1
|
Guo D, Liu C, Zhu H, Cheng Y, Guo Y, Yao W, Jiang J, Qian H. Advanced insights into mushroom polysaccharides: Extraction methods, structure-activity, prebiotic properties, and health-promoting effects. Int J Biol Macromol 2025; 308:142319. [PMID: 40132710 DOI: 10.1016/j.ijbiomac.2025.142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Mushroom-derived polysaccharides, especially β-glucans, have attracted considerable attention because of their various biological regulatory functions. Advanced extraction technologies, including ultrasonic-assisted, microwave-assisted, enzyme-assisted, ultrasonic-microwave synergistic, subcritical water, and aqueous two-phase extractions, are extensively utilized to optimize the efficient recovery of biologically active compounds from mushrooms, progressively supplanting conventional methods. In addition, mushroom polysaccharides are acknowledged as "important biological response modifiers." Beyond their diverse bioactivities, including anticancer, immunomodulatory, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemia, anti-lipidemic, and antioxidant effects, increasing interest has been directed towards their prebiotic potential, especially regarding their ability to influence gut microbiota. This review presents a comprehensive summary of the extraction and purification methods, biological properties, structure-function relationships, and mechanisms of mushroom polysaccharides, highlighting the latest advancements in the field from 2019 to 2024. Additionally, this review discusses the key findings and limitations associated with the structure-function correlation. While most studies focus on β-glucans or their extracts, α-glucans and chitin have gained increasing attention. The prebiotic potential is associated with α-glucans and chitin, with chitin recognized for its substantial antimicrobial and wound-healing properties. This review systematically identifies current research gaps and proposes avenues for future investigation into the therapeutic potential of mushroom polysaccharides. However, further research is required to comprehensively understand their full therapeutic potential.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Li J, Yin K, Wu SR, Zhuang Y, Wan X, Sun L, Chen B. Subcritical water extraction improves the ability of Auricularia cornea var. Li. Polysaccharides to stabilize hydrogels and emulsion gels. Int J Biol Macromol 2025; 305:141246. [PMID: 39978510 DOI: 10.1016/j.ijbiomac.2025.141246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
In this work, polysaccharides from Auricularia cornea var. Li. (ACP) were extracted by a novel subcritical water extraction (SWE) method. Their structural properties and ability to stabilize hydrogels and emulsion gels were investigated and compared with those obtained by the conventional hot water extraction (HWE) method. The results showed that the polysaccharide yield of SWE (45.11 ± 0.23 %) was higher than that of HWE (17.85 ± 0.51 %). The two polysaccharides had the same type of monosaccharides but different compositions, and the molecular weight of ACP-SWE was slightly lower. The molecular conformation of ACP-HWE exhibited a long-chain structure, whereas ACP-SWE was multi-branched with obvious entanglements between the molecular chains. Both polysaccharides were able to form gels at concentrations above 1.0 %, with the ACP-SWE hydrogel having a denser network structure with better rheological and textural properties. ACP-SWE also had a greater ability to stabilize emulsion gels. By adjusting the polysaccharide concentration (c, 0.2 %-1.0 %) and the oil phase volume fraction (φ, 0.4-0.8), ACP-SWE emulsion gels could be prepared in a single step of shear homogenization. This work revealed that the adsorption of ACP-SWE at the oil-water interface and cross-linking in the bulk phase, together with the filling effect of oil droplets, contributed to the stabilization of ACP-SWE emulsion gels.
Collapse
Affiliation(s)
- Jiapeng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Kaiwen Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Su-Rui Wu
- Yunnan Academy of Edible Fungi Industry Development, Kunming 650221, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Xing Wan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Bifen Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China.
| |
Collapse
|
3
|
Zhang Q, Huang R, Wang L, Ge Y, Fang H, Chen G. Comparative study on the effects of different drying technologies on the structural characteristics and biological activities of polysaccharides from Idesia polycarpa maxim cake meal. Food Chem X 2025; 26:102348. [PMID: 40160202 PMCID: PMC11951029 DOI: 10.1016/j.fochx.2025.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
To extract oil, the fruits of Idesia polycarpa Maxim (IPM) must first undergo a drying process. This study aimed to investigate how different industrial drying techniques-microwave vacuum drying (MVD), microwave drying, infrared drying, and hot air drying-affect the structural characteristics and bioactivities of IPM cake meal polysaccharides (IPMPs). The results revealed significant differences in the structure and composition of the four IPMPs. MVD-IPMP, dried using MVD, exhibited a lower molecular weight (346.26 kDa), higher uronic acid content (30.74 %), and a distinct triple-helix structure. These structural features contributed to its enhanced antioxidant activity, α-glucosidase inhibition, and prevention of glycation. IPMPs induced secondary conformational changes in α-glucosidase, leading to decreased enzyme activity. Additionally, IPMPs caused static quenching of the enzyme's intrinsic fluorescence, suggesting a specific interaction mechanism, with MVD-IPMP demonstrating the highest binding affinity. These findings suggest that MVD is an effective technique for the large-scale production of high-quality IPMPs.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Renshuai Huang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Honggang Fang
- Guizhou Lincao Development Co., Ltd, Guiyang, Guizhou 550001, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
4
|
Tian J, Zhang Z, Shang Y, Yang T, Zhou R. Isolation, structures, bioactivities, and applications of the polysaccharides from Boletus spp.: A review. Int J Biol Macromol 2025; 285:137622. [PMID: 39551313 DOI: 10.1016/j.ijbiomac.2024.137622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Boletus spp., the edible mushrooms distributed in Europe, Asia, and North America, have been widely used as food and medicinal ingredients worldwide. Bioactive polysaccharides are highly abundant in Boletus spp., as demonstrated by modern phytochemical studies. The isolation, chemical properties, and bioactivities of polysaccharides from Boletus spp. have long been attracted by academics worldwide. However, there is still a lack of systematic tracking of research progress on Boletus polysaccharides (BPs), which is essential for researchers to understand their potential and gain a deeper insight into their functional mechanisms. In this review, we summarized the recent development of BPs, including the extraction and purification methods, physiochemical and structural features, bioactivities and functional mechanisms, the structure-activity relationship, and the potential applications. This review aims to provide researchers with a comprehensive understanding of the current progress and potential of BPs to assist their further investigations.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Tao Yang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
5
|
Huang L, Zhang H, Xia W, Yao N, Xu R, He Y, Yang Q. Structural characteristics, biological activities and market applications of Rehmannia Radix polysaccharides: A review. Int J Biol Macromol 2024; 282:136554. [PMID: 39423982 DOI: 10.1016/j.ijbiomac.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Rehmannia Radix Polysaccharides (RRPs) are biopolymers that are isolated and purified from the roots of Rehmannia glutinosa Libosch, which have attracted considerable attention because of their biological activities, such as anti-inflammatory, antioxidant, immunomodulatory, anti-tumor, hypoglycaemic etc. In this manuscript, the composition and structural characteristics of RRPs are reviewed. Moreover, the research progress on the conformational relationships and biological activities of RRPs is systematically summarized. Additionally, this manuscript also analyzes 155 patents using RRPs as the main raw materials to explore the status quo and bottleneck for the development and utilization of RRPs. In summary, this review not only provides a theoretical basis for future research on RRPs but also provides clear guidance for their market applications and innovation.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Haibo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nairong Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
6
|
Chen P, Sang E, Chen H, Meng Q, Liu H. Effects of different extraction temperatures on the structural characteristics and antioxidant activity of polysaccharides from dandelion leaves. Int J Biol Macromol 2024; 283:137726. [PMID: 39551315 DOI: 10.1016/j.ijbiomac.2024.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Dandelion polysaccharides contribute to a variety of biological activities. This study evaluated the effect of different extraction temperatures (4 °C and 80 °C) on the structural characteristics and antioxidant activity of dandelion leaf polysaccharides (DLP). The findings demonstrated that the extraction efficiency improved at the higher temperature, while molecular weight exist a trend of degradation with increasing extraction temperature. Ion chromatography (IC) analysis indicated that the polysaccharides DLP4 and DLP80 were structurally complex heteropolysaccharides mainly composed of galactose, arabinose, glucose and mannose, with galactose and arabinose dominating. FT-IR and methylation analysis revealed that DLP4 and DLP80 had similar chemical structures and branches. DLP4 contained a higher amount of 6-Galactose. Microstructure analysis showed that heat treatment caused conformational changes in DLP4 and DLP80. Both had excellent free radical scavenging ability including DPPH·, ABTS·+, OH· and reducing power. The Reactive Oxygen Species assay indicated that the protective effect of DLP4 against H2O2-induced oxidative damage in vitro was stronger than that of DLP80. Superoxide dismutase (SOD) and malondialdehyde (MDA) measurements also confirmed that the antioxidant effect of DLP4 was more prominent. Overall, low temperature extracted DLP can be used as an antioxidant in the areas of food, medicine and biomaterials.
