1
|
Wei L, Bai J, Zhang Y, Suo H, Wang C. Comparison of in vitro fermentation characteristics of carob gum and guar gum. Int J Biol Macromol 2025; 311:143886. [PMID: 40319966 DOI: 10.1016/j.ijbiomac.2025.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Carob gum (CG) and guar gum (GG) are widely used as additives in food processing; however, their fermentation properties in the human gut and potential effects on the human body are unclear. This study used an in vitro fermentation model to evaluate the interaction of CG and GG with intestinal flora and compare their fermentation characteristics. The results showed that CG and GG could be degraded and utilized by the intestinal flora. GG can increase the production of acetic acid, propionic acid, and butyric acid and the relative abundance of beneficial microorganisms such as Prevotella and Faecalibacterium. CG promotes propionic acid production and the relative abundance of beneficial microorganisms such as Bifidobacterium and Lactobacillus. Metabolomic studies have shown that fermented CG and GG mainly affect human metabolic pathways. GG promotes amino acid and lipid metabolism, and CG promotes amino acid metabolism and biosynthesis of secondary metabolites. This research shows that despite significant differences in how CG and GG interact with the gut microbiota, both may affect the human body.
Collapse
Affiliation(s)
- Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
He J, Zhang Y, Li M, Xing H, Lü L, Zhao X, Han Z. Polysaccharide extracted from peony seed meal preventive effect of on loperamide-induced constipation in rats. Int J Biol Macromol 2025; 308:142391. [PMID: 40139599 DOI: 10.1016/j.ijbiomac.2025.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In the present study, one polysaccharide (named PSP-1) was purified from peony (Paeonia suffruticosa Andr.) seed meal, and its structural characteristics, as well as preventive constipation activity, were investigated. The weight average molecular weight of PSP-1 was 15.3 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in the molar ratio of 1:4.8:5.1:0.4:0.2. The primary structure of PSP-1 was elucidated through Fourier-transform infrared spectroscopy (FT-IR) and methylation analysis, revealing its glycosidic linkages and branching pattern. In the loperamide-induced constipated rat, PSP-1 significantly increased fecal parameters and accelerated intestinal transit (69 min reduction). PSP-1 enhanced total short-chain fatty acid (SCFAs) production by 9.1 %, particularly propionic and butyric acids. Furthermore, PSP-1 had a bidirectional effect on gastrointestinal hormones: it increased the serum levels of motilin, gastric inhibitory polypeptide, and substance P by 12.8 %, 13.0 %, and 13.4 %, respectively, while decreasing the levels of secretin and vasoactive intestinal polypeptide by 21.7 % and 17.6 %, respectively. Additionally, 16S rRNA sequencing indicated that PSP-1-mediated gut microbiota rebalances, suppressing pathogens and enriching beneficial genera. These findings suggested that PSP-1, a natural plant extract, maybe a dietary supplement that helps prevent constipation, providing a theoretical reference for its application in functional foods.
Collapse
Affiliation(s)
- Jinxing He
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yingyu Zhang
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mengyi Li
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hanzhu Xing
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Lei Lü
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaolei Zhao
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhonghui Han
- College of Food Science and Engineering, Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; Shandong Engineering Research Center of Food Nutrition and Active Health, Shandong Xiwang Foodstuffs Co., Ltd., Binzhou 256200, PR China.
