosmin is not only used in the medical field in the world, but also used as a dietary supplement in the United States. Rhoifolin has a similar structure to diosmin and also exhibits antioxidant and anti-inflammatory properties. In this study, an anti-rhoifolin monoclonal antibody was prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established. The half-maximal inhibitory concentration (IC50) of icELISA was determined to be 4.83 ng/mL, and the detection range was 0.97-33.87 ng/mL. The results of UPLC-MS/MS and icELISA generally demonstrate consistency. Moreover, by exploiting the cross-reactivity of the antibody, diosmin in tablets can be detected by icELISA. The results demonstrate that the developed method has good accuracy, reproducibility, and broad application prospects.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jiexin Zheng
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Bo Xu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Tianyu Lan
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jing Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
6
|
Vrca I, Fredotović Ž, Jug B, Nazlić M, Dunkić V, Jug D, Radić J, Možina SS, Restović I. Chemical Profile of Kumquat ( Citrus japonica var. margarita) Essential Oil, In Vitro Digestion, and Biological Activity. Foods 2024; 13:3545. [PMID: 39593961 PMCID: PMC11594046 DOI: 10.3390/foods13223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil's biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate the chemical profile of kumquat essential oils (KEOs) isolated by microwave-assisted distillation (MAD) and Clevenger hydrodistillation using GC-MS analysis. To test the bioaccessibility of their bioactive components, in vitro digestion with commercially available enzymes was performed. The final step of this research was to test their cytotoxic activity against a cervical cancer cell line (HeLa), a human colon cancer cell line (HCT116), a human osteosarcoma cell line (U2OS), and a healthy cell line (RPE1). Two methods were used to test the antioxidant activity: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity). The antibacterial activity was tested in relation to the growth and adhesion of Escherichia coli and Staphylococcus aureus on a polystyrene surface. The GC-MS analysis showed that the major compound in both kumquat essential oils was limonene, which was stable before and after in vitro digestion (>90%). The results showed that the cytotoxic activity of the KEOs in all three cancer cell lines tested was IC50 1-2 mg/mL, and in the healthy cell line (RPE1), the IC50 value was above 4 mg/mL. The antibacterial activity of the KEOs obtained after MAD and Clevenger hydrodistillation was 4 mg/mL against E. coli and 1 mg/mL against S. aureus. The KEOs after MAD and Clevenger hydrodistillation reduced the adhesion of E. coli by more than 1 log, while there was no statistically significant effect on the adhesion of S. aureus to the polystyrene surface. Both KEOs exhibited comparable levels of antioxidant activity using both methods tested, with IC50 values of 855.25 ± 26.02 μg/mL (after MAD) and 929.41 ± 101.57 μg/mL (after Clevenger hydrodistillation) for DPPH activity and 4839.09 ± 91.99 μmol TE/g of EO (after MAD) and 4928.78 ± 275.67 μmol TE/g of EO (after Clevenger hydrodistillation) for ORAC. The results obtained show possible future applications in various fields (e.g., in the food, pharmaceutical, cosmetic, and agricultural industries).
Collapse
Affiliation(s)
- Ivana Vrca
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (I.V.); (Ž.F.); (M.N.); (V.D.)
| | - Željana Fredotović
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (I.V.); (Ž.F.); (M.N.); (V.D.)
| | - Blaž Jug
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.J.); (S.S.M.)
| | - Marija Nazlić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (I.V.); (Ž.F.); (M.N.); (V.D.)
| | - Valerija Dunkić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (I.V.); (Ž.F.); (M.N.); (V.D.)
| | - Dina Jug
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.J.); (S.S.M.)
| | - Josip Radić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Sonja Smole Možina
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (B.J.); (D.J.); (S.S.M.)
| | - Ivana Restović
- Faculty of Humanities and Social Sciences, University of Split, Poljička cesta 35, 21000 Split, Croatia
| |
Collapse
|
7
|
Lasota M, Lechwar P, Kukula-Koch W, Czop M, Czech K, Gaweł-Bęben K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024; 29:1133. [PMID: 38474645 DOI: 10.3390/molecules29051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.
Collapse
Affiliation(s)
- Magdalena Lasota
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Paulina Lechwar
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Czech
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
8
|
Liu D, Guo R, Shi B, Chen M, Weng S, Weng J. Fortunellin ameliorates LPS-induced acute lung injury, inflammation, and collagen deposition by restraining the TLR4/NF-κB/NLRP3 pathway. Immun Inflamm Dis 2024; 12:e1164. [PMID: 38501503 PMCID: PMC10949398 DOI: 10.1002/iid3.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE Acute lung injury (ALI) is the prevalent respiratory disease of acute inflammation with high morbidity and mortality. Fortunellin has anti-inflammation property, but its role in ALI remains elusive. Thus, this study clarified the function of fortunellin on ALI pathogenesis. METHODS The ALI mouse model was established by lipopolysaccharide (LPS) induction, and lung tissue damage was evaluated utilizing hematoxylin-eosin (HE) staining. The edema of lung tissue was measured by the lung wet/dry (W/D) ratio. The lung capillary permeability was reflected by the protein content in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration was measured by the evaluation of the content of myeloperoxidase (MPO), neutrophils, and leukocytes in BALF. Cell apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The secretions of inflammatory cytokines were quantified using enzyme-linked immunosorbent assay (ELISA) assays. Lung tissue collagen deposition was evaluated by Masson staining. RESULTS Fortunellin attenuated LPS-induced lung tissue damage and reduced the W/D ratio, the content of MPO in lung tissue, the total protein contents in BALF, and the neutrophils and leukocytes number. Besides, fortunellin alleviated LPS-stimulated lung tissue apoptosis, inflammatory response, and collagen deposition. Furthermore, Fortunellin repressed the activity of the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway in the LPS-stimulated ALI model and LPS-induced RAW264.7 cells. Moreover, fortunellin attenuated LPS-stimulated tissue injury, apoptosis, inflammation, and collagen deposition of the lung via restraining the TLR4/NF-κB/NLRP3 pathway. CONCLUSION Fortunellin attenuated LPS-stimulated ALI through repressing the TLR4/NF-κB/NLRP3 pathway. Fortunellin may be a valuable drug for ALI therapy.
