1
|
Yu Q, Li Y, Zhang W, Cui X, Xie S, Zhang L. Covalent organic framework coating with abundant hydrogen bonding sites for efficient enrichment and sensitive detection of oxygenated polycyclic aromatic hydrocarbons in tea. Food Chem 2025; 482:144181. [PMID: 40184738 DOI: 10.1016/j.foodchem.2025.144181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Monitoring trace oxygenated polycyclic aromatic hydrocarbons (O-PAHs) in tea infusions is crucial, as long-term consumption of O-PAHs-contaminated tea can harm health. In this work, covalent organic framework (COF) TpBD-(OH)2 coating was fabricated for solid-phase microextraction (SPME) of O-PAHs. The coating contains abundant benzene rings and hydrogen bonding sites (oxygen and nitrogen groups). Density functional theory calculations, electrostatic potential distribution and X-ray photoelectron spectroscopy analysis indicated the COF efficiently adsorbs O-PAHs via van der Waals force, hydrogen bonding, electrostatic force, size matching, and π-π interaction. Under the best SPME conditions, a method for detecting O-PAHs in tea infusions was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS). The method possessed low limit of detection (0.5-1.0 ng L-1), wide linearity (2.0-1000.0 ng L-1) and satisfactory recoveries (82.5 %-117.5 %). Furthermore, the method was used to study the impacts of different roasting methods on O-PAHs contamination, and results showed carbon roasting posed a higher risk.
Collapse
Affiliation(s)
- Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yiding Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Xueting Cui
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
2
|
Yang M, Sun J, Cao X, Liu H, Wu X, Mao W, Hao L. Comparative toxicity analysis of benzo[a]pyrene and PAH4 on HepG2 cells using transcriptomics and metabolomics. Food Chem Toxicol 2025; 201:115473. [PMID: 40280401 DOI: 10.1016/j.fct.2025.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants posing potential health risks. PAH4 (sum of benzo[a]pyrene (BaP), chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as a marker to evaluate the occurrence of total PAHs. However, toxicity effects of exposure to PAH4 mixture and its toxicity differences with single PAH are little-known. Here, we systematically investigated the hepatotoxicity mechanisms of PAH4 and compare its toxicity with BaP using HepG2 cell model. Our results showed that BaP and PAH4 exposure induced cytotoxicity and oxidative stress. Furthermore, both BaP and PAH4 activated P53 signaling pathway, leading to cell apoptosis, and disrupted peroxisome proliferator-activated receptor (PPAR) signaling and induced lipid metabolism disorder. Integrated analysis of transcriptomics and metabolomics indicated that BaP and PAH4 shared similar toxicity mechanisms, commonly affecting the metabolic pathways including glycerolipid and glycerophospholipid metabolism. Moreover, the integrated biomarker response (IBR) analysis demonstrated that BaP and PAH4 exhibited similar global toxicity on HepG2 cells. We further found that the toxicity effects of PAH4 could be partially alleviated by an aryl hydrocarbon receptor (AHR) antagonist, indicating a potential role of AHR signaling in PAH4-induced hepatotoxicity. Overall, these findings provided insights into the toxicological mechanisms and interaction effects of PAHs mixtures.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialin Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xudong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Du W, Jiang S, Lei Y, Wang J, Cui Z, Xiang P, Chang Z, Duan W, Shen G, Qin Y, Pan B, Yu Y. Occurrence, formation mechanism, and health risk of polycyclic aromatic hydrocarbons in barbecued food. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118046. [PMID: 40086033 DOI: 10.1016/j.ecoenv.2025.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) show negative impacts on human health. Dietary intake is the predominant way for PAH exposure, of which barbecued food is a crucial contributor. This review aims to provide a comprehensive insight into the formation mechanism, influencing factors, mitigation strategies, and health risks of PAHs in barbecued food. PAHs in barbecued food are formed by Hydrogen abstraction and acetylene addition (HACA) mechanism, Diels-Alder reaction and Maillard reaction, which was influenced by heat source, temperature, cooking time, and the meat type. There are significant differences in PAH concentrations in different barbecued foods, where chrysene dominates among the selected PAH species. To reduce PAHs formation, adding marinades and adopting alternative cooking methods are suggested, which effectively reduce PAH levels by 53 -89 %. In addition, it is estimated that people in countries such as Pakistan has an incremental lifetime cancer risk (ILCR) over 10-5 via barbecued food consumption, indicating potential health risk. This work highlighted that regular monitoring of PAH levels in barbecued food and dynamic modification of relevant safety limits are recommended to ensure food safety.
Collapse
Affiliation(s)
- Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Su Jiang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Yali Lei
- Shanghai Environmental Monitoring Center, Shanghai 200232, China
| | - Jinze Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhanpeng Cui
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China.
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China.
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Yunjiang Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Sun H, Xia T, Cheng H, Wu Z, Cheng Q, Lu L, Fu C. Bioaccumulation, sources and health risk assessment of polycyclic aromatic hydrocarbons in Lilium davidii var. unicolor. PLoS One 2025; 20:e0301114. [PMID: 39913391 PMCID: PMC11801534 DOI: 10.1371/journal.pone.0301114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/08/2024] [Indexed: 02/09/2025] Open
Abstract
Dietary uptake is the main pathway of exposure to polycyclic aromatic hydrocarbons (PAHs). However, there is no data regarding the pollution and health risks posed by PAHs in Lilium davidii var. unicolor. We measured the concentrations of 16 PAHs in lily bulbs from Lanzhou; analyzed the bioaccumulation, sources, and pollution pathways of PAHs; assessed the influence of baking on PAH pollution in the bulb; and assessed the cancer risks associated with PAH exposure via lily consumption. The total PAH concentrations in raw bulbs were 30.39-206.55 μg kg-1. The bioconcentration factors of total PAHs ranged widely from 0.92 to 5.71, with a median value of 2.25. Pearson correlation analysis revealed that the octanol-water partition coefficients and water solubility values played important roles in the bioaccumulation of naphthalene, fluorene, phenanthrene, pyrene, and fluoranthene in the raw bulb by influencing PAH availability in soil. Correlation analysis and principal component analysis with multivariate linear regression indicated that biomass and wood burning, coal combustion, diesel combustion, and petroleum leakage were the major sources of PAHs in the raw bulbs. The paired t-test showed that the PAH concentrations in the baked bulbs were higher than those in the raw bulbs. PAH compositions in lily bulb changed during the baking process. Baked bulbs exhibited a higher cancer risk than raw bulbs. Local adults had low carcinogenic risks from consuming lily bulbs. This study fills the knowledge gap about PAH pollution and the related health risks of PAHs in the Lanzhou lily.
Collapse
Affiliation(s)
- Haixu Sun
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, China
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zhenzhen Wu
- School of Environment, Beijing Normal University, Beijing, China
| | - Qianding Cheng
- Beijing Orient Institute of Measurement & Test, Beijing, China
| | - Lu Lu
- Chinese Academy of Environmental Planning, Beijing, China
| | - Chunbao Fu
- School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Kowalska J, Stanisławek M, Latoch A, Marzec A, Galus S, Kowalska H, Ciecierska M. Polycyclic Aromatic Hydrocarbons in Polish Traditionally and Industrially Smoked Meats as an Element of Monitoring and PAH Reduction Strategies. Foods 2025; 14:350. [PMID: 39941942 PMCID: PMC11817262 DOI: 10.3390/foods14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
This work aimed to analyze the PAH content in products smoked in traditional smokehouses with direct and indirect heat sources and in an industrial way as an element of PAH content monitoring in Polish market products. This research material comprised 12 smoked meats (W) and 38 sausages (K), medium or coarsely minced. The content of benzo(a)pyrene and the total content of four marker PAHs was determined by GC-MS. The analysis showed a significantly higher level of PAH contamination in products smoked using traditional methods. The results also indicate that the natural casing is not a barrier against PAH contamination during traditional smoking, and a higher degree of meat fragmentation, together with a small cross-section, increases the PAH content in this technological group. Concentrations of benzo(a)pyrene exceeding the permissible levels were found in the sausages smoked for more than 60 min. As part of the strategies for reducing the PAH content, among others, changing the furnace to an indirect one, shortening the time, lowering the smoking temperature, using artificial casings or removing casings before consumption, drying the product surface before the smoking process, using seasoned and bark-free wood, as well as additional smokehouse equipment, are recommended.
Collapse
Affiliation(s)
- Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C St., 02-787 Warsaw, Poland; (M.S.); (A.M.); (S.G.); (H.K.)
| | - Monika Stanisławek
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C St., 02-787 Warsaw, Poland; (M.S.); (A.M.); (S.G.); (H.K.)
| | - Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C St., 02-787 Warsaw, Poland; (M.S.); (A.M.); (S.G.); (H.K.)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C St., 02-787 Warsaw, Poland; (M.S.); (A.M.); (S.G.); (H.K.)