| |
Collapse
|
3
|
Wang L, Yang YP, Tian Y, Huang SC, Ruan Y, Wen CN, Liu M, Ma BJ. Purification and characterization of two non-starch polysaccharides from bulbils of Dioscorea opposita Thunb. 'Tiegun' and their antioxidant and hypoglycemic activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40276989 DOI: 10.1002/jsfa.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dioscorea opposita Thunb. cv. 'Tiegun' has substantial agricultural and economic value. Its underground tubers are used widely in food and traditional medicine but the bulbils - small globular structures in the leaf axils - are frequently overlooked and discarded. This wastes biological resources and reduces overall plant productivity. RESULTS To address this, subcritical water extraction was applied to extract substances from the bulbils, followed by separation and purification. As a result, two non-starch polysaccharide components, DBP1 and DBP2, were obtained, with extraction rates of 2.25% and 0.85% respectively. Subsequent research on their properties and activity showed that DBP1 (21.9 kDa) was a neutral polysaccharide mainly made of Gal and Glc, and DBP2 (109.8 kDa) was an acidic polysaccharide composed of GalA and Gal. Due to the higher yield of DBP1, its structure was studied in greater depth. Methylation experiments indicated that its main chain consisted of 1,4-Galp and 1,4,6-Glcp glycosidic bonds with branch points, consistent with nuclear magnetic resonance (NMR) results. Scanning electron microscopy revealed that DBP1 and DBP2 had distinct filamentous structures yet similar spherical morphologies. Fourier transform infrared spectroscopy and thermal analysis were used to study their functional groups and thermal stability. In activity tests, DBP1 and DBP2 both showed antioxidant activity and could inhibit α-glucosidase and α-amylase, demonstrating hypoglycemic activity. CONCLUSION In conclusion, DBP1 and DBP2, two non-starch polysaccharides, showed good antioxidant and hypoglycemic effects. They can be used as raw materials for functional foods and drugs and merit further development. Maximizing bulbil utilization promotes green, sustainable agriculture and prevents resource waste. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yu-Peng Yang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yi Tian
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chun-Nan Wen
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Miao Liu
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Jafari A, Bhatt K, Niknezhad SV, Ajji A, Griffith M, Andelfinger G, Bencherif SA, Savoji H. Synthesis and characterization of photo-cross-linkable quince seed-based hydrogels for soft tissue engineering applications. Carbohydr Polym 2025; 352:123140. [PMID: 39843050 DOI: 10.1016/j.carbpol.2024.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The convenience, versatility, and biocompatibility of photocrosslinkable hydrogel precursors make them promising candidates for developing tissue engineering scaffolds. However, the current library of photosensitive materials is limited. This study reports, for the first time, the modification of quince seed mucilage (QS) with glycidyl methacrylate (GM), resulting in the synthesis of methacrylated QS (QSGM). The chemical composition and structure of QS were analyzed. The effects of reaction time, temperature, QS concentration, and GM/QS ratio on the degree of methacrylation, as well as the physicochemical, rheological, mechanical, and biological properties of the synthesized materials were explored. Chemical characterization using 1H NMR and FTIR confirmed the successful methacrylation of QS. Hydrogels fabricated from QSGMs at a 0.5 wt% concentration exhibited high swelling ratios of 320 to 580 g/g, and compressive strengths between 0.6 ± 0.1 and 1.2 ± 0.3 kPa. No significant changes in the rheological properties of hydrogel precursors were observed. Moreover, QSGM-based hydrogels supported cell encapsulation for 14 days with minimal cytotoxicity and immune cell activation. Finally, as a proof of concept, the potential use of QSGM for 3D printing was demonstrated. Overall, the results highlight the significant potential of QSGMs as a biomaterial of choice for soft tissue engineering applications.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Azrieli Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Seyyed Vahid Niknezhad
- Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Abdellah Ajji
- CREPEC, Département de Génie Chimique, Polytechnique Montréal, Montréal, QC H3C3A7, Canada
| | - May Griffith
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2H2, Canada; Department of Ophthalmology, Faculty of Medicine, University of Montreal, QC H3T 1J4, Canada
| | - Gregor Andelfinger
- Azrieli Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States; University of Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Azrieli Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Chen L, Wang X, Sun J, Xue J, Yang X, Zhang Y. Structural characteristics of a heteropolysaccharide from Ganoderma lucidum and its protective effect against Alzheimer's disease via modulating the microbiota-gut-metabolomics. Int J Biol Macromol 2025; 297:139863. [PMID: 39814286 DOI: 10.1016/j.ijbiomac.2025.139863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.608 kDa) predominantly consisted of Glc and minor Gal. The results of GC-MS and NMR analyses indicated that the backbone of GLPZ-1 was mainly composed of 1,4-α-D-Glcp, 1,4,6-α-Glcp and a minor amount of 1,3,4-β-D-Glcp, which was substituted with complex side chains at C-6 of 1,4,6-α-D-Glcp and at C-3 of 1,3,4-β-D-Glcp. GLPZ-1 demonstrated a protective effect on AD rats by improving behavioral abnormalities, alleviating pathological damage and ameliorating levels of IL-6, IL-1β, TNF-α and Th17, which were associated with GLPZ-1 modulating the microbiota-gut-metabolomics of AD rats. GLPZ-1 regulated the gut microbiota in AD rats by increasing the abundance of Bacteroides, unclassified_Lachnospiraceae, Lactobacillus, Pediococcus, Oscillibacter, Lachnoclostridium and Bifidobacterium, while simultaneously reducing the abundance of Pseudomonas and Desulfovibrio. GLPZ-1 could regulate fecal metabolites in AD rats tending towards the normal levels. These regulated fecal metabolites belonged to fatty acid metabolism, cholesterol and bile acid metabolism, neurotransmitters and aromatic amino acid metabolism. These findings provide a preliminary research basis for the exploitation of GLPZ-1 as an effective drug to prevent and delay AD.