Collapse
Affiliation(s)
- Danjuan Liu
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Rongjie Guo
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Bingbing Shi
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Min Chen
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Shuoyun Weng
- School of Ophthalmology & OptometryWenzhou Medical UniversityWenzhouChina
| | - Junting Weng
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| |
Collapse
|
9
|
El Kamari F, El Omari H, El-Mouhdi K, Chlouchi A, Harmouzi A, Lhilali I, El Amrani J, Zahouani C, Hajji Z, Ousaaid D. Effects of Different Solvents on the Total Phenol Content, Total Flavonoid Content, Antioxidant, and Antifungal Activities of Micromeria graeca L. from Middle Atlas of Morocco. Biochem Res Int 2024; 2024:9027997. [PMID: 38440065 PMCID: PMC10911884 DOI: 10.1155/2024/9027997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Micromeria graeca L. is a dense chemical source of bioactive compounds such as phenolic compounds, which have various health-related properties. The current study aimed to investigate the impact of different extractor solvents on phenol and flavonoid contents, as well as the antioxidant and antifungal activities of different extracts. Initially, three extractor solvents (methanol, ethyl acetate, and water) were used to prepare the Soxhlet extracts, which were then examined for their polyphenolic content, flavonoid content, and antioxidant potential using three complementary assays (DPPH, FRAP, and TAC). The antifungal capacity against the two fungal strains (Candida albicans and Aspergillus niger) was performed using the method of diffusion on disc. The dosage of phytochemical compounds revealed that the highest values were established in water extract with values of 360 ± 22.1 mg GAE/g dry weight plant and 81.3 ± 21.2 mg RE/g dry weight plant for TPC and TFC, respectively. In addition, the strongest antioxidant activity measured by DPPH and FRAP assays was established in water extract with IC50 values of 0.33 ± 0.23 and 0.23 ± 0.12 mg/mL, respectively, while the methanol extract showed the best antioxidant activity as measured by TAC with an IC50 of 483 ± 17.6 mg GAEq/g dry weight plant. The water extract recorded the most important antifungal activity against Candida albicans with an inhibition zone of 16 ± 1.6 mm and MFC = 500 μg/mL, whereas ethyl acetate extract showed the lowest activity against both studied fungi strains. Micromeria graeca L. contains considerable amounts of bioactive contents with high antioxidant and antifungal potentials, which may make it a promising source of antioxidants and natural antifungal agents.
Collapse
Affiliation(s)
- Fatima El Kamari
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hajar El Omari
- Natural Resources Management and Development Team, Laboratory of Health and Environment, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Healthcare Techniques, Meknes, Morocco
| | - Karima El-Mouhdi
- Natural Resources Management and Development Team, Laboratory of Health and Environment, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Healthcare Techniques, Meknes, Morocco
| | - Amina Chlouchi
- Laboratory of Natural Resources and Sustainable Development, Ibn Tofail University, Kenitra, Morocco
- National Higher School of Chemistry, IUT, Kenitra, Morocco
| | - Anjoud Harmouzi
- Agrophysiology, Biotechnology, Environment and Quality Laboratory, Sciences Faculty, Ibn Tofail University, Kenitra, Morocco
| | - Ilham Lhilali
- Cluster of Competence Environment and Health, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Jihane El Amrani
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Healthcare Techniques, Fez, Morocco
| | - Chadia Zahouani
- Laboratory of Natural Resources and Economics of Sustainable Development, Polydisciplinary Faculty of Larach, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Zouhair Hajji
- Economics and Management, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
10
|
Hamidian M, Salehi A, Naghiha R, Dehnavi MM, Castangia I, Mirfathi MN. The comparative perspective of phytochemistry and biological properties of the Apiaceae family plants. Sci Rep 2023; 13:12390. [PMID: 37524766 PMCID: PMC10390506 DOI: 10.1038/s41598-023-39254-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the availability of numerous reports on the discovery of medicinal plant compounds and their properties, one may encounter contradictory results released by these reports at the level of plant families and even within species. To establish an accurate perspective of the Apiaceae family, this study examined the fruit essential oil and methanolic extract of wild and common species of this family. According to the measurement of the antioxidant property in the methanolic extract of the fruits using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, Ferula gummosa, Pimpinella anisum and Cuminum cyminum have high power in inhibiting free radicals. However, Bunium persicum had the strongest DPPH radicals inhibitory potential among all essential oils. The results of antimicrobial tests and their classification analysis showed that C. cyminum and B. persicum fruit essential oil with a high amount of cuminaldehyde had the most antibacterial properties. At the same time, the antifungal properties of H. persicum essential oil (rich in aliphatic ester) were stronger than those of the all the studied plants. Also, the essential oils of F. gummosa and Kelussia odoratissima had favourable antimicrobial properties compared to other studied plants. The investigation of the bacterial structure by scanning electron microscope confirmed the effect of the applied essential oils dose and their antibacterial potential. In general, for the first time, this paper determined the biological values of the fruit essential oil of some wild plants, such as K. odoratissima and H. persicum. Besides, in vitro examination and the mathematical models provided a suitable classification, which makes a comprehensive view in terms of the properties of the Apiaceae family.
Collapse
Affiliation(s)
- Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - Reza Naghiha
- Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahhedi Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
11
|
Venkatachalam K, Charoenphun N, Srean P, Yuvanatemiya V, Pipatpanukul C, Pakeechai K, Parametthanuwat T, Wongsa J. Phytochemicals, Bioactive Properties and Commercial Potential of Calamondin ( Citrofortunella microcarpa) Fruits: A Review. Molecules 2023; 28:molecules28083401. [PMID: 37110643 PMCID: PMC10146261 DOI: 10.3390/molecules28083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The calamondin (Citrofortunella microcarpa) is a hybrid citrus fruit resulting from the crossing of a mandarin orange with a kumquat. It is a small, round-shaped fruit with thin, smooth skin ranging from orange to dark red. The aroma of the fruit is distinctive and unique. Calamondin is an excellent source of Vitamin C, D-Limonene, and essential oils, providing benefits to the immune system, as well as anti-inflammatory, anti-cancer, anti-diabetic, anti-angiogenic, and anti-cancer properties, and it exhibits various therapeutic effects. It also contains a good amount of dietary fiber from pectin. Its distinctive flavor and high juice content make calamondin juice a popular ingredient in many international cuisines. The juice also contains bioactive compounds, such as phenolics and flavonoids, which are a potential source of antioxidant properties. All parts of the calamondin fruit, including the juice, pulp, seeds, and peel, can be used in various applications, from food products like juices, powders, and candies to non-food uses in herbal medicine and cosmetics, showcasing their versatility and unique properties. This review will examine various bioactive components of calamondin and their related medicinal effects, and provide guidelines for their utilization, processing, and value addition on a commercial scale.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang 84000, Surat Thani, Thailand
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Thamai 22170, Chanthaburi, Thailand
| | - Pao Srean
- Faculty of Agriculture and Food Processing, National University of Battambang, Battambang 020101, Cambodia
| | - Vasin Yuvanatemiya
- Faculty of Marine Technology, Burapha University Chanthaburi Campus, Thamai 22170, Chanthaburi, Thailand
| | | | - Kanokporn Pakeechai
- Faculty of Business Administration and Information Technology, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, Phranakhon Si Ayutthaya, Thailand
| | - Thanya Parametthanuwat
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
- KMUTNB Techno Park Prachinburi, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
| | - Jittimon Wongsa
- Department of Agricultural Engineering for Industry, Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok (Prachinburi Campus), Muang 25230, Prachinburi, Thailand
- Food and Agro-Industry Research Center, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| |
Collapse
|
12
|
El Kantar S, Rajha HN, El Khoury A, Koubaa M, Nachef S, Debs E, Maroun RG, Louka N. Phenolic Compounds Recovery from Blood Orange Peels Using a Novel Green Infrared Technology Ired-Irrad®, and Their Effect on the Inhibition of Aspergillus flavus Proliferation and Aflatoxin B1 Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228061. [PMID: 36432159 PMCID: PMC9698718 DOI: 10.3390/molecules27228061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The intensification of total phenolic compound (TPC) extraction from blood orange peels was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and compared to the conventional extraction using a water bath (WB). Response surface methodology (RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction, the multiple response optimums as obtained after 4 h at 73 °C and using 79% ethanol/water were 1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction of TPC by 18% using 52% ethanol/water after less than 1 h at 79 °C. This novel technology has the advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.
