1
|
Petaloti AI, Paraskevopoulou A, Achilias DS. Preparation and Characterization of Biocomposite Films with Enhanced Oxygen Barrier and Antioxidant Properties Based on Polylactide and Extracts from Coffee Silverskin. Molecules 2025; 30:1383. [PMID: 40142158 PMCID: PMC11944891 DOI: 10.3390/molecules30061383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
In the food packaging industry, significant efforts have been dedicated to addressing the pressing market demand for environmentally friendly and sustainable products. Biocomposite films based on compostable and biobased polymers represent a sustainable alternative to conventional packaging materials, offering biodegradability and enhanced functional properties. Additionally, there is growing interest in utilizing waste materials from agriculture and the food industry. This study focuses on the development of multifunctional eco-sustainable biocomposite films by combining poly(lactic acid) (PLA) as a biopolymeric matrix and extracts derived from coffee silverskin (CS), a significant agro-industrial waste byproduct of the coffee roasting process. Extracts of coffee silverskin were obtained via extraction with several solvents. Several properties of the prepared biocomposites were measured using techniques such as scanning electron microscopy (SEM), infrared spectroscopy (FTIR, ATR), differential scanning calorimetry (DSC), and oxygen and water vapor permeability, together with mechanical and physico-chemical characterization and measurements of water content, film solubility, and degree of swelling. The results demonstrate that optimized formulations of PLA/CS biocomposite films exhibit enhanced oxygen barrier properties, reduced permeability, and significant antioxidant activity. These findings underscore the potential for agro-waste valorization in creating eco-friendly food packaging solutions.
Collapse
Affiliation(s)
- Argyri-Ioanna Petaloti
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Foti F, Scerra M, Caparra P, Bognanno M, Cilione C, Fortugno P, De Caria P, Chinè V, Mangione G, Gagliano S, Chies L. Effect of Coffee Silverskin on Meat Quality of Growing Rabbits. Foods 2025; 14:812. [PMID: 40077515 PMCID: PMC11898652 DOI: 10.3390/foods14050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of the present study was to assess the impacts of coffee silverskin (CSS) inclusion in rabbit diets in regard to meat quality. A total of 30 Hycole rabbits were divided into two groups of 15 animals per group and fed with a basal diet (C group) or with the same basal diet but with 10% of CSS (CSS10 group) as a partial cereal replacement. Integration of 10% CSS in the rabbit diet increased dry matter intake (DMI, p < 0.05) and tended to increase (p = 0.096) the final body weight. The CSS diet tended to reduce the concentration of C18:3 ω-3 (p = 0.089), C20:5 ω-3 (p = 0.064) and C22:5 ω-3 (p = 0.069) in muscle compared to the control diet, negatively affecting the ω-6/ω-3 ratio (p < 0.05), which was higher in the CSS10 group compared to the control group. Finally, the addition of CSS to the rabbit diet made the meat more resistant (p < 0.01) to lipid oxidation. Further research is needed to better understand the reasons for improved oxidative stability in meat following dietary CSS supplementation.
Collapse
Affiliation(s)
- Francesco Foti
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Manuel Scerra
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Pasquale Caparra
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Matteo Bognanno
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Caterina Cilione
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Paolo Fortugno
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Paolo De Caria
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| | - Valerio Chinè
- Caffè Mauro SpA, Zona Industriale Snc, 89018 Villa San Giovanni, Italy
| | - Guido Mangione
- Department of Agriculture, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (S.G.)
| | - Salvatore Gagliano
- Department of Agriculture, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (S.G.)
| | - Luigi Chies
- Department of Agriculture, Animal Production, University of Reggio Calabria, Via dell’Università, 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (C.C.); (P.F.); (P.D.C.); (L.C.)
| |
Collapse
|
3
|
Zhang H, Shan G, Liu M, Sun Q, Yang T, Peng R, Li X, Mei Y, He X, Qiao L. Harnessing ROS Amplification and GSH Depletion Using a Carrier-Free Nanodrug to Enhance Ferroptosis-Based Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409250. [PMID: 39723677 DOI: 10.1002/smll.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ferroptosis, a non-apoptotic form of cell death characterized by the production of reactive oxygen species (ROS) and massive accumulation of lipid peroxidation (LPO), shows significant promise in cancer therapy. However, the overexpression of glutathione (GSH) at the tumor site and insufficient ROS often result in unsatisfactory therapeutic efficacy. A multistage, GSH-consuming, and ROS-providing carrier-free nanodrug capable of efficiently loading copper ions (Cu2+), sorafenib (SRF), and chlorogenic acid (CGA) (Cu2+-CGA-SRF, CCS-NDs) is developed to mediate enhanced ferroptosis therapy. Through a reductive intracellular environment, Cu2+ in the CCS-NDs reacted with intracellular GSH, alleviating the antioxidant capacity of tumor tissues and triggering the release of drugs. Meanwhile, the released SRF inhibited system xc-, thereby blocking cystine uptake and reducing GSH synthesis in tumor cells. By depleting stored GSH and inhibiting its synthesis, CCS-NDs achieved efficient GSH depletion and increased accumulation of toxic LPO. More importantly, the high concentration of CGA in the CCS-NDs induced ROS generation, further promoting ferroptosis. Both in vitro and in vivo results demonstrated that CCS-NDs effectively triggered ferroptosis in tumor cells by inactivating glutathione peroxidase 4 and inducing LPO. Overall, the carrier-free nanodrug CCS-NDs offer a promising strategy for regulating GSH and LPO levels in ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Huiru Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Guisong Shan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Mengyu Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Qiuting Sun
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Tianhao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Rui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xueqian Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Ruse G, Jîjie AR, Moacă EA, Pătrașcu D, Ardelean F, Jojic AA, Ardelean S, Tchiakpe-Antal DS. Coffea arabica: An Emerging Active Ingredient in Dermato-Cosmetic Applications. Pharmaceuticals (Basel) 2025; 18:171. [PMID: 40005985 PMCID: PMC11858793 DOI: 10.3390/ph18020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Coffea arabica, commonly known as Arabica coffee, has garnered attention in recent years for its potential applications in dermato-cosmetic formulations. This review aims to critically evaluate the emerging role of Coffea arabica as an active ingredient in skin care products, focusing on its bioactive compounds derived from both the leaves and beans, mechanisms of action, and efficacy in dermatological applications. A comparative analysis between the bioactive profiles of the leaves and beans is also presented to elucidate their respective contributions to dermato-cosmetic efficacy. Results: This review synthesizes findings from various studies that highlight the presence of key bioactive compounds in Coffea arabica, including caffeine, chlorogenic acids, and flavonoids. Notably, the leaves exhibit a higher concentration of certain phenolic compounds compared to the beans, suggesting unique properties that may enhance skin health. These compounds have demonstrated significant anticellulite, anti-inflammatory, antioxidant, photoprotective, anti-aging, antibacterial, and moisturizing properties. Discussion: This article delves into the biochemical pathways through which bioactive compounds derived from both the leaves and beans of Coffea arabica exert their beneficial effects on skin and hair health. Furthermore, this review highlights the growing trend of incorporating natural ingredients in cosmetic formulations and the consumer demand for products with scientifically substantiated benefits. Conclusions: The findings of this review underscore the potential of Coffea arabica as a valuable active ingredient in dermato-cosmetic applications. Its multifaceted bioactivity suggests that it can contribute significantly to skin health and cosmetic efficacy. Future research should focus on clinical trials to further validate these benefits and explore optimal formulation strategies for enhanced delivery and stability in cosmetic products.
Collapse
Affiliation(s)
- Grațiana Ruse
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Dalia Pătrașcu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (D.P.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Ardelean
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina-Arabela Jojic
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, Revolutiei Bvd 94, 310130 Arad, Romania
| | - Diana-Simona Tchiakpe-Antal
- Discipline of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (G.R.); (F.A.); (A.-A.J.); (D.-S.T.-A.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Franca AS, Basílio EP, Resende LM, Fante CA, Oliveira LS. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024; 13:3935. [PMID: 39683007 DOI: 10.3390/foods13233935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes. The evaluated sensory attributes were color, smell, taste, texture and overall impression, and they were evaluated according to a 9-point hedonic scale. Internal preference maps were obtained based on the results from acceptance and "intention to buy" tests. In general, the cakes with lower coffee silverskin content (2.6% and 3.6%) had a similar level of acceptance and the cake with 4.6% coffee silverskin content was the least accepted. The most important attributes were taste and overall impression, corresponding to "like slightly" and "like moderately" for the cakes that had better acceptance. Nonetheless, even with the lowest amount of added CS (2.6%), the produced cakes could be regarded as antioxidant fiber sources (with fiber content above 3 g/100 g), thus confirming the potential of CS as a functional food additive.