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C St., 02-787 Warsaw, Poland; (M.S.); (A.M.); (S.G.); (H.K.)
| | - Marta Ciecierska
- Department of Food Technology and Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 St., 02-787 Warsaw, Poland
| |
Collapse
|
6
|
Nie X, Wang M, Yang S, Mu G, Ye Z, Zhou M, Chen W. Longitudinal joint effects of polycyclic aromatic hydrocarbons exposure and genetic susceptibility on fasting plasma glucose: A prospective cohort study of general Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125151. [PMID: 39437876 DOI: 10.1016/j.envpol.2024.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The effects of environmental polycyclic aromatic hydrocarbons (PAHs) exposure on glycemic regulation and the underlying genetic mechanism were still unclear. This study aimed to analyze the longitudinal joint effects of PAHs exposure and genetic susceptibility on fasting plasma glucose (FPG) through a longitudinal study. We included 4104 observations (2383 baseline participants and 1721 6-year follow-up participants) from Wuhan-Zhuhai cohort. Ten urinary PAHs metabolites and FPG were measured at both baseline and follow-up. We constructed the polygenic risk scores (PRS) of FPG from the corresponding genome-wide association studies. Linear mixed models were used to explore the associations of urinary PAHs metabolites or FPG-PRS on FPG levels in the repeated-measure analysis. Besides, the longitudinal relationships of urinary PAHs metabolites, FPG-PRS, and their joint effects on FPG change over 6 years were evaluated by linear regression models. Compared with participants with persistent low levels of urinary total PAHs metabolites, hydroxynaphthalene, and hydroxyphenanthrene, participants with persistent high levels had average decreases of 0.173, 0.188, and 0.263 mmol/L for FPG change over 6 years, respectively. Each 1-unit increase of FPG-PRS was associated with a 0.531 mmol/L for FPG change over 6 years. Besides, compared with participants with high FPG-PRS and persistent low levels of urinary total hydroxynaphthalene, hydroxyfluorene, and hydroxyphenanthrene, participants with low FPG-PRS and persistent high levels had average decreases of 0.322, 0.567, and 0.419 mmol/L for FPG change over 6 years. Our findings demonstrated that high-level PAHs exposure was longitudinally associated with an average decrease of FPG over 6 years, and low FPG genetic risk can enhance the above associations. Our findings emphasized the hypoglycemic effect of PAHs exposure, shed new light on the complex effects between PAHs exposure and genetic factors in the prevention of high FPG, and might provide some clues for the development of potential hypoglycemic agents.
Collapse
Affiliation(s)
- Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Gholami-Borujeni F, Sarvestani RA, Mortezazadeh F, Mohseni-Bandpei A, Nejatzadeh F, Niknejad H. Assessing health risks of polycyclic aromatic hydrocarbons (PAHs) in cooked fish using monte carlo simulation: a global review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:425-438. [PMID: 39464811 PMCID: PMC11499493 DOI: 10.1007/s40201-024-00922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Cooking food at high temperatures can lead to the formation of harmful chemical compounds called polycyclic aromatic hydrocarbons (PAHs). The purpose of this study was to conduct a systematic review and meta-analysis to evaluate the concentrations of 16 PAHs in cooked fish using roasting, barbecuing, or grilling techniques. The Monte Carlo simulation method was employed to accurately assess and quantify the uncertainties associated with risk estimation. This study compiled data on PAH levels in cooked fish using gas or charcoal from 57 original published articles in the PubMed, Science Direct, Scopus, Google Scholar, and Web of Science databases between January 1, 2010 to December 30, 2023. The investigation showed that 55.1% of cooked fish was made by grilling, 35.1% by barbecuing, and 9.8% by roasting. Based on the 95th percentile Hazard Quotient (HQ) from fish consumption, the ranking of 8 PAHs was as follows: Benzo[a]pyrene (BaP = 14.10) > Pyrene (Pyr = 0.29) > Fluorene (Flu = 0.23) > Naphthalene (Nap = 0.22) > Fluoranthene (Flrt = 0.12) > Acenaphthene (Ace = 0.11) > Acenaphthylene (Acy = 0.04) > Anthracene (Anth = 0.02). However, the non-carcinogenic risk ratio for other PAH compounds in fish consumption, excluding BaP, was found to be less than one (HQ < 1). The 95th percentile lifetime excess cancer risk (LTCR) values for 8 PAH compounds (BaP (4.35E- 9) > Anth (6.10E- 11) > Flrt (9.35E- 12) > Pyr (7.04E- 12) > Ace (6.56E- 12) > Flu (4.97E- 12) > Nap (4.39E- 12) > Acy (2.57E- 12)) from fish consumption were negligible and can be disregarded (LTCR < 10- 6). Based on the analysis of the findings, it can be concluded that the consumption of cooked fish using various methods worldwide does not present a carcinogenic risk linked to PAHs.
Collapse
Affiliation(s)
- Fathollah Gholami-Borujeni
- Department of Environmental Health Engineering, Health Sciences Resesarch Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roghayeh Abedi Sarvestani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mortezazadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nejatzadeh
- Department of Horticulture, Faculty of Agriculture, Khoy Branch, Islamic Azad University, Khoy, Iran
| | - Hadi Niknejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Environmental Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Akkaya E, Colak H, Hampikyan H, Cakmak Sancar B, Akhan M, Engin AS, Cetin O, Bingol EB. Determination of 16 European Priority Polycyclic Aromatic Hydrocarbons in Doner Kebab Varieties Cooked Under Different Heating Sources. Foods 2024; 13:3725. [PMID: 39682797 DOI: 10.3390/foods13233725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Doner kebab is a traditional Turkish meat product produced from lamb, beef or poultry meat seasoned with a blend of spices such as salt, black pepper, cumin, thyme and/or sauces. The aim of this study was to determine 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in doner kebabs cooked under four different heating sources (electricity, open gas, wood and charcoal grilling). For this purpose, 200 meat doner and 200 chicken doner kebab samples were obtained randomly from various buffets and restaurants located in Istanbul and analyzed by means of GC-MS. According to the results, benzo[a]pyrene and PAH4 levels, which are important PAH compounds as biomarkers, were significantly higher in chicken doner than in meat doner (p < 0.05). The highest occurrence of benzo[a]pyrene and PAH4 in meat and chicken doner samples was in the charcoal heating source, whereas the lowest occurrence was detected in electric grilling. In terms of all PAH compounds, cooking with an electric heating source caused the formation of fewer PAH compounds in doner kebab samples. Consequently, the fat content of fatty meat products such as doner kebab should be reduced, the contact of fat with the heating source (especially flame) and dripping of fat to the source should be prevented and overcooking of meat should be avoided.
Collapse
Affiliation(s)
- Esra Akkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| | - Hilal Colak
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| | - Hamparsun Hampikyan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Beykent University, 34500 Istanbul, Türkiye
| | - Burcu Cakmak Sancar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, 34510 Istanbul, Türkiye
| | - Meryem Akhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, 34510 Istanbul, Türkiye
| | - Ayse Seray Engin
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Gelisim University, 34310 Istanbul, Türkiye
| | - Omer Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Rumeli University, 34570 Istanbul, Türkiye
| | - Enver Baris Bingol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
| |
Collapse
|
9
|
Cao S, Wan Y, Li Y, Xu S, Xia W. Urinary polycyclic aromatic hydrocarbon metabolites in Chinese pregnant women: Concentrations, variability, predictors, and association with oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175121. [PMID: 39084365 DOI: 10.1016/j.scitotenv.2024.175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive contaminants having adverse health effects. Urinary monohydroxylated PAHs (OH-PAHs) are commonly employed as biomarkers to estimate PAH exposure levels in humans. However, little is understood about the variability in OH-PAHs among pregnant women across trimesters and their relationship with oxidative stress biomarkers (OSBs). Based on a prospective birth cohort study conducted in Wuhan, China, we selected 644 women who donated (spot) urine samples across different trimesters and measured the urinary concentrations of eight OH-PAHs and three selected OSBs (8-OHG, 8-OHdG, and HNEMA) to explore the relationship between the OH-PAHs and OSBs. Pregnant women were found to be ubiquitously exposed to the PAHs, with detection rates of the OH-PAHs ranging from 86.3% to 100%. 2-Hydroxynaphthalene (2-OH-Nap) had the highest urinary concentrations among the OH-PAHs during the three trimesters (specific gravity-adjusted median values for the first, second, and third trimesters: 1.86, 2.39, and 2.20 ng/mL, respectively). However, low reproducibility of the OH-PAHs was observed across the three trimesters with intraclass correlation coefficients ranged between 0.02 and 0.22. Most urinary OH-PAHs had the highest concentrations at the first trimester and the lowest at the third trimester. Some OH-PAH concentrations were higher in pregnant women with lower educational level [2-hydroxyphenanthrene (2-OH-Phen) and 3-hydroxyphenanthrene (3-OH-Phen)], those who were overweight [2-OH-Nap, 2/3-hydroxyfluorene (2/3-OH-Fluo), 2-OH-Phen, and 4-hydroxyphenanthrene (4-OH-Phen)], those who were unemployed during pregnancy [1-hydroxynaphthalene, 1/9-hydroxyphenanthrene, and 4-OH-Phen], and the samples donated in summer (most OH-PAHs, except for 2-OH-Nap). In multivariable linear mixed-effects model analyses, every OH-PAH was found to be significantly associated with increased levels of the three OSBs. For example, each interquartile range-fold increase in 2/3-OH-Fluo concentration was associated with the largest increase in 8-OHdG (65.4%) and 8-OHG (49.1%), while each interquartile range-fold increase in 3-OH-Phen concentration was associated with the largest increase in HNEMA (76.3%). Weighted quantile sum regression models, which were used to examine the joint effect of OH-PAH mixture on the OSBs, revealed positive associations between the OH-PAH mixture exposure and the OSBs. Specifically, 2/3-OH-Fluo and 2-OH-Nap were the major contributors in the association with oxidative damage of nucleic acids (8-OHdG and 8-OHG), while hydroxyphenanthrenes and 1-hydroxypyrene were the major contributors in the association with oxidative damage of lipid (HNEMA). Further work is required to examine the potential mediating role of oxidative stress in the relationship of adverse health outcomes with elevated PAH exposure among pregnant women.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