Collapse
Affiliation(s)
- Li Chen
- Graduate school, Jilin Institute of Chemical Technology, Jilin 132022, PR China; College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Xinyan Wang
- Graduate school, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Jiaxin Sun
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China
| | - Xiudong Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Yan Zhang
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China.
| |
Collapse
|
6
|
Chen M, Wang J. Polysaccharides from Exocarpium Citri Grandis: Graded Ethanol Precipitation, Structural Characterization, Inhibition of α-Glucosidase Activity, Anti-Oxidation, and Anti-Glycation Potentials. Foods 2025; 14:791. [PMID: 40077493 PMCID: PMC11899376 DOI: 10.3390/foods14050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The endocarp of Exocarpium Citri Grandis (ECG) is abundant in various bioactive components, such as polysaccharides; however, there are few studies on them. Thus, it is highly necessary to carry out further research on the structural characterization and biological activities of ECG polysaccharides (EPs), which are important bioactive substances. In this study, water-extracted EPs were precipitated by ethanol with final concentrations of 50%, 70%, and 90% (v/v), respectively. Three crude polysaccharides (EP50, EP70, and EP90) were fractioned successively. The three polysaccharide fractions were structurally elucidated and were investigated in vitro for their biological activities related to glucose metabolism containing inhibitory effects on α-glucosidase and non-enzymatic glycosylation and their antioxidant capacities. The main results are summarized as follows: (1) Gradient ethanol precipitation and physicochemical properties of EPs: The yields of EP50, EP70, and EP90 were 11.18%, 0.57%, and 0.18%, respectively. The total sugar contents were 40.01%, 52.61%, and 53.46%, and the uronic acid contents were 30.25%, 18.11%, and 8.17%, respectively. In addition, the three fractions had the same composition of monosaccharides, including rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid, with differences in the content of neutral and acidic monosaccharides. They all may be branched polymers and spherical conformation, and they were acidic polysaccharides containing esterified and non-esterified uronic acids, pyranose-form sugars, and glycosidic linkages of α-configuration and β-configuration, with esterification degrees of 32.25%, 28.82%, and 15.58%, respectively. Meanwhile, EP50, EP70, and EP90 were mainly amorphous, and the molecular conformation in solution was a spherical branching polymer without a triple helix structure. The EPs exhibited excellent thermal stability, with their structures remaining stable below 170 °C. (2) In terms of activity research, the results showed that EPs had a good α-glucosidase inhibitory effect with IC50 values of 1.17 mg/mL, 1.40 mg/mL, and 2.72 mg/mL, respectively, among which EP50 was the best. EP50, EP70, and EP90 displayed antioxidant activity by scavenging DPPH and ABTS radicals as well as oxygen radical absorbance capacity. Among them, EP90 had the strongest antioxidant activity. Furthermore, the EPs showed prominent effects on the inhibitory activity of non-enzymatic glycosylation. In summary, the research on the extraction of polysaccharide from ECG provides a technical reference for the further utilization of ECG resources. This study on antioxidant activity provides theoretical support for their use as a natural antioxidant. As oxidation and glycation are relevant to diabetic complications, the result of this work suggests that EPs may be effective in preventing and treating diabetic complications.