Collapse
Affiliation(s)
- Adriana S Franca
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Emiliana P Basílio
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Laís M Resende
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Camila A Fante
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
6
|
Cosgun G, Gungor KK, Balci-Torun F, Sahin S, Torun M. Design of encapsulation method for chlorogenic acid and caffeine in coffee waste by-product. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1720-1735. [PMID: 36694947 DOI: 10.1002/pca.3207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Coffee silver skin (CSS) is a thin covering over green coffee seeds inside coffee cherry. It is a good source of bioactive compounds like chlorogenic acid and caffeine. It is produced as a by-product of the roasting process. OBJECTIVE The goal of this study is to apply spray drying method to encapsulate 5-O-caffeoylquinic acid (chlorogenic acid) and caffeine extracted from CSS. METHODS The main-plots for optimisation were feed solid concentration (2.5, 5, 10°Bx), and the sub-plots of the whole-plot were carrier material type (maltodextrin, modified starch, arabic gum) and inlet air temperature (130, 160, 190°C). Responses included were drying yield, chlorogenic acid concentration, caffeine content, Carr index, and solubility values. RESULTS Suitable conditions were spray drying inlet temperature of 190°C, extract concentration of 10°Bx, and wall material composition [modified starch/arabic gum (MS:AG)] 10.5:9.5. As the feeding CSS extract concentration increased, the amount of chlorogenic acid and caffeine in the final powder increased, while the powder's flow characteristics improved. CONCLUSIONS The concentration stage might be used to produce free-flowing powdered particles with good bioactive retention for use in the food processing industry.
Collapse
Affiliation(s)
- Gulderen Cosgun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Keziban Kubra Gungor
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Ferhan Balci-Torun
- Faculty of Tourism, Department of Gastronomy and Culinary Art, Akdeniz University, Antalya, Turkey
| | - Selin Sahin
- Faculty of Engineering, Chemical Engineering Department, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Mehmet Torun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Barcellos Silva IGC, Antonio ADS, Carvalho EMD, Dos Santos GRC, Pereira HMG, Veiga Junior VFD. Method optimization for the extraction of chlorogenic acids from coffee parchment: An ecofriendly alternative. Food Chem 2024; 458:139842. [PMID: 38996490 DOI: 10.1016/j.foodchem.2024.139842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 07/14/2024]
Abstract
One of the principal byproducts of coffee roasting is the coffee parchment. It is abundant in bioactive substances, including derivatives of chlorogenic acids, which are well-known for their exceptional antioxidant effects. It is advantageous to use environmentally friendly extraction techniques on such residues since it adds value to the entire coffee production process supply chain. The aim of this work was to assess and enhance the ability of non-conventional extraction techniques to extract derivatives of chlorogenic acid from coffee parchment. A central composite design was used to maximize the recovery of those phenolic compounds. The optimized extraction conditions were with 5 min extraction period, at a temperature of 70 °C, and 80% ethanol in the extractor solvent. In this conditions extraction recovery of chlorogenic acids was of 0.8% by the use of microwave-aided extraction (MAE). The optimized conditions are practical, economical, and ecologically friendly method to extract phenolic compounds and, consequently, underscores the potential for sustainable utilization of coffee parchment, offering a valuable contribution to the development of environmentally conscious strategies within the coffee industry.
Collapse
Affiliation(s)
- Ian Gardel Carvalho Barcellos Silva
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22., 290-270 Rio de Janeiro, RJ, Brazil
| | - Ananda da Silva Antonio
- Federal University of Rio de Janeiro, Chemistry Institute, Laboratory for the Support of Technological Development, (LADETEC/UFRJ-IQ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Erika Martins de Carvalho
- Oswaldo Cruz Foundation, Vice-Presidency of Production and Innovation in Health, Support Units for the Diagnosis of COVID-19, Avenida Brasil, 4365. Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Gustavo Ramalho Cardoso Dos Santos
- Federal University of Rio de Janeiro, Chemistry Institute, Laboratory for the Support of Technological Development, (LADETEC/UFRJ-IQ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Chemistry Institute, Laboratory for the Support of Technological Development, (LADETEC/UFRJ-IQ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Valdir Florêncio da Veiga Junior
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22., 290-270 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Dong S, Ding L, Zheng X, Wang O, Cai S. Phenolic Compositions of Different Fractions from Coffee Silver Skin and Their Antioxidant Activities and Inhibition towards Carbohydrate-Digesting Enzymes. Foods 2024; 13:3083. [PMID: 39410118 PMCID: PMC11475555 DOI: 10.3390/foods13193083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Seeking food-derived antioxidants and inhibitors of α-glucosidase and α-amylase has been recognized as an effective way for managing diabetes. Coffee silver skin (CSS) is rich in phenolic compounds, which may be potential agents as antioxidants and for α-glucosidase and α-amylase inhibition. But whether phenolics in different forms show similar bioactivity remains unknown. In this study, phenolic compounds in CSS were extracted as free phenolics (FPs), esterified phenolics (EPs), and bound phenolics (BPs). The phenolic profiles and antioxidant activities of them were investigated. Their inhibitory effects on α-glucosidase and α-amylase were analyzed, and the inhibitory mechanisms were elucidated by molecular docking and molecular dynamic simulation. Results showed that FPs exhibited the best antioxidant ability and inhibitory effects on α-glucosidase and α-amylase. A total of 17 compounds were identified in FPs with 3-caffeoylquinic acid, 4-feruloylquinic acid, and dicaffeoylquinic acids as the dominant ones. Typical phenolics in FPs could bind to α-glucosidase and α-amylase through hydrogen bonds and form hydrophobic interaction with several key amino acid residues. In addition, 3,4-dicaffeoylquinic acid and 3-caffeoylquinic acid might be the principal components that account for the inhibitory effect of FPs on α-glucosidase. The results of this study may provide some scientific support for CSS utilization as a health-beneficial component in functional food development for type 2 diabetes mellitus management.
Collapse
Affiliation(s)
- Shiyu Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan Engineering Research Center for Fruit & Vegetable Products, Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; (S.D.); (L.D.); (X.Z.)
| |
Collapse
|
9
|
Bouzaid H, Espírito Santo L, Ferreira DM, Machado S, Costa ASG, Dias MI, Calhelha RC, Barros L, Chater O, Rodi YK, Errachidi F, Chahdi FO, Oliveira MBPP, Alves RC. Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin. Molecules 2024; 29:3485. [PMID: 39124890 PMCID: PMC11313914 DOI: 10.3390/molecules29153485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat content was similar among the samples (13%), with monounsaturated fatty acids being predominant. The coriander and mystical cumin seeds were extremely rich in C18:1n9c (81 and 85%, respectively) while, in the caraway, C18:1n12 (25%) was found together with C18:1n9c (32%). The caraway seeds also presented a higher proportion of C18:2n6c (34%) than the other seeds (13 and 8%, correspondingly). γ-Tocotrienol was the major vitamin E form in all the samples. The caraway seeds contained double the amount of protein (~18%) compared to the other seeds (~8%) but, qualitatively, the amino acid profiles among all seeds were similar. The seeds were also rich in dietary fiber (40-53%); however, differences were found in their fiber profiles. Caraway showed the highest antioxidant profile and anti-inflammatory activity and an LC-DAD-ESI/MSn analysis revealed great differences in the phenolic profiles of the samples. Cytotoxicity (NCI-H460, AGS, MCF-7, and CaCo2) and hepatotoxicity (RAW 264.7) were not observed. In sum, besides their flavoring/preservation properties, these seeds are also relevant source of bioactive compounds with health-promoting activities.
Collapse
Affiliation(s)
- Hiba Bouzaid
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University of Sidi Mohamed Ben Abdellah, B.P. 2202—Route d’Imouzzer, Fez 30000, Morocco
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Diana M. Ferreira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Oumaima Chater
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, University of Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Youssef Kandri Rodi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University of Sidi Mohamed Ben Abdellah, B.P. 2202—Route d’Imouzzer, Fez 30000, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, University of Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Fouad Ouazzani Chahdi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University of Sidi Mohamed Ben Abdellah, B.P. 2202—Route d’Imouzzer, Fez 30000, Morocco
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n. º 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Vinha AF, Sousa C, Vilela A, Ferreira J, Medeiros R, Cerqueira F. Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. APPLIED SCIENCES 2024; 14:6278. [DOI: 10.3390/app14146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Vitis vinifera is the grape variety used in the production of wine and other products. In the wine production process, many of the vine’s by-products are wasted, namely seeds and stems. Given the proportion of wine production worldwide, the quantity of by-products is beginning to be an environmental problem, making it urgent to take measures for their use to obtain bioactive compounds with health benefits. The aim of this work was to study the antioxidant and antimicrobial activities of extracts from the seeds and stems of four Portuguese grape varieties: Touriga Franca, Touriga Nacional, Viosinho, and Tinta Roriz. Total phenolic (TPC) and total flavonoids (TFC) contents present in the different extracts were evaluated, as well as the antioxidant activity, by DPPH and FRAP methods. TPC and TFC values of the stem’s extracts are much higher than those of the seeds of the same grape variety in the same solvent. The antioxidant activity of aqueous and ethanolic stem extracts is higher than that obtained for the seeds, showing that antioxidant activity is related to the content of polyphenols. The antimicrobial activity of different stem and seed extracts was determined against yeasts and Gram-positive and Gram-negative bacteria, and the effect was determined based on the minimal inhibitory concentrations calculated (MIC). In general, the ethanol:water (1:1) extract of the seeds from the different varieties tested inhibited C. albicans ATCC10231 and C. krusei ATCC6258 growth even at 200 μg/mL, and the effect was fungicidal at 200 μg/mL. The same type of extract showed selective antimicrobial activity, inhibiting S. aureus ATCC29213 growth but having no effect against E. coli ATCC25922 even at 200 μg/mL. The effect against S. aureus was bactericidal (at 200 μg/mL) for Touriga Franca, Touriga Nacional, and Viosinho. Taking all these results into account, it can be concluded that the by-products of the grape varieties tested are important sources of bioactive products, particularly as antioxidants and antimicrobials.