10
|
Wang Y, Gao F, Xu Y, Rodgers TFM, Tan F. Field study on the uptake pathways and their contributions to the accumulation of organophosphate esters, phthalates, and polycyclic aromatic hydrocarbons in upland rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174205. [PMID: 38909796 DOI: 10.1016/j.scitotenv.2024.174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Plant uptake of organic contaminants generally occurs through either root, gas-phase foliar, or particle-phase foliar uptake. Understanding these pathways is essential for food-system practitioners to reduce human exposures, and to clean contaminated-sites with phytoremediation. Herein, we conducted a field-based experiment using an improved specific exposure chamber to elucidate the uptake pathways of organophosphate esters, phthalates, and polycyclic aromatic compounds, and quantitatively assessed their contributions to organic contaminant accumulations in field-grown rice. For most target compounds, all three uptake pathways (root, foliar gas, and foliar particle uptakes) contributed substantially to the overall contaminant burden in rice. Compounds with lower octanol-water partition coefficients (Kow) were more readily translocated from roots to leaves, and compounds with higher octanol-air partition coefficients (Koa) tended to enter rice leaves mostly through particle deposition. Most compounds were mostly stored in the inner leaves (55.3-98.2 %), whereas the relatively volatile compounds were more readily absorbed by the waxy layer and then transferred to the inner leaves. Air particle desorption was a key process regulating foliar uptake of low-volatility compounds. The results can help us to better understand and predict the environmental fate of those contaminants, and develop more effective management strategies for reducing their human exposure through food ingestion.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Fei Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Timothy F M Rodgers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Nouri M, Mansouri F, Jafari F, Ranjbar Zahedani M, Jalali S, Heidari Z, Shateri Z, Rashidkhani B. Association between processed and ultra-processed food intake and the risk of breast cancer: a case-control study. BMC Cancer 2024; 24:1234. [PMID: 39375621 PMCID: PMC11460039 DOI: 10.1186/s12885-024-13014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Results from studies investigating the association between ultra-processed foods (UPFs) and breast cancer are scarce and, in some cases, contradictory. Therefore, we aimed to evaluate the association between the intake of processed foods (PFs) and UPFs with the risk of breast cancer in Iranian women. METHODS The present case (n = 133) - control (n = 266) study was carried out at two general hospitals in Tehran, Iran. A 168-item semi-quantitative food frequency questionnaire was used to assess the participants' dietary intake. Also, the NOVA classification was used to identify PFs and UPFs. The association between PFs and UPFs with the odds of breast cancer was analyzed using logistic regression models. RESULTS According to Model 1 of conditional logistic regression, the odds of breast cancer were higher in the last tertile of UPFs than in the first tertile (odds ratio (OR) = 1.930; 95% confidence interval (CI): 1.080-3.449). In Model 2, no significant association was observed between the second and last tertiles of PFs and UPFs with the odds of breast cancer compared to the reference tertile. Also based on menopause status, the odds of breast cancer increased in the last tertile only among premenopausal women in Model 2 (OR = 3.656; 95% CI: 1.326-10.079). CONCLUSIONS This study demonstrated that higher consumption of UPFs is associated with higher odds of breast cancer in premenopausal women.
Collapse
Affiliation(s)
- Mehran Nouri
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Mansouri
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jafari
- Department of Nutritional Sciences, the Pennsylvania State University, University Park, Penn State, USA
| | - Maryam Ranjbar Zahedani
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Saba Jalali
- Human Nutrition, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
13
|
Yang M, Mao K, Cao X, Liu H, Mao W, Hao L. Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice. Toxicol Appl Pharmacol 2024; 491:117050. [PMID: 39111554 DOI: 10.1016/j.taap.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Inbaraj BS, Lai YW, Chen BH. Analysis and Formation of Polycyclic Aromatic Hydrocarbons in Canned Minced Chicken and Pork during Processing. Molecules 2024; 29:4372. [PMID: 39339367 PMCID: PMC11433863 DOI: 10.3390/molecules29184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent important toxic compounds formed in meat products during processing. This study aims to analyze 22 PAHs by QuEChERS coupled with GC-MS/MS in canned minced chicken and pork during processing. After marinating raw minced chicken and pork separately with a standard flavoring formula used for canning meat in Taiwan, they were subjected to different processing conditions including stir-frying, degassing and sterilizing at 115 °C/60 min (low-temperature-long-time, LTLT) and 125 °C/25 min (high-temperature-short-time, HTST). The quantitation of PAHs in these meat products revealed the formation of only three PAHs including acenaphthylene (AcPy), acenaphthene (AcP) and pyrene (Pyr) in canned minced chicken and pork during processing with no significant difference in total PAHs between the meat types. Analysis of PAH precursors showed the presence of benzaldehyde at the highest level, followed by 2-cyclohexene-1-one and trans,trans-2,4-decadienal in canned minced chicken and pork, suggesting PAH formation through the reaction of benzaldehyde with linoleic acid degradation products and of 2-cyclohexene-1-one with C4 compounds through the Diels-Alder reaction, as well as the reaction of trans,trans-2,4-decadienal with 2-butene. Monounsaturated and polyunsaturated fatty acids were present in the largest proportion in LTLT-sterilized chicken/pork, followed by HTST-sterilized chicken/pork and raw chicken/pork, and their levels did not show a high impact on PAH formation, probably due to an insufficient heating temperature and length of time. A two-factorial analysis suggested that PAH formation was not significantly affected by the sterilization condition or meat type. Principal component analysis corroborated the observed results implying the formation of PAHs in canned minced chicken/pork under different processing conditions with an insignificant difference (p > 0.05) between them, with the individual PAH content following the order of Pyr > AcPy > AcP.
Collapse
Affiliation(s)
- Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.S.I.); (Y.-W.L.)
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.S.I.); (Y.-W.L.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (B.S.I.); (Y.-W.L.)
- Department of Nutrition, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
15
|
Asadi Touranlou F, Hashemi M, Ghavami V, Tavakoly Sany SB. Concentration of polycyclic aromatic hydrocarbons (PAHs) in bread and health risk assessment across the globe: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13411. [PMID: 39245919 DOI: 10.1111/1541-4337.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/30/2024] [Indexed: 09/10/2024]
Abstract
Although bread is the principal food in most countries, polycyclic aromatic hydrocarbons (PAHs) may be present and pose a potential risk to consumers. The aim of this review is to provide a comprehensive report on the concentration and health risks associated with PAHs in bread around the world. Various databases, such as Scopus, PubMed, Science Direct, and Google Scholar, were searched from their beginnings until December 2023 for this systematic review, which included 34 potentially relevant articles with data relating to 1057 bread samples. Utilizing a multilevel regression modeling approach, the study evaluated various factors such as fuel type, bread type, and geographical location. Following the initial evaluation, in 26.47% and 20.28% of all studies, the levels of Bap and PAH4 were higher than the permissible limit values, respectively. Based on the isomer ratios, 55.88% of the studies associated the presence of PAHs in bread samples with pyrogenic/coal combustion sources. According to the carcinogenic risk results, bread consumers in all studies have been exposed to moderate or high levels of carcinogenicity. The most significant risk levels are associated with the consumption of bread in Egypt, Kuwait, Iran, and India. Moreover, meta-regression analysis demonstrated significantly higher toxicity equivalent quotient and cancer risk mean values in bread baked using fossil fuels compared to other sources (p < .05). The high concentrations of PAHs, especially Benzo[a]pyrene, in bread pose a serious public health risk. Stringent regulations and monitoring are crucial to reduce contamination. Further research is necessary to develop safe processing methods to remove PAHs in bread.