Collapse
Affiliation(s)
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| |
Collapse
|
7
|
Feng C, Cheng X, Na M, Zhang F, Duan J, Ji L, Jiang J. Green preparation of low-molecular-weight galactomannan from Gleditsia sinensis and mechanistic investigation on ameliorating nonalcoholic fatty liver disease. Food Res Int 2025; 201:115647. [PMID: 39849749 DOI: 10.1016/j.foodres.2024.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Galactomannan comes from a wide range of plant resources and has some biological activities, but its bioavailability is limited due to its large molecular weight and complex structure. In this study, three degradation methods (H2O2, ultrasound, and β-mannanase) combined with ethanol fractional precipitation (25 %, 50 %, and 75 %) were used to degrade and separate Gleditsia sinensis galactomannans (GSG), and the physicochemical properties and biological activities of GSG after degradation were analyzed. Comprehensive comparison indicates that H2O2 exhibits had a better degradation effect. After 4 h of degradation using 4 % H2O2, the yield of GSG precipitated with 50 % ethanol was 37.06 % (the yield of undigested GSG is 1.80 %). Simultaneously, the molecular weight (reduced from 225.25 to 36.87 kDa) and viscosity were significantly reduced under this condition, while the solubility was increased. In addition, the low-molecular-weight GSG (LGSG) obtained by 4 % H2O2/50 % ethanol showed the strongest free radical scavenging activity in vitro. Furthermore, the results of in vivo antioxidant assays showed that LGSG inhibited Aflatoxin B1-induced developmental toxicity by regulating gene expression in the Keap1/Nrf2 pathway. LGSG also promoted Nrf2-mediated expression of the lipid metabolism genes ppar-α and cpt1, while suppressing expression of the fatty acid synthesis genes fas and scd-1. Therefore, the liver recovered from lipid peroxidation induced nonalcoholic fatty liver disease (NAFLD). The present study introduces a method for green and efficient preparation of LGSG, indicates its potential as a nutritional product.
Collapse
Affiliation(s)
- Chi Feng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Mula Na
- Inner Mongolia Minzu Universities, Coll Anim Sci & Technol, Tongliao, Inner Mongolia 028000, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jiufang Duan
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Yang Z, Wang J, Wang H, Xie H, Zhang Y, Wang M. Simultaneous extraction and purification of polysaccharides and proteins from Pleurotus ostreatus using an aqueous two-phase system. J Food Sci 2025; 90:e17674. [PMID: 39832226 DOI: 10.1111/1750-3841.17674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P. ostreatus. The impacts of pH, inorganic salts, and temperature on ATPS phase formation were systematically evaluated. The ethanol/K₂HPO₄ system demonstrated superior selective extraction performance under optimal conditions: 25.16% ethanol (w/w), 15.91% K₂HPO₄ (w/w), and 24.11% crude extract (w/w) without pH adjustment. The highest recovery efficiency of PS and proteins were 90.29% ± 0.24% and 76.35% ± 0.15%, respectively. The simultaneous extraction efficiency of PS and proteins was 12.49% ± 0.14% and 20.34% ± 0.09%, respectively. As a comparison, hot water extraction and alkali extraction methods were performed to assess the impact of ATPS on the physicochemical properties of PS and proteins. SDS-PAGE and HPLC analyses confirmed that the protein subunit distribution was consistent across different extraction methods, whereas the ATPS-extracted PS exhibited characteristics of homogeneous heteropolysaccharides with a molecular weight of 28.8 × 10⁶ Da. Monosaccharides such as mannose, glucuronic acid, and glucose were identified in the PS hydrolysate. The results demonstrate that ATPS preserves the physicochemical integrity of the extracted substances. This method holds promise for unlocking new possibilities and has the potential to become an effective method for large-scale extraction and purification of polysaccharides and proteins from edible fungi. PRACTICAL APPLICATION: This work describes an efficient and straightforward aqueous two-phase system (ATPS) method for simultaneously extracting polysaccharides and proteins from Pleurotus ostreatus. This approach offers advantages such as reduced operational time, lower toxicity solvents, and minimized byproduct waste for the extraction of bioactive substances from edible fungi. Additionally, the reduced residue levels help to shorten subsequent purification steps. This promising method has potential applications in the food, pharmaceutical, and health product industries.
Collapse
Affiliation(s)
- Zhilai Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jingkun Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Hongyu Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Huixian Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yingnan Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Meng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Li G, Guo Q, Chen Q, Ouyang K, Xie H, Xiong H, Du Y, Zhao Q. Valorizing Arthrospira cell residues into polysaccharides: Characterization and application in yogurt. Food Chem 2024; 461:140902. [PMID: 39173264 DOI: 10.1016/j.foodchem.2024.140902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to extract and characterize polysaccharides from Arthrospira cell residue and evaluate their application in yogurt. Four Arthrospira polysaccharides (APP-50, APP-60, APP-70, and APP-80) were obtained by different ethanol concentrations. With the increase in ethanol concentration, the component peaks of polysaccharide became less and the components were simpler. The results showed that APP-60 had the highest neutral sugar content and the densest spherical structure. APP-50 had the highest protein content, the strongest antioxidant capacity, the porous structure, and the structure was incomplete. The addition of polysaccharides increased the viscosity, storage modulus, loss modulus, and particle size of yogurt, and improved the stability of yogurt during long-term storage. The microstructure of yogurt with added polysaccharides was tighter and more orderly than that of the control yogurt. This study demonstrated that Arthrospira polysaccharides could be used as functional ingredients to enhance the quality and nutritional value of yogurt.