Collapse
Affiliation(s)
- Ana F. Vinha
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Sousa
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Andreia Vilela
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Joana Ferreira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
11
|
Barbosa LR, Francisquini JD, Cerqueira AFLW, Moreira JP, Dos Santos LPM, Scio E, Stephani R, Perrone ÍT, Húngaro HM, Rodarte MP. Whey protein concentrate and skimmed milk powder as encapsulation agents for coffee silverskin extracts processed by spray drying. J DAIRY RES 2024; 91:96-98. [PMID: 38706325 DOI: 10.1017/s0022029924000128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
We tested the hypothesis that milk proteins, through microencapsulation, guarantee protection against bioactive substances in coffee silverskin extracts. Therefore, the aim of this study was to carry out technological, nutritional and physicochemical characterisation of a coffee silverskin extract microencapsulated using instant skim milk powder and whey protein concentrate as wall materials. The aqueous extract of coffee silverskin was spray-dried using 10% (w/v) skim milk powder and whey protein concentrate. The samples were characterised by determining the water content, water activity, particle size distribution, colour analysis and total phenolic compound content as well as antioxidant activity using 2,2-diphenyl-radical 1-picrylhydrazyl scavenging methods, nitric oxide radical inhibition and morphological analysis. The product showed water activity within a range that ensured greater stability, and the reduced degradation of the dried coffee silverskin extract with whey protein concentrate resulted in better rehydration ability. The luminosity parameter was higher and the browning index was lower for the encapsulated samples than for the pure coffee silverskin extract. The phenolic compound content (29.23 ± 8.39 and 34.00 ± 8.38 mg gallic acid equivalents/g for the coffee silverskin extract using skimmed milk powder and whey protein concentrate, respectively) and the antioxidant activity of the new product confirmed its potential as a natural source of antioxidant phenolic compounds. We conclude that the dairy matrices associated with spray drying preserved the bioactive and antioxidant activities of coffee silverskin extracts.
Collapse
Affiliation(s)
- Letícia Ribeiro Barbosa
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | | | | | - João Paulo Moreira
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | - Luciana Poty Manso Dos Santos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Elita Scio
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Rodrigo Stephani
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | - Ítalo Tuler Perrone
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| | | | - Mirian Pereira Rodarte
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
| |
Collapse
|
12
|
Buyong NL, Nillian E. Physiochemical properties of Sarawak's adapted Liberica coffee silverskin utilizing varying solvents. Food Sci Nutr 2023; 11:6052-6059. [PMID: 37823107 PMCID: PMC10563707 DOI: 10.1002/fsn3.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 10/13/2023] Open
Abstract
This study aimed to investigate the physiochemical properties of Sarawak's adapted Liberica coffee silverskin (CS) using multiple solvents (distilled water, methanol, and ethanol) and its impact on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities of the CS. The results showed that the highest TPC was observed in the methanol extract (15.24 ± 0.65 mg GAE/g), while the highest TFC was recorded when extracted with ethanol (25.14 ± 0.59 mg QE/g). The DPPH activity was also found to be highest in the ethanol extract (83.85 ± 1.78%), concurred by the results in the FRAP assay as the highest reduction was also in ethanol (11.40 ± 18.57 μmol FSE/g). These findings demonstrate that the bioactive compounds of CS extracted can be greatly influenced by the choice of solvent while highlighting the potential for Sarawak's adapted Liberica CS to be further harnessed into a value-added product and enabling a better by-product waste management.
Collapse
Affiliation(s)
- Nick Laurence Buyong
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Elexson Nillian
- Faculty of Resource Science and TechnologyUniversity Malaysia SarawakKota SamarahanSarawakMalaysia
| |
Collapse
|
13
|
Maliar T, Maliarová M, Blažková M, Kunštek M, Uváčková Ľ, Viskupičová J, Purdešová A, Beňovič P. Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules 2023; 28:6890. [PMID: 37836733 PMCID: PMC10574746 DOI: 10.3390/molecules28196890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Oxidative stress is a well-known phenomenon arising from physiological and nonphysiological factors, defined by the balance between antioxidants and pro-oxidants. While the presence and uptake of antioxidants are crucial, the pro-oxidant effects have not received sufficient research attention. Several methods for assessing pro-oxidant activity, utilizing various mechanisms, have been published. In this paper, we introduce a methodology for the simultaneous determination of antioxidant and pro-oxidant activity on a single microplate in situ, assuming that the FRAP method can measure both antioxidant and pro-oxidant activity due to the generation of pro-oxidant Fe2+ ions in the Fenton reaction. Systematic research using this rapid screening method may help to distinguish between compounds with dominant antioxidant efficacy and those with dominant pro-oxidant effects. Our preliminary study has revealed a dominant pro-oxidant effect for compounds with a higher number of oxygen heteroatoms, especially sp2 hybridized compounds (such as those containing keto groups), such as flavonoids and plant extracts rich in these structural types. Conversely, catechins, carotenoids, and surprisingly, extracts from birch leaves and chestnut leaves have demonstrated dominant antioxidant activity over pro-oxidant. These initial findings have sparked significant interest in the systematic evaluation of a more extensive collection of compounds and plant extracts using the developed method.
Collapse
Affiliation(s)
- Tibor Maliar
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Mária Maliarová
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Marcela Blažková
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia; (M.B.); (M.K.)
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marek Kunštek
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia; (M.B.); (M.K.)
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Ľubica Uváčková
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | - Andrea Purdešová
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Patrik Beňovič
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| |
Collapse
|
14
|
Oliveira BCC, Machado M, Machado S, Costa ASG, Bessada S, Alves RC, Oliveira MBPP. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023; 12:3039. [PMID: 37628038 PMCID: PMC10453615 DOI: 10.3390/foods12163039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Algae contain high-quality proteins, dietary fiber, minerals, and phenolic compounds, making them promising alternative ingredients. Since pasta is consumed worldwide, it can be an effective vehicle for incorporating algae. This study compares the nutritional and antioxidant composition of whole-wheat pasta without and with enrichment of an algae mixture (containing Himanthalia elongata and Spirulina) and ascertains the influence of the cooking procedure on their features. Spirulina and H. elongata were also analyzed in parallel for comparison purposes. Macronutrients, chlorides and salt, total and free amino acid profiles, and antioxidant properties (total phenolic content and ferric reducing antioxidant power) were analyzed using AOAC, Mohr's, high performance liquid chromatography with fluorescence detection, and spectrophotometric methods, respectively. The results show a significant increase in fat (70.4%), protein (29.7%), ash (26.5%), and total amino acid (except for serine, tryptophan, isoleucine, and threonine) contents in the raw algae-enriched pasta. The antioxidant activity was also higher (4.15 versus 3.68 g ferrous sulfate eq./g dw, respectively). After cooking, protein, dietary fiber, total amino acids (except threonine) and antioxidant activity were stable in the algae-enriched pasta. Thus, algae can be an excellent ingredient for food applications with health benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | |
Collapse
|
15
|
Liu X, Sun H, Leng X. Coffee Silverskin Cellulose-Based Composite Film with Natural Pigments for Food Packaging: Physicochemical and Sensory Abilities. Foods 2023; 12:2839. [PMID: 37569108 PMCID: PMC10417091 DOI: 10.3390/foods12152839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To promote a circular economy, the use of agricultural by-products as food packaging material has steadily increased. However, designing food packaging films that meet consumers' preferences and requirements is still a challenge. In this work, cellulose extracted from coffee silverskin (a by-product of coffee roasting) and chitosan were combined with different natural pigments (curcumin, phycocyanin, and lycopene) to generate a variety of composite films with different colors for food packaging. The physicochemical and sensory properties of the films were evaluated. The cellulose/chitosan film showed favorable mechanical properties and water sensitivity. Addition of natural pigments resulted in different film colors, and significantly affected the optical properties and improved the UV-barrier, swelling degree, and water vapor permeability (WVP), but there were also slight decreases in the mechanical properties. The various colored films can influence the perceived features and evoke different emotions from consumers, resulting in films receiving different attraction and liking scores. This work provides a comprehensive evaluation strategy for coffee silverskin cellulose-based composite films with incorporated pigments, and a new perspective on the consideration of the hedonic ratings of consumers regarding bio-based films when designing food packaging.