Collapse
Affiliation(s)
- Sally El Kantar
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Hiba N. Rajha
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
- Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth, CST Mkalles Mar Roukos, Riad El Solh, P.O. Box 11-514, Beirut 1107 2050, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
- Correspondence: ; Tel.: +33-344238841
| | - Simon Nachef
- Techno Heat Society, Al Firdaws Street, Sabtiyeh, Beirut 1100, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon
| | - Richard G. Maroun
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| | - Nicolas Louka
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Riad El Solh, P.O. Box 17-5208, Beirut 1104 2020, Lebanon
| |
Collapse
|
13
|
Agrawal S, Pathak E, Mishra R, Mishra V, Parveen A, Mishra SK, Byadgi PS, Dubey SK, Chaudhary AK, Singh V, Chaurasia RN, Atri N. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Comput Biol Med 2022; 149:106049. [PMID: 36103744 PMCID: PMC9452420 DOI: 10.1016/j.compbiomed.2022.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections generate approximately one million virions per day, and the majority of available antivirals are ineffective against it due to the virus's inherent genetic mutability. This necessitates the investigation of concurrent inhibition of multiple SARS-CoV-2 targets. We show that fortunellin (acacetin 7-O-neohesperidoside), a phytochemical, is a promising candidate for preventing and treating coronavirus disease (COVID-19) by targeting multiple key viral target proteins. Fortunellin supports protective immunity while inhibiting pro-inflammatory cytokines and apoptosis pathways and protecting against tissue damage. Fortunellin is a phytochemical found in Gojihwadi kwath, an Indian traditional Ayurvedic formulation with an antiviral activity that is effective in COVID-19 patients. The mechanistic action of its antiviral activity, however, is unknown. The current study comprehensively evaluates the potential therapeutic mechanisms of fortunellin in preventing and treating COVID-19. We have used molecular docking, molecular dynamics simulations, free-energy calculations, host target mining of fortunellin, gene ontology enrichment, pathway analyses, and protein-protein interaction analysis. We discovered that fortunellin reliably binds to key targets that are necessary for viral replication, growth, invasion, and infectivity including Nucleocapsid (N-CTD) (-54.62 kcal/mol), Replicase-monomer at NSP-8 binding site (-34.48 kcal/mol), Replicase-dimer interface (-31.29 kcal/mol), Helicase (-30.02 kcal/mol), Papain-like-protease (-28.12 kcal/mol), 2'-O-methyltransferase (-23.17 kcal/mol), Main-protease (-21.63 kcal/mol), Replicase-monomer at dimer interface (-22.04 kcal/mol), RNA-dependent-RNA-polymerase (-19.98 kcal/mol), Nucleocapsid-NTD (-16.92 kcal/mol), and Endoribonuclease (-16.81 kcal/mol). Furthermore, we identify and evaluate the potential human targets of fortunellin and its effect on the SARS-CoV-2 infected tissues, including normal-human-bronchial-epithelium (NHBE) and lung cells and organoids such as pancreatic, colon, liver, and cornea using a network pharmacology approach. Thus, our findings indicate that fortunellin has a dual role; multi-target antiviral activities against SARS-CoV-2 and immunomodulatory capabilities against the host.
Collapse
Affiliation(s)
- Shivangi Agrawal
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India.
| | - Vibha Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Afifa Parveen
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | | | | | - Sushil Kumar Dubey
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India
| | | | | | | | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, India
| |
Collapse
|
14
|
Swaraz AM, Sultana F, Shahin Ahmed K, Satter MA, Hossain H, Raihan O, Brishti A, Khalil I, Hua Gan S. Polyphenols profile and enzyme inhibitory properties of Blumea lacera (Burm. f.) DC.: a potential candidate against obesity, aging, and skin disorder. Chem Biodivers 2022; 19:e202200282. [PMID: 35983910 DOI: 10.1002/cbdv.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Blumea lacera (Burm. f.) DC. is attracting scientific interest due to the diverse biological activities of its various parts and its use in folk medicine. The present study was undertaken to investigate the tissue-specific differential expression pattern of its total bioactive compounds. The study was further extended to whole plant phenolics profiling, in vitro enzyme inhibition activities, followed by in silico enzyme inhibition analysis to assess its potential as herbal medicine. The amount of total phenolics in different tissues was followed in decreasing order as old leaf, flower bud, root, young leaf, flower, old stem, and young stem, while that for the flavonoids was old leaf, root, young leaf, flower bud, flower, young stem, and old stem. This study identified rosmarinic acid, quercetin, and kaempferol in this plant for the first time. The solvent extracts demonstrated strong inhibition of lipase and tyrosinase activity, along with varying degrees of inhibition of acetylcholinesterase and butyrylcholinesterase activity. Among the detected compounds, ten displayed strong in silico binding affinities with the tested enzymes. The findings provide a new insight into further investigation of the medicinal potential of this species against obesity, neurological disorders, and aberrant skin color.
Collapse
Affiliation(s)
- A M Swaraz
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Fariha Sultana
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical from Indigenous Sources, Chemical Research Division (CRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Dhaka, 1205, Bangladesh
| | - Mohammed A Satter
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Hemayet Hossain
- Chemical from Indigenous Sources, Chemical Research Division (CRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Dhaka, 1205, Bangladesh
| | - Obayed Raihan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Rd, Stop 9037, Grand Forks, ND 58202-9037, USA
| | - Afrina Brishti
- School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Rd, Stop 9037, Grand Forks, ND 58202-9037, USA
| | - Ibrahim Khalil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, 1342, Savar, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
15
|
Bar M, Binduga UE, Szychowski KA. Methods of Isolation of Active Substances from Garlic ( Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants (Basel) 2022; 11:1345. [PMID: 35883836 PMCID: PMC9312217 DOI: 10.3390/antiox11071345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Garlic (Allium sativum L.) is widely used in the human diet and in scientific research due to its biological properties. Various factors, e.g., temperature, pressure, extraction method, type of solvent, size, and territorial origin of garlic, affect the amount and type of bioactive compounds obtained from garlic extracts. In turn, the content of bioactive compounds correlates with the biological activity of the extracts. Therefore, the aim of this review was to summarize the current state of knowledge of the methods and effectiveness of isolation of active substances from garlic and their impact on the garlic extract composition and, consequently, biological properties. According to the literature, extracts obtained using water as a solvent are mainly responsible for antimicrobial properties, which is related to, inter alia, the high content of allicin. The use of alcohols, such as methanol or ethanol, is associated with the outstanding antioxidant power of extracts resulting from the presence of phenolic compounds. In turn, due to the presence of diallyl disulfide and disulfide trisulfide, garlic oil has anticancer potential. Acetone is the most effective organic solvent; however, it is not suitable for immediate consumption.