Collapse
Affiliation(s)
- Pei Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Ee Sang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Huanhuan Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Qi Meng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China..
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Ibrahim MIA, Ibrahim HAH, Haga T, Ishida A, Nehira T, Matsuo K, Gad AM. Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7. J Fungi (Basel) 2024; 10:659. [PMID: 39330418 PMCID: PMC11432975 DOI: 10.3390/jof10090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities.
Collapse
Affiliation(s)
- Mohamed I A Ibrahim
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Tatsuki Haga
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Koichi Matsuo
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| | - Ahmed M Gad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| |
Collapse
|
8
|
Shi L, He Q, Li J, Liu Y, Cao Y, Liu Y, Sun C, Pan Y, Li X, Zhao X. Polysaccharides in fruits: Biological activities, structures, and structure-activity relationships and influencing factors-A review. Food Chem 2024; 451:139408. [PMID: 38735097 DOI: 10.1016/j.foodchem.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.
Collapse
Affiliation(s)
- Liting Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yunlin Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chongde Sun
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Ma Y, Zang R, Chen M, Zhang P, Cheng Y, Hu G. Study on fermentation preparation, physicochemical properties and biological activity of carboxymethylpachymaran with different degrees of substitution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4234-4241. [PMID: 38294266 DOI: 10.1002/jsfa.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Carboxymethylpachymaran (CMP) is created by carboxymethylating pachyman (PM), which increases its water solubility and enhances a number of biological activities. Traditional polysaccharides modified by carboxymethylation employ strong chemical techniques. Carboxymethylcellulose (CMC) has been used previously for liquid fermentation to carboxymethyl modify bacterial polysaccharides. This theory can be applied to fungal polysaccharides because Poria cocos has the ability to naturally utilize cellulose. RESULTS CMC with different degrees of substitution (DS) (0.7, 0.9 and 1.2) were added to P. cocos fermentation medium, and CMPs with different DS (0.38, 0.56 and 0.78, respectively) were prepared by liquid fermentation. The physical and chemical properties and biological activities of the CMPs were determined. Their structures were confirmed by Fourier transform infrared (FTIR) spectroscopy and monosaccharide composition. With the increase of DS, the viscosity and viscosity-average molecular weight of CMPs decreased, whereas polysaccharide content and water solubility increased, although the triple helix structure was not affected. The results of bioactivity assay showed that the higher the DS of CMPs, the higher the 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, and the stronger the bacterial inhibition ability. CONCLUSION The present study has developed a method for producing CMPs by P. cocos liquid fermentation. The results of the study confirm that enhancing the DS of CMP could effectively enhance its potential biological activity. The findings provide safe and reliable raw materials for creating CMP-related foods and encourage CMP application in the functional food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiming Ma
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruixiang Zang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mo Chen
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Pei Zhang
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yaqing Cheng
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Guoyuan Hu
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Hubei Yugo Gu Ye Co., Ltd, Suizhou, China
| |
Collapse
|
10
|
Jen CI, Lu MK, Lai MN, Ng LT. Sulfated polysaccharides of Laetiporus sulphureus fruiting bodies exhibit anti-breast cancer activity through cell cycle arrest, apoptosis induction, and inhibiting cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117546. [PMID: 38061441 DOI: 10.1016/j.jep.2023.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou 54245, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
11
|
Geng X, Guo D, Wu B, Wang W, Zhang D, Hou S, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Qian H, Chang M. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulosa. Int J Biol Macromol 2024; 259:129234. [PMID: 38216007 DOI: 10.1016/j.ijbiomac.2024.129234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
This study comparatively evaluated the effects of the commonly used six extraction methods (acidic, alkaline, enzymatic, ultrasonic, high-pressure, and microwave) on the physico-chemical properties, processing characteristics, and biological activities of polysaccharides from Clitocybe squamulosa (CSFPs). The results show that polysaccharides extracted using an enzyme-assisted extraction method has a relatively high extraction yield (4.46 ± 1.62 %) and carbohydrate content (70.79 ± 6.25 %) compared with others. Furthermore, CSFPs were all composed of glucose, galactose, mannose, xylose, and glucosamine hydrochloride. Only ultrasonic-assisted extraction of polysaccharides (CSFP-U) has a triple helix chain conformation. Scanning electron microscopy (SEM) revealed significant differences in the microstructure of polysaccharides prepared using different methods. Besides that, the polysaccharides prepared by alkali extraction (CSFP-B) and high-pressure assisted extraction (CSFP-H) have good water (2.86 ± 0.29 g/g and 3.15 ± 0.29 g/g) and oil (8.13 ± 0.32 g/g and 7.97 ± 0.04 g/g) holding properties. The rheological behavior demonstrated that CSFPs solutions were typical non-Newtonian fluid. Apart from this, the antioxidant capacity (clearing DPPH (IC50 = 0.29) and ABTS free radicals (IC50 = 0.19), total reduction ability (IC50 = 3.02)) of polysaccharides prepared by the microwave-assisted extraction (CSFP-M) method was significantly higher than that of other extraction methods. By contrast, the polysaccharide prepared by acid extraction (CSFP-A) has the optimum binding capacity (bile acid salt (71.30 ± 6.78 %) and cholesterol (57.07 ± 3.26 mg/g)). The antibacterial activity of CSFPs was positively correlated with their concentration. Thus, the research results can provide a theoretical basis for the development and utilization of polysaccharides from C. squamulosa.