Collapse
Affiliation(s)
- Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Poláková K, Bobková A, Demianová A, Bobko M, Lidiková J, Jurčaga L, Belej Ľ, Mesárošová A, Korčok M, Tóth T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023; 12:2675. [PMID: 37509767 PMCID: PMC10378423 DOI: 10.3390/foods12142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee processing is a major contributor to the creation of food and product waste. Using coffee co-products can play an essential role in addressing environmental problems and issues with nutritionally unbalanced foods, population growth, and food-related diseases. This research aimed to determine the quality and sensory parameters (aw, pH, dry matter, TAC, TPC, fat, fatty acids profile, fiber, caffeine, chlorogenic acids, color, and sensory analysis) of different botanical origins of cascara (coffee husks) and silverskin (thin layer). The results of this study show that silverskin and cascara are a good source of TAC (1S 58.17 ± 1.28%, 2S 46.65 ± 1.20%, 1C 36.54 ± 1.84%, 2C 41.12 ± 2.11%). Cascara showed the presence of polyphenols (2C 49.135 g GAE·kg-1). Coffee co-products are good sources of fiber. Silverskin had higher values of caffeine than cascara. Palmitic, stearic, oleic, linoleic, and arachidic acids were the most represented acids in the samples. Given the obtained results, cascara can be considered "low-fat" (1C 4.240 g·kg-1 and 2C 5.4 g·kg-1). Based on the sensory evaluation, no sample reached the acceptable index value of 70%. Understanding the link between the character, identification properties, and composition of coffee co-products of different botanical origins can enable their application in the food industry.
Collapse
Affiliation(s)
- Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Judita Lidiková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Andrea Mesárošová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Tóth
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
17
|
Machado M, Espírito Santo L, Machado S, Lobo JC, Costa ASG, Oliveira MBPP, Ferreira H, Alves RC. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023; 12:2354. [PMID: 37372564 DOI: 10.3390/foods12122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Processing the coffee cherry into roasted beans generates a large amount of by-products, which can negatively impact the environment. The aim of this study was to analyze the bioactive potential and chemical composition of different coffee by-products (pulp, husk, parchment, silverskin, defective beans, and green coffee sieving residue) having in mind their bioactive potential for health and well-being. The coffee by-products showed a distinct nutritional composition. The content of ash, protein, fat, and total dietary fiber was significantly higher (p < 0.05) in coffee pulp (10.72% dw), silverskin (16.31% dw), defective beans (8.47% dw), and parchment (94.19% dw), respectively. Defective beans and the sieve residue exhibited a higher content of total phenolics (6.54 and 5.11 g chlorogenic acid eq./100 g dw, respectively) as well as higher DPPH• scavenging activity (3.11 and 2.85 g Trolox eq./100 g, respectively) and ferric-reducing antioxidant power (17.68 and 17.56 g ferrous sulfate eq./100 g dw, respectively). All the coffee by-products considered in this study are sources of caffeine and chlorogenic acids, in particular 5-caffeoylquinic acid (5.36-3787.58 mg/100 g dw, for parchment and defective beans, respectively). Thus, they can be recycled as functional ingredients for food, cosmetic and/or pharmaceutical industries, contributing to the social, economic, and environmental sustainability of the coffee industry.
Collapse
Affiliation(s)
- Marlene Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana C Lobo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anabela S G Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Beatriz P P Oliveira
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- Network of Chemistry and Technology/Unit on Applied Molecular Biosciences (REQUIMTE/UCIBIO/i4HB), Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita C Alves
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Sousa MM, Ferreira DM, Machado S, Lobo JC, Costa ASG, Palmeira JD, Nunes MA, Alves RC, Ferreira H, Oliveira MBPP. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules 2023; 28:molecules28062876. [PMID: 36985848 PMCID: PMC10059073 DOI: 10.3390/molecules28062876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Olive pomace is a by-product from olive oil production that can be further processed to obtain olive pomace paste. In this work, the influence of different time/temperature binomials (65 °C/30 min; 77 °C/1 min; 88 °C/15 s; and 120 °C/20 min) on the nutritional quality, chemical composition, and efficiency on control/elimination of natural microbial load of olive pomace paste was ascertained. The treatments significantly impacted the contents of ash, fat, vitamin E, phenolics (including hydroxytyrosol), flavonoids, and antioxidant activity, but not the fatty acids profile. The binomial 88 °C/15 s showed the greatest potential since it better preserved the phytochemical and antioxidant properties as well as the protein and fiber contents. This binomial is also faster and easy to be implemented at an industrial level, allowing the obtention of a safe functional ingredient to satisfy consumers' demands for novel sustainable products, simultaneously, responding to food safety and food security concerns.
Collapse
Affiliation(s)
- Maria Manuela Sousa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Melo Ferreira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joana C Lobo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Anabela S G Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Josman D Palmeira
- REQUIMTE/UCIBIO-i4HB, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Antónia Nunes
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO-i4HB, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Biondić Fučkar V, Božić A, Jukić A, Krivohlavek A, Jurak G, Tot A, Serdar S, Žuntar I, Režek Jambrak A. Coffee Silver Skin-Health Safety, Nutritional Value, and Microwave Extraction of Proteins. Foods 2023; 12:518. [PMID: 36766046 PMCID: PMC9914886 DOI: 10.3390/foods12030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this research was to evaluate the health safety (concentrations of pesticide residues and heavy metals) and nutritional parameters (macro- and microminerals and crude fibre) of coffee silver skin (CS), as well to isolate proteins from this by-product using an optimised microwave extraction method. The CS by-product samples showed the highest amount of potassium, followed by calcium, magnesium, and sodium. Iron was found in the highest quantity among the microminerals, followed by copper, manganese, zinc, and chromium. The CS sample showed a large amount of fibre and a moderate quantity of proteins obtained by the optimised microwave extraction method. Four heavy metals (nickel, lead, arsenic, and cadmium) were detected, and all were under the permitted levels. Among the 265 analysed pesticides, only three showed small quantity. The results for the proteins extracted by microwave showed that the total protein concentration values ranged from 0.52 ± 0.01 mg/L to 0.77 ± 0.07 mg/L. The highest value of the concentration of total proteins (0.77 ± 0.07 mg/L) was found in the sample treated for 9 min, using a power of 200 W. Based on these results, it can be concluded that CS is a healthy and nutritionally rich nutraceutical that could be used in the production of new products in the food industry and other industries.
Collapse
Affiliation(s)
| | - Angela Božić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Jukić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Adela Krivohlavek
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Gordana Jurak
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Ana Tot
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Sonja Serdar
- Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia
| | - Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Ferreira DM, Nunes MA, Santo LE, Machado S, Costa ASG, Álvarez-Ortí M, Pardo JE, Oliveira MBPP, Alves RC. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020723. [PMID: 36677786 PMCID: PMC9863732 DOI: 10.3390/molecules28020723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
The increasing demand for superfoods has resulted in an increase in chia seeds consumption. The reintroduction of this ancient crop in agriculture is useful to ensure food security since it can grow in high-stress conditions. The current study aimed to characterize chia seeds, cold-pressed oil, and defatted cake (the oil extraction by-product) to improve their value and to meet consumer's expectations (low-fat products). Chia seeds presented a significantly higher energy value than cake (444 vs. 284 kcal/100 g, respectively) due to fat removal (33 vs. 7%). The cake showed higher contents of total minerals (6 vs. 5%), protein (27 vs. 18%), and fiber (48 vs. 38%) in comparison to the seeds, and was hence considered a promising food ingredient. The major fatty acid in oil, seeds, and cake was α-linolenic acid (62-66%), and the vitamin E content was 409, 200, and 44 mg/kg, respectively. The major amino acid in the seeds and cake was glutamic acid (49 vs. 36 mg/g). The oil had a low oxidative stability (1 h), and the total phenolics content was 1.3 mg gallic acid equivalents/100 g. Chia cake incorporation in food formulations will follow consumer's interests, and the obtained oil can be used to improve the oil supply for different applications. This approach adds value to the concept of "one health" since it includes the culture, the environment, and the consumers.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Maria Antónia Nunes
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Susana Machado
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Anabela S. G. Costa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Maria Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Rita C. Alves
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
22
|
Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. COSMETICS 2023. [DOI: 10.3390/cosmetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Upcycling is a modern trend in the cosmetic sector, focusing on by-products reuse and waste reduction. Consumers are more aware of the origin of cosmetic products and their environmental impact, promoting the upcycling phenomenon. Converting these raw materials into products of higher quality or value contributes to the final product’s sustainability. In fact, several agri-food by-products that are typically discarded have generated great interest, due to their value-added compounds with high functionality and/or bioactivity. Coffee is well known as a cosmetic ingredient, particularly due to the presence of phenolic compounds, such as chlorogenic acids, and caffeine. Caffeine is widely used in cosmetic formulations due to its photoprotector and anti-aging properties, as well as lipolytic action in cellulitis, and hair regrowth. Chlorogenic acids are powerful antioxidants and exhibit anti-aging and photoprotector abilities. Coffee by-products, such as coffee beans, possess these bioactive compounds and other chemical characteristics that can provide functional properties in cosmetic formulations. Coffee silverskin and spent coffee grounds are high-volume by-products of the coffee industry. Their use has been explored in different cosmetic formulations demonstrating safety, stability, acceptability as well as skin improvement, thus supporting their valorization as natural and sustainable new ingredients in skincare products.
