1
|
Bustamante M, Gil-Cortiella M, Peña-Neira Á, Gombau J, García-Roldán A, Cisterna M, Montané X, Fort F, Rozès N, Canals JM, Zamora F. Oxygen-induced enzymatic and chemical degradation kinetics in wine model solution of selected phenolic compounds involved in browning. Food Chem 2025; 484:144421. [PMID: 40279896 DOI: 10.1016/j.foodchem.2025.144421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Hydroxycinnamic and hydroxybenzoic acids are phenolic compounds that, upon oxidation, intensify browning, thus compromising the organoleptic quality of musts and white wines. This process is enhanced by the presence laccase, which is present in grapes after Botrytis cinerea infection. The aim of this study was to evaluate the kinetics of enzymatic and non-enzymatic degradation and browning of 15 phenolic compounds. Generally, hydroxycinnamic acids are more prone to degradation and browning reactions than hydroxybenzoic acids. The substituents present in the aromatic ring are key for determining their reaction rate. Indeed, the presence of both hydroxyl and methoxy substituents on the aromatic ring appears to facilitate enzymatic degradation in all the compounds studied. On the other hand, browning did not display a direct correlation with the degradation rate of the phenols. Finally, the chemical structure features of phenols were a reliable predictor of both browning and degradation rates.
Collapse
Affiliation(s)
- Marco Bustamante
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Mariona Gil-Cortiella
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux, 2801 San Miguel, Chile
| | - Álvaro Peña-Neira
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, 8820808 Santiago, Chile
| | - Jordi Gombau
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Aitor García-Roldán
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain; Food Technology Deparment, Leartiker S. Coop., Xemein Etorbidea 19, 48270 Markina-Xemein, Spain
| | - Matias Cisterna
- Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, 8820808 Santiago, Chile
| | - Xavier Montané
- Departament de Química Analítica i Orgànica, Facultat de Química de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Francesca Fort
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Joan Miquel Canals
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Fernando Zamora
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
2
|
Gil-Muñoz R, Giménez-Bañón MJ, Bleda-Sánchez JA, Moreno-Olivares JD. The Impact of Two Elicitors and Harvest Ripening Stage on the Quality of Monastrell Grapes and Wines. Biomolecules 2025; 15:474. [PMID: 40305157 PMCID: PMC12024929 DOI: 10.3390/biom15040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
In response to climate change, there is a decoupling between technological and phenolic maturity in vineyards. This study investigates the application of elicitors, specifically methyl jasmonate (MeJA) and grape pomace extract (GPE), administered at veraison and one week later over two consecutive seasons. Samples collected at 21 and 23 °Brix reveal delayed ripening for both treatments. MeJA significantly impacted extractable anthocyanins, the seed maturity index, and total anthocyanins, with optimal results at 23 °Brix compared to the control. GPE elevates proanthocyanin content at the same maturity level. Although the effects in wines are less pronounced, the MeJA-treated grapes harvested at 23 °Brix produce wines with reduced alcohol content, enhanced color intensity, and increased EGC-ext. Finally, a discriminant analysis indicated that the MeJA-treated grapes at 23 °Brix differed most significantly from the control, with seasonal variations playing a crucial role. Thus, MeJA 23 °Brix treatment demonstrated the most promising results, warranting further exploration with complementary winery technology to maximize its potential in vinification.
Collapse
Affiliation(s)
- Rocío Gil-Muñoz
- Instituto Murciano de Desarrollo Agrario y Medioambiental, IMIDA, Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.A.B.-S.); (J.D.M.-O.)
| | | | | | | |
Collapse
|
3
|
Toma (Sărdărescu) DI, Manaila-Maximean D, Fierascu I, Baroi AM, Matei (Brazdis) RI, Fistos T, Chican IE, Fierascu RC. Applications of Natural Polymers in the Grapevine Industry: Plant Protection and Value-Added Utilization of Waste. Polymers (Basel) 2024; 17:18. [PMID: 39795420 PMCID: PMC11722739 DOI: 10.3390/polym17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes. We examine the use of natural polymers such as chitosan, alginate, and cellulose in formulating bio-based protective coatings and treatments that bolster plant resistance to abiotic stress, pathogens, and pests. Additionally, the review delves into the innovative utilization of grapevine residues, including skins, seeds, and stems, as sources of polyphenols and other bioactive compounds. These compounds can be efficiently encapsulated in natural polymer matrices for applications in agriculture, food, and pharmaceuticals. Key topics include the mechanisms of action, benefits, and limitations of natural polymer-based interventions, as well as case studies demonstrating their practical implementation in vineyards. The review also addresses future research directions, emphasizing the need for integrated approaches that enhance sustainability and economic viability in the grapevine industry.
Collapse
Affiliation(s)
- Daniela-Ionela Toma (Sărdărescu)
- National Research and Development Institute for Biotechnology in Horticulture–INCDBH, 37 Bucuresti-Pitesti Str., 117715 Ștefănești, Romania;
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Doina Manaila-Maximean
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Irina Elena Chican
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Radu Claudiu Fierascu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| |
Collapse
|
4
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
5
|
Tchouakeu Betnga PF, Poggesi S, Darnal A, Longo E, Rudari E, Boselli E. Terroir Dynamics: Impact of Vineyard and Canopy Treatment with Chitosan on Anthocyanins, Phenolics, and Volatile and Sensory Profiles of Pinot Noir Wines from South Tyrol. Molecules 2024; 29:1916. [PMID: 38731406 PMCID: PMC11085818 DOI: 10.3390/molecules29091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.
Collapse
Affiliation(s)
- Prudence Fleur Tchouakeu Betnga
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (P.F.T.B.); (A.D.); (E.R.); (E.B.)
- Oenolab, NOITechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
| | - Simone Poggesi
- Food Experience and Sensory Testing (Feast) Lab., Massey University, Palmerston North 4410, New Zealand;
| | - Aakriti Darnal
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (P.F.T.B.); (A.D.); (E.R.); (E.B.)
- Oenolab, NOITechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
| | - Edoardo Longo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (P.F.T.B.); (A.D.); (E.R.); (E.B.)
- Oenolab, NOITechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
| | - Elena Rudari
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (P.F.T.B.); (A.D.); (E.R.); (E.B.)
| | - Emanuele Boselli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (P.F.T.B.); (A.D.); (E.R.); (E.B.)
- Oenolab, NOITechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
| |
Collapse
|
6
|
Hanzouli F, Zemni H, Gargouri M, Boubakri H, Mliki A, Vincenzi S, Daldoul S. Evidence of an active role of resveratrol derivatives in the tolerance of wild grapevines (Vitis vinifera ssp. sylvestris) to salinity. JOURNAL OF PLANT RESEARCH 2024; 137:265-277. [PMID: 38148429 DOI: 10.1007/s10265-023-01515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Resveratrol and its derivatives are the most important phytoalexins with a crucial role in plant defense mechanisms. These compounds can occur either naturally or in response to abiotic stresses. Among them, salinity is one of the major threats to the sustainability and productivity of agro-economically important species, particularly those involved in the vini-viticulture sector. Understating salinity tolerance mechanisms in plants is required for the development of novel engineering tools. This study aimed to investigate the potential role of resveratrol derivatives in salinity tolerance of wild grapevines. Our data revealed that the tolerant Tunisian wild grapevine genotype "Ouchtata" exhibited an increased accumulation of resveratrol derivatives (glycosylated and non-glycosylated resveratrol and t-ɛ-viniferin and hydroxylated t-piceatannol) in both stems and roots, along with an increased total antioxidant activity (TAA) compared to the sensitive genotype "Djebba" under stress conditions, suggesting an involvement of these stilbenes in redox homeostasis, thereby, protecting cells from salt-induced oxidative damage. Overall, our study revealed, for the first time, an active role for resveratrol derivatives in salt stress tolerance in wild grapevine, highlighting their potential use as metabolic markers in future grapevine breeding programs for a sustainable vini-viticulture in salt-affected regions.
Collapse
Affiliation(s)
- Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hassène Zemni
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Vialedell'Università, 16, 35020, Lesagnaro, PD, Italy
| | - Samia Daldoul
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| |
Collapse
|
7
|
Palai G, D'Onofrio C. Berry secondary metabolites and leaf physiological parameters are independently regulated by exogenous methyl jasmonate application in Sangiovese grapevines (Vitis vinifera L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108378. [PMID: 38266562 DOI: 10.1016/j.plaphy.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The role of jasmonates as elicitor of secondary metabolites is well known, and many experiments have been conducted in grapevine to evaluate their effects on berry and wine quality. Even though most of these studies used foliar jasmonates applications, little investigations have been done to assess the effects on leaves which, in turn, may indirectly affect grape metabolism potentially involving a long distance signaling or crosstalk. In this experiment we jointly investigated the specific effect of jasmonates on grape berry secondary metabolites and leaf physiological parameters to better comprehend their elicitation mechanisms in grapevine. A 10 mM methyl jasmonate (MeJA) solution was applied during the lag-phase only on the leaves or only on the clusters and compared to an untreated control. The MeJA specifically affected leaf physiological parameters and berry metabolism in the treated area. When applied only on the leaves, gas exchange parameters and leaf efficiency were reduced, stimulating the senescence mechanisms, without affecting berry metabolism. On the contrary, MeJA applied on the clusters significantly delayed berry ripening, leading to hypothesize a re-route of the berry carbon resources through the biosynthesis of volatile organic compounds which were strongly increased, especially the monoterpenes in their glycosylated form.