Collapse
Affiliation(s)
- Fateme Asadi Touranlou
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Ghavami
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, Environment Management, School of Health Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
17
|
Egbewale SO, Kumar A, Olasehinde TA, Mokoena MP, Olaniran AO. Anthracene detoxification by Laccases from indigenous fungal strains Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Biodegradation 2024; 35:769-787. [PMID: 38822999 PMCID: PMC11246312 DOI: 10.1007/s10532-024-10084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
The persistence and ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the environment necessitate effective remediation strategies. Hence, this study investigated the potential of purified Laccases, TlFLU1L and TpFLU12L, from two indigenous fungi Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12), respectively for the oxidation and detoxification of anthracene. Anthracene was degraded with vmax values of 3.51 ± 0.06 mg/L/h and 3.44 ± 0.06 mg/L/h, and Km values of 173.2 ± 0.06 mg/L and 73.3 ± 0.07 mg/L by TlFLU1L and TpFLU12L, respectively. The addition of a mediator compound 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to the reaction system significantly increased the degradation of anthracene, with up to a 2.9-fold increase in vmax value and up to threefold decrease in Km values of TlFLU1L and TpFLU12L. The GC-MS analysis of the metabolites suggests that anthracene degradation follows one new pathway unique to the ABTS system-hydroxylation and carboxylation of C-1 and C-2 position of anthracene to form 3-hydroxy-2-naphthoic acid, before undergoing dioxygenation and side chain removal to form chromone which was later converted into benzoic acid and CO2. This pathway contrasts with the common dioxygenation route observed in the free Laccase system, which is observed in the second degradation pathways. Furthermore, toxicity tests using V. parahaemolyticus and HT-22 cells, respectively, demonstrated the non-toxic nature of Laccase-ABTS-mediated metabolites. Intriguingly, analysis of the expression level of Alzheimer's related genes in HT-22 cells exposed to degradation products revealed no induction of neurotoxicity unlike untreated cells. These findings propose a paradigm shift for bioremediation by highlighting the Laccase-ABTS system as a promising green technology due to its efficiency with the discovery of a potentially less harmful degradation pathway, and the production of non-toxic metabolites.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Tosin A Olasehinde
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Mduduzi P Mokoena
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
18
|
Díaz-González BV, Ramos-Luzardo Á, Henríquez-Hernández LA, Serra-Majem L, Bautista-Castaño I, Acosta-Dacal A, Luzardo OP, Hernández-García E, Cornejo-Torre J, Hernández-Hernández JR, Fernández-Valerón P. Effect of bariatric surgery in the body burden of persistent and non-persistent pollutants: longitudinal study in a cohort of morbidly obese patients. Front Endocrinol (Lausanne) 2024; 15:1412261. [PMID: 39104810 PMCID: PMC11298429 DOI: 10.3389/fendo.2024.1412261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Obesity is a pathological state that involves the dysregulation of different metabolic pathways and adipose tissue cells, constituting a risk factor for the development of other diseases. Bariatric surgery is the most effective treatment. The study of the behavior of pollutants in situations of extreme weight loss can provide biomonitoring information and tools to manage diseases of environmental etiology. Aim To determine the prevalence of serum persistent and non-persistent pollutants in obese patients subjected to bariatric surgery and analyze the impact of sociodemographic variables on these changes. Methods GC-MS/MS and UHPLC-MS/MS were utilized to determine the detection rates and concentrations of 353 compounds, including persistent organic pollutants (POPs), pesticides, pharmaceuticals, and rodenticide, in serum samples of 59 obese patients before and after undergoing bariatric surgery. Results Detection rates of p,p'-DDE, HCB, β-HCH, naphthalene, phenanthrene and PCB congeners 138, 153 and 180 significantly increased due to surgery-induced weight loss. Serum levels of p,p'-DDE, PCB-138, PCB-153 and PCB-180 also increased after surgery. Correlations between naphthalene levels, weight loss, variation of total lipids and time after surgery were found. Additionally, correlations were observed between concentrations of PCB-138 and weight loss, and between phenanthrene levels and reduction of total lipids. No statistically significant differences were observed for other groups of contaminants, pharmaceuticals and other chemicals included in the quantification methods. Conclusions Increment of POPs was observed after bariatric surgery. Serum concentrations of POPs after surgery were influenced by adiposity-related variables. Although biomonitoring studies show a decreasing tendency of exposure, rapid weight loss leads to an increase of circulating POPs. Further research on the interplay between adipose tissue, POPs and peripheral organs is required.
Collapse
Affiliation(s)
- B. Vanessa Díaz-González
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Álvaro Ramos-Luzardo
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Bautista-Castaño
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Hernández-García
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Judith Cornejo-Torre
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Ramón Hernández-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Pilar Fernández-Valerón
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Yang R, Shi C, Li X, Gan P, Pan X, Peng R, Tan L. Human biomonitoring of serum polycyclic aromatic hydrocarbons and oxygenated derivatives by gas chromatography coupled with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4817-4826. [PMID: 38966930 DOI: 10.1039/d4ay00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
While polycyclic aromatic hydrocarbons (PAHs) are well-known for their potential carcinogenic and mutagenic effects, the health implications of exposure to oxygenated PAHs (OPAHs), which are significant substitutes with increased persistence and bioaccumulation, are less understood. In this work, we compared the background levels of liquid-liquid, solid-phase, and supported-liquid extraction for the determination of serum PAHs and OPAHs. Liquid-liquid extraction demonstrated minimal background interference and was validated and used for human biomonitoring of PAHs and OPAHs in 240 participants using gas chromatography coupled with tandem mass spectrometry. We observed significant positive correlations between these compounds using Spearman correlation analysis. Furthermore, we investigated the concentration levels and compositions of PAHs and OPAHs among different demographic characteristics, including gender, age, and body mass index. Linear regression analysis demonstrated a weak but significant correlation between total concentrations of PAHs and OPAHs and age and body mass index. A multivariate linear regression analysis was then conducted to examine the association of exposure to individual PAHs and OPAHs with the body mass index. Naphthalene exposure and body mass index showed a statistically significant positive correlation, suggesting that higher levels of naphthalene exposure are associated with higher body mass index values. This study establishes a robust method for biomonitoring PAHs and OPAHs in serum, evaluating the exposure levels of these compounds in healthy adults and highlighting their associations with demographic characteristics.
Collapse
Affiliation(s)
- Rong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Chenwen Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| | - Xiaojing Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Xie Y, Cai L, Zhou G, Li C. Comparison of nutritional profile between plant-based meat analogues and real meat: A review focusing on ingredients, nutrient contents, bioavailability, and health impacts. Food Res Int 2024; 187:114460. [PMID: 38763688 DOI: 10.1016/j.foodres.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Liu T, Zhang L, Pan L, Yang D. Polycyclic Aromatic Hydrocarbons' Impact on Crops and Occurrence, Sources, and Detection Methods in Food: A Review. Foods 2024; 13:1977. [PMID: 38998483 PMCID: PMC11240991 DOI: 10.3390/foods13131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a category of persistent organic pollutants that pose a global concern in the realm of food safety due to their recognized carcinogenic properties in humans. Food can be contaminated with PAHs that are present in water, air, or soil, or during food processing and cooking. The wide and varied sources of PAHs contribute to their persistent contamination of food, leading to their accumulation within these products. As a result, monitoring of the levels of PAHs in food is necessary to guarantee the safety of food products as well as the public health. This review paper attempts to give its readers an overview of the impact of PAHs on crops, their occurrence and sources, and the methodologies employed for the sample preparation and detection of PAHs in food. In addition, possible directions for future research are proposed. The objective is to provide references for the monitoring, prevention, and in-depth exploration of PAHs in food.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| | - Li Zhang
- Suzhou Vocational University Center for Food Safety and Nutrition, Suzhou 215104, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daifeng Yang
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| |
Collapse
|
22
|
Tavoosidana G, Abdolhosseini M, Mazaheri Y, Basaran B, Shavali-Gilani P, Sadighara P. The carcinogenic PAHs in breads, amount, analytical method and mitigation strategy, a systematic review study. BMC Public Health 2024; 24:1538. [PMID: 38849795 PMCID: PMC11157925 DOI: 10.1186/s12889-024-18413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 06/09/2024] Open
Abstract
Bread is one of the most consumed foods all over the world. Several contaminants are identified in bread. Polycyclic aromatic hydrocarbons (PAHs) is one of these contaminants. This systematic study evaluates the amount of four carcinogenic PAHs (PAH4) in various types of breads. To conduct this study, a comprehensive search was carried out using keywords of polycyclic aromatic hydrocarbons, PAHs, PAH4, and bread, with no time limitations. 17 articles were selected and fully evaluated. The observed range of PAH4 concentrations in bread varied from non-detected (ND) to 20.66 µg/kg. In the sample preparation process for analysis, an ultrasonic bath was predominantly utilized. Most chromatographic methods are able to measure PAHs in food, but the GC-MS method has been used more. To mitigate PAH levels in bread, it is suggested to incorporate antioxidants during the bread-making process. Furthermore, the type of bread, the type of fuel used to bake the bread, the temperature and the cooking time were some of the factors affecting the amount of PAH. Restricting these factors could significantly reduce PAH content. Regarding the risk assessment conducted in the manuscript, it was determined that industrial breads are usually considered safe. However, some traditional breads may pose risks in terms of their potential PAH content.
Collapse
Affiliation(s)
- Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Yeghaneh Mazaheri
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Parisa Shavali-Gilani
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Dai Y, Deng Q, Liu Q, Zhang L, Gan H, Pan X, Gu B, Tan L. Humoral immunosuppression of exposure to polycyclic aromatic hydrocarbons and the roles of oxidative stress and inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123741. [PMID: 38458516 DOI: 10.1016/j.envpol.2024.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.
Collapse
Affiliation(s)
- Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qianyun Deng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Qiaojuan Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huiquan Gan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
24
|
Bulanda S, Lau K, Nowak A, Łyko-Morawska D, Kotylak A, Janoszka B. The Risk of Oral Cancer and the High Consumption of Thermally Processed Meat Containing Mutagenic and Carcinogenic Compounds. Nutrients 2024; 16:1084. [PMID: 38613117 PMCID: PMC11013896 DOI: 10.3390/nu16071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The International Agency for Research on Cancer has classified the consumption of heat-processed meat as a direct human carcinogen and the consumption of red meat as a probable carcinogen. Mutagenic and carcinogenic compounds present in meat dishes include, among others, polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HAAs). These compounds can cause the development of gastrointestinal cancer. Oral cancer is one of the world's research priorities due to the ever-increasing incidence rate. However, the effect of diet on oral cancer is still a poorly recognized issue. The aim of this study was to assess the relationship between the risk of oral cancer and dietary ingredients with a particular emphasis on red meat and thermally processed meat. This study was conducted among patients with oral cancer in 2022 and 2023. The shortened standardized Food Frequency Questionnaire (FFQ) and a multivariate regression statistical analysis were used. The high consumption of red meat in general and thermally processed meat, especially smoked, fried, roasted and boiled, increases the risk of oral cavity cancer. Limiting the consumption of meat products and modifying the methods of preparing meat dishes may reduce exposure to carcinogenic compounds from the diet and thus reduce the risk of developing oral cancer.