Collapse
Affiliation(s)
- Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Urszula E. Binduga
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
16
|
Zhang L, Wang W, Ni Y, Yang C, Jin X, Wang Y, yang Y, Jin Y, Sun J, Wang J. ZnO/C-mediated k-carrageenan based pseudo-pasteurization films for kumquat preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Hnit SST, Yao M, Xie C, Bi L, Wong M, Liu T, De Souza P, Li Z, Dong Q. Apigenin impedes cell cycle progression at G 2 phase in prostate cancer cells. Discov Oncol 2022; 13:44. [PMID: 35670862 PMCID: PMC9174405 DOI: 10.1007/s12672-022-00505-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
As a natural flavone, apigenin is abundantly present in vegetables, fruits, oregano, tea, chamomile, wheat sprout and is regarded as a major component of the Mediterranean diet. Apigenin is known to inhibit proliferation in different cancer cell lines by inducing G2/M arrest, but it is unclear whether this action is predominantly imposed on G2 or M phases. In this study, we demonstrate that apigenin arrests prostate cancer cells at G2 phase by flow cytometric analysis of prostate cancer cells co-stained for phospho-Histone H3 and DNA. Concurrently, apigenin also reduces the mRNA and protein levels of the key regulators that govern G2-M transition. Further analysis using chromatin immunoprecipitation (ChIP) confirmed the diminished transcriptional activities of the genes coding for these regulators. Unravelling the inhibitory effect of apigenin on G2-M transition in cancer cells provides the mechanistic understanding of its action and supports the potential for apigenin as an anti-cancer agent.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Mu Yao
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Chanlu Xie
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney , Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Traditional Chinese Medicine, 201203, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, 2006, Camperdown, NSW, Australia.
| |
Collapse
|
18
|
Yang Y, He Z, Bing Q, Duan X, Chen S, Zeng M, Liu X. Two Dof transcription factors promote flavonoid synthesis in kumquat fruit by activating C-glucosyltransferase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111234. [PMID: 35351306 DOI: 10.1016/j.plantsci.2022.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although DNA binding with one finger (Dof) constitutes a crucial plant-specific family of transcription factors (TFs) that plays important roles in a wide range of biological processes, the molecular mechanisms underlying Dof regulation of flavonoid biosynthesis in plants remain largely unknown. Here, we characterized 28 Dof genes (FhDof1-FhDof28) from the 'Hongkong' kumquat (Fortunella hindsii) cultivar genome. Promoter analysis and transcriptome profiling revealed that four FhDofs - FhDof4, FhDof9, FhDof15, and FhDof16 - may be involved in flavonoid biosynthesis through binding to the flavonoid C-glycosyltransferase (FhCGT) promoter. We cloned homologous genes of four FhDofs, designated as FcDof4, FcDof9, FcDof15, FcDof16, and a homologous gene of FhCGT, designated as FcCGT, from the widely cultivated 'HuaPi' kumquat (F. crassifolia). Quantitative reverse transcription-polymerase chain reaction analysis revealed that FcDof4 and FcDof16 were significantly correlated with FcCGT expression during development stages in the 'HuaPi' fruit (Pearson's correlation coefficient > 0.7) and were localized to the nucleus. Results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays indicated that the two FcDofs trigger FcCGT expression by specifically binding to its promoters. Moreover, transient overexpression of FcDof4 and FcDof16 enhances the transcription of structural genes in the flavonoid biosynthetic pathway and increases C-glycosylflavonoid content. Our results provide strong evidence that the TFs FcDof4 and FcDof16 promote flavonoid synthesis in kumquat fruit by activating FcCGT expression.
Collapse
Affiliation(s)
- Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhilin He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qihao Bing
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xinyuan Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Suoying Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
19
|
Büyükkormaz Ç, Küçükbay FZ. Kumquat fruit and leaves extracted with different solvents: phenolic content and antioxidant activity. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-51-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Kumquat is a good source of vitamin C, as well as phenolic and flavonoid substances. In this study, we used various solvents to obtain extracts from fresh and lyophilized dried fruits and leaves of kumquat plant, as well as six mutants, to compare their total phenolic and flavonoid contents and antioxidant activities.
Study objects and methods. The total phenolic and flavonoid content was determined by the Folin-Ciocalteu method and the colorimetric method, respectively. The antioxidant capacities of the extracts were determined by commonly used antioxidant tests, such as the DPPH radical scavenging activity, reducing power, and metal chelating activity.
Results and discussion. The total phenolic content of the extracts was in the range of 3705–86 329 mg GAE/g extract. The total amount of flavonoid substance ranged from 5556 to 632 222 mg QUE/g extract. The highest free radical scavenging activity was observed in the kumquat leaves. We also found that the activity of dried fruit was lower than that of fresh fruit. According to our results, the differences in the phenolic contents of the studied plants affected their antioxidant properties. We determined that the extracts with a high phenolic content showed high antioxidant activity. No significant difference was detected between the rootstock kumquat type and its mutants. Finally, we found no chelating activity in the extracts obtained from fresh and lyophilized dried fruits.
Conclusion. Kumquat fruit and its leaves can be considered as functional foods due to phenolic compounds, which are able to neutralize free radicals.
Collapse
|
20
|
Li X, Meenu M, Xu B. Recent Development in Bioactive Compounds and Health Benefits of Kumquat Fruits. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xunhan Li
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, China
| | - Maninder Meenu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
21
|
Tian S, Yang Y, Wu T, Luo C, Li X, Zhao X, Xi W, Liu X, Zeng M. Functional Characterization of a Flavone Synthase That Participates in a Kumquat Flavone Metabolon. FRONTIERS IN PLANT SCIENCE 2022; 13:826780. [PMID: 35310637 PMCID: PMC8924551 DOI: 10.3389/fpls.2022.826780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 05/17/2023]
Abstract
Flavones predominantly accumulate as O- and C-glycosides in kumquat plants. Two catalytic mechanisms of flavone synthase II (FNSII) support the biosynthesis of glycosyl flavones, one involving flavanone 2-hydroxylase (which generates 2-hydroxyflavanones for C-glycosylation) and another involving the direct catalysis of flavanones to flavones for O-glycosylation. However, FNSII has not yet been characterized in kumquats. In this study, we identified two kumquat FNSII genes (FcFNSII-1 and FcFNSII-2), based on transcriptome and bioinformatics analysis. Data from in vivo and in vitro assays showed that FcFNSII-2 directly synthesized apigenin and acacetin from naringenin and isosakuranetin, respectively, whereas FcFNSII-1 showed no detectable catalytic activities with flavanones. In agreement, transient overexpression of FcFNSII-2 in kumquat peels significantly enhanced the transcription of structural genes of the flavonoid-biosynthesis pathway and the accumulation of several O-glycosyl flavones. Moreover, studying the subcellular localizations of FcFNSII-1 and FcFNSII-2 demonstrated that N-terminal membrane-spanning domains were necessary to ensure endoplasmic reticulum localization and anchoring. Protein-protein interaction analyses, using the split-ubiquitin yeast two-hybrid system and bimolecular fluorescence-complementation assays, revealed that FcFNSII-2 interacted with chalcone synthase 1, chalcone synthase 2, and chalcone isomerase-like proteins. The results provide strong evidence that FcFNSII-2 serves as a nucleation site for an O-glycosyl flavone metabolon that channels flavanones for O-glycosyl flavone biosynthesis in kumquat fruits. They have implications for guiding genetic engineering efforts aimed at enhancing the composition of bioactive flavonoids in kumquat fruits.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chuan Luo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xin Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Xiaogang Liu,
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- Ming Zeng, ;
| |
Collapse
|
22
|
Camargo PG, Fabris M, Silva TU, Silva Lima CH, Paula Machado S, Tonin LTD, Lima Ferreira Bispo M, Macedo F. Thiohydantoins as Potential Antioxidant Agents:
In vitro
and
in silico
evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priscila Goes Camargo
- Department of Chemistry State University of Londrina Rod Celso Garcia Km 480 Londrina PR Brazil
| | - Marcieli Fabris
- Department of Chemistry State University of Londrina Rod Celso Garcia Km 480 Londrina PR Brazil
| | - Talis Uelisson Silva
- Chemistry Institute Federal University of Rio de Janeiro Av. Pedro Calmon, 550, Rio de Janeiro RJ Brazil
| | - Camilo Henrique Silva Lima
- Chemistry Institute Federal University of Rio de Janeiro Av. Pedro Calmon, 550, Rio de Janeiro RJ Brazil
| | - Sérgio Paula Machado
- Chemistry Institute Federal University of Rio de Janeiro Av. Pedro Calmon, 550, Rio de Janeiro RJ Brazil
| | | | | | - Fernando Macedo
- Department of Chemistry State University of Londrina Rod Celso Garcia Km 480 Londrina PR Brazil
| |
Collapse
|
23
|
Panagiotopoulos AA, Karakasiliotis I, Kotzampasi DM, Dimitriou M, Sourvinos G, Kampa M, Pirintsos S, Castanas E, Daskalakis V. Natural Polyphenols Inhibit the Dimerization of the SARS-CoV-2 Main Protease: The Case of Fortunellin and Its Structural Analogs. Molecules 2021; 26:6068. [PMID: 34641612 PMCID: PMC8512273 DOI: 10.3390/molecules26196068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
3CL-Pro is the SARS-CoV-2 main protease (MPro). It acts as a homodimer to cleave the large polyprotein 1ab transcript into proteins that are necessary for viral growth and replication. 3CL-Pro has been one of the most studied SARS-CoV-2 proteins and a main target of therapeutics. A number of drug candidates have been reported, including natural products. Here, we employ elaborate computational methods to explore the dimerization of the 3CL-Pro protein, and we formulate a computational context to identify potential inhibitors of this process. We report that fortunellin (acacetin 7-O-neohesperidoside), a natural flavonoid O-glycoside, and its structural analogs are potent inhibitors of 3CL-Pro dimerization, inhibiting viral plaque formation in vitro. We thus propose a novel basis for the search of pharmaceuticals as well as dietary supplements in the fight against SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Athanasios A. Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.A.P.); (D.-M.K.); (M.K.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.K.); (M.D.)