Collapse
|
23
|
Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study. Foods 2022; 11:foods11233939. [PMID: 36496747 PMCID: PMC9737266 DOI: 10.3390/foods11233939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pine seeds are known for their richness in lipid compounds and other healthy substances. However, the reference procedures that are commonly applied for their analysis are quite laborious, time-consuming, and expensive. Therefore, it is important to develop rapid, accurate, multi-parametric, cost-effective and, essentially, environmentally friendly analytical techniques that are easily implemented at an industrial scale. The viability of using near-infrared (NIR) spectroscopy to analyse the seed lipid content and profile of three different pine species (Pinus halepensis, Pinus brutia and Pinus pinaster) was investigated. Moreover, species discrimination using NIR was also attempted. Different chemometric models, namely partial least squares (PLS) regression, for lipid analysis, and partial least square-discriminant analysis (PLS-DA), for pine species discrimination, were applied. In relation to the discrimination of pine seed species, a total of 90.5% of correct classification rates were obtained. Regarding the quantification models, most of the compounds assessed yielded determination coefficients (R2P) higher than 0.80. The best PLS models were obtained for total fat, vitamin E, saturated and monounsaturated fatty acids, C20:2, C20:1n9, C20, C18:2n6c, C18:1n9c, C18 and C16:1. Globally, the obtained results demonstrated that NIR spectroscopy is a suitable analytical technique for lipid analysis and species discrimination of pine seeds.
Collapse
|
24
|
Green/Roasted Coffee and Silverskin Extracts Inhibit Sugar Absorption by Human Intestinal Epithelial (Caco-2) Cells by Decreasing GLUT2 Gene Expression. Foods 2022; 11:foods11233902. [PMID: 36496710 PMCID: PMC9737879 DOI: 10.3390/foods11233902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Moderate coffee ingestion has been associated with a decrease in type 2 diabetes risk, mainly due to its richness in chlorogenic acids (CGA). To explore this, extracts of green beans, roasted beans, and silverskin were prepared by aqueous ultrasound-assisted extraction and characterized by a reversed-phase high-performance liquid chromatography-photodiode array detector (RP-HPLC-DAD). The effects on the uptake of glucose and fructose by human intestinal epithelial (Caco-2) cells and the influence on the expression of sugar transporter genes (by RT-qPCR) were investigated and compared. The uptake of 3H-deoxy-D-glucose and 14C-fructose by Caco-2 cells was significantly reduced by all the extracts, with green coffee (which also contained higher amounts of CGA) achieving the highest efficiency. Although silverskin presented the lowest amounts of CGA and caffeine, it promoted an inhibitory effect similar to the effects of green/roasted beans. In the case of glucose uptake, the effect was even higher than for roasted coffee. This activity is explained by the ability of the extracts to markedly decrease GLUT2, but not GLUT5 gene expression. In addition, a decrease in SGLT1 gene expression was also found for all extracts, although not at a statistically significant rate for silverskin. This study also revealed a synergistic inhibitory effect of caffeine and 5-CQA on the uptake of sugars. Thus, silverskin appears as an interesting alternative to coffee, since the valorization of this by-product also contributes to the sustainability of the coffee chain.
Collapse
|
25
|
Giordano M, Bertolino M, Belviso S, Ghirardello D, Zeppa G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods 2022; 11:foods11193132. [PMID: 36230210 PMCID: PMC9563964 DOI: 10.3390/foods11193132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Although coffee silverskin (CS) has recently been used as a food ingredient, no knowledge has been reported on the effects of species or different post-harvest treatments on its chemical composition. Therefore, the fibre, volatile compounds, phenolic acid content, and antioxidant capacity of CS samples obtained at three roasting intensities (light, medium, and dark) from the Coffea arabica and C. canephora species, each subjected to a washing or a sun-drying (“natural”) post-harvest treatment, were studied. Obtained results showed that the chemical composition of CS is due to species, roasting, post-harvest treatment, and interaction. In particular, natural Arabica CS showed the highest content of volatile compounds of Maillard and varietal origin, whereas washed Arabica CS showed the highest content of soluble dietary fibre and chlorogenic derivatives. Pyrroles, sulphur compounds, and pyridines contents were higher in Canephora CS than in Arabica CS. The dark-roasted washed Arabica CS showed the highest content of 5-O- and 3-O-caffeoylquinic acids, while the natural Arabica CS highlighted the highest antioxidant capacity. The effect of post-harvest treatments seemed to be emphasised in Arabica CS, independent of roasting, which did not significantly affect the antioxidant capacity of CS from either species.
Collapse
|
26
|
Ferreira DM, de Oliveira NM, Lopes L, Machado J, Oliveira MB. Potential Therapeutic Properties of the Leaf of Cydonia Oblonga Mill. Based on Mineral and Organic Profiles. PLANTS (BASEL, SWITZERLAND) 2022; 11:2638. [PMID: 36235504 PMCID: PMC9573453 DOI: 10.3390/plants11192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
Leaf extract of Cydonia Oblonga Mill. is interesting for further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of green (October), yellow (November), and brown (December) quince leaves collected in the region of Pinhel, Portugal. Mineral analysis determined the measurements of the levels of several macro- and micro-elements. Organic analysis assessed the moisture content, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Mineral analysis was based on ICP-MS techniques, while the profiles of vitamin E and FA relied on HPLC-DAD-FLD and GC-FID techniques, respectively. Moisture content was determined through infrared hygrometry and TPC was determined by spectrophotometric methods. Regarding the mineral content, calcium, magnesium, and iron were the most abundant minerals. Concerning organic analysis, all leaf samples showed similar moisture content, while the TPC of gallic acid equivalents (GAE) and total vitamin E content, the most predominant of which was the α-tocopherol isomer, showed significant variations between green-brown and yellow leaves. FA composition in all leaf samples exhibited higher contents of SFA and PUFA than MUFA, with a predominance of palmitic and linolenic acids. Organic and inorganic analysis of quince leaves allow for the prediction of adequate physiological properties, mainly cardiovascular, pulmonary, and immunological defenses, which with our preliminary in silico studies suggest an excellent supplement to complementary therapy, including drastic pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Melo D, Álvarez-Ortí M, Nunes MA, Espírito Santo L, Machado S, Pardo JE, Oliveira MBPP. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022; 11:3027. [PMID: 36230103 PMCID: PMC9562219 DOI: 10.3390/foods11193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, society demands natural healthy foods with improved nutritional characteristics. Accordingly, poppies (Papaver somniferum) are a traditional crop, cultivated for food and pharmaceutical purposes, whose seeds meet consumers’ preferences, making them a promising candidate for incorporation into the formulation of novel functional foods. This work performed an overall chemical characterization of poppy seeds, cold-pressed oil, and press cake, a by-product of the oil industry. The proximate composition, fatty acids, and vitamin E profiles of the oil fraction were analysed with respect to the whole seeds and the cake. The cold-press oil extracted from the poppy seeds was also characterized. Since poppy cake is a partially defatted product, it has a lower fat content than the seeds, but higher content of the rest of its elements, namely, ash (10%), protein (26%), and fibre (38%). Regarding protein composition, the major amino acid in the cake and seeds was determined to be glutamic acid (59 and 36 mg/g, respectively). All the samples presented α- and γ-tocopherols (>21 and >25 mg/kg, respectively) and the fatty acids profile of the oil fraction was mainly composed of unsaturated fatty acids, where linoleic acid predominates (>50%). The oil’s oxidative stability was low (2.8 h), according to the predominance of unsaturated fatty acids. Thus, poppy cake may be considered as an ingredient with great potential for incorporation into products in the food industry according to its high content in protein and fibre, and the remaining fat content, where polyunsaturated fatty acids predominate.