Collapse
Affiliation(s)
- Sylwia Bulanda
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| | - Karolina Lau
- Department of Environmental Medicine and Epidemiology in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| | - Agnieszka Nowak
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| | - Dorota Łyko-Morawska
- Department of Vascular Surgery, General Surgery, Angiology and Phlebology, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland;
| | - Anna Kotylak
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Beata Janoszka
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
25
|
Ab-latif NI, Abdullah R, Omar S, Sanny M. Risk Assessment of Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines in Processed Meat, Cooked Meat and Fish-Based Products Using the Margin of Exposure Approach. Malays J Med Sci 2024; 31:130-141. [PMID: 38694573 PMCID: PMC11057834 DOI: 10.21315/mjms2024.31.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/12/2023] [Indexed: 05/04/2024] Open
Abstract
Background The objective of this study is to assess the risk of exposure of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in meat and fish-based products marketed in Malaysia using the margin of exposure (MOE) approach. Methods Benchmark Dose (BMD) software was used to model the BMD at a lower end of a one-sided 95% confidence interval with a 10% incremental risk (BMDL10) of PAHs and HCAs from different target organ toxicities. The MOEs of PAHs and HCAs in meat and fish-based products were determined by utilising the calculated BMDL10 values and estimated daily intake of meat and fish-based products from published data. Results The calculated BMDL10 values of PAHs (i.e. benzo[a]pyrene [BaP] and fluoranthene [FA]) and HCAs (i.e. 2-amino-3,8,dimethylimidazo[4,5-f]quinoxaline [MeIQx] and 2-amino-1-methyl-6-phenylimidazo[4,5,6]pyridine [PhIP]) ranged from 19 mg/kg bw/day to 71,801 mg/kg bw/day. The MOE of BaP ranged from 41,895 to 71,801 and that of FA ranged from 19 to 1412. As for MeIQx and PhIP, their MOEs ranged from 6,322 to 7,652 and from 2,362 to 14,390, respectively. Conclusion The MOEs of FA, MeIQx and PhIP were lower than 10,000, indicating a high concern for human health and therefore demanding effective risk management actions.
Collapse
Affiliation(s)
- Nurin Irdina Ab-latif
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syaliza Omar
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, Malaysia
| | - Maimunah Sanny
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
26
|
Abdulai PM, Sam K, Onyena AP, Ezejiofor AN, Frazzoli C, Ekhator OC, Udom GJ, Frimpong CK, Nriagu J, Orisakwe OE. Persistent organic pollutants and heavy metals in Ghanaian environment: a systematic review of food safety implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:376. [PMID: 38492071 DOI: 10.1007/s10661-024-12500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/24/2024] [Indexed: 03/18/2024]
Abstract
Advances in industrial and technological innovations have led to significant socio-economic benefits, but with overwhelming negative impacts on the environment. These impacts include the infiltration of organic contaminants into soil, water, and air, posing a threat to the environment and public health. Polybrominated diphenyl ethers (PBDEs), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) are increasingly released as waste, endangering the environment. In countries like Ghana, where regulations are weakly enforced, industrial waste is released uncontrollably, posing threats to public health, environmental integrity, and food systems. This study systematically evaluated existing literature on PBDEs, heavy metals, PAHs, and organic contaminant exposure in Ghana and proposes a roadmap for achieving food safety and protecting the environment and human health. The research identified high mobility of specific heavy metals and risks associated with PBDEs and PAHs in sediments, dumpsites, and various food items. Unregulated dumping of electronic waste with PBDEs raised environmental concerns. An integrated approach is needed to address the multifaceted impact of organic pollutants on public health and ecosystems. Urgent implementation of effective environmental management strategies and regulatory measures is crucial. The study proposed short- to mid-term priorities emphasising the need to foster collaboration and implementing global measures. The mid- to long-term strategy includes a national information surveillance system, local monitoring capacity development, and integrating land contamination controls with food safety legislation. These measures would mitigate risks, ensure sustainable practices, and improve overall food safety management in Ghana, serving as a model for regions facing similar challenges with diverse pollutants.
Collapse
Affiliation(s)
- Prosper Manu Abdulai
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kabari Sam
- Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Nigeria
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth, PO1 2UP, UK
| | - Amarachi Paschaline Onyena
- Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Nigeria
| | - Anthoneth Ndidi Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome, Italy
| | - Osazuwa Clinton Ekhator
- Department of Science Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - Godswill J Udom
- Department of Pharmacology and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Caleb Kesse Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10 Mersin, Turkey.
| |
Collapse
|
27
|
Xu X, Liu X, Wang S, Zou Y, Zhang J, Liang L, Wen C, Li Y, Xu X, He X, Liu G, Xu X. Relationship between PAH4 formation and thermal reaction products in model lipids and possible pathways of PAHs formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133374. [PMID: 38160552 DOI: 10.1016/j.jhazmat.2023.133374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Lipids are closely related to the generation of PAHs during food thermal processing. During heating, lipids mainly triglycerides undergo hydrolysis, oxidation and decomposition. The relationship between the various products and the formation of PAHs is still unclear. This paper investigated the effect of different lipid standards on PAH4 production, and explored their thermal stability and reaction products to delve into nature of the differences in PAH4 production. Fatty acids were more prone to generate PAH4 than glycerides. The higher the degree of esterification of glycerides, the higher its thermal stability and the lower the content of PAH4 generated, implying that hydrolysis of glycerides promoted the generation of PAH4. In addition, there was a positive correlation between unsaturation in lipids and the PAH4 production. After heat treatment, hydroperoxides, unsaturated fatty alcohols and aldehydes, alkenes and aromatic substances were abundant in oleic acid and linoleic acid which produced the most PAH4. Thermal decomposition of lipid hydroperoxides was the pathway for the generation of conjugated hydrocarbon radicals, alcohols, aldehydes, and alkenes. The intramolecular cyclization and Diels-Alder reaction acted as ring-forming reactions, with consequent dehydrogenation, decarboxylation, side-chain breaks and radical reorganization, ultimately facilitating the amplification of the aromatic rings and the formation of PAHs.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Shuai Wang
- Yangzhou Center for Food and Drug Control, Yangzhou 225106, China
| | - Yongping Zou
- Yangzhou Center for Food and Drug Control, Yangzhou 225106, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaowei Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225106, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
28
|
Goswami P, Ohura T, Suzuki R, Koike N, Watanabe M, Guruge KS. Hazardous implications of halogenated polycyclic aromatic hydrocarbons in feedstuff: Congener specificity and toxic levels in feed ingredients and feeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169855. [PMID: 38185150 DOI: 10.1016/j.scitotenv.2023.169855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Studies have shown that halogenated polycyclic aromatic hydrocarbons (HPAHs), including chlorinated (ClPAHs) and brominated PAHs (BrPAHs), could be hazardous pollutants due to their pervasive occurrence in the environment. However, their accumulation properties and toxic potentials in animal feedstuffs remain unclear. This study investigated 75 congeners of parent PAHs, ClPAHs, and BrPAHs in animal-based feed ingredients and fish and swine feeds in Japan using a GC/Orbitrap MS system. The total parent PAHs ranged from below the method detection limit (
Collapse
Affiliation(s)
- Prasun Goswami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan
| | - Takeshi Ohura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan; Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| | - Ryotaro Suzuki
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Natsuki Koike
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Mafumi Watanabe
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan
| | - Keerthi S Guruge
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
29
|
Periasamy VS, Athinarayanan J, Alshatwi AA. Understanding the Interaction between Nanomaterials Originated from High-Temperature Processed Starch/Myristic Acid and Human Monocyte Cells. Foods 2024; 13:554. [PMID: 38397531 PMCID: PMC10888307 DOI: 10.3390/foods13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
High-temperature cooking approaches trigger many metabolically undesirable molecule formations, which pose health risks. As a result, nanomaterial formation has been observed while cooking and reported recently. At high temperatures, starch and myristic acid interact and lead to the creation of nanomaterials (cMS-NMs). We used a non-polar solvent chloroform to separate the nanomaterials using a liquid-liquid extraction technique. The physico-chemical characterization was carried out using dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). To determine the biological impact of these nanomaterials using different in vitro assays, including a cell viability assay, microscopic staining, and gene expression analysis, we adopted the THP-1 cell line as an in vitro monocyte model in our study. The TEM images revealed that fabricated cMS nanomaterials are smaller than 100 nm in diameter. There were significant concerns found in the cytotoxicity assay and gene expression analysis. At concentrations of 100-250 µg/mL, the cMS-NMs caused up to 95% cell death. We found both necrosis and apoptosis in cMS-NMs treated THP-1 cells. In cMS-NMs-treated THP-1 cells, we found decreased expression levels in IL1B and NFKB1A genes and significant upregulation in MIF genes, suggesting a negative immune response. These findings strongly suggest that cMS-NMs originated from high-temperature food processing can cause adverse effects on biological systems. Therefore, charred materials in processed foods should be avoided in order to minimize the risk of health complications.