Collapse
Affiliation(s)
- Giacomo Palai
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio D'Onofrio
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Center 'Nutraceuticals and Food for Health', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
8
|
Khosravi F, Mohammadi S, Kosari-Nasab M, Asgharian P. The impact of microcrystalline and nanocrystalline cellulose on the antioxidant phenolic compounds level of the cultured Artemisia absinthium. Sci Rep 2024; 14:2692. [PMID: 38302508 PMCID: PMC10834404 DOI: 10.1038/s41598-023-50772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024] Open
Abstract
Artemisia absinthium has long been used traditionally as an anti-microbial and antioxidant agent. Various biologically active secondary metabolites, including phenolic compounds such as gallic acid and p-coumaric acid, have been reported from the species. In addition, growing the plants under in vitro conditions enriched with elicitors is a cost-effective approach to enhance secondary metabolite production. This paper examined microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) effects on morphological characteristics, phenolic compounds, antioxidant activity, and volatile oil content of A. absinthium. The treated shoots with various concentrations of MCC and NCC were subjected to spectrophotometric, GC-MS, and LC-MS analysis. FESEM-EDX, TEM, XRD, and DLS methods were applied to characterize MCC and NCC properties. Morphological findings revealed that the stem length, dry, and fresh weights were improved significantly (P ≤ 0.05) under several MCC and NCC concentrations. Some treatments enhanced gallic and p-coumaric acid levels in the plant. Although 1.5 g/L of MCC treatment showed the highest antioxidant activity, all NCC treatments reduced the antioxidant effect. The findings suggest that both MCC and NCC, at optimized concentrations, could be exploited as elicitors to improve the secondary metabolite production and morphological properties.
Collapse
Affiliation(s)
- Faezeh Khosravi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Mohammadi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Martín-Mateos MJ, Delgado-Adámez J, Moreno-Cardona D, Valdés-Sánchez ME, Ramírez-Bernabé MR. Application of White-Wine-Pomace-Derived Ingredients in Extending Storage Stability of Fresh Pork Burgers. Foods 2023; 12:4468. [PMID: 38137272 PMCID: PMC10743004 DOI: 10.3390/foods12244468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
White wine pomace, a by-product from winemaking, was stabilized after the application of thermal blanching (with the aim of deactivating the polyphenoloxidase enzyme), milling, and processing by hydrostatic high-pressure treatment (with the aim of reducing initial microbial loads while preserving phenolic compounds content). The valorized pomace (VP) ingredient was added at different proportions to pork burgers (0.5%, 1%, and 3% w/w) to improve their preservation, and the effect was compared to those produced by sulfites and with a control (without sulfites or VP). Burgers were vacuum-packed and refrigerated for 7 days. Microbiological, color, oxidation, and sensory parameters were analyzed. Neither sulfites nor VP reduced the microbial development of most microorganism groups evaluated (p > 0.05); however, both prevented coliform growth during storage (p < 0.01). The use of sulfites prevented the discoloration of burgers during storage, while VP had no effect (p < 0.001). On the contrary, VP limited lipid and protein oxidation development during storage (p > 0.05), while sulfites had no effect. Therefore, the use of VP from white wine production could have an antioxidant effect but a limited antimicrobial or color-protective effect for the preservation of pork burgers.
Collapse
Affiliation(s)
| | | | | | | | - M. Rosario Ramírez-Bernabé
- Technological Agri-Food Institute (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06071 Badajoz, Spain; (M.J.M.-M.); (J.D.-A.); (D.M.-C.); (M.E.V.-S.)
| |
Collapse
|
10
|
Canalejo D, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S, Doco T, Guadalupe Z. Grape-Derived Polysaccharide Extracts Rich in Rhamnogalacturonans-II as Potential Modulators of White Wine Flavor Compounds. Molecules 2023; 28:6477. [PMID: 37764251 PMCID: PMC10536722 DOI: 10.3390/molecules28186477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Many authors have investigated the role of mannoproteins on wine quality, but very few have analyzed the use of grape-derived polysaccharides as they are not commercially available. In this study, purified grape-derived polysaccharides from red wine (WPP) and winemaking by-products (DWRP: Distilled Washing Residues Polysaccharides) were used as potential fining agents to modulate white wine flavor. Phenolics and volatile compounds were analyzed in the control and wines treated with WPP, DWRP, and commercial mannoproteins (CMs) after one and twelve months of bottling, and a sensory analysis was conducted. WPP and DWRP, rich in rhamnogalacturonans-II, showed themselves to be good modulators of wine aroma and astringency. Improvement in wine aroma was related to an increase in all volatile families expect higher alcohols and volatile acids. The modulation of astringency and bitterness was related to a reduction in the proanthocyanidin content and its mean degree of polymerization. Extracts with polysaccharides with higher protein contents presented a higher retention of volatile compounds, and DWRP extract had more positive effects on the overall aroma. Our novel results present the possibility of obtaining valuable polysaccharides from distilled washing residues of wine pomaces, which could promote its valorization as a by-product. This is the first time the potential use of this by-product has been described.
Collapse
Affiliation(s)
- Diego Canalejo
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra. Burgos Km 119, 47071 Valladolid, Spain;
| | - Thierry Doco
- SPO, INRAE, Institut Agro, Univ Montpellier, 2 Place Pierre Viala, F-34060 Montpellier, France;
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| |
Collapse
|
11
|
Garde-Cerdán T, González-Lázaro M, Marín-San Román S, Sáenz de Urturi I, Murillo-Peña R, Rubio-Bretón P, Pérez-Álvarez EP. Could foliar applications of methyl jasmonate and methyl jasmonate + urea improve must grape aroma composition? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4813-4825. [PMID: 36905182 DOI: 10.1002/jsfa.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Grape aromas are formed by a great number of volatile compounds. Methyl jasmonate (MeJ) and urea (Ur) foliar applications have been studied to improve grape quality, but their combined application has never been studied. RESULTS In both seasons, MeJ application enhanced terpenoids and C6 compounds synthesis, though decreased alcohols content. Moreover, MeJ + Ur treatment reduced benzenoids and alcohols and did not affect C13 -norisoprenoids content. However, there was no clear effect of these treatments on the rest of the volatile compounds. Multifactorial analysis showed a season effect on all volatile compounds, except terpenoids. Discriminant analysis showed a good separation among samples under treatment criterion. The great effect of MeJ treatment on terpenoids was probably due to this elicitor influencing their biosynthesis. CONCLUSION Season has a strong influence on grapes aromatic composition since it affects all volatile compound families except terpenoids. MeJ foliar application enhanced terpenoids, C13 -norisoprenoids and C6 compounds synthesis, whereas decreased alcohols content; however, MeJ + Ur foliar treatment did not affect C13 -norisoprenoids and C6 compounds, and decreased benzenoids and alcohols grape compounds. Therefore, no synergistic effect was observed between Ur and MeJ on grape volatile compounds biosynthesis. Foliar application of MeJ seems to be sufficient to improve the aromatic quality of grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Miriam González-Lázaro
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Sandra Marín-San Román
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Itziar Sáenz de Urturi
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Rebeca Murillo-Peña
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| |
Collapse
|
12
|
Lavado N, Uriarte D, Moreno D, Mancha LA, Prieto MH, Valdés ME. Crop forcing technique and irrigation strategy modified the content and phenolic profile of cv. Tempranillo grape berries grown in a semi-arid climate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5028-5038. [PMID: 36995905 DOI: 10.1002/jsfa.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Climate change modifies the content and phenolic profiles of grapes and wines. It is known that high temperatures, related to climate change, reduce anthocyanins and procyanidin (catechin and tannin) compounds accumulated in the berries. In recent years, with the aim of improving the phenolic composition of the berries, the technique of crop forcing has been proposed to delay grape ripening to a more favourable period of temperatures. RESULTS In this study, crop forcing was applied to cv. Tempranillo vines on two different dates, after flowering (F1) and after fruit set (F2), and compared to a treatment control (NF, without forcing). Additionally, as a secondary factor, two irrigation strategies were established in each treatment: irrigation with no water stress, and a pre-veraison deficit irrigation. The study was carried out in three consecutive years (2017-2019). For most of the parameters analysed, no interaction was found. Therefore, for these parameters, the effect of each of these techniques was investigated independently. Regardless of the irrigation strategy, F2 berries achieved higher contents of catechins and anthocyanins than NF berries. Each year, regardless of the irrigation strategy, crop forcing increased the content of monoglucoside forms, and had a positive effect on the total content of malvidin, petunidin, delphinidin, peonidin and malvidin derivatives, but only affected acetyl and coumaryl forms in 2017. However, the effect of irrigation strategy was less significant and consistent, being more dependent on the vintage. CONCLUSION Regardless of vine water status, crop forcing technique applied after fruit set could be used by vine growers to delay ripening of the grapes and thus achieve an increase in the anthocyanin characteristics of the grapes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nieves Lavado
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Agricultural Research Institute "Finca La Orden-Valdesequera", Highway A-5 km. 372, Guadajira, Badajoz, 06187, Spain