Collapse
Affiliation(s)
- Diana Melo
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Jorge Viterbo Ferreira Street, 4050-313 Porto, Portugal
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Maria Antónia Nunes
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Jorge Viterbo Ferreira Street, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Jorge Viterbo Ferreira Street, 4050-313 Porto, Portugal
| | - Susana Machado
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Jorge Viterbo Ferreira Street, 4050-313 Porto, Portugal
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Jorge Viterbo Ferreira Street, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
Andrade N, Peixoto JAB, Oliveira MBPP, Martel F, Alves RC. Can coffee silverskin be a useful tool to fight metabolic syndrome? Front Nutr 2022; 9:966734. [PMID: 36211502 PMCID: PMC9534380 DOI: 10.3389/fnut.2022.966734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Coffee is one of the most consumed products in the world, and its by-products are mainly discarded as waste. In order to solve this problem and in the context of a sustainable industrial attitude, coffee by-products have been studied concerning their chemical and nutritional features for a potential application in foodstuffs or dietary supplements. Under this perspective, coffee silverskin, the main by-product of coffee roasting, stands out as a noteworthy source of nutrients and remarkable bioactive compounds, such as chlorogenic acids, caffeine, and melanoidins, among others. Such compounds have been demonstrating beneficial health properties in the context of metabolic disorders. This mini-review compiles and discusses the potential health benefits of coffee silverskin and its main bioactive components on metabolic syndrome, highlighting the main biochemical mechanisms involved, namely their effects upon intestinal sugar uptake, glucose and lipids metabolism, oxidative stress, and gut microbiota. Even though additional research on this coffee by-product is needed, silverskin can be highlighted as an interesting source of compounds that could be used in the prevention or co-treatment of metabolic syndrome. Simultaneously, the valorization of this by-product also responds to the sustainability and circular economy needs of the coffee chain.
Collapse
Affiliation(s)
- Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- *Correspondence: Nelson Andrade
| | - Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Rita C. Alves
| |
Collapse
|
29
|
Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. SUSTAINABILITY 2022. [DOI: 10.3390/su14148435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee silverskin (CS) is the only byproduct of the roasting process for coffee beans and is rich in phenolic compounds with various bioactivities. This study proposes a valorization option for bioactive compounds (T-CQA) based on a subcritical water extraction (SWE) technique, which is known for its high efficiency and feasibility for use on an industrial scale. The use of water as a sole solvent requires a minimum number of cleaning steps and renders the extract safe for further applications, such as in either the cosmetic or food industry. Response surface methodology with a Box–Behnken design is effectively used to optimize and explain the individual and interactive process variables (i.e., extraction temperature, extraction time, and solid–liquid ratio) on the T-CQA content obtained from coffee silverskin by the SWE technique. The final model exhibits a precise prediction of the experimental data obtained for the maximum T-CQA content. Under the optimum conditions, the CS extract is found to contain a higher content of T-CQA and TPC than that reported previously. For antioxidant activity, up to 26.12 ± 3.27 mg Trolox equivalent/g CS is obtained.
Collapse
|
30
|
Peixoto JAB, Andrade N, Machado S, Costa ASG, Puga H, Oliveira MBPP, Martel F, Alves RC. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022; 11:1671. [PMID: 35741869 PMCID: PMC9222947 DOI: 10.3390/foods11121671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigates the possibility of valorizing coffee silverskin through the recovery of its bioactive compounds using a sustainable extraction method that could be industrially applied. For that, aqueous extracts were prepared using ultrasonic-assisted extraction (laboratorial scale) and, for comparison, a scale-up of the process was developed using the Multi-frequency Multimode Modulated technology. A concentration procedure at the pilot scale was also tested. The three types of extracts obtained were characterized regarding caffeine and chlorogenic acids contents, and the effects on intestinal glucose and fructose uptake (including sugar transporters expression) in human intestinal epithelial (Caco-2) cells were ascertained. The phytochemical contents of the extracts prepared at the laboratory and pilot scale were comparable (caffeine: 27.7 vs. 29.6 mg/g freeze-dried extract; 3-, 4-, and 5-caffeoylquinic acids: 0.19 vs. 0.31, 0.15 vs. 0.42, and 1.04 vs. 1.98 mg/g, respectively; 4- and 5- feruloylquinic acids: 0.39 vs. 0.43 and 1.05 vs. 1.32 mg/g, respectively). Slight differences were noticed according to the extracts preparation steps, but in general, all the extracts promoted significant inhibitions of [1,2-3H(N)]-deoxy-D-glucose and 14C-D-fructose uptake, which resulted mainly from a decrease on the facilitative glucose transporter 2 (GLUT2) and sodium-glucose linked transporter 1 (SGLT1) genes expression but not on the expression of the facilitative glucose transporter 5 (GLUT5) gene. Moreover, a synergistic effect of caffeine and 5-caffeoylquinic acid on sugars uptake was found. The results clearly show that the Multi-frequency Multimode Modulated technology is a viable option to be applied at an industrial level to recover bioactive components from silverskin and obtain extracts with antidiabetic potential that could be used to develop functional food products or dietary supplements.
Collapse
Affiliation(s)
- Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Helder Puga
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| |
Collapse
|
31
|
Bondam AF, Diolinda da Silveira D, Pozzada dos Santos J, Hoffmann JF. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
33
|
Bobková A, Poláková K, Demianová A, Belej Ľ, Bobko M, Jurčaga L, Gálik B, Novotná I, Iriondo-DeHond A, del Castillo MD. Comparative Analysis of Selected Chemical Parameters of Coffea arabica, from Cascara to Silverskin. Foods 2022; 11:1082. [PMID: 35454667 PMCID: PMC9027595 DOI: 10.3390/foods11081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, there is an increased interest in coffee derivatives (green beans, roasted beans, and coffee by-products (Cascara and Silverskin)) due to their particular chemical composition. This study aimed to compare the content of dry matter, total fat, fatty acids, and fiber (ADF, NDF) of coffee by-products (Cascara and Silverskin) and coffee beans (green and roasted under different conditions). Coffee beans and their by-products were obtained from 100% C. arabica coffee cherries from Panama by dry process. The lowest concentrations of fat corresponded to Cascara 4.24 g·kg-1 and Silverskin 23.70 g·kg-1, respectively. The major fatty acids detected in all samples were palmitic, stearic, oleic, and linoleic acids, the latter two being essential fatty acids. LDA showed that 89.01% of the variability between beans and by-products was explained by lignoceric, myristic, behenic, tricosanoic, arachidic, and heneicosanoic acids. Silverskin appeared to be a good source of lignoceric, myristic, and behenic acids and had a higher concentration of dietary fiber (314.95 g·kg-1) than Cascara (160.03 g·kg-1). Coffee by-products (Silverskin and Cascara) are low-fat products enriched in dietary fiber. Their incorporation, after adjustment, into the global diet may contribute to nutrition security, the sustainability of the coffee sector, and human health.
Collapse
Affiliation(s)
- Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.B.); (A.D.); (L’.B.); (M.B.); (L.J.)
| | - Branislav Gálik
- Institute of Nutrition and Genomics, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (B.G.); (I.N.)
| | - Ivana Novotná
- Institute of Nutrition and Genomics, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (B.G.); (I.N.)
| | - Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| |
Collapse
|
34
|
Nzekoue FK, Borsetta G, Navarini L, Abouelenein D, Xiao J, Sagratini G, Vittori S, Caprioli G, Angeloni S. Coffee silverskin: Characterization of B-vitamins, macronutrients, minerals and phytosterols. Food Chem 2022; 372:131188. [PMID: 34624779 DOI: 10.1016/j.foodchem.2021.131188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
The present study assessed the nutritional composition of coffee silverskin (CSS) obtained from arabica roasted coffee. Following validated analytical methods, CSS resulted to be a high source of proteins (14.2 g/100 g) and dietary fibers (51.5 g/100 g). Moreover, the mineral analysis revealed high contents of calcium (1.1 g/100 g) and potassium (1.0 g/100 g). To date, this study provided the widest mineral profile of CSS with 30 minerals targeted including 23 microminerals with high levels of iron (238.0 mg/kg), manganese (46.7 mg/kg), copper (37.9 mg/kg), and zinc (31.9 mg/kg). Moreover, vitamins B2 (0.18-0.2 mg/kg) and B3 (2.5-3.1 mg/kg) were studied and reported for the first time in CSS. β-sitosterol (77.1 mg/kg), campesterol, stigmasterol, and Δ5-avenasterol, were also observed from the phytosterol analysis of CSS with a total level of 98.4 mg/kg. This rich nutritional profile highlights the potential values of CSS for innovative reuses in bioactive ingredients development.
Collapse
Affiliation(s)
| | - Germana Borsetta
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | | | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; RICH - Research and Innovation Coffee Hub, via E. Betti 1, I-62020 Belforte del Chienti (MC), Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy.