Collapse
Affiliation(s)
| | | | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (V.S.P.); (J.A.)
| |
Collapse
|
30
|
Yang M, Lu Y, Mao W, Hao L. New insight into PAH4 induced hepatotoxicity and the dose-response assessment in rats model. CHEMOSPHERE 2024; 350:141042. [PMID: 38154670 DOI: 10.1016/j.chemosphere.2023.141042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
PAH4 (sum of benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as better marker than benzo[a]pyrene to assess total PAHs exposure in foodstuffs. However, the toxicological behaviors of PAH4 combined exposure remain unclear. This study aimed to investigate PAH4 toxicity effects with non-targeted metabolomics approach and evaluate the external and internal dose-response relationships based on benchmark dose (BMD) analysis. Male Sprague-Dawley rats were treated by gavage with vehicle (corn oil) or four doses of PAH4 (10, 50, 250, 1000 μg/kg·bw) for consecutive 30 days. After the final dose, the liver, blood and urine samples of rats were subsequently collected for testing. The concentrations of urinary mono-hydroxylated PAHs metabolites (OH-PAHs) including 3-hydroxybenzo[a]pyrene (3-OHB[a]P), 3-hydroxychrysene (3-OHCHR) and 3-hydroxybenz[a]anthracene (3-OHB[a]A) were determined to reflect internal PAH4 exposure. Our results showed PAH4 exposure increased relative liver weight and serum aspartate aminotransferase (AST) activity and caused hepatocyte swelling and degeneration, implying hepatotoxicity induced by PAH4. Serum metabolomics suggested PAH4 exposure perturbed lipid metabolism through upregulating the expression of glycerolipids metabolites, which was evidenced by markedly increased serum triglyceride (TG) level and hepatic TG content. Additionally, urinary OH-PAHs concentrations presented strong positive correlations with the external dose, indicating they were able to reflect PAH4 exposure. Furthermore, PAH4 exposure led to a dose-response increase of hepatic TG content, based on which the 95% lower confidence value of BMDs for external and internal doses were estimated as 5.45 μg/kg·bw and 0.11 μmol/mol·Cr, respectively. In conclusion, this study suggested PAH4 exposure could induce hepatotoxicity and lipid metabolism disorder, evaluating the involved dose-response relationships and providing a basis for the risk assessment of PAHs.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuxuan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Qi Z, Zhang Z, Jin R, Zhang L, Zheng M, Li J, Wu Y, Li C, Lin B, Liu Y, Liu G. Target Analysis of Polychlorinated Naphthalenes and Nontarget Screening of Organic Chemicals in Bovine Milk, Infant Formula, and Adult Milk Powder by High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:773-782. [PMID: 38109498 DOI: 10.1021/acs.jafc.3c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 μg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.
Collapse
Affiliation(s)
- Ziyuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zherui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yahui Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Huang K, Wu HL, Wang T, Dong MY, Yan XQ, Yu RQ. Chemometrics-assisted excitation-emission matrix fluorescence spectroscopy for real-time migration monitoring of multiple polycyclic aromatic hydrocarbons from plastic products to food simulants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123360. [PMID: 37717485 DOI: 10.1016/j.saa.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as a class of organic pollutants that have attracted much attention, are likely to be formed with the production and processing of plastic products, and they may migrate from contaminated plastic products to food, causing the risk of poisoning or cancer. In this study, migration tests were carried out on disposable plastic products for food contact, and a novel strategy that combines excitation-emission matrix (EEM) fluorescence spectroscopy with the advanced second-order calibration method based on the three-direction resection alternating trilinear decomposition (TDR-ATLD) algorithm was used to monitor the migration of three PAHs anthracene (ANT), pyrene (PYR), and phenanthrene (PHE) from the plastic products to food simulants in real-time. With the "second-order advantage", even if the fluorescence spectra of the target analytes overlapped seriously, and other unknown substances migrated from the plastic products to food simulants, accurate qualitative and quantitative results were still obtained by the proposed method. In the static system, the coefficient of determination (R2) of the three PAHs within the calibration range were all greater than 0.99, and the average spiked recoveries were 99.5-107.1%, with the standard deviation lower than 8.9%. The figures of merit (FOMs) and intra- or inter-day precision also showed good feasibility and reliability of the method. In the simulation study of the migration kinetic process, three PAHs can be quantified in real-time in complex matrix, then the related migration equations were established. The results indicate that the proposed method can be used for real-time migration quantitative monitoring of PAHs, providing a potential and available method for the study of the migration kinetics of hazardous substances from food contact materials to food or food simulants.
Collapse
Affiliation(s)
- Kun Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Hai-Long Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Ming-Yue Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Qin Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
33
|
Sadighara P, Ghanbari R, Mahmudiono T, Kavousi P, Limam I, Fakhri Y. Concentration and probabilistic health risk assessment of benzo(a)pyrene in extra virgin olive oils supplied in Tehran, Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:238-247. [PMID: 36371808 DOI: 10.1080/09603123.2022.2144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
One hundred and sixteen samples of extra virgin olive oils (VOOs) from markets of Tehran were analyzed by high-performance liquid chromatography (HPLC) to detect the amount of benzo (a)pyrene. The values of LOD and LOQ were calculated as 0.03 and 0.05 µg/kg, respectively. The concentration of benzo (a) pyrene was from 0.03 to 0.95 µg/kg. The results indicate that the levels of benzo (a) pyrene are lower than the limits approved. Target Hazard quotient (THQ) and Margin of Exposure (MOE) were estimated. The mean of THQ for adults and children was 0.0006 and 0.0028 and also mean of MOE for adults and children was 43,503 and 9438, respectively. The probabilistic health risk shows that THQ is less than 1 value; hence consumers are not at non-cancer risk. The mean of MOE value for adults was more than 10,000 but for children was less than 10,000. Hence, children are at health risk borderline.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
34
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
35
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Lan J, Wu S. Occurrence, Concentration and Toxicity of 54 Polycyclic Aromatic Hydrocarbons in Butter during Storage. Foods 2023; 12:4393. [PMID: 38137197 PMCID: PMC10742937 DOI: 10.3390/foods12244393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly carcinogenic compounds with a lipophilic nature. This study investigated the characterization of PAH24 contamination in twenty-one types of butter and five types of margarines using the QuEChERS pretreatment coupled with GC-QqQ-MS. Additionally, low-temperature storage experiments were conducted to explore the variations in oxidation index as well as the PAH levels. The results revealed that PAH24 concentrations in butter and margarine were 50.75-310.64 μg/kg and 47.66-118.62 μg/kg, respectively. The PAH4 level in one type of butter reached 11.24 μg/kg beyond the EU standards. Over 160 days of storage at 4 °C, acid value (AV), peroxide value (POV), and acidity significantly increased, while malondialdehyde (MDA) content and carbonyl value (CGV) fluctuated. Concentrations of PAH24 and oxidized PAHs (OPAHs) experienced a notable reduction of 29.09% and 63.85%, respectively. The slow reduction in naphthalene (NaP) indicated the dynamic nature of PAHs during storage. However, the toxic equivalency quotients (TEQs) decreased slightly from a range of 0.65-1.90 to 0.39-1.77, with no significant difference. This study contributes to the understanding of variations in PAHs during storage, which is of great significance for food safety.
Collapse
Affiliation(s)
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| |
Collapse
|
37
|
Huong Huynh TT, Tongkhao K, Hengniran P, Vangnai K. Assessment of High-temperature Refined Charcoal to Improve the Safety of Grilled Meat Through the Reduction of Carcinogenic PAHs. J Food Prot 2023; 86:100179. [PMID: 37839553 DOI: 10.1016/j.jfp.2023.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
This study presents mitigation strategies for reducing carcinogenic polycyclic aromatic hydrocarbon (PAH) contamination levels in grilled meat using high-temperature refined charcoal (HTC) prepared by Iwate kiln, also known as high-quality charcoal. Four different types of HTC were investigated for their properties in conjunction with their potential to reduce PAHs in grilled meat, including high-temperature Eucalyptus charcoal (HTEC), Leucaena charcoal (HTLC), Acacia charcoal (HTAC), and bamboo charcoal (HTBC). The results showed that all HTCs had higher fixed carbon, higher heating value, and lower volatile compounds (83.07-87.81%, 7,306-7,765 Kcal/g, and 6.98-11.97%, respectively) than commercial low-temperature refined charcoal (LTC) (65.33%, 6,728 Kcal/g, and 22.22%, respectively). The current high fixed carbon content and heating value responded to the rising maximum temperature of charcoal up to 500-600°C, providing heat source stabilization to control the radiant energy exposure of charcoal during grilling, thereby shortening grilling time. The PAH16 value of the LTC-grilled sample (144.41 μg/kg) was significantly higher than that of the HTEC, HTLC, and HTAC-grilled samples (98.21, 80.75, and 79.56 μg/kg, respectively). However, PAH16 levels in the sample grilled with HTBC were unexpectedly high (265.75 μg/kg), and cooking loss was not significantly different between samples grilled with all charcoals. Overall, the findings indicated that using HTC prepared from Eucalyptus, Leucaena, and Acacia woods could reduce PAH contamination in grilled pork by up to 45%. However, more research is needed to determine the best preparation method for high-quality charcoal made from bamboo.