Collapse
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Bin Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Tergun Bau
- Inner Mongolia Agriculture, Animal Husbandry, Fishery, Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010019, PR China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
12
|
Cui FJ, Yang YM, Sun L, Zan XY, Sun WJ, Zeb U. Grifola frondosa polysaccharides: A review on structure/activity, biosynthesis and engineering strategies. Int J Biol Macromol 2024; 257:128584. [PMID: 38056754 DOI: 10.1016/j.ijbiomac.2023.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Polysaccharides are the main polymers in edible fungi Grifola frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. Recent efforts have well elucidated the fine structures and biological functions of G. frondosa polysaccharides. The recently-rapid developments and increasing availability in fungal genomes also accelerated the better understanding of key genes and pathways involved in biosynthesis of G. frondosa polysaccharides. Herein, we provide a brief overview of G. frondosa polysaccharides and their activities, and comprehensively outline the complex process, genes and proteins corresponding to G. frondosa polysaccharide biosynthesis. The regulation strategies including strain improvement, process optimization and genetic engineering were also summarized for maximum production of G. frondosa polysaccharides. Some remaining unanswered questions in describing the fine synthesis machinery were also pointed out to open up new avenues for answering the structure-activity relationship and improving polysaccharide biosynthesis in G. frondosa. The review hopefully presents a reasonable full picture of activities, biosynthesis, and production regulation of polysaccharide in G. frondosa.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
13
|
Panya M, Kaewraemruaen C, Saenwang P, Pimboon P. Evaluation of Prebiotic Potential of Crude Polysaccharides Extracted from Wild Lentinus polychrous and Lentinus squarrosulus and Their Application for a Formulation of a Novel Lyophilized Synbiotic. Foods 2024; 13:287. [PMID: 38254588 PMCID: PMC10815080 DOI: 10.3390/foods13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Edible mushrooms, including wild mushrooms, are currently being investigated as natural sources to evaluate their prebiotic potential. This study aimed to evaluate the prebiotic potential of crude polysaccharides (CPSs) extracted from wild Lentinus squarrosulus UBU_LS1 and Lentinus polychrous UBU_LP2 and their application as cryoprotectants in the freeze-drying process to formulate a novel synbiotic product. Based on fruiting body morphology and molecular identification, two wild edible mushrooms named UBU_LS1 and UBU_LP2 were identified as Lentinus squarrosulus and Lentinus polychrous, respectively. L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 contained high amounts of CPS after hot water extraction. Monosaccharide component analysis showed that CPS_UBU_LS1 and CPS_UBU_LP2 were typical heteropolysaccharides. CPS_UBU_LS1 and CPS_UBU_LP2 showed hydrolysis tolerance to the simulated human gastric acidic pH solution, indicating that these CPSs are capable of reaching the lower gastrointestinal tract. Antioxidant activity determined using the 1,1-diphenyl-2-picrylhydrazyl assay revealed that the CPS_UBU_LS1 and CPS_UBU_LP2 displayed greater antioxidant activity comparable with that of ascorbic acid. It was found that CPS_UBU_LS1 and CPS_UBU_LP2 have a high potential for stimulating growth in all probiotic strains. Moreover, both CPS compounds could possibly be used as cryoprotectants in freeze drying, since the viability of the selected probiotic L. fermentum 47-7 exhibited cell survival of greater than 70% after 90 days of storage at 4 °C. These results highlight that wild edible mushrooms L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 are potential natural sources of prebiotics and can be applied as cryoprotectants in the freeze-drying process. The crude polysaccharide derived from this study could also be considered as a potent antioxidative compound. Therefore, our study provides evidence to support the application of CPSs from wild edible mushrooms in synbiotic product development and in various functional foods. Finally, further evaluation of these prebiotics, including the determination of the potential rehabilitation of beneficial gut microbes in diseased individuals, is currently being conducted by our research group.
Collapse
Affiliation(s)
- Marutpong Panya
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Phairo Saenwang
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Patcharin Pimboon
- College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| |
Collapse
|
14
|
Kang J, He C, Shi YC. Conformational properties of heterogeneous arabinoxylan protein gums from corn bran and distillers grains in comparison with gum arabic. Int J Biol Macromol 2024; 254:127469. [PMID: 37935289 DOI: 10.1016/j.ijbiomac.2023.127469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
The molecular structure and conformation of arabinoxylan-protein gum, commonly referred as corn fiber gum (CFG) were analyzed by high-performance size-exclusion chromatography (HPSEC) coupled with RI, UV, light scattering and viscometer detectors. CFG had a heterogeneous structure. The detailed conformation of CFG at different molecular weights was compared with that of hemicellulose fiber gum (HFG) from dried distiller's grains with solubles and gum arabic. The CFG molecules mainly had random coil conformation; only 10 % of them exhibited rigid rod conformation. Approximately 80 % of the CFG had a molecular weight between 105 and 105.4 Da, while the other 20 % of molecules were between 105.4 and 1.5 × 107.7 Da. The overall conformational properties of CFG and HFG were closer but differed from that of gum arabic. The intrinsic viscosity and radius of gyration of both CFG and HFG were greater than those of gum arabic although the average molecular weight of CFG and HFG was lower. The protein and carbohydrate were covalently linked in CFG molecules as shown by the HPSEC-multiple detectors combined with partial acid hydrolysis. Based on the detailed conformation of CFG and the methylation analysis, 1D and 2D NMR spectroscopy results, the molecular structure of CFG was proposed.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Chao He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
15
|
Ni J, Zheng J, Mo G, Chen G, Li J, Cao L, Hu B, Liu H. Structural characterization and immunomodulatory effect of a starch-like Grifola frondosa polysaccharides on cyclophosphamide-induced immunosuppression in mice. Carbohydr Res 2024; 535:109011. [PMID: 38150753 DOI: 10.1016/j.carres.2023.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
In this study, a pure Grifola frondosa polysaccharide (GFP-1) was extracted and purified from Grifola frondosa. By HPLC, GC-MS, FT-IR, and NMR analysis, GFP-1 was determined to be a starch-like polysaccharide with an average molecular weight of 3370 kDa. It included three monosaccharides, i.e., glucose, galactose, and mannose. The backbone of GFP-1 consisted of →4)-α-Glcp-(1→ and →4,6)-α-Glcp-(1 → . The side branches were composed of →6)-α-Galp-(1→, α-Glcp-(1→, and a small amount of α-Manp-(1 → . By using a cyclophosphamide (CTX)-induced immunosuppressed mice model, we evaluated the immunomodulatory activity of GFP-1. The results showed that GFP-1 increased the thymic and spleen indices, promoted the level of IgG and IgA in serum, and activated the mitogen-activated protein kinase (MAPK) pathway in CTX-induced mice. Also, GFP-1 significantly promoted the mRNA expression of intestinal barrier factors and protected intestinal structural integrity in immunosuppressed mice. In conclusion, the data presented here suggested that GFP-1 might be a potential immune-enhancing supplement.