| | - David Uriarte
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Agricultural Research Institute "Finca La Orden-Valdesequera", Highway A-5 km. 372, Guadajira, Badajoz, 06187, Spain
| | - Daniel Moreno
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, Badajoz, 06071, Spain
| | - Luis A Mancha
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Agricultural Research Institute "Finca La Orden-Valdesequera", Highway A-5 km. 372, Guadajira, Badajoz, 06187, Spain
| | - M Henar Prieto
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Agricultural Research Institute "Finca La Orden-Valdesequera", Highway A-5 km. 372, Guadajira, Badajoz, 06187, Spain
| | - M Esperanza Valdés
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, Badajoz, 06071, Spain
| |
Collapse
|
13
|
Sardar T, Maqbool M, Ishtiaq M, Mazhar MW, El-Sheikh MA, Casini R, Mahmoud EA, Elansary HO. Synergistic Influence of Yeast Extract and Calcium Oxide Nanoparticles on the Synthesis of Bioactive Antioxidants and Metabolites in Swertia chirata In Vitro Callus Cultures. Molecules 2023; 28:4607. [PMID: 37375162 DOI: 10.3390/molecules28124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The challenges in the production of metabolites of medicinal potential from wild plants include low yields, slow growth rates, seasonal variations, genetic variability and regulatory as well as ethical constraints. Overcoming these challenges is of paramount significance and interdisciplinary approaches and innovative strategies are prevalently applied to optimize phytoconstituents' production, enhance yield, biomass, ensure sustainable consistency and scalability. In this study, we investigated the effects of elicitation with yeast extract and calcium oxide nanoparticles (CaONPs) on in vitro cultures of Swertia chirata (Roxb. ex Fleming) Karsten. Specifically, we examined the effects of different concentrations of CaONPs in combination with different concentrations of yeast extract on various parameters related to callus growth, antioxidant activity, biomass and phytochemical contents. Our results showed that elicitation with yeast extract and CaONPs had significant effects on the growth and characteristics of callus cultures of S. chirata. The treatments involving yeast extract and CaONPs were found to be the most effective in increasing the contents of total flavonoid contents (TFC), total phenolic contents (TPC), amarogentin and mangiferin. These treatments also led to an improvement in the contents of total anthocyanin and alpha tocopherols. Additionally, the DPPH scavenging activity was significantly increased in the treated samples. Furthermore, the treatments involving elicitation with yeast extract and CaONPs also led to significant improvements in callus growth and characteristics. These treatments promoted callus response from an average to an excellent level and improved the color and nature of the callus from yellow to yellow-brown and greenish and from fragile to compact, respectively. The best response was observed in treatments involving 0.20 g/L yeast extract and 90 ug/L CaONPs. Overall, our findings suggest that elicitation with yeast extract and CaONPs can be a useful strategy for promoting the growth, biomass, phytochemical contents and antioxidant activity of callus cultures of S. chirata in comparison to wild plant herbal drug samples.
Collapse
Affiliation(s)
- Tauqeer Sardar
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ryan Casini
- School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Eman A Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Fu G, Ren Y, Kang J, Wang B, Zhang J, Fang J, Wu W. Integrative analysis of grapevine ( Vitis vinifera L) transcriptome reveals regulatory network for Chardonnay quality formation. Front Nutr 2023; 10:1187842. [PMID: 37324731 PMCID: PMC10265639 DOI: 10.3389/fnut.2023.1187842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Anthocyanins, total phenols, soluble sugar and fruit shape plays a significant role in determining the distinct fruit quality and customer preference. However, for the majority of fruit species, little is known about the transcriptomics and underlying regulatory networks that control the generation of overall quality during fruit growth and ripening. This study incorporated the quality-related transcriptome data from 6 ecological zones across 3 fruit development and maturity phases of Chardonnay cultivars. With the help of this dataset, we were able to build a complex regulatory network that may be used to identify important structural genes and transcription factors that control the anthocyanins, total phenols, soluble sugars and fruit shape in grapes. Overall, our findings set the groundwork to improve grape quality in addition to offering novel views on quality control during grape development and ripening.
Collapse
Affiliation(s)
- Guangqing Fu
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Horticultural College, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jun Kang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bo Wang
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Junxiang Zhang
- Food and Wine Academy, Ningxia University, Yinchuan, Ningxia, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Food and Wine Academy, Ningxia University, Yinchuan, Ningxia, China
| | - Weimin Wu
- Research Institute of Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Milošević S. Alterations in Physiological, Biochemical, and Molecular Responses of Impatiens walleriana to Drought by Methyl Jasmonate Foliar Application. Genes (Basel) 2023; 14:genes14051072. [PMID: 37239432 DOI: 10.3390/genes14051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Drought stress affects plant growth and development through several mechanisms, including the induction of oxidative stress. To cope with drought, plants have drought tolerance mechanisms at the physiological, biochemical, and molecular levels. In this study, the effects of foliar application of distilled water and methyl jasmonate (MeJA) (5 and 50 µM) on the physiological, biochemical, and molecular responses of Impatiens walleriana during two drought regimes (15 and 5% soil water content, SWC) were investigated. The results showed that plant response depended on the concentration of the elicitor and the stress intensity. The highest chlorophyll and carotenoid contents were observed at 5% SWC in plants pre-treated with 50 µM MeJA, while the MeJA did not have a significant effect on the chlorophyll a/b ratio in drought-stressed plants. Drought-induced formation of hydrogen peroxide and malondialdehyde in plants sprayed with distilled water was significantly reduced in plant leaves pretreated with MeJA. The lower total polyphenol content and antioxidant activity of secondary metabolites in MeJA-pretreated plants were observed. The foliar application of MeJA affected the proline content and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase) in plants that suffered from drought. The expression of abscisic acid (ABA) metabolic genes (IwNCED4, IwAAO2, and IwABA8ox3) was the most affected in plants sprayed with 50 µM MeJA, while of the four analyzed aquaporin genes (IwPIP1;4, IwPIP2;2, IwPIP2;7, and IwTIP4;1), the expression of IwPIP1;4 and IwPIP2;7 was strongly induced in drought-stressed plants pre-treated with 50 µM MeJA. The study's findings demonstrated the significance of MeJA in regulating the gene expression of the ABA metabolic pathway and aquaporins, as well as the considerable alterations in oxidative stress responses of drought-stressed I. walleriana foliar sprayed with MeJA. The results improved our understanding of this horticulture plant's stress physiology and the field of plant hormones' interaction network in general.
Collapse
Affiliation(s)
- Marija Đurić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Angelina Subotić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
16
|
Lavado Rodas N, Uriarte Hernández D, Moreno Cardona D, Mancha Ramírez LA, Prieto Losada MH, Valdés Sánchez ME. Forcing vine regrowth under different irrigation strategies: effect on polyphenolic composition and chromatic characteristics of cv. Tempranillo wines grown in a semiarid climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1128174. [PMID: 37229111 PMCID: PMC10204802 DOI: 10.3389/fpls.2023.1128174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
One of the effects of climate change in warm areas is the asynchrony between the dates of the technological and the phenolic maturity of grapes. This is important because the quality and color stability of red wines are directly related to the content and distribution of phenolic compounds. A novel alternative that has been proposed to delay grape ripening and make it coincide with a seasonal period more favorable for the formation of phenolic compounds is crop forcing. This consists of severe green pruning after flowering, when the buds of the following year have already differentiated. In this way, the buds formed during the same season are forced to sprout, initiating a new delayed cycle. The aim of the present work is to study the effect on the phenolic composition and color of wines elaborated from vines fully irrigated (C), grown using conventional non-forcing (NF) and forcing (F) techniques (C-NF and C-F), and wines from vines subjected to regulated irrigation (RI), grown using NF and F techniques (RI-NF and RI-F). The trial was carried out in an experimental vineyard of the Tempranillo variety located in a semi-arid area (Badajoz, Spain) in the 2017-2019 seasons. The wines (four by treatment) were elaborated and stabilized according to the classic methodologies for red wine. All wines had the same alcohol content, and malolactic fermentation was not carried out in any of them. Anthocyanin profiles were analyzed by HPLC, and total polyphenolic content, anthocyanin content, catechin content, the contribution to color due to co-pigmented anthocyanins, and various chromatic parameters were also determined. Although a significant effect of year was found for almost all the parameters analyzed, a general increasing trend in F wines was found for most of them. The anthocyanin profile of F wines was found to differ from that of C wines, especially in delphinidin, cyanidin, petunidin, and peonidin content. These results indicate that by using the forcing technique it was possible to increase the polyphenolic content by ensuring that the synthesis and accumulation of these substances occurred at more suitable temperatures.