Collapse
Affiliation(s)
- Genyuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qing Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qian Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Yulan Du
- Perfect (Guangdong) Co., Ltd., 528451, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China.
| |
Collapse
|
10
|
Chen L, Wang D, Liu W, Zhou S, Gu Q, Zhou T. Immunomodulation of exopolysaccharide produced by Lacticaseibacillus rhamnosus ZFM216 in cyclophosphamide-induced immunosuppressed mice by modulating gut microbiota. Int J Biol Macromol 2024; 283:137619. [PMID: 39551322 DOI: 10.1016/j.ijbiomac.2024.137619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
This study investigated the immunoregulatory activity of exopolysaccharides (EPS) produced by Lacticaseibacillus rhamnosus ZFM216 in immunosuppressed mice induced by cyclophosphamide (CTX). The results showed that EPS treatment effectively improved the body weight, immune organ index and splenic lymphocyte proliferation. EPS also mitigated the damage of immune organs, restored intestinal morphology, and regulated the levels of serum hemolysin and cytokines (e.g. TNF-α, INF-γ and IL-10). EPS promoted the release of NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 cells, however, such effect was inhibited in the presence of inhibitors of TLR4 and MAPKs signaling pathways-related proteins, confirming that EPS achieved the immunomodulation by activating these two signaling pathways. Additionally, EPS, as a prebiotic, effectively improved the diversity of microbial communities, regulated the relative abundance of dominant microbial communities, restored CTX-induced gut microbiota dysbiosis, and promoted the production of short chain fatty acids (SCFAs) in the gut of mice. Thus, immunoregulatory effect of EPS could be attributed to its good ability to modulate the gut microbiota. EPS produced by L. rhamnosus ZFM216 has promising application as an ingredient of functional foods due to its potent probiotic effect.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Dong Wang
- Zhejiang Chemtrue Bio-Pharm Co., Ltd. Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
11
|
Hui H, Jin H, Yang X, Wang X, Qin B. The structure elucidation, anti-aging and hypoglycemic effects of an O-acetyl mannoglucan from the bulbs of Lanzhou lily. Fitoterapia 2024; 179:106240. [PMID: 39332504 DOI: 10.1016/j.fitote.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
An O-acetyl mannoglucan (BHP-1) from Lanzhou lily bulbs was structurally elucidated using partial acid hydrolysis, GC-MS, and 2D NMR techniques (COSY, NOESY, HSQC and HMBC) built on prior research, revealing a backbone of -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp- with the most potential side chains -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp-α-D-(1 → 4)-Glcp-α-D-(1 → Glcp- and -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp-α-D-(1 → Glcp-, attached to O-2 and O-3 of glucose and mannose residues, and featuring O-acetyl groups at O-2 or O-3 position of mannose. The terminal residue was α-D-(1 → Glcp. BHP-1 demonstrated anti-aging and hypoglycemic effects, as assessed by C. elegans model and glycolytic enzyme effect in vitro, respectively. The results showed that BHP-1 dose-dependently prolonged lifespan of C. elegans by 33 % at 4 mg/mL under normal conditions, with greater extensions under thermal and oxidative stress (50 % and 80 % increases, respectively, p < 0.05), which were attributed to enhanced antioxidant enzymes (SOD and CAT) and lowered MDA levels of C. elegans. Additionally, BHP-1 exhibited remarkable inhibition on α-glucosidase (93 %) and moderate inhibition on α-amylase (53 %) at 4 mg/mL, with competitive inhibition of α-glucosidase and mixed non-competitive inhibition of α-amylase, respectively. These potential effects might be linked to BHP-1's diverse sugar linkages, higher content of Glc, and certain O-acetyl contents.