Collapse
Affiliation(s)
- Thi Thu Huong Huynh
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kullanart Tongkhao
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Pongsak Hengniran
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
38
|
Dwumfour-Asare B, Dartey E, Adherr NSK, Sarpong K, Asare EA. Effect of Smoking and Grilling on Polycyclic Aromatic Hydrocarbons in Ghanaian Tilapia. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231213546. [PMID: 38046521 PMCID: PMC10691319 DOI: 10.1177/11786302231213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
The study assessed 18 Polycyclic Aromatic Hydrocarbons (PAHs) in O. niloticus (Nile tilapia) sampled from an aquaculture cage (farm) and a wild catch. The PAHs in fish samples were analysed using Gas Chromatography-Mass Spectrometry. Four PAHs (in order of levels: Indeno [1,2,3-cd] pyrene > Anthracene > Perylene > Pyrene; 100-0.8 µg/kg) and only one PAH (Pyrene: 4 µg/kg) were detected in raw samples from the cage and wild catch respectively. Chargrilling significantly increased Pyrene levels after cooking (wild: 4-11 µg/kg; cage: 5-23 µg/kg, p < .05), and likewise Anthracene levels in cage samples (13-153 µg/kg) but decreased Indeno [1,2,3-cd] pyrene levels from 100 ± 20 to 1.2 ± 0.2 µg/kg in cage samples. Smoking significantly increased 13 to 15 PAH congeners' levels (from < 1.0 up to 340 µg/kg) and total PAHs (wild: 4 to 840 µg/kg; cage: 110 to 560 µg/kg), and decreased Indeno [1,2,3-cd] pyrene (100 to 1.3 µg/kg) in cage samples but showed no effect on Benzo [g, h, i] perylene and Dibenzo [a, h] anthracene levels in all samples. For smoked samples, Benzo [a] pyrene and PAH4 (Benzo [a] anthracene, Chrysene, Benzo [b] fluoranthene, and Benzo [a] pyrene) exceeded the respective maximum permissible limits of 2 µg/kg and 12 µg/kg, and significantly influenced the levels of carcinogenic PAHs (CPAH, 135-170 µg/kg). Nevertheless, the Excess Cancer Risk (ECR) estimates, from a conservative approach, were far below the threshold (10-4), implying that consuming smoked or grilled tilapia from the study site is safe.
Collapse
Affiliation(s)
- Bismark Dwumfour-Asare
- Department of Environmental Health & Sanitation Education, Faculty of Environment and Health Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante-Mampong Campus, Asante Mampong, Ashanti Region, Ghana
| | - Emmanuel Dartey
- Department of Chemistry Education, Faculty of Science Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante-Mampong Campus, Asante Mampong, Ashanti Region, Ghana
| | - Nomolox Solomon Kofi Adherr
- Department of Chemistry Education, Faculty of Science Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante-Mampong Campus, Asante Mampong, Ashanti Region, Ghana
| | - Kofi Sarpong
- Department of Chemistry Education, Faculty of Science Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante-Mampong Campus, Asante Mampong, Ashanti Region, Ghana
| | - Emmanuel Agyapong Asare
- Department of Chemistry Education, Faculty of Science Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Asante-Mampong Campus, Asante Mampong, Ashanti Region, Ghana
| |
Collapse
|
39
|
Ciecierska M, Dasiewicz K, Wołosiak R. Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material. Foods 2023; 12:4120. [PMID: 38002178 PMCID: PMC10670568 DOI: 10.3390/foods12224120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
To ensure food safety and protect human health, the levels of polycyclic aromatic hydrocarbon (PAH) contamination in model smoked-pork meat products were examined to select which type of casing and variant of raw material contributes to minimizing the content of PAHs in the final products. The sausages were smoked in a steam smoke chamber with an external smoke generator. The determination of PAHs was performed using the QuEChERS-HPLC-FLD/DAD method. The analyzed products met the requirements of Commission Regulation (EU) No. 835/2011 on the maximum permissible levels of PAHs. Statistically higher sums of 19 PAHs, including 15 heavy and 4 marker PAHs, were stated in smoked sausages in natural and cellulose casings. Synthetic casings like collagen and polyamide exhibited better barriers against PAH contamination than cellulose and natural casings. For each type of casing, significantly higher concentrations of PAHs were found in the external parts of the products. An increase in the fat content of the raw material increased the levels of PAH contamination in the products, regardless of the casing. Therefore, in industrial practice, the selection of an appropriate type of casing and raw material with the lowest possible fat content can be an effective method for reducing PAH levels in the interior of smoked meat products.
Collapse
Affiliation(s)
- Marta Ciecierska
- Department of Food Technology and Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 Street, 02-787 Warsaw, Poland; (K.D.); (R.W.)
| | | | | |
Collapse
|
40
|
Singh L, Agarwal T. Polycyclic aromatic hydrocarbons in cooked (tandoori) chicken and associated health risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2380-2397. [PMID: 36802078 DOI: 10.1111/risa.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Tandoori cooking is a popular food preparation method in India involving a unique combination of grilling, baking, barbecuing, and roasting processes. This study determined the levels of 16 polycyclic aromatic hydrocarbons (PAHs) in tandoori chicken and assessed the associated health risk. The sum of 16 PAHs concentration ranged from 25.4 to 3733 μg/kg with an average of 440 ± 853 μg/kg. Analyzed samples demonstrated major contribution of 2, 3, and 4 ring PAHs. Diagnostic ratios identified combustion and high-temperature processes as the main source favoring PAHs generation in these samples. Benzo(a)pyrene equivalents and incremental lifetime cancer risk (ILCR) estimates for different population groups (boys, girls, adult males, adult females, elderly males, elderly females) associated with dietary intake of these products ranged from 6.88E-05 to 4.13E-03 and 1.63E-08 to 1.72E-06, respectively. Since the ILCR values fell within the safe limits (1E-06, i.e., nonsignificant), the consumption of tandoori chicken may be considered as safe. The study emphasizes the need for extensive studies on PAHs formation in tandoori food products.
Collapse
Affiliation(s)
- Lochan Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
41
|
Cesila CA, Souza MCO, Cruz JC, Bocato MZ, Campíglia AD, Barbosa F. Biomonitoring of polycyclic aromatic hydrocarbons in Brazilian pregnant women: Urinary levels and health risk assessment. ENVIRONMENTAL RESEARCH 2023; 235:116571. [PMID: 37467941 DOI: 10.1016/j.envres.2023.116571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Over the years, humans have been continuously exposed to several compounds directly generated by industrial processes and/or present in consumed products. Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants ubiquitous in the environment and represent the main chemical pollutants in urban areas. Worldwide, studies that aim to understand the impacts of exposure to these chemicals have gained increasing prominence due to their potential toxicity profile, mainly concerning genotoxicity and carcinogenicity. Human biomonitoring (HB) is an analytical approach to monitoring population exposure to chemicals; however, these studies are still limited in Brazil. Thus, this work aimed to evaluate the exposure of Brazilian pregnant women to PAHs through HB studies. Besides, the risk characterization of this exposure was performed. For this purpose, urine samples from 358 Brazilian pregnant women were used to evaluate 11 hydroxylated metabolites of PAHs employing gas chromatography coupled to mass spectrometry. The 1OH-naphthol and 2OH-naphthol were detected in 100% of the samples and showed high levels, corresponding to 16.99 and 3.62 μg/g of creatinine, respectively. 2OH-fluorene (8.12 μg/g of creatinine) and 9OH-fluorene (1.26 μg/g of creatinine) were detected in 91% and 66% of the samples, respectively. Benzo(a)pyrene (BaP) metabolites were detected in more than 50% of the samples (0.58-1.26 μg/g of creatinine). A hazard index of 1.4 and a carcinogenic risk above 10-4 were found for BaP metabolites in the risk characterization. Therefore, our findings may indicate that exposure to PAHs poses a potential risk to pregnant women's health and a high probability of carcinogenic risk due to their exposure to BaP. Finally, this work shows the need for more in-depth studies to determine the sources of exposure and the implementation of health protection measures regarding the exposure of the Brazilian population to PAHs.
Collapse
Affiliation(s)
- Cibele Aparecida Cesila
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Zuccherato Bocato
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
42
|
Huang WW, Sallah-Ud-Din R, Dlamini WN, Berekute AK, Getnet ME, Yu KP. Effectiveness of a covered oil-free cooking process on the abatement of air pollutants from cooking meats. Heliyon 2023; 9:e19531. [PMID: 37809458 PMCID: PMC10558720 DOI: 10.1016/j.heliyon.2023.e19531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Cooking events can generate household air pollutants that deteriorate indoor air quality (IAQ), which poses a threat to human health and well-being. In this study, the emission characteristics and emission factors (EFs) of air pollutants of different meats (beef, lamb, chicken, pork, and fish) cooked by a novel oil-free process and common with-oil processes were investigated. Oil-free cooking tends to emit lower total volatile organic compound (TVOC) levels and fewer submicron smoke particles and can reduce the intake of fat and calories. However, TVOC emissions during oil-free cooking were significantly different, and the lamb EFs were nearly 8 times higher than those during with-oil cooking. The particle-bound polycyclic aromatic hydrocarbon (ƩPPAH) and benzo(a)pyrene-equivalent (ƩBaPeq) EFs during with-oil cooking ranged from 76.1 to 140.5 ng/g and 7.7-12.4 ng/g, respectively, while those during oil-free cooking ranged from 41.0 to 176.6 ng/g and 5.4-47.6 ng/g, respectively. The ƩPPAH EFs of chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Furthermore, the ƩBaPeq EFs of beef, chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Therefore, it is recommended to use the oil-free method to cook chicken, pork, and fish to reduce ƩPPAH and ƩBaPeq emissions, but not recommended to cook lamb due to the increase of ƩBaPeq emissions. The with-oil uncovered cooking EFs of aldehydes ranged from 3.77 to 22.09 μg/g, and those of oil-free cooking ranged from 4.88 to 19.96 μg/g. The aldehyde EFs were lower during oil-free covered cooking than with-oil uncovered cooking for beef, chicken, and fish. This study provides a better realizing of new cooking approaches for the reduction of cooking-induced emission, but further research on the effects of food composition (moisture and fat) and characteristics is needed.