Collapse
Affiliation(s)
- Nieves Lavado Rodas
- CICYTEX-INTAEX, Technological Institute of Food and Agriculture of Extremadura, Badajoz, Spain
- CICYTEX-FOV, Agricultural Research Institute Finca La Orden-Valdesequera, Crta. A-V, Badajoz, Spain
| | - David Uriarte Hernández
- CICYTEX-FOV, Agricultural Research Institute Finca La Orden-Valdesequera, Crta. A-V, Badajoz, Spain
| | - Daniel Moreno Cardona
- CICYTEX-INTAEX, Technological Institute of Food and Agriculture of Extremadura, Badajoz, Spain
| | - Luis A. Mancha Ramírez
- CICYTEX-FOV, Agricultural Research Institute Finca La Orden-Valdesequera, Crta. A-V, Badajoz, Spain
| | | | | |
Collapse
|
17
|
Maya-Meraz IO, Ornelas-Paz JDJ, Pérez-Martínez JD, Gardea-Béjar AA, Rios-Velasco C, Ruiz-Cruz S, Ornelas-Paz J, Pérez-Leal R, Virgen-Ortiz JJ. Foliar Application of CaCO 3-Rich Industrial Residues on 'Shiraz' Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine. Foods 2023; 12:foods12081566. [PMID: 37107361 PMCID: PMC10137510 DOI: 10.3390/foods12081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The quality of wine grapes and wine depends on their content of phenolic compounds. Under commercial conditions, the phenolic maturity of grapes is mostly achieved by applying abscisic acid analogues. Some Ca forms represent a cost-effective alternative for these compounds. In this study, 'Shiraz' vines (veraison of 90%) were sprayed with CaCO3-rich residues from the cement industry (4.26 g of Ca per L). Fruit from treated and untreated vines was harvested 45 days after CaCO3 spraying and evaluated for quality. The fruit was vinified, and the obtained wines were bottled and stored in darkness for 15 months at 20 °C. Wines were evaluated for quality after storage. The evaluation of grape and wine quality included the content of phenolic compounds and antioxidant capacity. The treatment with CaCO3 did not affect the ripening rate of grapes. However, the treatment improved the fruit yield as well as the color development, the content of phenolic compounds, and antioxidant capacity of grapes and wine. The treatment favored especially the accumulation of malvidin-3-O-glucoside, pelargonidin-3-O-glucoside, caftaric acid, caffeic acid, trans-cinnamic acid, quercetin, catechin, epicatechin, resveratrol, and the procyanidins B1 and B2. Wine made with treated fruit was of higher quality than that of control fruit.
Collapse
Affiliation(s)
- Irma Ofelia Maya-Meraz
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Universidad S/N, Ciudad Universitaria, Chihuahua C.P. 31110, Mexico
| | - José de Jesús Ornelas-Paz
- Laboratorio de Fitoquímicos y Nutrientes, Centro de Investigación en Alimentación y Desarrollo A.C., Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Mexico
| | - Jaime David Pérez-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí C.P. 78210, Mexico
| | - Alfonso A Gardea-Béjar
- Laboratorio de Fitoquímicos y Nutrientes, Centro de Investigación en Alimentación y Desarrollo A.C., Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Mexico
| | - Claudio Rios-Velasco
- Laboratorio de Fitoquímicos y Nutrientes, Centro de Investigación en Alimentación y Desarrollo A.C., Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Mexico
| | - Saúl Ruiz-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales S/N, Hermosillo C.P. 83000, Mexico
| | - Juan Ornelas-Paz
- Laboratorio de Fitoquímicos y Nutrientes, Centro de Investigación en Alimentación y Desarrollo A.C., Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Mexico
| | - Ramona Pérez-Leal
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Universidad S/N, Ciudad Universitaria, Chihuahua C.P. 31110, Mexico
| | - José Juan Virgen-Ortiz
- Centro de Innovación y Desarrollo Agroalimentario de Michoacán (CIDAM), Antigua Carretera a Pátzcuaro Km 8, Morelia C.P. 58341, Mexico
| |
Collapse
|
18
|
Vine Foliar Treatments at Veraison and Post-Veraison with Methyl Jasmonate Enhanced Aromatic, Phenolic and Nitrogen Composition of Tempranillo Blanco Grapes. Foods 2023; 12:foods12061142. [PMID: 36981069 PMCID: PMC10048190 DOI: 10.3390/foods12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Methyl jasmonate (MeJ) is an elicitor that, when applied in the vineyard, can improve grape quality. There are several studies about the MeJ influence on red grape varieties; however, to our knowledge, there is little information about white grape varieties, specifically Tempranillo Blanco. Therefore, the aim of this work is to evaluate the effect of MeJ foliar treatments, carried out at veraison and post-veraison, on the aromatic, phenolic and nitrogen composition of Tempranillo Blanco grapes. The results showed that grape volatile compounds content increased after MeJ application, especially terpenoids, C13 norisoprenoids, benzenoids and alcohols, and, in general, mainly at post-veraison. Regarding phenolic and nitrogen compounds, their concentrations were enhanced after MeJ treatments, regardless of application time. Consequently, MeJ treatment improved grape volatile, phenolic and nitrogen composition, particularly when this elicitor was applied post-veraison. Therefore, this is a good and easy tool to modulate white grape quality.
Collapse
|
19
|
Influence of foliar treatments with methyl jasmonate and methyl jasmonate-doped nanoparticles on nitrogen composition of Tempranillo grapes during two vintages. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AbstractNanoparticles are emerging as a cutting-edge technology to improve crop agricultural input efficiency and reduce biotic and abiotic stresses. In viticulture, nanoparticles hold promise for the sustainable application of an elicitor (methyl jasmonate, MeJ), allowing a considerable dosage reduction. Herein, the influence of the foliar application of free MeJ (10 mM) and MeJ nanoformulation (ACP-MeJ, 1 mM MeJ) on Tempranillo grape amino acids content over two vintages (2019 and 2020) was evaluated. While both MeJ treatments provided a significant increase of the amino nitrogen and yeast assimilable nitrogen in the must in 2019, there were no significant differences on these parameters in 2020. In 2019, MeJ treatment enhanced the synthesis of most of the amino acids included in this study, while ACP-MeJ promoted the formation of six amino acids. Hence, the content of total amino acids, with and without proline, was higher after applying MeJ than in the control musts. However, these values were higher for control must than for MeJ samples in 2020. The multivariable analysis confirmed that the vintage factor had a more prominent effect on the overall parameters of the musts. This strong influence of the vintage could be related to the higher rainfall in 2020.
Collapse
|
20
|
Foliar application of methyl jasmonate and methyl jasmonate supported on nanoparticles: Incidence on grape phenolic composition over two seasons. Food Chem 2023; 402:134244. [DOI: 10.1016/j.foodchem.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
|
21
|
Gimenez-Bañón MJ, Paladines-Quezada DF, Moreno-Olivares JD, Cebrían-Pérez A, Bleda-Sánchez JA, Fernández-Fernandez JI, Gil-Muñoz R. Nanoelicitores: una alternativa para aumentar la composición fenólica de los vinos de Monastrell. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235601035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Este estudio observa el impacto en la composición fenólica de las uvas y los vinos de Monastrell que han sido tratados con metil jasmonato (MeJ) y nanopartículas de metil jasmonato (Nano-MeJ). El primer objetivo fue comparar el efecto de estos tratamientos para determinar si aumentaba la composición fenólica de sus uvas y vinos. El segundo objetivo fue determinar si los tratamientos con nanopartículas mostraban efectos similares a los tratamientos con MeJ. Los experimentos se realizaron durante tres añadas consecutivas (2019-2021) en las que se aplicaron dos tratamientos foliares en forma de suspensión acuosa de MeJ (10 mM) o de Nano-MeJ (1 mM) en el envero. Los vinos se elaboraron de acuerdo con una metodología tradicional y antocianos, taninos y estilbenos se analizaron cuando la fermentación alcohólica finalizó. Un incremento en la composición fenólica en uvas y vinos tratadas con MeJ y Nano-MeJ fue evidenciado. Este incremento fue diferente en función del tratamiento, tipo de compuesto así como de la añada. Por tanto, a la vista de los resultados, las nanopartículas podrían ser utilizadas como una opción más sostenible para la mejora de la calidad de las uvas y vinos de la variedad Monastrell.