| | - Danai-Maria Kotzampasi
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.A.P.); (D.-M.K.); (M.K.)
| | - Marios Dimitriou
- Laboratory of Biology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.K.); (M.D.)
| | - George Sourvinos
- Laboratory of Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece;
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.A.P.); (D.-M.K.); (M.K.)
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece;
| | - Stergios Pirintsos
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece;
- Department of Biology, University of Crete, 71409 Heraklion, Greece
- Botanical Garden, University of Crete, 74100 Rethymnon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.A.P.); (D.-M.K.); (M.K.)
- Nature Crete Pharmaceuticals, 71305 Heraklion, Greece;
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, 3603 Limassol, Cyprus
| |
Collapse
|
24
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
25
|
Al-Sayed HMA, Abdelaleem MA, Shawky HA. Physiochemical and nutritional evaluation of whole kumquat fruits powder and its protective effect on thyroid hormones and blood sugar levels in diabetic rats. BRAZ J BIOL 2021; 83:e247071. [PMID: 34431915 DOI: 10.1590/1519-6984.247071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 10/05/2024] Open
Abstract
The present study was conducted to evaluate the chemical composition, antioxidant activity and hypoglycemic effects of whole kumquat (Ku) powder in diabetic rats fed a high-fat-high-cholesterol (HFHC) diet. The antioxidant activities were evaluated using stable 1,1-diphenyl 2-picrylhydrazyl (DPPH) free radical scavenging method, 2,2´-azinobis (3-ethyl benzo thiazoline-6-sulphonic acid) radical cation (ABTS) and Ferric reducing antioxidant power (FRAP). Total phenolic content was (51.85 mg GAE/g) and total flavonoid content was (0.24 mg Cateachin Equivalent, CE/g). DPPH and ABTS values were 3.32 and 3.98 mg Trolox equivalent (TE)/g where FRAP value was 3.00 mM Fe2+/kg dry material. A total of 90 albino rats were used in the present study. Rats group were as follows: normal diet; normal treated (2, 4, and 6% Ku.), diabetic rats (non-treated), diabetic + HFHC diet (non-treated), HFHC (non-treated), Diabetic (treated), HFHC (treated) and Diabetic + HFHC (treated). The diets were followed for 8 weeks. Blood samples were collected at the end of the experiment. Serum glucose was recorded and thyroid hormones (T4, Thyroxine and T3, Triiodothyronine) were conducted. Diet supplemented with Kumquat at different concentrations have a hypoglycemic effect and improve the thyroid hormones of both diabetic rats and HFHC diabetic rats.
Collapse
Affiliation(s)
- H M A Al-Sayed
- Ain Shams University, Faculty of Agriculture, Food Science Department, Cairo, Egypt.,Tabuk University, Faculty of Home Economics, Nutrition and Food Science Department, Tabuk, Saudi Arabia
| | - M A Abdelaleem
- Egyptian Atomic Energy Authority, Nuclear Research Center, Plant Research Department, Cairo, Egypt
| | - H A Shawky
- Egyptian Atomic Energy Authority, Nuclear Research Center, Plant Research Department, Cairo, Egypt
| |
Collapse
|
26
|
Effect of kumquat (Fortunella margarita) powders dried by different methods on some physical and chemical properties of cake. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer's. Biomed Pharmacother 2021; 141:111859. [PMID: 34246953 DOI: 10.1016/j.biopha.2021.111859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Blumea laciniata (Roxb.) DC. is a folk medicinal annual herb of the Asteraceae family that grows in South and Southeast Asia. In order to evaluate its phytopharmaceutical potential against diabetic, obesity, and Alzheimer's, a comprehensive phytochemical profile, in vitro and in silico enzyme inhibitory activity against α-amylase, α-glucosidase, lipase, cholinesterases, and tyrosinase along with in vitro antioxidant activity were performed. Additionally, in vivo antidiabetic activity and acute toxicity were also evaluated. The total phenolic content in various organs follows the following order: old leaf > flower bud > young leaf > flower > young stem > old stem > root, while total flavonoids followed the order: flower bud > old leaf > young leaf > flower > young stem > old stem > root. The identified phenolic compounds are 3,4-dihydroxybenzoic acid, caffeic acid, vanillic acid, p-coumaric acid, syringic acid, rosmarinic acid, trans-cinnamic acid, catechin, catechol, (-) epicatechin, rutin, quercetin, myricetin, and kaempferol, which are also expressed differently in various organs. Solvent extracts demonstrated strong antioxidant activity as well as varying levels of inhibition against the enzymes tested, with strong inhibitory activity against α-amylase, α-glucosidase, and lipase. Thirteen phenolic compounds displayed strong binding affinity in silico against studied enzymes, thus documented as bioactive. Furthermore, solvent extracts significantly suppressed blood glucose levels in mice with induced diabetes and extracts were not acutely toxic. The results suggest that Blumea laciniata (Roxb.) DC. could be a potential candidate for developing new phytopharmaceuticals and bioactive ingredients.