Collapse
Affiliation(s)
- Jimin Ni
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Guoyan Mo
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
16
|
Lu MK, Chao CH, Hsu YC. Advanced culture strategy shows varying bioactivities of sulfated polysaccharides of Poria cocos. Int J Biol Macromol 2023; 253:126669. [PMID: 37660853 DOI: 10.1016/j.ijbiomac.2023.126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
This study compares the bioactivity of six sulfated polysaccharides derived from glucose- and sucrose-feeding extracted from P. cocos. Anti-inflammatory potentials of these polysaccharides were evaluated by pretreating lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. Of the tested polysaccharides, the sulfated polysaccharide derived from sucrose-feeding at the concentration of 40 g/l (referred to as "suc 40") exhibited the highest anti-inflammatory activity, of 83 %, and 33 % inhibition of IL-6 and TNF-α secretion, respetively. It achieved this by inhibiting the p-38 and c-Jun N-terminal kinase (JNK) MAPK signaling pathways. On the other hand, the sulfated polysaccharide derived from glucose-feeding at a concentration of 20 g/l (referred to as "glc 20") demonstrated the greatest anti-lung cancer activity. This was achieved by inducing apoptotic-related molecules, such as poly (ADP-ribose) polymerase (PARP) and CHOP. Furthermore, glc 20 had the highest contents of sulfate, fucose, and mannose compared to the other tested polysaccharides. This suggests that the composition of monosaccharide residues are critical factors influencing the anti-inflammatory and anti-cancer activities of these sulfated polysaccharides. Overall, this study highlights the potential of sulfated polysaccharides derived from P. cocos to function as bioactive compounds with anti-inflammatory and anti-cancer properties.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., 7 Sec. 2, Shipai, Beitou, Taipei 112, Taiwan.
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| |
Collapse
|
17
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
18
|
Gao N, Zhang W, Hu D, Lin G, Wang J, Xue F, Wang Q, Zhao H, Dou X, Zhang L. Study on Extraction, Physicochemical Properties, and Bacterio-Static Activity of Polysaccharides from Phellinus linteus. Molecules 2023; 28:5102. [PMID: 37446762 DOI: 10.3390/molecules28135102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
We optimized an ultrasound-assisted extraction process of Phellinus linteus mycelium polysaccharides (PLPs) and studied their monosaccharide composition and bacteriostatic properties. Based on a single-factor experiment, a three-factor, three-level Box-Behnken design was used to optimize the ultrasound-assisted extraction process of PLP, using the yield of PLP as the index. The chemical composition and monosaccharide composition of PLP were determined by chemical analysis and HPLC analysis, respectively. Microscopic morphological analysis of the surface of PLP was performed via swept-surface electron microscopy. The bacteriostatic properties of PLP were determined using the spectrophotometric turbidimetric method. The results showed that the best extraction process of PLP with ultrasonic assistance achieved a result of 1:42 g/mL. In this method, the ultrasonic temperature was 60 °C, ultrasonic extraction was performed for 20 min, and the yield of PLP was 12.98%. The monosaccharide composition of PLP mainly contains glucose (Glc), mannose (Man), galactose (Gal), and glucuronic acid (GlcA). The intracellular polysaccharide of Phellinus igniarius Mycelia (PIP) is an irregular spherical accumulation, the surface is rough and not smooth, and the extracellular polysaccharide (PEP) is a crumbly accumulation. PIP has a stronger inhibitory ability for S. aureus and E. coli and a slightly weaker inhibitory effect for B. subtilis; the inhibitory effect of PEP on S. aureus, E. coli, and B. subtilis is slightly inferior to that of PIP.
Collapse
Affiliation(s)
- Nengbin Gao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Weijia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Dianjie Hu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Guo Lin
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Jingxuan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Feng Xue
- Jilin Province Changbai Forest Management Bureau, Baishan 134499, China
| | - Qian Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Hongfei Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| |
Collapse
|
19
|
Zhao J, He R, Zhong H, Liu S, Liu X, Hussain M, Sun P. A cold-water extracted polysaccharide-protein complex from Grifola frondosa exhibited anti-tumor activity via TLR4-NF-κB signaling activation and gut microbiota modification in H22 tumor-bearing mice. Int J Biol Macromol 2023; 239:124291. [PMID: 37028620 DOI: 10.1016/j.ijbiomac.2023.124291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Grifola frondosa polysaccharide-protein complex (G. frondosa PPC) is a polymer which consists of polysaccharides and proteins/peptides linked by covalent bonds. In our previous ex vivo research, it has been demonstrated that a cold-water extracted G. frondosa PPC has stronger antitumor activity than a G. frondosa PPC extracted from boiling water. The main purpose of the current study was to further evaluate the anti-hepatocellular carcinoma and gut microbiota regulation effects of two PPCs isolated from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) in vivo. The results exhibited that GFG-4 remarkably upregulated the expression of related proteins in TLR4-NF-κB and apoptosis pathway, thereby inhibiting the development of H22 tumors. Additionally, GFG-4 increased the abundance of norank_f__Muribaculaceae and Bacillus and reduced the abundance of Lactobacillus. Short chain fatty acids (SCFAs) analysis suggested that GFG-4 promoted SCFAs production, particularly butyric acid. Conclusively, the present experiments revealed GFG-4 has the potential of anti-hepatocellular carcinoma growth via activating TLR4-NF-κB pathway and regulating gut microbiota. Therefore, G. frondosa PPCs could be considered as safe and effective natural ingredient for treatment of hepatocellular carcinoma. The present study also provides a theoretical foundation for the regulation of gut microbiota by G. frondosa PPCs.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
20
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Hsiao Y, Shao Y, Wu Y, Hsu W, Cheng K, Yu C, Chou C, Hsieh C. Physicochemical properties and protective effects on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides by fractional precipitation. Int J Biol Macromol 2023; 228:537-547. [PMID: 36584774 DOI: 10.1016/j.ijbiomac.2022.12.254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The development of natural ingredients protecting skin from UVA-induced photoaging is widely expected. The present study investigated the physicochemical properties, antioxidant, moisturizing, collagenase and elastase inhibitory activities, and protective effect on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides (POPs). POP-40, POP-60, and POP-80 were extracted by gradient precipitation of 40 %, 60 %, and 80 % ethanol, which could be prepared in large quantities. The results showed that POPs had good DPPH and ABTS radical scavenging abilities, water retention capacity, and collagenase and elastase inhibition effects. POP-80 had the best efficacy. Further determined the anti-inflammatory and antisenescence activities of POPs in Hs68 cells. The results indicated that after UVA irradiation, the contents of ROS, senescent cells, NF-κB activity, and proinflammatory cytokines increased in Hs68 cells. However, cells pretreated with 50 μg/mL POPs significantly decreased the contents of ROS and the number of senescent cells, reduced NF-κB activity, and inhibited IL-6 and TNF-α production. There was no significant difference in reducing the accumulation of ROS and senescent cells between POP-80 and the common anti-inflammatory substance quercetin. The results suggested that POP-80 may be potential cosmeceutical ingredients as it can protect Hs68 cells from photodamage.