Collapse
|
22
|
Arbigaus Bredun M, Sartor S, Pretto Panceri C, Chaves ES, Maria Burin V. Changes in phytochemical composition of Merlot grape and wine induced by the direct application of boron. Food Res Int 2023; 163:112258. [PMID: 36596169 DOI: 10.1016/j.foodres.2022.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
In this study the effect of the direct application of different concentrations of boron in grape bunches on the phytochemical composition of grapes and wine was evaluated. The experiment was carried out by direct application to the grape bunch of different concentrations (0, 1.0, 2.0, 4.0 and 8.0 g/L) of boron solution, in two consecutive vintages, 2018 and 2019. The wines were elaborated by the same microvinification method. Histological analyzes by optical microscopy and phenolic profile by HPLC-DAD were performed on the grapes. The wines were analyzed by HPLC-DAD and ICP-MS for phenolic profile and elemental composition, respectively. Histological analyzes of the grape skin showed an increase in the presence of polyphenols in the cellular tissue of grapes treated with different concentrations of boron when compared to the control samples in both vintages. The addition of boron influenced the phenolic profile of the grapes, resulting in an increase in the content of anthocyanins and flavanols. Regarding to wines, the treatment of grapes by direct application of boron significantly influenced the chemical composition of wines. In 2018, the application of 2 g/L of boron showed a significant increase in the concentration of malvidin and delphinidin in wines. The application of 1 g/L showed the highest concentration of malvidin, delphinidin and peonidin in the 2019 vintage. The boron content increased in the wine samples according to the boron concentrations applied to the grape. Thus, it is possible to produce chemically distinct wines with the direct application of boron to the grapes.
Collapse
Affiliation(s)
- Maiara Arbigaus Bredun
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Saionara Sartor
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, Santa Catarina, Brazil
| | | | - Eduardo S Chaves
- Department of Chemistry, Federal University of Santa Catarina, 88040-970 Florianópolis - SC, Brazil
| | - Vívian Maria Burin
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
23
|
Soares B, Barbosa C, Oliveira MJ. Chitosan application towards the improvement of grapevine performance and wine quality. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intensification of agrochemicals application in vineyards has raised several concerns in Viticulture and Oenology value chain. Efforts have been developed to optimize grapevine health and productivity, assuring that viticulture is sustainable and competitive in today’s wine market. Viticulture practices have constantly been improved for a more sustainable and environment-friendly production, reducing the application of agrochemicals, replacing them by natural compounds that can have a double effect: protect grapevine against pathogens and improve compounds related to grape organoleptic quality. In this context, the development and optimization of alternative strategies to improve and enhance plant defences and grape/wine quality is becoming a necessity. Since the 1980s, chitosan has become a compound of special interest due to its double effect as elicitor and grapevine biostimulant, representing a complement to soil fertilisation, and reducing the negative effects nutrients leaching into the groundwater. The present review aims to present the wide possibilities of chitosan applications on grapevines to prevent and combat the main diseases and to improve wine quality. In this way, relevant studies about chitosan application will be presented as well as some concerns and limitations in order to cover the knowledge gaps inherent to its application in vineyard and wine as well.
Collapse
|
24
|
Díaz-Fernández Á, Díaz-Losada E, Vázquez-Arias A, Pujol AP, Cardona DM, Valdés-Sánchez ME. Non-Anthocyanin Compounds in Minority Red Grapevine Varieties Traditionally Cultivated in Galicia (Northwest Iberian Peninsula), Analysis of Flavanols, Flavonols, and Phenolic Acids. PLANTS (BASEL, SWITZERLAND) 2022; 12:4. [PMID: 36616133 PMCID: PMC9824605 DOI: 10.3390/plants12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Non-anthocyanin compounds (NAN) such as flavonol, flavanol, and phenolic acids should be considered in the characterization of minority red grapevine varieties because these compounds are involved in copigmentation reactions and are potent antioxidants. Sixteen NAN were extracted, identified, and quantified by High Performance Liquid Chromatography (HPLC) from grapes of 28 red genotypes of Vitis vinifera L. grown in Galicia (Northwest of Spain) in 2018 and 2019 vintages. The percentage of total NAN with respect to the total polyphenol content (TPC) values was calculated for each sample and established into three categories: high percentage NAN varieties (NANV), those varieties showing low percentages of NAN (ANV), and finally those varieties showing medium percentages of NAN (NANAV). 'Xafardán' and 'Zamarrica', classified as NANAV, had high values of TPC and showed good percentages of flavonol and flavanol compounds. Principal component analyses (PCA) were performed with flavonol, flavanol, and phenolic acid profiles. The flavonol and flavanol profiles allowed a good discrimination of samples by variety and year, respectively. The flavonol profile should therefore be considered as a potential varietal marker. The results could help in the selection of varieties to be disseminated and in the identification of the most appropriate agronomic and oenological techniques that should be performed on them.
Collapse
Affiliation(s)
- Ángela Díaz-Fernández
- Research Station of Viticulture and Enology of Galicia (EVEGA), 32419 Ourense, Spain
| | - Emilia Díaz-Losada
- Research Station of Viticulture and Enology of Galicia (EVEGA), 32419 Ourense, Spain
| | - Anxo Vázquez-Arias
- Research Station of Viticulture and Enology of Galicia (EVEGA), 32419 Ourense, Spain
| | - Anna Puig Pujol
- Catalan Institute of Vine and Wine—Institute of Agrifood Research and Technology (INCAVI-IRTA), 08720 Vilafranca del Penedès, Spain
| | - Daniel Moreno Cardona
- Center for Scientific and Technological Research of Extremadura—Food and Agriculture Technology Institute of Extremadura (CICYTEX-INTAEX), Avenue Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - María Esperanza Valdés-Sánchez
- Center for Scientific and Technological Research of Extremadura—Food and Agriculture Technology Institute of Extremadura (CICYTEX-INTAEX), Avenue Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
25
|
Song J, Zhang A, Cheng S, Li X, Zhang Y, Luan L, Qu H, Ruan S, Li J. Co-winemaking with Vitis amurensis Rupr. "Beibinghong" enhances the quality of Vitis vinifera L. cv. Cabernet Gernischt wine. J Food Sci 2022; 87:4854-4867. [PMID: 36165679 DOI: 10.1111/1750-3841.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/24/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
In some wine regions of China, Cabernet Gernischt (CG; Vitis vinifera L.) grape berries usually exhibit low pigment content and titratable acidity, and low sensory quality of the resulting wine. The aim of this study was to evaluate co-winemaking of CG wines using the red grape cultivar Beibinghong (BBH; Vitis amurensis Rupr.) at different proportions in terms of alcohols, phenolic compounds, and sensory properties of the wines. The results showed that the co-winemaking wines contained a similar content of higher alcohols, whereas the methanol content increased with an increase in BBH proportion, although this was still corresponded with the national standard. Significantly higher levels of titratable acidity were observed in co-winemaking wines at the ratio of 6:4 and 5:5, compared with monocultivar CG wines. All co-winemaking wines, except CG:BBH (9:1) wine, showed significantly higher levels of total anthocyanins, total phenolics, total tannins, and total flavan-3-ols. Further, individual phenolics, primarily diglucoside anthocyanins and non-anthocyanins (trans-ferulic acid, myricetin, viniferin, trans-caffeic acid, 3,4-dihydroxybenzoic acid), as important contributors to wine color intensity, permitted the differentiation of the wines via principal component analysis. In most cases, co-winemaking wines exhibited higher scores of the 10 sensory attributes on color, aroma, mouthfeel, and overall quality compared with monocultivar wines. Co-winemaking CG wines with BBH at 7:3 ratio demonstrated the highest scores of color intensity, aroma intensity, aroma quality, and overall quality. The results indicate that co-winemaking with V. amurensis grape variety may be useful to enhance V. vinifera wine quality by modifying wine composition. PRACTICAL APPLICATION: Cabernet Gernischt (CG) is the predominant grape cultivar used to prepare premium-quality wine in China; however, in some wine regions, CG wines have low levels of pigment and titratable acidity, and low sensory quality. Co-winemaking with another native grape cultivar, Beibinghong (BBH), which is characterized by a higher content of anthocyanins and acidity, provided sufficient experimental evidence of adjustments in the Vitis vinifera wine composition leading to improved wine sensory quality.