Collapse
Affiliation(s)
- Wei-Wen Huang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
| | - Rasham Sallah-Ud-Din
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| | - Wonder Nathi Dlamini
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | | | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| |
Collapse
|
43
|
Zhang X, Liang S, Chen X, Yang J, Zhou Y, Du L, Li K. Red/processed meat consumption and non-cancer-related outcomes in humans: umbrella review. Br J Nutr 2023; 130:484-494. [PMID: 36545687 DOI: 10.1017/s0007114522003415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The associations of red/processed meat consumption and cancer-related health outcomes have been well discussed. The umbrella review aimed to summarise the associations of red/processed meat consumption and various non-cancer-related outcomes in humans. We systematically searched the systematic reviews and meta-analyses of associations between red/processed meat intake and health outcomes from PubMed, Embase, Web of Science and the Cochrane Library databases. The umbrella review has been registered in PROSPERO (CRD 42021218568). A total of 40 meta-analyses were included. High consumption of red meat, particularly processed meat, was associated with a higher risk of all-cause mortality, CVD and metabolic outcomes. Dose-response analysis revealed that an additional 100 g/d red meat intake was positively associated with a 17 % increased risk of type 2 diabetes mellitus (T2DM), 15 % increased risk of CHD, 14 % of hypertension and 12 % of stroke. The highest dose-response/50 g increase in processed meat consumption at 95 % confident levels was 1·37, 95 % CI (1·22, 1·55) for T2DM, 1·27, 95 % CI (1·09, 1·49) for CHD, 1·17, 95 % CI (1·02, 1·34) for stroke, 1·15, 95 % CI (1·11, 1·19) for all-cause mortality and 1·08, 95 % CI (1·02, 1·14) for heart failure. In addition, red/processed meat intake was associated with several other health-related outcomes. Red and processed meat consumption seems to be more harmful than beneficial to human health in this umbrella review. It is necessary to take the impacts of red/processed meat consumption on non-cancer-related outcomes into consideration when developing new dietary guidelines, which will be of great public health importance. However, more additional randomised controlled trials are warranted to clarify the causality.
Collapse
Affiliation(s)
- Xingxia Zhang
- West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shiqi Liang
- West China School of Nursing, Sichuan University, Chengdu610041, People's Republic of China
| | - Xinrong Chen
- West China School of Nursing, Sichuan University, Chengdu610041, People's Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu, People's Republic of China
| | - Ka Li
- West China School of Nursing, Sichuan University, Chengdu610041, People's Republic of China
| |
Collapse
|
44
|
Zhao X, Gao J, Zhai L, Yu X, Xiao Y. Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure. Healthcare (Basel) 2023; 11:1958. [PMID: 37444793 DOI: 10.3390/healthcare11131958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides a comprehensive conclusion of the relationship between the intake of various polycyclic aromatic hydrocarbons (PAHs) and different dietary patterns, pointing to the accompanying potential health risks. To achieve this, existing pertinent research was collected and analyzed. The collation revealed that the concentration of PAHs in food and their dietary patterns were diverse in different regions. Specifically, the concentration of PAHs in food was found to be related to the level of pollution in the area, including soil, air, and water pollution, which is then accumulated through the food chain into food that can be ingested directly by the human body, resulting in malformations in offspring, increased risk of cancer, and gene mutation. Guidebooks and dietary surveys were consulted to uncover disparities in dietary patterns, which indicated regional variations in taste preferences, traditional foods, and eating habits. Different regions are spatially categorized in this assessment by cities, countries, and continents. Notably, smoking and grilling are two of the food processing methods most likely to produce high levels of PAHs. To prevent excessive intake of PAHs from food items and attain a higher quality of life, more health education is urgently needed to promote healthy eating patterns.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Jiuhe Gao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
45
|
Aoudeh E, Oz E, Oz F. Effect of beef patties fortification with black garlic on the polycyclic aromatic hydrocarbons (PAHs) content and toxic potency. Food Chem 2023; 428:136763. [PMID: 37421662 DOI: 10.1016/j.foodchem.2023.136763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye.
| |
Collapse
|
46
|
Inhibitory effect of coriander (Coriandrum sativum L.) extract marinades on the formation of polycyclic aromatic hydrocarbons in roasted duck wings. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Peng L, Yang C, Wang C, Xie Q, Gao Y, Liu S, Fang G, Zhou Y. Effects of deodorization on the content of polycyclic aromatic hydrocarbons (PAHs), 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in rapeseed oil using ethanol steam distillation at low temperature. Food Chem 2023; 413:135616. [PMID: 36758391 DOI: 10.1016/j.foodchem.2023.135616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
High temperature is beneficial for the removal of polycyclic aromatic hydrocarbons (PAHs) from oil via steam, but leads to an increase in the content of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE). To inhibit the production of 3-MCPDE and GE during the removal of PAHs, rapeseed oil was deodorized using ethanol steam at low-temperature (140-220 °C) (L-ESD) and the content changes were studied for PAHs, 3-MCPDE and GE, and compared with conventional high-temperature water steam deodorization (H-WSD) (250 °C for 60 min). The removal rates of PAHs in L-ESD oil can be higher than those in conventional H-WSD oil, and the contents of 3-MCPDE and GE in L-ESD oil (140-180 °C for 60-100 min) ranged from 48.32 to 73.65 % and 50.49-69.90 %, respectively, in H-WSD oil due to the lower temperature of ethanol steam deodorization. These results indicate that L-ESD is beneficial in minimizing the contents of PAHs, 3-MCPDE and GE in vegetable oil.
Collapse
Affiliation(s)
- Luqiu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Qihui Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yu Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Guobin Fang
- Hubei Provincial Plant Protection Station, Wuhan 430070, China
| | - Yang Zhou
- Hubei Provincial Plant Protection Station, Wuhan 430070, China
| |
Collapse
|
48
|
Li X, Gao Y, Deng P, Ren X, Teng S. Determination of Four PAHs and Formaldehyde in Traditionally Smoked Chicken Products. Molecules 2023; 28:5143. [PMID: 37446804 DOI: 10.3390/molecules28135143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The present study was conducted to analyze the level of four priority polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (BaP), chrysene (Chr), benzo[a]anthracene (BaA), and benzo[b]fluoranthene (BbF), in traditionally smoked chicken products marketed in China. The results show that the amount of ƩPAH4 (the sum of four different PAHs: BaP, Chr, BaA, and BbF) was 30.43-225.17 and 18.75-129.54 µg/kg in the skin and meat of smoked chicken products, respectively. The content of ƩPAH4 in the smoked skin was significantly higher as compared to the smoked meat (p < 0.05). The calculation of MOE (margin of exposure) results suggested the possibilities of ingestion risk associated with the consumption of smoked chicken skin. Furthermore, the formaldehyde content in the skin of smoked chicken was 2.17-6.84 mg/kg and 0.86-2.95 mg/kg in the smoked meat. These results indicate that optimization or alternative methods for food processing should be developed to reduce the high level of harmful substances formed during processing to ensure the safety of smoked chicken products. Moreover, along with harmful substances, the moisture content and color of traditionally smoked chicken were analyzed to provide a practical reference for healthy, safe and green processing technology for smoked chicken.
Collapse
Affiliation(s)
- Xinxuan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Pinghua Deng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopu Ren
- College of Life Science, Tarim University, Alar 843300, China
| | - Shuang Teng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G, Xu X. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 2023; 425:136485. [PMID: 37276667 DOI: 10.1016/j.foodchem.2023.136485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and lipophilic, which can be found in frying system. This review summarized the formation, migration and derivation for PAHs, hypothesized the possible mechanism for PAHs generation during frying and presented the research prospects. Some factors like high oil consumption, high temperature, long time and oil rich in unsaturated fatty acids promoted the formation of PAHs and the presence of antioxidants inhibited the PAHs formation. The effect of proteins and carbohydrates in foods on the formation of PAHs is inconclusive. The formed PAHs were migrated into food and air. Moreover, some PAHs transformed into more toxic PAHs-derivatives during frying. The generation of PAHs may be related to low-barrier free radical-mediated reaction and the unsaturated hydrocarbons may be precursors of PAHs during frying. In future, the isotope tracer technology and on-line detection may be applied to discover intermediates and provide clues for studying PAHs generation mechanisms.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
50
|
Adeniji AO, Okaiyeto K, George MJ, Tanor EB, Semerjian L, Okoh AI. A systematic assessment of research trends on polycyclic aromatic hydrocarbons in different environmental compartments using bibliometric parameters. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1289-1309. [PMID: 35933629 DOI: 10.1007/s10653-022-01353-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world's ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.
Collapse
Affiliation(s)
- Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Mosotho J George
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, Gauteng, South Africa
| | - Emmanuel B Tanor
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
| | - Lucy Semerjian
- Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|