Collapse
|
28
|
Quantification of Flavonoids, Phenols and Antioxidant Potential from Dropped Citrus reticulata Blanco Fruits Influenced by Drying Techniques. Molecules 2021; 26:molecules26144159. [PMID: 34299432 PMCID: PMC8306461 DOI: 10.3390/molecules26144159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Physiologically dropped immature Citrus reticulata Blanco fruits are regarded as waste and discarded in the citrus orchard but are a good source of bioactive compounds including flavonoids, antioxidants and total phenols. A study was undertaken to identify and quantify these bioactive compounds and to investigate the influence of different drying techniques, namely freeze drying and hot air oven drying, on flavonoids namely flavanone glycosides, antioxidant potential and total phenol content in immature dropped fruits of Citrus reticulata Blanco. Flavonoids were quantified in high-performance liquid chromatography (HPLC). The antioxidant activity were investigated with three assays azino-bis [3-ethylbenzthiazoline-6-sulfonic acid]) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), Ferric Reducing Ability of Plasma (FRAP) and total phenol content was determined. Freeze dried samples of 12 and 14 mm size retained maximum hesperidin flavonoid content (27.03% and 27.20%) as compared to the hot air dried samples (17.99%) and retained higher phenolic content ranged from 50.54-54.19 mg GAEL-1. The antioxidant activity in freeze dried fruits was from 12.21-13.55 mM L-1 Trolox and 15.27-16.72 mM L-1 Trolox with ABTS, DPPH assay and FRAP values ranging from 7.31-9.07 mM L-1 Trolox. Significant positive correlation was found between the flavonoid hesperidin with antioxidant assays and total phenolic content (TPC). The results showed that waste citrus fruits can act as potential source of bioflavonoids, especially hesperidin, and antioxidants for pharmaceutical as well as nutraceutical industry.
Collapse
|
29
|
Cai N, Chen C, Wan C, Chen J. Effects of pre-harvest gibberellic acid spray on endogenous hormones and fruit quality of kumquat ( Citrus japonica) fruits. NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE 2021; 49:211-224. [DOI: 10.1080/01140671.2020.1806084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, People’s Republic of China
| |
Collapse
|
30
|
Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
31
|
Hu X, Wang R, Xie Q, Ge K, Li G, Fu F, Ding S, Shan Y. Changes in water state, distribution, and physico‐chemical properties of preserved kumquats during different processing methods. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Hu
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| | - Rongrong Wang
- College of Food Science and Technology Hunan Agricultural University Changsha China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
| | - Keda Ge
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| | - Gaoyang Li
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| | - Fuhua Fu
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Fruit, Vegetable Processing and Quality Safety International Scientific and Technological Innovation Cooperation Base Hunan Province Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Agricultural Sciences Changsha Hunan Province China
- Longping Branch Graduate School Hunan University Changsha China
| |
Collapse
|
32
|
Xie J, Chen J, Mei XR, Zhu MJ, Li XL, Du J, Zhang XY. Biotransformation of Phlorizin by Eurotium cristatum to Increase the Antioxidant and Antibacterial Activity of Docynia indica Leaves. Curr Microbiol 2021; 78:1590-1601. [PMID: 33686505 DOI: 10.1007/s00284-021-02366-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
Docynia indica is used as a plant resource for both medicine and food in minority areas of southwestern China and Southeast of Asia, especially Docynia indica leaves, which are often used as a kind of functional tea in daily life. In our previous research, it has found that D. indica is rich in polyphenols (mainly phlorizin (PHZ)). Although PHZ is the first polyphenolic competitive inhibitor of sodium-dependent glucose transporters (SGLTs) to be discovered, the promotion and application of PHZ are limited due to its extremely low bioavailability. As a kind of aglycons, phloretin (PHT) possesses a better bioavailability and bioactivity than PHZ. Therefore, the conversion of PHZ to PHT in D. indica leaves by the method of biotransformation can be applied to solve the above issue. In this study, Aspergillus niger and Eurotium cristatum were used to transform PHZ to PHT in D. indica. Compared with Aspergillus niger, Eurotium cristatum can cause the equimolar conversion of PHZ to PHT. However, Aspergillus niger resulted in the complete degradation of PHZ. In the process of deep fermentation, PHZ in D. indica leaves was gradually biotransformed into PHT, and its content was as high as ~ 12% after fermentation. With the increase of PHT content, the antioxidant and antibacterial activity of Docynia indica leaves increased. By the acute toxicity evaluation, it was confirmed that Docynia indica leaves and Eurotium cristatum fermented leaves were much safer. These results indicate that Eurotium cristatum fermentation has the ability to transform the functional compounds in Docynia indica leaves and increase the antioxidant and antibacterial activity of Docynia indica, thus making it a substitute for PHT and functional tea.
Collapse
Affiliation(s)
- Jie Xie
- College of Life Sciences, Sichuan Normal University, Longquan, No. 1819 Chen Long Avenue, Chengdu, 610101, People's Republic of China
| | - Jiang Chen
- College of Life Sciences, Sichuan Normal University, Longquan, No. 1819 Chen Long Avenue, Chengdu, 610101, People's Republic of China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.,College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xue-Ran Mei
- College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ming-Jun Zhu
- College of Life Sciences, Sichuan Normal University, Longquan, No. 1819 Chen Long Avenue, Chengdu, 610101, People's Republic of China
| | - Xue-Li Li
- College of Life Sciences, Sichuan Normal University, Longquan, No. 1819 Chen Long Avenue, Chengdu, 610101, People's Republic of China
| | - Juan Du
- College of Geography and Resource Sciences, Sichuan Normal University, Chengdu, 610101, People's Republic of China
| | - Xiao-Yu Zhang
- College of Life Sciences, Sichuan Normal University, Longquan, No. 1819 Chen Long Avenue, Chengdu, 610101, People's Republic of China.
| |
Collapse
|
33
|
Guo J, Qin D, Li W, Wu F, Li L, Liu X. Inactivation of Penicillium italicum on kumquat via plasma-activated water and its effects on quality attributes. Int J Food Microbiol 2021; 343:109090. [PMID: 33631606 DOI: 10.1016/j.ijfoodmicro.2021.109090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Plasma-activated water (PAW) has good liquidity and uniformity and may be a promising candidate to inactivate Penicillium italicum and maintain the quality attributes of kumquat. In this study, the effect of plasma-activated water (PAW) on the viability of Penicillium italicum on kumquat and quality attributes of PAW-treated kumquats were then systematically investigated to elucidate the correlation between PAW and kumquat quality attributes. The effects of PAW on fruit decay, microbial loads, and firmness of postharvest kumquats during the 6-week storage were also investigated. The results showed that the viability of Penicillium italicum was notably inhibited by PAW on kumquats. Moreover, PAW did not significantly change the surface color of kumquats. No significant reductions in ascorbic acid, total flavonoid, and carotenoids were observed in kumquats after the PAW treatment. Results from nitrate and nitrite residue analyses showed that PAW did not leave serious nitrate and nitrite residues after treatment. The decay analysis results demonstrated that PAW has the potential to control kumquat decay and fungal contamination as well as maintain the firmness of postharvest kumquats throughout 6-week storage. Transmit electron microscope observation confirmed that PAW could cause the surface sculpturing in the skin cell wall of kumquat. The information obtained from this research may provide insight into the utilization of PAW to fight against fungal infection during the storage of citrus fruit.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China.