Collapse
Affiliation(s)
- Heping Hui
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, PR China
| | - Hui Jin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, PR China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Lin Z, Liu S, Wang Y, Chen J, Huang J, Huang R. Characteristics and Biological Activities of a Novel Polysaccharide R1 Isolated from Rubus chingii Hu. Foods 2024; 13:3791. [PMID: 39682863 DOI: 10.3390/foods13233791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Raspberry (Rubus chingii Hu) is a Chinese herb that is rich in nutrients and has anti-inflammatory, antibacterial, antioxidant, anti-allergic, hypoglycemic, and other effects. A water-soluble polysaccharide was extracted from raspberry by using hot water extraction then purified by DEAE-Sepharose Fast Flow column chromatography. The structural characteristics of the polysaccharide (R1) are as follows: the molar ratio of the monosaccharide composition is Ara:Gal:Xyl:Glc:Man = 31.15:27.64:13.61:13.48:10.60; the molecular weight is 32,580 Da; the methylation results show that 5-Araf is the main chain and there is a presence of 3,6-Galp, 4-Xylp, and 2,3,5-Araf branches, and that terminal Araf (T-Araf) is the major telomeric sugar. It contains α and β glycosidic bonds and is highly branched, with the presence of a helical structure. In the in vitro antioxidant assay, R1 showed the highest scavenging of superoxide anion radicals at 70.38%, followed by the scavenging of DPPH radicals at 52.9% and the scavenging of hydroxyl radicals at 29.28%. In immunomodulation and anti-cancer experiments, R1 did not significantly inhibit or promote RAW264.7 cells but was able to increase the expression of anti-inflammatory cytokines in a concentration-dependent manner. It also significantly inhibited cancer cell survival. R1 enhances immunity by limiting the proliferation of cancer cells primarily through direct inhibition while promoting the secretion of pro-inflammatory cytokines. These findings reveal the potential benefits of raspberry polysaccharides and provide evidence for developing immunologically functional products from raspberry polysaccharides.
Collapse
Affiliation(s)
- Zhier Lin
- School of Life Sciences, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, South China Normal University, Guangzhou 510631, China
| | - Sisi Liu
- School of Life Sciences, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, South China Normal University, Guangzhou 510631, China
| | - Yi Wang
- School of Life Sciences, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, South China Normal University, Guangzhou 510631, China
| | - Jianfang Chen
- School of Life Sciences, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, South China Normal University, Guangzhou 510631, China
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ruqiang Huang
- School of Life Sciences, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
13
|
Ma M, Yan F, Jing J, Chen K, Wang P, Wang C, Chen Q. Structure analysis and immunomodulatory activity of novel oligosaccharide from Nicotiana tabacum roots. Carbohydr Res 2024; 545:109303. [PMID: 39488882 DOI: 10.1016/j.carres.2024.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
A novel oligosaccharide (NTRP60-W-2) with an average molecular weight of 1377 Da was isolated and purified from Nicotiana tabacum roots. Its structural characteristics and immunomodulatory properties were investigated. Structural analysis revealed that NTRP60-W-2 was composed exclusively of glucose, featuring →1)-α-D-Glcp-(6→ backbone. Immunological assays demonstrated that NTRP60-W-2 significantly enhanced cell viability, nitric oxide production and cytokine secretion (IL-6 and TNF-α) in RAW264.7 cells. These findings provide a foundation for further exploration of Nicotiana tabacum carbohydrates and their potential biological activities.
Collapse
Affiliation(s)
- Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Fengdie Yan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Jing Jing
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Kunyan Chen
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Peng Wang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China
| | - Changguo Wang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co. Ltd., Chongqing, 400060, PR China.