Collapse
Affiliation(s)
- Yafang Hsiao
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Yichia Shao
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Yunting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan.
| | - Wenkuang Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, No. 168, Xuefu Rd., Dacun Township, Changhua County 515006, Taiwan.
| | - Kuanchen Cheng
- Institute of Biotechnology, National Taiwan University, No. 81, Changxing St., Da'an Dist., Taipei City 106038, Taiwan; Institute of Food Science and Technology, National Taiwan University, No. 59, Ln. 144, Sec. 4, Keelung Rd., Da'an Dist., Taipei City 106032, Taiwan; Department of Optometry, Asia University, No.500, Liufeng Rd., Wufeng Dist., Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan.
| | - Chengchia Yu
- Institute of Oral medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 402306, Taiwan.
| | - Chunhsu Chou
- Dr Jou Biotech Co., Ltd., No. 21, Lugong S. 2nd Rd., Lukang Township, Changhua County 505029, Taiwan.
| | - Changwei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan; Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan.
| |
Collapse
|
22
|
El Halmouch Y, Ibrahim HA, Dofdaa NM, Mabrouk ME, El-Metwally MM, Nehira T, Ferji K, Ishihara Y, Matsuo K, Ibrahim MI. Complementary spectroscopy studies and potential activities of levan-type fructan produced by Bacillus paralicheniformis ND2. Carbohydr Polym 2023; 311:120743. [PMID: 37028872 DOI: 10.1016/j.carbpol.2023.120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
This study aimed at the production of marine bacterial exopolysaccharides (EPS) as biodegradable and nontoxic biopolymers, competing the synthetic derivatives, with detailed structural and conformational analyses using spectroscopy techniques. Twelve marine bacterial bacilli were isolated from the seawater of Mediterranean Sea, Egypt, then screened for EPS production. The most potent isolate was identified genetically as Bacillus paralicheniformis ND2 by16S rRNA gene sequence of ~99 % similarity. Plackett-Burman (PB) design identified the optimization conditions of EPS production, which yielded the maximum EPS (14.57 g L-1) with 1.26-fold increase when compared to the basal conditions. Two purified EPSs namely NRF1 and NRF2 with average molecular weights (Mw¯) of 15.98 and 9.70 kDa, respectively, were obtained and subjected for subsequent analyses. FTIR and UV-Vis reflected their purity and high carbohydrate contents while EDX emphasized their neutral type. NMR identified the EPSs as levan-type fructan composed of β-(2-6)-glycosidic linkage as a main backbone, and HPLC explained that the EPSs composed of fructose. Circular dichroism (CD) suggested that NRF1 and NRF2 had identical structuration with a little variation from the EPS-NR. The EPS-NR showed antibacterial activity with the maximum inhibition against S. aureus ATCC 25923. Furthermore, all the EPSs revealed a proinflammatory action through dose-dependent increment of expression of proinflammatory cytokine mRNAs, IL-6, IL-1β and TNFα.
Collapse
|
23
|
Compositional differences of β-glucan-rich extracts from three relevant mushrooms obtained through a sequential extraction protocol. Food Chem 2023; 402:134207. [DOI: 10.1016/j.foodchem.2022.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
|
24
|
Structural Characteristic and In-Vitro Anticancer Activities of Dandelion Leaf Polysaccharides from Pressurized Hot Water Extraction. Nutrients 2022; 15:nu15010080. [PMID: 36615741 PMCID: PMC9824204 DOI: 10.3390/nu15010080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Dandelion (Taraxacum mongolicum Hand.-Mazz.) is a medicinal and edible plant. Dandelion has great development value for its health promoting benefits; additionally, Dandelion grows almost anywhere in the world. In this study, we report the structural characteristics and anti-cancer activity of novel dandelion leaf polysaccharides extracted by pressurized hot water extraction at 120 °C (DLP120) with Mw relative to dextran of 1.64 × 106 Da. Structural analysis indicated that DLP120 is a complex polysaccharide composed of pectin and arabinogalactan. It was mainly composed of arabinose (32.35 mol%) and galactose (44.91 mol%). The main glycosidic linkages of DLP120 were 4-β-D-Galp, 4-α-D-GalpA, T-β-D-Galp, 5-α-L-Araf, 3,5-α-L-Araf, and T-α-L-Araf. In vitro, DLP120 inhibited HepG2 cell proliferation in a dose-dependent manner by inducing cell apoptosis. Cell cycle detection results revealed that DLP120 mainly arrests the cell cycle in S phase. Cells treated with DLP120 displayed obvious apoptotic morphology, including cell volume shrinks and cytoskeleton breaks down. In short, DLP120 has potential as an anti-cancer agent.
Collapse
|
25
|
Sun Y, He H, Wang Q, Yang X, Jiang S, Wang D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers (Basel) 2022; 14:polym14204454. [PMID: 36298031 PMCID: PMC9609814 DOI: 10.3390/polym14204454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence:
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengjuan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Daobing Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
26
|
Zhou X, Guan Q, Wang Y, Lin D, Du B. Effect of Different Cooking Methods on Nutrients, Antioxidant Activities and Flavors of Three Varieties of Lentinus edodes. Foods 2022; 11:foods11172713. [PMID: 36076896 PMCID: PMC9455590 DOI: 10.3390/foods11172713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
This work evaluated the effect of different cooking methods (boiling, steaming, microwaving, frying and pressure cooking) on the nutrients, antioxidant activities, volatile and nonvolatile taste-active components of three varieties of Lentinus edodes (808, 0912 and LM) from Guizhou Province. The results showed that LM had the most polysaccharides, 0912 had the most minerals, but LM, 808 and 0912 had low amounts of polyphenols, dietary fiber and proteins, respectively. The dietary fiber and protein were decreased by 4.1~38.7% and 4.1~44.0% during cooking, while microwaving improved the nutritional value of the Lentinus edodes by increasing the polysaccharide (88~103 mg/g to 93~105 mg/g) and polyphenol content (6.4~8.1 mg/g to 7.5~11.2 mg/g), thereby strengthening the antioxidant activity. The nucleotides were all destroyed after cooking, especially frying or boiling. The glutamate content was the highest in LM and 808, and the methionine content appeared to be the highest in 0912. Pressure cooking and frying increased the proportions of sweet and umami amino acids and decreased the proportion of bitter amino acids, creating more aroma-active compounds. In summary, microwaving increased the content of bioactive compounds and antioxidant activities, and it preserved nonvolatile taste-active components, while pressure cooking and frying were the best methods for increasing the flavor compounds.
Collapse
Affiliation(s)
- Xiaoli Zhou
- School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China
| | - Qinglin Guan
- School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China
| | - Yanli Wang
- School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China
| | - Dong Lin
- School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China
| | - Bin Du
- School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
27
|
Structural characterization of mushroom polysaccharides by cyclic ion mobility-mass spectrometry. J Chromatogr A 2022; 1680:463445. [PMID: 36041250 DOI: 10.1016/j.chroma.2022.463445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides are biopolymers known to possess various bioactivities. Because of their molecular complexity, the structural characterization of polysaccharides remains challenging, and difficult to be completed with a single analytical method. In this study, a novel approach for the characterization of linkages and anomeric configuration of polysaccharides was proposed. Based on ion mobility-mass spectrometry (IM-MS), a database containing 5 glucotriose standards was set up. Information about the arrival time distribution and fragmentation patterns of these standards were included. The method was validated by three commercially available purified polysaccharides, namely laminarin, dextrin, and dextran, each having distinct connectivity and configuration of the glycosidic bonds. Lastly, the method was successfully applied to analyze polysaccharides prepared from three medicinal mushrooms, namely Xylaria nigripes, Grifola frondosa, and Laetiporus sulphureus. The results showed that water-soluble non-digestible polysaccharides of X. nigripes and G. frondosa were mainly composed of (1→3)-β-glucan, while that of L. sulphureus was composed of (1→3)-ɑ-glucan. The present method has the advantages of being simple in sample preparation and short analysis time.