| | - Dingkui Qin
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China
| | - Wanting Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China
| | - Fenghua Wu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China
| | - Ling Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China
| | - Xingquan Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, No. 666 Wusu Street, Hangzhou 311300, People's Republic of China
| |
Collapse
|
34
|
Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. PLANTS 2021; 10:plants10010135. [PMID: 33440883 PMCID: PMC7827524 DOI: 10.3390/plants10010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/16/2023]
Abstract
A large number of plants produce secondary metabolites known as allelochemicals that are capable of inhibiting the germination of competitive species. This process is known as allelopathy and is mediated by several classes of chemicals, among which phenolic compounds are the most frequent. Thus, plant allelochemicals can be used to control weeds in agricultural systems. In the present work, we analyzed the phenolic profile and phytotoxic potential of different extracts (pure water or water: ethanol 50:50) from Scrophulariastriata plants that were collected from two ecological regions in Iran (Pahleh and Lizan). The total polyphenolic content (TPC), as evaluated by the Folin-Ciocolteau method, ranged from 28.3 mg/g in the aqueous extract obtained from the Lizan ecotype to 39.6 mg/g in the hydroalcoholic extract obtained from the Pahleh ecotype. Moreover, HPLC analysis was aimed at determining the content of eight phenolic compounds, namely eugenol, rosmarinic acid, hesperetin, hesperedin, trans-ferulic acid, vanillin, and caffeic acid. According to the results, rosmarinic acid appeared to be the most abundant component. The phytotoxic activities of S.striata extracts were examined on the seed germination of a crop species, Lepidium sativum, and two weeds, Chenopodium album and Malva sylvestris. All extracts showed inhibitory effects on these species. The efficiency of these inhibitory effects depended on the type of plant species, origin, and concentration of extract. The highest phytotoxic activity was caused by approximately 1% concentration of extract. The most susceptible weed was M. sylvestris. The extracts that were obtained from the Pahleh ecotype, notably the hydroalcoholic ones, showed higher phytotoxicity against L. sativum, C. album and M. sylvestris. These results encourage further studies to support the use of S. striata as a source of bioherbicides.
Collapse
|
35
|
Zibaee E, Kamalian S, Tajvar M, Amiri MS, Ramezani M, Moghadam AT, Emami SA, Sahebkar A. Citrus species: A Review of Traditional Uses, Phytochemistry and Pharmacology. Curr Pharm Des 2020; 26:44-97. [PMID: 31775593 DOI: 10.2174/1381612825666191127115601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The Citrus species from family Rutaceae has worldwide applications such as cardiovascular and gastrointestinal problems. Phytochemical investigations have shown that these plants have constituents including flavonoids, limonoids and carotenoids. There are many reports on a wide range of activities such as antiinflammatory, anti-oxidant, immunomodulatory, metabolic, cardiovascular and neuroprotective effects. In the current review, we discuss information regarding botany, phytochemistry, ethnobotany uses, traditional knowledge and pharmacological aspects of the Citrus species.
Collapse
Affiliation(s)
- Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Kamalian
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrangiz Tajvar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali T Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed A Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Zengin G, Ceylan R, Sinan KI, Ak G, Uysal S, Mahomoodally MF, Lobine D, Aktumsek A, Cziáky Z, Jeko J, Behl T, Orlando G, Menghini L, Ferrante C. Network analysis, chemical characterization, antioxidant and enzyme inhibitory effects of foxglove (Digitalis cariensis Boiss. ex Jaub. & Spach): A novel raw material for pharmaceutical applications. J Pharm Biomed Anal 2020; 191:113614. [PMID: 32980793 DOI: 10.1016/j.jpba.2020.113614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
Abstract
The present study outlines the phenolic composition and pharmacological properties of different extracts of Digitalis cariensis Boiss. ex Jaub. & Spach root and aerial parts. The metabolic profiles of the studied extracts were characterized by UHPLC-MS. The in vitro antioxidant and enzyme (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase, and α-glucosidase) inhibitory potential of the extracts were determined. Bioinformatics and docking investigations were also conducted to support the enzyme inhibition test and predict putative targets for potential pharmacological applications. Overall, the methanolic extract followed by the water extract of the D. cariensis root were found to be superior source of antioxidant compounds except for metal chelating ability, in which the water extract of the root (26.34 ± 1.54 mg EDTAE/g) and aerial parts (16.47 ± 0.88 mg EDTAE/g) have showed the highest activity. The tested extracts were potent against AChE (9.11 ± 0.27-9.79 ± 0.28 mg GEs/g extract), α-amylase (0.12 ± 0.01- 0.50 ± 0.01 mmol ACEs/g extract) and α-glucosidase (0.28 ± 0.01-17.29 ± 0.24 mmol ACEs/ g extract). Notable activity against tyrosinase was displayed by the methanolic extracts (Root-MeOH: 123.71 ± 2.70 and aerial parts - MeOH: 137.96 ± 1.07 mg KAE/g extract), while none of the extracts were potent against BChE. According to docking investigations, the observed anti-tyrosinase effect could be related, at least partially, to the presence of luteolin, rosmarinic acid and kaempferol in the extracts. Results amassed herein is the first report on the biological attributes of D. cariensis, which validate the pharmacological uses of this plant.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Ramazan Ceylan
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | | | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Sengul Uysal
- Erciyes University Halil Bayraktar Health Services Vocational College, Kayseri, Turkey; Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius.
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Abdurrahman Aktumsek
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary(e)
| | - József Jeko
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary(e)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini n. 31, 66100 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini n. 31, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini n. 31, 66100 Chieti, Italy
| |
Collapse
|
37
|
Ng ZX, Samsuri SN, Yong PH. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14680] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zhi Xiang Ng
- School of Biosciences Faculty of Science and Engineering University of Nottingham Malaysia Selangor Malaysia
| | - Siti Najia Samsuri
- School of Biosciences Faculty of Science and Engineering University of Nottingham Malaysia Selangor Malaysia
| | - Phaik Har Yong
- School of Biosciences Faculty of Medicine, Biosciences and Nursing MAHSA University Selangor Malaysia
| |
Collapse
|
38
|
Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood ( Artemisia absinthium). Antibiotics (Basel) 2020; 9:antibiotics9060353. [PMID: 32585887 PMCID: PMC7345338 DOI: 10.3390/antibiotics9060353] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Plants have been used since ancient times to cure certain infectious diseases, and some of them are now standard treatments for several diseases. Due to the side effects and resistance of pathogenic microorganisms to antibiotics and most drugs on the market, a great deal of attention has been paid to extracts and biologically active compounds isolated from plant species used in herbal medicine. Artemisia absinthium is an important perennial shrubby plant that has been widely used for the treatment of several ailments. Traditionally, A. absinthium has always been of pharmaceutical and botanical importance and used to manage several disorders including hepatocyte enlargement, hepatitis, gastritis, jaundice, wound healing, splenomegaly, dyspepsia, indigestion, flatulence, gastric pain, anemia, and anorexia. It has also been documented to possess antioxidant, antifungal, antimicrobial, anthelmintic, anti-ulcer, anticarcinogenic, hepatoprotective, neuroprotective, antidepressant, analgesic, immunomodulatory, and cytotoxic activity. Long-term use of A. absinthium essential oil may cause toxic and mental disorders in humans with clinical manifestations including convulsions, sleeplessness, and hallucinations. Combination chemotherapies of artemisia extract or its isolated active constituents with the currently available antibabesial or anti-malarial drugs are now documented to relieve malaria and piroplasmosis infections. The current review examines the phytoconstituents, toxic and biological activities of A. absinthium.