Collapse
Affiliation(s)
- Jianqiang Song
- School of Life Sciences, Ludong University, Yantai, China.,Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao, China.,Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai Changyu Group Corporation Ltd., Yantai, China
| | - Ang Zhang
- Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao, China.,Technology Centre of Qinhuangdao Customs, Qinhuangdao, China
| | - Shiwei Cheng
- School of Life Sciences, Ludong University, Yantai, China
| | - Xiuwei Li
- Shandong Shangmei Health Industry Technology Development Co., Ltd, Yantai, China
| | - Yuxiang Zhang
- School of Life Sciences, Ludong University, Yantai, China
| | - Liying Luan
- School of Life Sciences, Ludong University, Yantai, China
| | - Huige Qu
- School of Life Sciences, Ludong University, Yantai, China
| | - Shili Ruan
- Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai Changyu Group Corporation Ltd., Yantai, China
| | - Jiming Li
- Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai Changyu Group Corporation Ltd., Yantai, China
| |
Collapse
|
26
|
Application of Elicitors, as Conventional and Nano Forms, in Viticulture: Effects on Phenolic, Aromatic and Nitrogen Composition of Tempranillo Wines. BEVERAGES 2022. [DOI: 10.3390/beverages8030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenolic, aromatic and nitrogen composition of a wine determines its organoleptic profile and quality. Elicitors have been used as a tool to stimulate the plant’s defense systems, favoring the synthesis of secondary metabolites. In this pioneering study, the elicitor methyl jasmonate in conventional form (MeJ) and in nanoparticle form (ACP-MeJ), with a concentration ten times lower, was applied in a Tempranillo vineyard over two seasons. The phenolic, nitrogen and volatile composition and the sensory properties of the MeJ-based wines were determined. The results showed that the effects of foliar applications of MeJ modify the wine composition. Thus, although the total concentration of most of the groups of phenolic compounds was not altered, several compounds, such as petunidin-3-glucoside, quercetin-3-glucoside, epigallocatechin and most of the stilbenes, increased, in both years, in the treated wines. Amino acids were influenced differently in each of the years studied, and volatile compounds generally did not improve in the treated wines. However, the ACP-MeJ wines were the best rated by the tasters, highlighting their equilibrium on the taste and their genuineness and odor quality. Therefore, foliar applications of ACP-MeJ can be considered a useful tool to improve wine quality.
Collapse
|
27
|
Effect of Methyl Jasmonate and Methyl Jasmonate Plus Urea Foliar Applications on Wine Phenolic, Aromatic and Nitrogen Composition. BEVERAGES 2022. [DOI: 10.3390/beverages8030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foliar application has been studied to enhance grape composition and, therefore, wine quality. This work examined, for first time, the effects of foliar applications of methyl jasmonate (MeJ) and methyl jasmonate plus urea (MeJ+Ur) to Tempranillo vineyard on wine phenolic, aromatic and nitrogen composition over two vintages (2019 and 2020). A reduction in alcoholic degree was observed in MeJ and MeJ+Ur wines. The effect of foliar treatments was season-dependent. MeJ and MeJ+Ur wines were characterized, in the first vintage, by a higher content of total acylated anthocyanins, but a low content of total esters, alcohols and acids when compared with control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in the second vintage, MeJ and MeJ+Ur wines presented an increase in some non-acylated anthocyanins, but only MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control wines. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control wines. Overall, the effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.
Collapse
|
28
|
Mikami N, Konya M, Enoki S, Suzuki S. Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport. PLANTS (BASEL, SWITZERLAND) 2022; 11:1694. [PMID: 35807646 PMCID: PMC9269297 DOI: 10.3390/plants11131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture.
Collapse
|
29
|
Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. PLANTS 2022; 11:plants11131648. [PMID: 35807600 PMCID: PMC9269509 DOI: 10.3390/plants11131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)—on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants’ application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits.
Collapse
|
30
|
Moro L, da Mota RV, Purgatto E, Mattivi F, Arapitsas P. Investigation of Brazilian grape juice metabolomic profile changes caused by methyl jasmonate pre‐harvest treatment. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laís Moro
- FORC – Food Research Center University of São Paulo Av. Professor Lineu Prestes, 580 ‐ Bloco 14 São Paulo 05508‐000 Brazil
| | - Renata Vieira da Mota
- Empresa de Pesquisa Agropecuária de Minas Gerais EPAMIG – Núcleo Tecnológico Uva e Vinho Av. Santa Cruz, 500 ‐ Santa Cruz Caldas 37780‐000 Brazil
| | - Eduardo Purgatto
- FORC – Food Research Center University of São Paulo Av. Professor Lineu Prestes, 580 ‐ Bloco 14 São Paulo 05508‐000 Brazil
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition Research and Innovation Center Fondazione Edmund Mach Via E. Mach, 1 San Michele all'Adige 38010 Italy
- Department of Cellular, Computational and Integrative Biology ‐ CIBIO University of Trento Via Sommarive 9 Trento 38123 Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition Research and Innovation Center Fondazione Edmund Mach Via E. Mach, 1 San Michele all'Adige 38010 Italy
- Department of Wine, Vine and Beverage Sciences School of Food Science, University of West Attica Ag. Spyridonos str, Egaleo Athens 12243 Greece
| |
Collapse
|
31
|
Canalejo D, Guadalupe Z, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S, Doco T. Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Res Int 2022; 157:111480. [DOI: 10.1016/j.foodres.2022.111480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
|
32
|
Abstract
Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice. The use of elicitors in viticulture to control disease and improve phenolic compounds is widely recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma compounds. Grape and wine aroma compounds are an important quality factor that reflects nutritional information and influences consumer preference. However, the effects of elicitors on aroma compounds are diverse, as different grape varieties respond differently to treatments. Among the numerous commercialized elicitors, some have proven very effective in improving the quality of grapes and the resulting wines. This review summarizes some of the elicitors commonly used in grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile compounds. The work is intended to serve as a reference for growers for the sustainable development of high-quality grapes.
Collapse
|
33
|
Anaya JA, Lizama V, García MJ, Álvarez I. Applying rosemary extract and caffeic acid to modify the composition of Monastrell wines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThis work studies the effect of applying rosemary extract and caffeic acid on the polyphenolic and aromatic composition of Monastrell wines, as well as the influence of traditional winemaking or incorporating prefermentative maceration. For this purpose, three treatments were carried out in triplicate. In one of them, rosemary extract was applied on the clusters 10 days before harvest, caffeic acid was applied in the same way in another, and, finally, this acid was applied to grape before crushing. Each treatment was run by both traditional vinification and vinification with prefermentative maceration. After making wines, they were monitored for 12 months after fermentation. The application of rosemary extract, and that of caffeic acid but to a lesser extent, increased the color, the concentration of anthocyanins, and the percentage of polymerized anthocyanins, while prefermentation maceration gave rise to wines with a higher concentration of condensed tannins and polyphenols. Applying rosemary extract and caffeic acid in the vineyard also increased the concentration of esters and other compounds that favor wine aromatic quality, which was also enhanced by prefermentative maceration.
Collapse
|
34
|
Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Delgado-López JM, Gil-Muñoz R. Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition. Molecules 2022; 27:molecules27092878. [PMID: 35566227 PMCID: PMC9102950 DOI: 10.3390/molecules27092878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.
Collapse
Affiliation(s)
- María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Diego Fernando Paladines-Quezada
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - José Ignacio Fernández-Fernández
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (J.M.D.-L.)
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (J.M.D.-L.)
| | - Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
- Correspondence:
| |
Collapse
|
35
|
Ranjbaran E, Gholami M, Jensen M. Near-harvest application of methyl jasmonate affected phenolic content and antioxidant properties in "Thompson Seedless" grape. Food Sci Nutr 2022; 10:477-486. [PMID: 35154684 PMCID: PMC8825739 DOI: 10.1002/fsn3.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/11/2022] Open
Abstract
The influence of methyl jasmonate (MJ) preharvest treatment was investigated on some polyphenols and antioxidant systems in the "Thompson Seedless" table grape. The clusters were sprayed in the vineyard 2 days before harvest with 0, 1, 5, and 10 mM MJ. After picking, berries were stored for 6 days at 15°C, simulating marketing conditions. Total phenols and flavonoids were affected by MJ treatment, especially at 10 mM concentration, whereas total tannins were found to be unchanged. Antioxidant activity of the treated skin was noticeably higher compared with the control, together with PAL and POD activity. Although MJ had little effect on catechin and epicatechin, the levels of quercetin and rutin were noticeable. In addition, 5 and 10 mM MJ exerted a pronounced effect on transresveratrol content. These data showed that a single preharvest application close to the harvest time could be an effective treatment to promote the antioxidant properties of the grape.