Collapse
|
28
|
Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium officinale. Polymers (Basel) 2022; 14:polym14142899. [PMID: 35890675 PMCID: PMC9315851 DOI: 10.3390/polym14142899] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and β-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.
Collapse
|
29
|
Zhang J, Liu D, Wen C, Liu J, Xu X, Liu G, Kan J, Qian C, Jin C. New light on Grifola frondosa polysaccharides as biological response modifiers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Yu J, Dong XD, Jiao JS, Ji HY, Liu AJ. Antitumor and immunoregulatory activities of a novel polysaccharide from Astragalus membranaceus on S180 tumor-bearing mice. Int J Biol Macromol 2021; 189:930-938. [PMID: 34419546 DOI: 10.1016/j.ijbiomac.2021.08.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023]
Abstract
The Astragalus membranaceus polysaccharide (APS4) with direct cytotoxicity on various cancer cells has been prepared in our previous study, while the underlying therapeutic role of APS4 on solid tumors in vivo hasn't been investigated yet. Therefore, in this paper, the lymphocytes-mediated antitumor and immunoregulatory activities of APS4 were researched by establishing S180 tumor-bearing mice model. Flow cytometry analysis revealed that APS4 could effectively regulate the percentages of CD3+, CD4+, CD8+ T cells and CD19+ B cells in thymus, peripheral blood and spleen of S180 tumor-bearing mice, dose-dependently. H&E staining and cell cycle determination of solid tumors manifested that APS4 treatment could significantly inhibit the growth of solid tumors by inducing cells apoptosis. Furthermore, two-dimensional electrophoresis and western blot analysis further demonstrated that APS4 could activate antitumor-related immune cells and promote anaerobic metabolism of tumor microenvironment, thereby causing the apoptosis of S180 tumor cells. These data implicated that APS4 could be used as a potential dietary supplement for immune enhancement.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiao-Dan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, PR China
| | - Jian-Shuang Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, PR China
| | - Hai-Yu Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - An-Jun Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
31
|
Zhao H, Wei X, Xie Y. Optimization of Extraction Technology, Structure, and Antioxidant Activity of Polysaccharide from
Grifola frondosa. STARCH-STARKE 2021. [DOI: 10.1002/star.202000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hou‐kuan Zhao
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116 China
| | - Xian‐yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116 China
| | - Yi‐min Xie
- School of Pulp &Paper Engineering Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
32
|
Comparative study of structural properties and biological activities of polysaccharides extracted from Chroogomphus rutilus by four different approaches. Int J Biol Macromol 2021; 188:215-225. [PMID: 34371040 DOI: 10.1016/j.ijbiomac.2021.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Extraction processes significantly alter the structural and functional properties of polysaccharides. In this study, we extracted polysaccharides from Chroogomphis rutilus fruiting bodies (designated as CRP) using four methods, including hot water, ultrasound, microwave and sequential ultrasound-microwave, and designated these polysaccharides as CRP-H, CRP-M, CRP-U and CRP-UM, respectively. All CRPs were heteropolysaccharides with semblable monosaccharide types of glucose, mannose and galactose, mainly constituted of α-d-glucopyranosyl-(1 → 4). The extraction processes significantly affected the molecular weights, monosaccharide proportions, glycosidic bond ratios, branching degrees, triple-helix conformation and surface morphology of the CRPs. Among them, CRP-UM showed the highest yield and most potent antioxidative capacity in vitro and in HL-7702 cells, but the weakest activation of immunostimulatory response in RAW264.7 cells. In contrast, CRP-H exhibited the lowest yield but strongest immunostimulatory activity. Overall, microwave extraction could be utilized as a general and practical CRP extraction approach, based on its relatively high yield and bioactivities.
Collapse
|
33
|
Yang W, Wu J, Liu W, Ai Z, Cheng Y, Wei Z, Zhang H, Ma H, Cui F, Zhou C, Yang L. Structural characterization, antioxidant and hypolipidemic activity of Grifola frondosa polysaccharides in novel submerged cultivation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Li Z, An L, Zhang S, Shi Z, Bao J, Tuerhong M, Abudukeremu M, Xu J, Guo Y. Structural elucidation and immunomodulatory evaluation of a polysaccharide from Stevia rebaudiana leaves. Food Chem 2021; 364:130310. [PMID: 34237616 DOI: 10.1016/j.foodchem.2021.130310] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023]
Abstract
Stevia rebaudiana, a sweetener with medicinal functions, has attracted extensive attention due to its application in food and pharmaceutical fields. However, a few studies were performed to explore polysaccharides in this plant. Herein, SRP70-1 was derived from S. rebaudiana. Structural analysis (monosaccharide composition analysis, high-performance liquid chromatography-multi-angle light scattering detection, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy) revealed that SRP70-1 was composed of mannose, glucose, galactose, and arabinose at the molar ratio of 1.35:1.00:3.23:3.47, with an absolute molecular weight of 7698 Da. SRP70-1 was found to contain → 5)-α-l-Araf-(1→, →2,3,5)-α-l-Araf-(1→, →4)-β-l-Arap-(1→, →4)-β-d-Galp-(1→, →6)-β-d-Galp-(1→, →4)-β-d-Manp-(1→, →6)-β-d-Manp-(1→, and terminal α-l-Araf, β-d-Galp, and β-d-Glcp residues. Cell experiments showed that SRP70-1 could significantly promote phagocytosis and increase the release of nitric oxide and cytokines including IL-1β, IL-6, and TNF-α. Further zebrafish experiments confirmed the immunological enhancement effects of SRP70-1. This study revealed that SRP70-1 may be useful for the development of functional foods.