Collapse
|
39
|
Souri M, Shakeri A. Optimization of Total Phenol and Tannin Content and Biological Activity of Dittrichia graveolens (L.) GREUTER. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1573407214666180730110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Dittrichia graveolens (L.) is a strongly aromatic plant distributed in Mediterranean
regions. This research concerns the optimization of the Total Phenolic Content (TPC) and the Total
Tannin Content (TTC) of Dittrichia graveolens (L.) extracts using Response Surface Methodology for
Ultrasound Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE). Central Composite
Design (CCD) was used to evaluate the effect of the solvent concentration and the extraction time, in
different methods on TTC and TPC. The antioxidant activities and antibacterial activities were
evaluated.
Methods:
The plant extracts were prepared using maceration, microwave and ultrasound assisted
extraction. TPC and TTC were measured using Folin-Ciocalteu method. The antioxidant activities
were studied using DPPH reagent and disc diffusion method was used to study the antibacterial
activities.
Results:
This study showed the optimum condition for UAE was 49.96% methanol concentration and
11.2 min sonication, while for MAE was 55.44% methanol concentration and 2.26 min microwave extraction.
It also indicated that MAE was the most effective method in comparison to UAE and maceration.
The antioxidant activities of MAE extract (IC50=7.7mg/mL) were more than UAE extract
(IC50=21.5mg/mL) and maceration (IC50=32.3mg/mL).
Conclusion:
As a conclusion, it was indicated that MAE was the most effective method. The higher
total phenolic content caused higher antioxidant activities as MAE extract had the highest antioxidant
activities. The antibacterial test showed the great potential of this plant as an antibacterial compound
resource against different bacteria.
Collapse
Affiliation(s)
- Mahsa Souri
- School of Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| | - Alireza Shakeri
- School of Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019; 24:E4132. [PMID: 31731614 PMCID: PMC6891691 DOI: 10.3390/molecules24224132] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.
Collapse
Affiliation(s)
| | | | - Vítor D. Alves
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| |
Collapse
|
41
|
An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00317-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Jalili C, Akhshi N, Raissi F, Shiravi A, Alvani A, Vaezi G, Nedaei SE, Ghanbari A. Acacetin Alleviates Hepatitis Following Renal Ischemia–Reperfusion in Male Balb/C Mice by Antioxidants Regulation and Inflammatory Markers Suppression. J INVEST SURG 2019; 34:495-503. [DOI: 10.1080/08941939.2019.1656309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Akhshi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshid Raissi
- Department of Pathology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhosein Shiravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Alvand Alvani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ghanbari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
43
|
Mohamed DA, Fouda K, Hamed IM, Abdelgayed SS. Protective effect of Kumquat fruits and carrot seeds extracts against brain aging in rats. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction: Protection of brain against accelerated aging helps avoiding the occurrence of neurodegenerative diseases. So, the current work was conducted to evaluate the rescuing role of kumquat fruits crude ethanol extract, carrot seeds ethanol and petroleum ether extracts against the brain aging induced by D-galactose in rats. Methods: Forty male Sprague Dawley rats were divided equally into five groups. Group I was served as normal control, rats of group II were daily injected intraperitoneally (i.p.) with 150 mg/kg BW of D-galactose. Rats of group III, IV and V were daily injected i.p. with the same dose of D-galactose and administered orally with 250 mg/kg BW/day of kumquat fruits crude ethanol extract, carrot seeds ethanol extract and carrot seeds petroleum ether extract, respectively. After 6 weeks the rats were scarified, brain tissues were analyzed for malondialdehyde (MDA), catalase (CAT) as well as histological examination. Also, the plasma was analyzed for MDA, tumor necrosis factor-α (TNF-α), creatinine and urea levels, as well as CAT, butyrylcholinesterase (BChE), aspartate transaminase (AST) and alanine transaminase (ALT) activities. Results: From the results, it was elucidated that the tested extracts suppressed both the reduction in CAT and the elevation in MDA either in brain or plasma and the increase in plasma TNF-α, BChE as well as liver and kidney parameters. Conclusion: The tested extracts can be served as potent protective agents against the accelerated aging parameters which may be due to anti-oxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Doha Abdou Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Mohamed Hamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherein s. Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Al-Saman MA, Abdella A, Mazrou KE, Tayel AA, Irmak S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00244-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Optimization of total phenol and anthocyanin extraction from the peels of eggplant (Solanum melongena L.) and biological activity of the extracts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00241-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem 2019; 289:340-350. [DOI: 10.1016/j.foodchem.2019.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
|
47
|
Pinheiro-Sant'Ana HM, Anunciação PC, Souza CSE, de Paula Filho GX, Salvo A, Dugo G, Giuffrida D. Quali-Quantitative Profile of Native Carotenoids in Kumquat from Brazil by HPLC-DAD-APCI/MS. Foods 2019; 8:foods8050166. [PMID: 31100882 PMCID: PMC6560404 DOI: 10.3390/foods8050166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/27/2023] Open
Abstract
In this study the native carotenoids composition in kumquat (Fortunella margarita) (peel + pulp) from Brazil was determined for the first time by a HPLC-DAD-APCI/MS (high performance liquid chromatography-diode array detector-atmospheric pressure chemical ionization/mass spectrometry), methodology. Eleven carotenoids were successfully identified and quantified in kumquat: four carotenoids in the free form and seven carotenoids in the esterified form. β-citraurin-laurate was the carotenoid found in the highest content (607.33 µg/100 g fresh matter), followed by β-cryptoxanthin-laurate (552.59 µg/100 g). The different esterified forms of β-citraurin and β-cryptoxanthin represented 84.34% of the carotenoids found, which demonstrates the importance of esterification in natural fruits. β-carotene and free xanthophylls (β-cryptoxanthin, lutein and zeaxanthin) represented 5.50% and 14.96%, respectively, of total carotenoids in kumquat. The total carotenoid content of kumquat from Brazil was very high (2185.16 µg/100 g), suggesting that this fruit could contribute significantly to the intake of important bioactive compounds by the population.
Collapse
Affiliation(s)
| | - Pamella Cristine Anunciação
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Viçosa 36571-000, Brazil.
| | - Clarice Silva E Souza
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Viçosa 36571-000, Brazil.
| | - Galdino Xavier de Paula Filho
- Departamento de Educação, Universidade Federal do Amapá, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá 68903-419, Brazil.
| | - Andrea Salvo
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| | - Giacomo Dugo
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| | - Daniele Giuffrida
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| |
Collapse
|
48
|
Terao R, Murata A, Sugamoto K, Watanabe T, Nagahama K, Nakahara K, Kondo T, Murakami N, Fukui K, Hattori H, Eto N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin andR-limonene. Food Funct 2019; 10:38-48. [DOI: 10.1039/c8fo01971a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The active constituents of kumquat in NK cell activation and anti-stress effects are β-cryptoxanthin andR-limonene.
Collapse
Affiliation(s)
- Rina Terao
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Akira Murata
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Kazuhiro Sugamoto
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | | | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Tomomi Kondo
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Noboru Murakami
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiichi Fukui
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Hidemi Hattori
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| | - Nozomu Eto
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| |
Collapse
|
49
|
Insight into solvent effects on phenolic content and antioxidant activity of bamboo leaves extracts by HPLC analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9840-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3049-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|