Collapse
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamedanIran
- Department of Food ScienceAarhus UniversityAarhus NDenmark
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamedanIran
| | - Martin Jensen
- Department of Food ScienceAarhus UniversityAarhus NDenmark
| |
Collapse
|
36
|
Anthocyanin profile of Galician endangered varieties. A tool for varietal selection. Food Res Int 2022; 154:110983. [DOI: 10.1016/j.foodres.2022.110983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/24/2023]
|
37
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
38
|
Gil-Muñoz R, Giménez-Bañón MJ, Moreno-Olivares JD, Paladines-Quezada DF, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM. Effect of Methyl Jasmonate Doped Nanoparticles on Nitrogen Composition of Monastrell Grapes and Wines. Biomolecules 2021; 11:1631. [PMID: 34827629 PMCID: PMC8615355 DOI: 10.3390/biom11111631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Diego Fernando Paladines-Quezada
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - José Ignacio Fernández-Fernández
- Murcian Institute of Agricultural and Environment Research and Development, Calle Mayor s/n, 30150 La Alberca, Spain; (M.J.G.-B.); (J.D.M.-O.); (D.F.P.-Q.); (J.A.B.-S.); (J.I.F.-F.)
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - Gloria Belén Ramírez-Rodríguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (B.P.-T.); (G.B.R.-R.); (J.M.D.-L.)
| |
Collapse
|
39
|
Ranjbaran E, Gholami M, Jensen M. Changes in phenolic compounds, enzymatic and non‐enzymatic antioxidant properties in “Thompson Seedless” grape after UV‐C irradiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
- Department of Food Science Aarhus University Aarhus N Denmark
| | - Mansour Gholami
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
| | - Martin Jensen
- Department of Food Science Aarhus University Aarhus N Denmark
| |
Collapse
|
40
|
Yamazaki M, Ishida A, Suzuki Y, Aoki Y, Suzuki S, Enoki S. Ethylene Induced by Sound Stimulation Enhances Anthocyanin Accumulation in Grape Berry Skin through Direct Upregulation of UDP-Glucose: Flavonoid 3- O-Glucosyltransferase. Cells 2021; 10:2799. [PMID: 34685779 PMCID: PMC8534375 DOI: 10.3390/cells10102799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in response to it. Sound stimulation (sine wave sound at 1000 Hz) enhanced anthocyanin accumulation in grape cultured cells and berry skins in field-grown grapevines at the early stage of ripening. The transcription of UFGT and ACO2, which encode the key enzymes in anthocyanin and ethylene biosynthesis, respectively, was upregulated in grape cultured cells exposed to sound stimulation. In contrast, the transcription of MybA1 and NCED1, which encode a transcription factor for UFGT and a key enzyme in abscisic acid biosynthesis, respectively, was not affected by the sound stimulation. A treatment with an ethylene biosynthesis inhibitor, aminoethoxyvinyl glycine hydrochloride, revered the enhancement of anthocyanin accumulation by sound stimulation. As the promoter assay using a GUS reporter gene demonstrated that UFGT promoter was directly activated by the ethylene-releasing compound ethephon, which enhanced anthocyanin accumulation in grape cultured cells, we conclude that sound stimulation enhanced anthocyanin accumulation through the direct upregulation of UFGT by ethylene biosynthesis. Our findings suggest that sound stimulation contributes to alleviating poor coloration in berry skin as a novel and innovative practical technique in viticulture.
Collapse
Affiliation(s)
- Mone Yamazaki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Akari Ishida
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Yutaka Suzuki
- Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan;
| | - Yoshinao Aoki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Shunji Suzuki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Shinichi Enoki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| |
Collapse
|
41
|
Pérez-Álvarez EP, Intrigliolo DS, Almajano MP, Rubio-Bretón P, Garde-Cerdán T. Effects of Water Deficit Irrigation on Phenolic Composition and Antioxidant Activity of Monastrell Grapes under Semiarid Conditions. Antioxidants (Basel) 2021; 10:antiox10081301. [PMID: 34439549 PMCID: PMC8389212 DOI: 10.3390/antiox10081301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
The high phenolic compound content of grapes makes them an important source of natural antioxidants, among other beneficial health properties. Vineyard irrigation might affect berry composition and quality. Regulated deficit irrigation (RDI) is a widely used strategy to reduce the possible negative impact of irrigation on grapes, improving grape composition and resulting in water savings. Monastrell grapevines (Vitis vinifera L.) grown in eastern Spain were subjected to two water regime strategies: rainfed (non-irrigation) and RDI. The content of anthocyanins, flavonols, flavanols, hydroxybenzoic and hydroxycinnamic acids, and stilbenes was determined by HPLC and was related with total phenolic content and three antioxidant activity methods (ABTS, DPPH, and ORAC). The study aimed to evaluate and compare the phenolic composition and antioxidant potential of Monastrell grapes. The rainfed regime concentrated grapes in terms of phenolic compounds. Thus, total content of anthocyanins, flavonols, flavanols, hydroxybenzoic acids, and total phenols were higher in the rainfed grapes than in the RDI ones. Besides, the rainfed grapes doubled their antioxidant potential with respect to the RDI grapes with the ORAC method. Total phenolic content and antioxidant activity by ORAC assay positively correlated with most of the total phenolic compounds analyzed. This study demonstrates how field practices can modulate final grape composition in relation to their antioxidant activity.
Collapse
Affiliation(s)
- Eva P. Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain;
- Correspondence: (E.P.P.-Á.); (T.G.-C.)
| | - Diego S. Intrigliolo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain;
- Centro de Investigación Sobre Desertificación (CSIC-UV-GV), Carretera CV-315, Km 10.7, 46113 Moncada, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
- Correspondence: (E.P.P.-Á.); (T.G.-C.)
| |
Collapse
|
42
|
The Antioxidant Effect of Colombian Berry ( Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants (Basel) 2021; 10:antiox10081290. [PMID: 34439538 PMCID: PMC8389266 DOI: 10.3390/antiox10081290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
A scarce amount of knowledge about the use of Colombian berry (CB) in meat products is available in the literature. This work studies the impact of the addition of CB extracts (CBE) on pork patties at three different concentrations in the range 250–750 mg/kg. CBE were characterized in terms of their polyphenolic profile and antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, half maximal inhibitory antioxidant concentration (IC50), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP) and oxygen radical absorbance capacity (ORAC) tests)]. After pork patties elaboration, instrumental and sensorial colour, as well as lipid oxidation measured as thiobarbituric acid reactive substances assay (TBARS) values, were evaluated for 10 days of refrigerated storage in a modified atmosphere (80% O2–20% CO2). The total anthocyanin composition represented 35% of the polyphenolic substances of the CBE, highlighting high contents in cyanidin derivatives. Additionally, other flavonoids (quercetin and kaempferol compounds) and phenolics acids, substances positively related to antioxidant activity, were identified and quantified. In addition, the incorporation of CBE resulted in improvements in colour and lipid stability of pork patties, especially for the highest concentration used. Our findings demonstrated that CBE could be added to pork patties without impairing their sensorial profile. Overall, our results indicate that the use of CBE as a source of natural antioxidant, natural colourant, or even as a functional ingredient could be promising, but more studies are necessary to confirm it.
Collapse
|
43
|
Yue X, Shi P, Tang Y, Zhang H, Ma X, Ju Y, Zhang Z. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3665-3675. [PMID: 33280112 DOI: 10.1002/jsfa.10996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The importance of monoterpenes in grape and wine aroma has compelled researchers to focus on developing methods to increase their abundance. Recent research has revealed that exogenous elicitors can increase the contents of these compounds. This study determined the effects of methyl jasmonate (MeJA) preharvest treatments on the monoterpene profiles of Muscat Hamburg grapes and wine. RESULTS A total of 27 monoterpenes were identified for Muscat Hamburg grapes and wine. The contents of most of the monoterpenes (free and glycosylated forms) in the grapes and wine increased in response to MeJA. An analysis of the expression of the genes in the terpenoid biosynthesis pathway indicated that the related biosynthetic pathways were activated by MeJA. The transcript levels of some genes were consistent with monoterpene production, including VviCSLinNer, VviGwbOciF, VviPNRLin, VviGT14 and VviUGT85A1L1. The developmental expression patterns of the VviPP2B1 and VviMYB24 transcription factor genes were positively correlated with monoterpene accumulation in ripening grapes. CONCLUSIONS Our results suggest that MeJA may be useful for improving the aroma quality of grapes and wines.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, China
| | - Pengbao Shi
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yali Tang
- College of Enology, Northwest A&F University, Yangling, China
| | - Huaixin Zhang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xin Ma
- College of Enology, Northwest A&F University, Yangling, China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, P.R. China
| |
Collapse
|
44
|
Methyl Jasmonate Applications in Viticulture: A Tool to Increase the Content of Flavonoids and Stilbenes in Grapes and Wines. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the interest in methyl jasmonate (MeJ) has increased in viticulture due to its effects on the synthesis of phenolic secondary metabolites in grapes, especially of anthocyanins, flavonols, and stilbenes derivatives, naturally occurring or synthesized, in berries in response to MeJ application to grapevines. These metabolites help to define sensory characteristics of wines by contributing to their color, flavor and mouthfeel properties, and to derive potential beneficial health effects due to their consumption. This review offers an overview of the importance of these phenolic compounds in grape and wine quality, in association with the MeJ supplementation to grapevines, and also considers their natural biosynthesis in grapes. On the other hand, this review describes the adaptation mechanisms induced after the grapevine elicitation. In addition, this report addresses the effects of MeJ over other aspects of Vitis immunity and its association with phenolic compounds and summarizes the recently published reports about the effects of exogenous MeJ applications to grapevines on grape and wine quality.