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; RICH - Research and Innovation Coffee Hub, via E. Betti 1, I-62020 Belforte del Chienti (MC), Italy
| |
Collapse
|
35
|
Vimercati WC, Araújo C, Macedo LL, Pimenta CJ. Optimal extraction condition for the recovery of bioactive compounds and antioxidants from coffee silverskin. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cintia Araújo
- Department of Food Science Federal University of Lavras Lavras Minas Gerais Brazil
| | | | - Carlos José Pimenta
- Department of Food Science Federal University of Lavras Lavras Minas Gerais Brazil
| |
Collapse
|
36
|
Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods 2022; 11:foods11050717. [PMID: 35267349 PMCID: PMC8909313 DOI: 10.3390/foods11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Coffee silverskin (CS), a by-product obtained by the coffee industry after the roasting process, is scientifically known to be a source of fiber and polyphenols, which could contribute to human health. In this work, the production of CS-enriched biscuits is proposed, where the CS from Arabica and Robusta type and a decaffeinated blend of the two were used at three different levels as a replacement for wheat flour. The biscuits were analyzed for their physicochemical properties, consumer acceptability, and the bioaccessibility of polyphenols after in vitro digestion was estimated in order to identify the formulation most appreciated by consumers and most promising in terms of nutritional and biofunctional potential. From the results, CS-based biscuits represent an interesting possibility to create a more sustainable coffee chain, thanks to the valorization of the silverskin, especially if a decaffeinated CS is considered. In fact, a 4% replacement of the wheat flour with decaffeinated CS is able to give a final product with a high content of accessible polyphenols and a biscuit appreciated by the consumer.
Collapse
|
37
|
Huet AC, Paulus M, Henrottin J, Brossard C, Tranquet O, Bernard H, Pilolli R, Nitride C, Larré C, Adel-Patient K, Monaci L, Mills ENC, De Loose M, Gillard N, Van Poucke C. Development of incurred chocolate bars and broth powder with six fully characterised food allergens as test materials for food allergen analysis. Anal Bioanal Chem 2022; 414:2553-2570. [PMID: 35201367 DOI: 10.1007/s00216-022-03912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
The design and production of incurred test materials are critical for the development and validation of methods for food allergen analysis. This is because production and processing conditions, together with the food matrix, can modify allergens affecting their structure, extractability and detectability. For the ThRAll project, which aims to develop a mass spectrometry-based reference method for the simultaneous accurate quantification of six allergenic ingredients in two hard to analyse matrices. Two highly processed matrices, chocolate bars and broth powder, were selected to incur with six allergenic ingredients (egg, milk, peanut, soy, hazelnut and almond) at 2, 4, 10 and 40 mg total allergenic protein/kg food matrix using a pilot-scale food manufacturing plant. The allergenic activity of the ingredients incurred was verified using food-allergic patient serum/plasma IgE, the homogeneity of the incurred matrices verified and their stability at 4 °C assessed over at least 30-month storage using appropriate enzyme-linked immunosorbent assays (ELISA). Allergens were found at all levels from the chocolate bar and were homogenously distributed, apart from peanut and soy which could only be determined above 4 mg total allergenic ingredient protein/kg. The homogeneity assessment was restricted to analysis of soy, milk and peanut for the broth powder but nevertheless demonstrated that the allergens were homogeneously distributed. All the allergens tested were found to be stable in the incurred matrices for at least 30 months demonstrating they are suitable for method development.
Collapse
Affiliation(s)
- Anne-Catherine Huet
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium.
| | - Melody Paulus
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Jean Henrottin
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Chantal Brossard
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France
| | - Olivier Tranquet
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France.,INRAE, Aix-Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009, Marseille, France
| | - Hervé Bernard
- INRAE-CEA, Service de Pharmacologie Et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Bât 136-CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Chiara Nitride
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Colette Larré
- INRAE, UR1268 BIA, Rue de la Géraudière, BP71627, 44316, Nantes, France
| | - Karine Adel-Patient
- INRAE-CEA, Service de Pharmacologie Et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Bât 136-CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - E N Clare Mills
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marc De Loose
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115, 9820, Merelbeke, Belgium
| | - Nathalie Gillard
- CER Groupe, Analytical Laboratory, Rue du Point du Jour 8, 6900, Marloie, Belgium
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium
| |
Collapse
|
38
|
Antioxidant properties and bioaccessibility of coffee beans and their coffee silverskin grown in different countries. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
The wastes of coffee bean processing for utilization in food: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:429-444. [PMID: 35185168 PMCID: PMC8814275 DOI: 10.1007/s13197-021-05032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/03/2023]
Abstract
A few million cubic tons of waste are generated annually as a result of coffee processing. As a beverage, coffee in itself is a rich source of melanoidins, phenolic compounds, and other phytonutrients which confer a wide range of health benefits. These wastes generated every year are usually discarded as landfill mass, mixed with animal fodder, or incinerated. Coffee wastes, due to their high content of tannins and caffeine, can degrade the soil quality and induce carcinogenicity when mixed with animal fodder. This review aims to identify the potential of coffee silver skin and spent coffee grounds, both generated as a result of the roasting process and instantization processes. Coffee husk and coffee flour are also well-known for their excellent bioactive roles. The proximate composition of coffee silverskin indicates a rich dietary fibre source and finds wide applications in bakery and other allied food products. This process could generate a value-added product and alleviate the disposing quality of remnant spent coffee grounds. Companies are exploring novel ideas of producing coffee flour obtained from drying and milling of coffee cherries for applications in day-to-day food products. Coffee and coffee waste combined with its high concentration of fibre, colorant pigments, and antioxidant compounds, has immense potential as a functional ingredient in food systems and needs to be explored further for its better utilization.
Collapse
|
40
|
McDonald K, Langenbahn HJ, Miller JD, McMullin DR. Phytosterol oxidation products from coffee silverskin. J Food Sci 2022; 87:728-737. [DOI: 10.1111/1750-3841.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - J. David Miller
- Department of Chemistry Carleton University Ottawa Ontario Canada
| | | |
Collapse
|
41
|
Fathi F, Ebrahimi SN, Prior JAV, Machado SML, Kouchaksaraee RM, Oliveira MBPP, Alves RC. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics 2022; 14:112. [PMID: 35057007 PMCID: PMC8781543 DOI: 10.3390/pharmaceutics14010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer-Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - João A. V. Prior
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Susana M. L. Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Reza Mohsenian Kouchaksaraee
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| |
Collapse
|
42
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
43
|
Wang S, Sun W, Swallah MS, Amin K, Lyu B, Fan H, Zhang Z, Yu H. Preparation and characterization of soybean insoluble dietary fiber and its prebiotic effect on dyslipidemia and hepatic steatosis in high fat-fed C57BL/6J mice. Food Funct 2021; 12:8760-8773. [PMID: 34369950 DOI: 10.1039/d1fo01050f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential benefits of insoluble dietary fiber (IDF) in the regulation of lipid metabolism have been reported in large prospective cohort studies although the molecular regulatory mechanism is still unclear. Okara is a by-product obtained during soybean processing for soy milk and soybean curd (tofu), which is rarely utilized and can be a cheap potential dietary fiber (DF) resource. In this study, the structure and physicochemical properties of insoluble dietary fiber (SIDF) extracted from okara were characterized, and the prebiotic effects on fat metabolism were investigated in vivo. The results showed that the main monosaccharides of SIDF (90.50%) identified were galactose, arabinose, xylose, rhamnose and glucose. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analyses suggested that SIDF had a loose and porous structure, polysaccharide functional groups, and a typical crystalline cellulose I structure. In addition, SIDF had ideal oil-adsorption capacity (OAC; 7.95 g g-1) and significantly improved cholesterol adsorption (11.14 mg g-1) at pH 7.0. In vivo, IDF supplementation reduced the serum lipid levels and inhibited hepatic fat accumulation. Additionally, SIDF administration improved hepatic steatosis by stimulating lipolysis via upregulation of PPARα, CYP4a10 and CPT1a. This is the first systematic study on the composition, structure, physicochemical properties, adsorption function and biological effects of SIDF. The above results show that SIDF could be used as an ideal functional ingredient in food processing as well as play a positive role in improving the added value of okara and promoting its comprehensive utilization.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wanling Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Bo Lyu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Jiahua Health Care Products Co., Ltd., Liaocheng, Shandong, 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| |
Collapse
|
44
|
Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals (Basel) 2021; 14:ph14090913. [PMID: 34577612 PMCID: PMC8471359 DOI: 10.3390/ph14090913] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant profiles, as well as the antimicrobial activity against S. aureus, E. coli and C. albicans, were investigated for the first time. The amount of phenolics ranged between 3.1 and 3.8 g gallic acid eq./100 g in all samples and flavonoids between 2.0 and 3.2 g catechin eq/100 g. No significant differences were found regarding the antioxidant activity. The total fat varied between 5 and 11%, α-tocopherol being the major vitamer and oleic acid the main fatty acid. The protein and ash contents were 1–4% and 10–17%, respectively. The functional ingredient with a higher hydroxytyrosol content (220 mg/100 g) also presented the best minimal inhibitory concentration against the tested bacteria. No activity against C. albicans was verified. This new functional ingredient presents the potential to be used as a natural preservative or as a nutritional profile enhancer. Moreover, it can be an advantageous ingredient in food products, since it comprises specific lipid and hydrophilic bioactive compounds usually not present in other plant extracts.