Collapse
Affiliation(s)
- Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahe Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
35
|
Jen CI, Su CH, Lu MK, Lai MN, Ng LT. Synergistic anti-inflammatory effects of different polysaccharide components from Xylaria nigripes. J Food Biochem 2021; 45:e13694. [PMID: 33687093 DOI: 10.1111/jfbc.13694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Nondigestible polysaccharides are essential nutrients, which are also important bioactive constituents of mushrooms. This study aimed to investigate the physicochemical properties and anti-inflammatory effects of different polysaccharide components of Xylaria nigripes in lipopolysaccharides (LPS)-induced RAW264.7 macrophages. Results showed that X. nigripes nondigestible polysaccharide (XN) possessed a molecular weight of 910.7 kDa and mainly composed of glucose; it effectively suppressed NO, TNF-α, and IL-6 production. Based on molecular weight, two bioactive polysaccharide components (F1 and F2) were isolated from XN. F1 was a glucan with high molecular weight (885.2 kDa), whereas F2 was a low molecular weight heteropolysaccharide (24.5 kDa) composing of glucose, mannose, and galactose. F1 showed stronger inhibitory effects on NO, TNF-α, and IL-6 production than F2, however, its inhibitory effects were weaker than XN. Further analysis demonstrated that the combined treatment of F1 and F2 exhibited anti-inflammatory activity as good as XN, and they possessed synergistic effects on inhibiting pro-inflammatory mediator production. PRACTICAL APPLICATIONS: Polysaccharides are essential nutrients, and are major bioactive constituents of mushrooms. This study isolated two bioactive polysaccharide components from Xylaria nigripes, namely F1 and F2. F1 was a high molecular weight glucan, whereas F2 was a low molecular weight heteropolysaccharide. F1 showed stronger anti-inflammatory activity than F2, but was weaker than their combined treatment (F1 + F2). Different polysaccharide components were shown to possess synergistic anti-inflammatory effects, suggesting their importance in the formulation of polysaccharide-based products.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | | | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Rayo-Mendez LM, Koshima CC, Pessoa Filho PA, Tadini CC. Recovery of non-starch polysaccharides from ripe banana (Musa cavendishii). J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Leong YK, Yang FC, Chang JS. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr Polym 2021; 251:117006. [DOI: 10.1016/j.carbpol.2020.117006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
|
38
|
Jen CI, Su CH, Lai MN, Ng LT. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University
| | - Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University
| | | | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University
| |
Collapse
|
39
|
Yiasmin MN, Islam MS, He H, Liu Y, Wang M, Yang R, Hua X. Purification, isolation, and structure characterization of water soluble and insoluble polysaccharides from Maitake fruiting body. Int J Biol Macromol 2020; 164:1879-1888. [PMID: 32791276 DOI: 10.1016/j.ijbiomac.2020.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
The crude polysaccharides (GFP) were isolated from the Maitake fruiting body (Grifola frondosa) and purified by DEAE Cellulose-52 ionic-exchange chromatography and Sephadex G-25 gel filtration chromatography in that order. Five main fractions, GFP-1 to GFP-5 were obtained through the isolation and purification steps. Free sugars were isolated by G-25 gel filtration chromatography and identified glucose and (α,α)-trehalose by nuclear magnetic resonance (NMR). GC-MS and methylation analysis that linkages were mainly β-1,3 and β-1,6, β-1,4 and β-1,2 bonds in WIP. Seven main oligomer products were detected and their structures characterized by mass spectrum. Experimental results shown the similarity in structure between water soluble polysaccharides (WSP) and water insoluble polysaccharides (WIP), thus WSP can be the product of cell wall by breakdown.
Collapse
Affiliation(s)
- Mst Nushrat Yiasmin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Md Serajul Islam
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He He
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China
| | - Yaxian Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China
| | - Mingming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
40
|
Wu SJ, Tung YJ, Ng LT. Anti-diabetic effects of Grifola frondosa bioactive compound and its related molecular signaling pathways in palmitate-induced C2C12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112962. [PMID: 32422357 DOI: 10.1016/j.jep.2020.112962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Grifola frondosa (GF), a high value medicinal mushroom, is popularly consumed as traditional medicines and health foods in China and Japan. It is a herbal medicine traditionally used for treating inflammation, cancer and diabetes. AIM OF THE STUDY This study aimed to examine the anti-diabetic effects of a GF bioactive compound ergosterol peroxide (EPO), and its mechanism(s) of action in palmitate (PA)-induced C2C12 cells. MATERIALS AND METHODS EPO was isolated and purified from GF fruiting bodies, and used to test for anti-diabetic activity in PA-induced murine C2C12 skeletal muscle cells through measuring glucose uptake, intracellular ROS production, and expressions of MAPKs, IRS-1, PI3K, Akt and GLUT-4 proteins. RESULTS EPO significantly up-regulated glucose absorption and increased cell growth. At 5 μM, EPO significantly enhanced glucose uptake and decreased ROS formation, as well as up-regulated the expression of IRS-1, p-IRS-1, PI3K, Akt, p-Akt, and GLUT-4 proteins in PA-induced cells, while their p-JNK and p-p38 expression were down-regulated. GLUT-4 siRNA treatment effectively down-regulated the EPO-induced absorption of glucose and inhibited the expression of GLUT-4. CONCLUSION These results suggest that the anti-diabetic effect of GF was from its bioactive compound EPO through the inhibition of ROS production, up-regulation of glucose absorption, and modulation of PI3K/Akt, MAPKs and GLUT-4 signaling transduction pathways.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Jou Tung
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
41
|
Yu J, Liu C, Ji HY, Liu AJ. The caspases-dependent apoptosis of hepatoma cells induced by an acid-soluble polysaccharide from Grifola frondosa. Int J Biol Macromol 2020; 159:364-372. [DOI: 10.1016/j.ijbiomac.2020.05.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
|
42
|
Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods. Int J Biol Macromol 2020; 156:1425-1434. [DOI: 10.1016/j.ijbiomac.2019.11.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
|
43
|
Su CH, Tseng YT, Lo KY, Lai MN, Ng LT. Differences in anti-inflammatory properties of water soluble and insoluble bioactive polysaccharides in lipopolysaccharide-stimulated RAW264.7 macrophages. Glycoconj J 2020; 37:565-576. [PMID: 32666338 DOI: 10.1007/s10719-020-09934-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 11/27/2022]
Abstract
β-Linked polysaccharides including β-glucans are well known to be important functional ingredients, and are known to possess immunomodulatory and anti-tumor activities. This study aimed to investigate the anti-inflammatory properties and participating receptor of water soluble and insoluble bioactive polysaccharides from Grifola frondosa (GFP, non-digestible water soluble polysaccharides), Laminaria digitata (laminarin, a water soluble β-glucan) and Saccharomyces cerevisiae (zymosan, a water insoluble β-glucan) in lipopolysaccharide (LPS)-stimulated parental and Dectin-1 highly expressing RAW264.7 macrophages. Results showed that GFP and laminarin significantly inhibited nitric oxide and prostaglandin E2 production, but only the GFP with high molecular weight exhibited strong inhibition on pro-inflammatory cytokine (TNF-α and IL-6) secretion in a concentration-dependent manner. The activation of NF-κB was also significantly down-regulated by GFP treatment as compared with cells treated with LPS alone. Although GFP and laminarin were able to bind to β-glucan receptor Dectin-1, there was no relationship between the inhibitory potency and the content of β-glucans in GFP, and these inhibitory effects were not affected by the expression level of Dectin-1 in macrophage cells. In contrast, zymosan significantly intensified LPS-induced inflammatory responses through Dectin-1. In conclusion, these results suggest that the inhibitory effects of water soluble polysaccharides on LPS-induced pro-inflammatory mediator production in murine macrophages may not involve β-glucan receptor Dectin-1.