Collapse
|
45
|
Impact of Application of Abscisic Acid, Benzothiadiazole and Chitosan on Berry Quality Characteristics and Plant Associated Microbial Communities of Vitis vinifera L var. Mouhtaro Plants. SUSTAINABILITY 2021. [DOI: 10.3390/su13115802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phenolic profile of the grape berries is a key quality factor for the red grapevine varieties and several techniques have been applied to improve it. An innovative technique is the application of resistance elicitors and phytohormones. In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison. Physicochemical and phenolic characteristics of the berries and microbial communities of rhizosphere, phyllosphere and carposphere were analyzed at harvest. Differences in the microbial communities on different plant compartments were observed after the application of the plant activators. Chitosan treatment increased the abundance of the beneficial lactic acid bacteria, while the abscisic acid treatment decreased the presence of spoilage fungi on the carposphere. Treatments differentiate total phenolics, anthocyanins and in the chemical characteristics of grape must with chitosan treated grapes had increased anthocyanins and skin-derived phenolics that correlated positively with the microbial taxa that was discriminant by LefSe analysis. This research provides an overview of the effect of plant activators on the microbial ecology and grape quality of the Greek variety Mouhtaro and presents the potential of new and innovative approaches in the field of sustainable viticulture.
Collapse
|
46
|
Gawlik-Dziki U, Baraniak B, Sikora M, Jakubczyk A, Kapusta I, Świeca M. Potentially Bioaccessible Phenolic and Antioxidant Potential of Fresh and Stored Lentil Sprouts-Effect of Lactobacillus plantarum 299v Enrichment. Molecules 2021; 26:molecules26082109. [PMID: 33916936 PMCID: PMC8067562 DOI: 10.3390/molecules26082109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
The phenolic and antioxidant potential of potentially bioaccessible fractions of lentil sprouts was studied. Sprouts were cocultivated with a probiotic to obtain a new functional product and further stored in cool conditions. The fraction obtained after buffer extraction and gastric digestion had higher content of phenolics compared to the control (by 20% and 46%, respectively); however, a 9% decrease was observed in samples obtained after gastrointestinal digestion. After gastrointestinal digestion, the highest content of phenolics (278 µg/g d.w.) was determined in the fresh control sprouts. Compounds neutralizing ABTS and hydroxyl radicals, chelating metal ions, and exhibiting strong reducing power were effectively released after gastrointestinal digestion (e.g., the values of the gastrointestinal digestibility index for chelating power and ability to quench hydroxyl radicals significantly exceeded 1 in all studied samples). It was proved that the enrichment of sprouts with a probiotic and further storage significantly improved the antioxidant potential; compared to the fresh control sprouts, an increase by 45% and 10% was determined after the gastric and gastrointestinal digestion, respectively. Lentil sprouts enriched with L. plantarum 299v may be a new functional product characterized by the high antioxidant capacity of the potentially bioaccessible fraction.
Collapse
Affiliation(s)
- Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
- Correspondence: ; Tel.: +48-81-462-33-96
| |
Collapse
|
47
|
López R, Portu J, González-Arenzana L, Garijo P, Gutiérrez AR, Santamaría P. Ethephon foliar application: Impact on the phenolic and technological Tempranillo grapes maturity. J Food Sci 2021; 86:803-812. [PMID: 33590528 DOI: 10.1111/1750-3841.15570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
In recent years, there has been increasing concern about the impact of climate change on viticulture, in particular regarding its influence on grape maturity and quality. Extensive research has shown that the rise of temperatures during grape ripening accelerates the accumulation of sugars while reducing the synthesis of phenolic and aromatic compounds. The aim of this study was to investigate whether the foliar application of the plant growth regulator ethephon might delay technological grape maturity and increase grape phenolic content, improving wine quality. For this, different concentrations of ethephon were applied during two vintages to the Tempranillo grape variety at the onset of veraison. Results showed that grape sugar accumulation was delayed in one of the two vintages, whereas the treatment favored the accumulation of phenolic compounds in both vintages. In conclusion, the application of ethephon at the onset of veraison to Tempranillo grapevines helped to couple grape phenolic and technological maturity, leading to more balanced wines, either by delaying sugar accumulation or by enhancing the synthesis of anthocyanins and phenolic compounds. PRACTICAL APPLICATION: Due to the current climate change, phenolic maturity of grapes does not match with their technological maturity, which means that harvested grapes are usually very sweet but without enough color and aroma. The foliar application of the plant growth regulator-ethephon-delays technological grape maturity and increases grape phenolic content, improving wine quality and creating wines that are more balanced.
Collapse
Affiliation(s)
- Rosa López
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Javier Portu
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Lucía González-Arenzana
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Patrocinio Garijo
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Ana Rosa Gutiérrez
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| | - Pilar Santamaría
- Department of Enology, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, carretera de Burgos km 6, Logroño, 26071, Spain
| |
Collapse
|
48
|
Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021; 26:molecules26030718. [PMID: 33573150 PMCID: PMC7866523 DOI: 10.3390/molecules26030718] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Wine is one of the most consumed beverages around the world. It is composed of alcohols, sugars, acids, minerals, proteins and other compounds, such as organic acids and volatile and phenolic compounds (also called polyphenols). Polyphenols have been shown to be highly related to both (i) wine quality (color, flavor, and taste) and (ii) health-promoting properties (antioxidant and cardioprotective among others). Polyphenols can be grouped into two big families: (i) Flavonoids, including anthocyanidins, flavonols, flavanols, hydrolysable and condensed tannins, flavanones, flavones and chalcones; and (ii) Non-flavonoids, including hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, tyrosol and hydroxytyrosol. Each group affects in some way the different properties of wine to a greater or a lesser extent. For that reason, the phenolic composition can be managed to obtain singular wines with specific, desirable characteristics. The current review presents a summary of the ways in which the phenolic composition of wine can be modulated, including (a) invariable factors such as variety, field management or climatic conditions; (b) pre-fermentative strategies such as maceration, thermovinification and pulsed electric field; (c) fermentative strategies such as the use of different yeasts and bacteria; and (d) post-fermentative strategies such as maceration, fining agents and aging. Finally, the different extraction methods and analytical techniques used for polyphenol detection and quantification have been also reviewed.
Collapse
|
49
|
Valletta A, Iozia LM, Leonelli F. Impact of Environmental Factors on Stilbene Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:E90. [PMID: 33406721 PMCID: PMC7823792 DOI: 10.3390/plants10010090] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023]
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
50
|
Kantayos V, Kim JS, Baek SH. Alteration of resveratrol-dependent glycosyltransferase activity by elicitation in DJ-526 rice. GM CROPS & FOOD 2021; 12:242-250. [PMID: 33393843 PMCID: PMC7801123 DOI: 10.1080/21645698.2020.1859314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the successful creation of DJ-526, a resveratrol-enriched rice cultivar, research has focused on resveratrol production because of its great potential in pharmaceutical applications. However, the utilization of resveratrol in DJ-526 is limited by glycosylation, which converts resveratrol to its glucoside (piceid), in a process driven by glycosyltransferase. The verification of resveratrol-dependent glycosyltransferase activity is an essential strategy for improving resveratrol production in DJ-526 rice. In this study, 27 candidate glycosyltransferases were evaluated in germinated seeds. Among the candidates, only R12 exhibited upregulation related to increased resveratrol and piceid content during seed germination, whereas various effects on the activity of glycosyltransferase were observed by the presence of a bio-elicitor. Yeast extract tended to enhance glycosyltransferase activity by seven candidates, and a specific peak for an unknown compound production was identified. Conversely, chitosan acted as a glycosyltransferase inhibitor. Our results suggested that R12 and R19 are the most relevant candidate resveratrol-dependent glycosyltransferases in DJ-526 seeds during germination and elicitation. Future research should assess the possibility of silencing these candidate genes in an effort to improve resveratrol levels in DJ-526 rice.
Collapse
Affiliation(s)
- Vipada Kantayos
- Department of Well-being Resources, Sunchon National University , Suncheon, Korea
| | - Jin-Suk Kim
- Department of Well-being Resources, Sunchon National University , Suncheon, Korea
| | - So-Hyeon Baek
- Department of Well-being Resources, Sunchon National University , Suncheon, Korea
| |
Collapse
|