Collapse
|
45
|
Melo D, Álvarez-Ortí M, Nunes MA, Costa ASG, Machado S, Alves RC, Pardo JE, Oliveira MBPP. Whole or Defatted Sesame Seeds ( Sesamum indicum L.)? The Effect of Cold Pressing on Oil and Cake Quality. Foods 2021; 10:foods10092108. [PMID: 34574218 PMCID: PMC8466230 DOI: 10.3390/foods10092108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Whole sesame seeds and sesame oil, which is obtained after cold pressing the seeds, are foodstuffs globally consumed due to their nutritional characteristics. The press cake that remains from the oil extraction process can be ground to form a defatted flour that can be incorporated into the human diet, contributing to the valorisation of this product. The nutritional comparison between the whole seeds and the press cake reveals the potential of this by-product to be incorporated in the formulation of diverse foodstuff, since it is richer than the seeds in proteins (30%) and fibre (25%) and still contains a proportion of oil (32%) with a fatty acid pattern characterized by the abundance of unsaturated fatty acids. The protein fraction of both the seeds and the cake shows a balanced composition regarding amino acid composition, with all the essential amino acids included. On the other hand, the oil obtained by cold pressing is shown as a high-quality oil, where the predominant fatty acids are oleic (42.66%) and linoleic (41.25%), which are essential fatty acids because they are not synthetised in the organism and must be obtained through the diet. In addition, it is rich in vitamin E, especially in γ-tocopherol, that was the main isomer found. Regarding these results, all products (sesame seeds, oil and press cake) are components suitable to be included in a healthy diet.
Collapse
Affiliation(s)
- Diana Melo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Manuel Álvarez-Ortí
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain;
| | - Maria Antónia Nunes
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| | - José E. Pardo
- Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain;
- Correspondence:
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.M.); (M.A.N.); (A.S.G.C.); (S.M.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
46
|
Morphological Changes and Component Characterization of Coffee Silverskin. Molecules 2021; 26:molecules26164914. [PMID: 34443501 PMCID: PMC8400691 DOI: 10.3390/molecules26164914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy was used for the qualitative and quantitative analysis of aqueous extracts of unroasted and roasted coffee silverskin (CS). Twenty compounds were identified from 1D and 2D NMR spectra, including caffeine, chlorogenic acid (CGA), trigonelline, fructose, glucose, sucrose, etc. For the first time, the presence of trigonelline was detected in CS. Results of the quantitative analysis showed that the total amount of the main components after roasting was reduced by 45.6% compared with values before roasting. Sugars in the water extracts were the main components in CS, and fructose was the most abundant sugar, its relative content accounting for 38.7% and 38.4% in unroasted and roasted CS, respectively. Moreover, 1D NMR combined with 2D NMR technology shows application prospects in the rapid, non-destructive detection of CS. In addition, it was observed by optical microscopy and scanning electron microscopy (SEM) that the morphology of CS changed obviously before and after roasting.
Collapse
|
47
|
Martuscelli M, Esposito L, Mastrocola D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021; 10:foods10081833. [PMID: 34441610 PMCID: PMC8394139 DOI: 10.3390/foods10081833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Coffee Silver Skin (CSS) is the unique by-product discarded after the roasting of coffee beans. This research aimed to evaluate the effect of two levels of CSS (1.5% and 3%) added as a natural ingredient in new formulations of chicken meat burgers. This is one of the first studies proposing a "formulation approach" to control the emergence of off flavours after meat cooking. Physical, chemical, and sensory analyses were carried out, within the CSS content and the evolution of volatile organic compounds in different samples. Newly formulated chicken burgers could limit food waste, while also becoming a source of fibres, minerals, and bioactive molecules. CSS limited weight losses (after cooking process) to 10.50% (1.5% addition) and 11.05% (3% addition), significantly lower (p < 0.01) than the control (23.85%). In cooked burgers, the occurrence of hexanal was reduced from 55.1% (CTRL T0) to 11.7% (CSS T0 1.5%) to 0 (CSS T0 3%). As for the limitation of off-flavours, CSS also showed good activity, contrasting with the emergence of octanal, alcohols and other markers of lipid oxidation. From the sensory test carried out, the volatile profile of CSS does not seem to impair the flavour of burgers, though at higher percentages hydrocarbons and pyrazines are traceable. The thiobarbituric acid reactive substances (TBARS assay confirmed the protective effect of CSS against oxidation.
Collapse
|
48
|
Gottstein V, Bernhardt M, Dilger E, Keller J, Breitling-Utzmann CM, Schwarz S, Kuballa T, Lachenmeier DW, Bunzel M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021; 10:foods10081705. [PMID: 34441483 PMCID: PMC8392354 DOI: 10.3390/foods10081705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Coffee silver skin is produced in large amounts as a by-product during the coffee roasting process. In this study, coffee silver skin of the species Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as well as silver skin pellets produced in the coffee industry were characterized with respect to both nutritional value and potential heat-induced contaminants. Enzymatic-gravimetric/chromatographic determination of the dietary fiber content showed values ranging from 59 to 67 g/100 g with a comparably high portion of soluble fiber, whereas low molecular weight soluble fiber was not detected. Compositional and methylation analysis indicated the presence of cellulose and xylans in the insoluble dietary fiber fraction, whereas pectic polysaccharides dominate the soluble dietary fiber fraction. The protein content as determined by the Kjeldahl method was in the range of 18 to 22 g/100 g, and all essential amino acids were present in coffee silver skin; whereas fat contents were low, high ash contents were determined. Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) showed the presence of macroelements in large amounts, whereas toxic mineral elements were only detected in trace amounts or being absent. Acrylamide was quantified with levels of 24–161 µg/kg. Although 5-hydroxymethylfurfural was detected, its concentration was below the limit of determination. Furfuryl alcohol was not detected.
Collapse
Affiliation(s)
- Vera Gottstein
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Mara Bernhardt
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Elena Dilger
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | | | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Stasse 20, 68163 Mannheim, Germany;
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
- Correspondence: ; Tel.: +49-721-608-42936
| |
Collapse
|
49
|
Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods 2021; 10:foods10061367. [PMID: 34199228 PMCID: PMC8231775 DOI: 10.3390/foods10061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
By-products from the coffee industry are produced in large amounts each year. Among other wastes, coffee silver skin (CSS) is highly available and more stable due to its lower content of water. This research aimed to characterize coffee silver skin composition and evidence its potentiality for use as a food-safe ingredient in new formulations. Results showed an average total dietary fiber content of 50% but with a higher ratio for insoluble than soluble fiber. A high content of total phenolic compounds, chlorogenic acid, caffeine, and caffeic acid was found and correlated with the high measured antioxidant capacity. Moreover, minerals (e.g., calcium, magnesium, phosphorous, potassium, copper, iron, manganese) important for human wellbeing were found at a high level in CSS, while toxic minerals (e.g., nickel) were found at low levels. In conclusion, coffee silver skin could have an advantageous role for the recovery of valuable compounds and as a potential food-safe ingredient.
Collapse
|
50
|
Khouja M, Alves RC, Melo D, Costa ASG, Nunes MA, Khaldi A, Oliveira MBPP, Messaoud C. Morphological and Chemical Differentiation between Tunisian Populations of Pinus halepensis, Pinus brutia, and Pinus pinaster. Chem Biodivers 2021; 18:e2100071. [PMID: 33871171 DOI: 10.1002/cbdv.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023]
Abstract
The lipid fraction of seeds from different pine species and populations was studied regarding total lipid content, fatty acid profile and vitamin E composition. The investigated seeds contained a high percentage of lipid (13.6 to 31.5 %). Lipid fractions were found to be rich in vitamin E, which varied significantly among species and populations. P. halepensis (Ph-Hn) showed the highest content of vitamin E (256.3 mg/kg of seeds) and the uppermost content of α-tocopherol (44 mg/kg). However, P. halepensis (Ph-Kas) was the richest in γ-tocopherol (204.9 mg/kg). Lipid fractions had a low content of δ-tocopherol (1.2 to 3.6 mg/kg. The highest content of γ-tocotrienol (∼18 %) was determined for P. halepensis (Ph-Dc and Ph-Hn). Thirteen fatty acids were identified by GC-FID with significant variation between the investigated species. The linoleic acid was the major fatty acid followed by oleic acid and palmitic acid. The chemical differentiation among species for the composition of fatty acids and vitamin E was confirmed by PCA. Significant correlations were observed between the content of vitamin E and fatty acids and ecological parameters of P. halepensis populations.
Collapse
Affiliation(s)
- Mariem Khouja
- National Institute of Applied Science and Technology, Department of Biology, Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage, B.P. 676, 1080, Tunis Cedex, Tunisia.,National research Institute of Rural Engineering, Water and Forests, University of Carthage, B.P. 10 Ariana, 2080, Tunis, Tunisia
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Diana Melo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Anabela S G Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - M Antonia Nunes
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Abdelhamid Khaldi
- National research Institute of Rural Engineering, Water and Forests, University of Carthage, B.P. 10 Ariana, 2080, Tunis, Tunisia
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Chokri Messaoud
- National Institute of Applied Science and Technology, Department of Biology, Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage, B.P. 676, 1080, Tunis Cedex, Tunisia
| |
Collapse
|