Collapse
Affiliation(s)
- Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yun-Ting Tseng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou, 54245, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
44
|
Yu J, Ji HY, Liu C, Liu AJ. The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33200-1. [PMID: 32437807 DOI: 10.1016/j.ijbiomac.2020.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The edible mushroom G. frondosa has been used as a kind of functional food for the prevention and therapy of various diseases in Asian countries. In the present work, a novel acid-soluble polysaccharide (GFAP) was successfully isolated from G. frondosa under room temperature and hydrochloric acid solution treatment. Results of chemical composition analysis, UV and HPGPC spectra showed that GFAP mainly contained 94.28% of carbohydrate with the average molecular weight of about 644.9 kDa. GC, FT-IR, NMR and methylation analysis further indicated that GFAP was a neutral sugar mainly composed of (1 → 3)-β-D-Glcp and (1 → 3)-α-D-Manp. The in vivo antitumor experiments demonstrated that GFAP could effectively protect thymuses and spleens of tumor-bearing mice and inhibit the growth of H22 solid tumors with the inhibitory rate of 36.72%. Besides, GFAP could significantly improve the activities of NK cells, macrophages, CD19+ B cells and CD4+ T cells, leading to the apoptosis of H22 cells via G0/G1 phase arrested. Our data demonstrated that GFAP holds great application prospect to be a safe and effective antitumor adjuvant in the future.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., Beijing 100176, China
| | - An-Jun Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
45
|
Physicochemical characterization of a polysaccharide from Agrocybe aegirita and its anti-ageing activity. Carbohydr Polym 2020; 236:116056. [DOI: 10.1016/j.carbpol.2020.116056] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
|
46
|
Xiang Q, Zhang W, Li Q, Zhao J, Feng W, Zhao T, Mao G, Chen Y, Wu X, Yang L, Chen G. Investigation of the uptake and transport of polysaccharide from Se-enriched Grifola frondosa in Caco-2 cells model. Int J Biol Macromol 2020; 158:S0141-8130(20)33021-X. [PMID: 32339585 DOI: 10.1016/j.ijbiomac.2020.04.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023]
Abstract
A variety of beneficial pharmacological activities have been reported for Se-enriched Grifola frondosa polysaccharides. However, little has been reported on its absorption, and its intestinal uptake and transport profiles remain unknown. Based on our previous research, the aim of this study was to investigate its absorption from two aspects - the polysaccharides and selenium of Se-enriched Grifola frondosa polysaccharides (Se-GFP-22) across Caco-2 cells in vitro. The Caco-2 cells monolayer culture model was successfully constructed to study the transport and uptake of Se-GFP-22. The results revealed that the uptake and transport of Se-GFP-22 were time- and concentration- dependent. Transport studies illustrated that Se-GFP-22 could penetrate Caco-2 cells, mainly mediated through the same routes as endocytosis and selenium in the organic selenium (Se-GFP-22) was more easily absorbed than that in the inorganic selenium control group (sodium selenite). The uptake of Se-GFP-22 may be a macropinocytosis pathway, which was an accumulation from cytoplasm to nucleus process. Se-GFP-22 was a moderately absorbed biological macromolecule testified by the apparent permeability coefficients (Papp) value and transport rates. This work illustrates the characteristics on uptake and transport of Se-GFP-22 and all these results may help to explore the mechanism of polysaccharide absorption in vitro.
Collapse
Affiliation(s)
- Qingfang Xiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayangxi Rd. 196, Yangzhou 225127, Jiangsu, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Longkun Rd. 99, Hainan 570100, China.
| |
Collapse
|
47
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
48
|
Su CH, Lu MK, Lu TJ, Lai MN, Ng LT. A (1→6)-Branched (1→4)-β-d-Glucan from Grifola frondosa Inhibits Lipopolysaccharide-Induced Cytokine Production in RAW264.7 Macrophages by Binding to TLR2 Rather than Dectin-1 or CR3 Receptors. JOURNAL OF NATURAL PRODUCTS 2020; 83:231-242. [PMID: 31967822 DOI: 10.1021/acs.jnatprod.9b00584] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mushroom polysaccharides including β-glucans possess various health-promoting properties and are known to be the major bioactive constituents of Grifola frondosa (GF), which is a popular edible and medicinal mushroom. Dectin-1, a pattern-recognition receptor, is responsible for recognizing β-glucans. In this study, parental RAW264.7 macrophages and Dectin-1-expressing RAW264.7 macrophages were used to investigate the anti-inflammatory activity and receptor involvement of the water-soluble polysaccharides from GF. Results indicated that the high molecular weight fraction of GF (GF70-F1; 1260 kDa) inhibited TNF-α and IL-6 production as well as NF-κB activation in lipopolysaccharide-induced macrophages. Chemical and enzymatic linkage analyses indicated that GF70-F1 mainly contained the known (1→3),(1→6)-β-d-glucan and a polysaccharide not previously isolated from GF, a nondigestible glucan with a β-(1→4)-linked backbone and β-(1→6)-linked branches. The ability of GF70-F1 to inhibit cytokine production was not affected by the expression level of Dectin-1 in cells, and a similar inhibitory activity was observed after removing the (1→3),(1→6)-β-d-glucan from GF70-F1. Blockade of Toll-like receptor 2 (TLR2) but not Dectin-1 or complement receptor 3 (CR3) attenuated the inhibitory activity of GF70-F1. The nondigestible (1→6)-branched (1→4)-β-d-glucan in GF70-F1 may contribute to the anti-inflammatory activity via interacting with TLR2 rather than Dectin-1 or CR3 receptors.
Collapse
Affiliation(s)
- Chun-Han Su
- Department of Agricultural Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221 , Taiwan
| | - Ting-Jang Lu
- Graduate Institute of Food Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd. , Nantou 54245 , Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
49
|
Gu J, Zhang H, Yao H, Zhou J, Duan Y, Ma H. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr Polym 2020; 235:115939. [PMID: 32122481 DOI: 10.1016/j.carbpol.2020.115939] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
To investigate and compare the preliminary structural characteristics and biological activity in vitro of polysaccharides from Sagittaria sagittifolia L. (SSs) by different extration methods, three polysaccharides (SSW, SSU, and SSP) were obtained with hot water, ultrasound-assisted, and subcritical water extraction. Their structural features were elucidated using High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR), Atomic Force Microscopy (AFM), Zeta Potential and Congo red methods. Furthermore, the antioxidant activity and immunostimulatory effects were investigated in vitro. Molecular weight and monosaccharide composition analysis exhibited that SSW (2275.0 kDa), SSU (148.7 kDa), and SSP (1984.0 kDa) were heteropolysaccharide with dramatically different monosaccharide species and mole ratios. In addition, SSP exhibited stronger antioxidant activity in vitro and more potent immunomodulatory activity than SSW and SSU. SSP has greater potential to be explored as biologicalagents for use in complementary medicine or functional foods.
Collapse
Affiliation(s)
- Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
50
|
Zhang L, Wang P, Sun X, Chen F, Lai S, Yang H. Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. ULTRASONICS SONOCHEMISTRY 2020; 60:104784. [PMID: 31539723 DOI: 10.1016/j.ultsonch.2019.104784] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 05/11/2023]
Abstract
This study aimed to investigate the effect of ultrasound combined with calcium lactate (2%, w/v) treatment (U + Ca) on calcium permeation and firmness of cherry tomatoes. Calcium distribution and fruit pectin nanostructure were also analysed by transmission electron microscope (TEM) and atomic force microscopy (AFM), respectively. The firmness (31.45 N) was maintained when ultrasound energy density was 20 W/L for 15 min at 15 °C. The Ca content increased in U + Ca treated fruit. Meanwhile, the Peleg's model could be used to express the change of solid gain in cherry tomatoes under ultrasound treatment at 15, 20, and 25 °C. According to the AFM results, the width (≥40 nm) and length (≥2 μm) of chelate-soluble pectin (CSP) and sodium carbonate-soluble pectin (SSP) chains with large frequency was observed in U + Ca treated fruit. Under desirable conditions (15 °C, 15 min, 20 W/L), ultrasound combined with calcium lactate could maintain the quality of cherry tomatoes.
Collapse
Affiliation(s)
- Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Pei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyang Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Shaojuan Lai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|