| | - Qianfeng Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
14
|
Yang Q, Chang SL, Tian YM, Li W, Ren JL. Glucan polysaccharides isolated from Lactarius hatsudake Tanaka mushroom: Structural characterization and in vitro bioactivities. Carbohydr Polym 2024; 337:122171. [PMID: 38710561 DOI: 10.1016/j.carbpol.2024.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with β-(1,3)-Glcp as the main chain and β-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Song-Lin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yi-Ming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jia-Li Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
15
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Su Z, Liu Y, Kang L, Chang X, Tan X, Shen D, Wang X, Wang HH, Li G. Physicochemical and antioxidant properties of pectin fractions extracted from lemon (Citrus Eureka) peels. Int J Biol Macromol 2024; 268:132014. [PMID: 38697443 DOI: 10.1016/j.ijbiomac.2024.132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yuchen Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xue Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
17
|
Guo P, Chen M, Wang W, Li Q, Chen X, Liang J, He Y, Wu Y. Exploration of Polysaccharides from Phyllanthus emblica: Isolation, Identification, and Evaluation of Antioxidant and Anti-Glycolipid Metabolism Disorder Activities. Molecules 2024; 29:1751. [PMID: 38675571 PMCID: PMC11052227 DOI: 10.3390/molecules29081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllanthus emblica is a natural medicinal herb with diverse bioactivities. Certain extracts from this herb have been confirmed to possess anti-glycolipid metabolic disorder activity. To further develop its utility value and explore its potential in combating glycolipid metabolic disorders, we designed a series of experiments to investigate the structure, antioxidant activity, and anti-glycolipid metabolic disorder activity of Phyllanthus emblica polysaccharides. In this study, we extracted and purified polysaccharides from Phyllanthus emblica and thoroughly analyzed their structure using various techniques, including NMR, methylation analysis, and surface-enhanced Raman spectroscopy. We investigated the hypolipidemic and anti-glycolipid metabolism disorder activity of Phyllanthus emblica polysaccharides for the first time utilizing oleic acid (OA) and advanced glycation end products (AGEs) as inducers. Additionally, the antioxidant activity of Phyllanthus emblica polysaccharides was assessed in vitro. These findings lay the groundwork for future investigations into the potential application of Phyllanthus emblica polysaccharides as an intervention for preventing and treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Wu
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
18
|
Huang W, Xie Y, Guo T, Dai W, Nan L, Wang Q, Liu Y, Lan W, Wang Z, Huang L, Gong G. A new perspective on structural characterisation and immunomodulatory activity of arabinogalactan in Larix kaempferi from Qinling Mountains. Int J Biol Macromol 2024; 265:130859. [PMID: 38490389 DOI: 10.1016/j.ijbiomac.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
In this study, crude polysaccharide (LAG-C) and homogeneous arabinogalactan (LAG-W) were isolated from Qinling Larix kaempferi of Shaanxi Province. Bioactivity assays showed that LAG-W and LAG-C enhanced the phagocytic ability, NO secretion, acid phosphatase activity, and cytokine production (IL-6, IL-1β, and TNF-α) of RAW264.7 macrophages. Notably, LAG-W exhibited a significantly stronger immunomodulatory effect than LAG-C. The primary structure of LAG-W was characterised by chemical methods (monosaccharide composition, methylation analysis, and alkali treatment) and spectroscopic techniques (gas chromatography-mass spectrometry, high-performance liquid chromatography-mass spectrometry, and 1D/2D nuclear magnetic resonance). LAG-W was identified as a 22.08 kilodaltons (kDa) neutral polysaccharide composed of arabinose and galactose at a 1:7.5 molar ratio. Its backbone consisted of repeated →3)-β-Galp-(1→ residues. Side chains, connected at the O-6 position, were mainly composed of T-β-Galp-(1→ and T-β-Galp-(1→6)-β-Galp-(1→ residues. And it also contained small amounts of T-β-Arap-(1→, T-α-Araf-(1→6)-β-Galp-(1→6)-β-Galp-(1→, and T-α-Araf-(1→3)-α-Araf-(1→6)-β-Galp-(1→ residues. By structurally and functionally characterising L. kaempferi polysaccharides, this study opens the way for the valorisation of this species.
Collapse
Affiliation(s)
- Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutao Xie
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tongyi Guo
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Dai
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Linhua Nan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenxian Lan
- The Core Facility Centre of CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Hou S, Zhang D, Yu D, Li H, Xu Y, Wang W, Li R, Feng C, Meng J, Xu L, Cheng Y, Chang M, Geng X. Effect of Different Drying Methods on the Quality of Oudemansiella raphanipes. Foods 2024; 13:1087. [PMID: 38611391 PMCID: PMC11011357 DOI: 10.3390/foods13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, we used fresh Oudemansiella raphanipes as raw materials and pre-treated through hot air drying (HD), infrared radiation drying (ID), and vacuum freeze drying (VD) to investigate the effects of different drying methods on the rehydration rate, appearance quality, microstructure, and volatile flavor components of the dried products, as well as to determine the physicochemical properties and bioactivities of the polysaccharides in the dried O. raphanipes. The results showed that the VD O. raphanipes had the highest rehydration rate and the least shrinkage in appearance, and it better maintained the original color of the gills, but their aroma was not as strong as that of the HD samples. The scanning electron microscopy results indicate that VD maintains a good porous structure in the tissue, while HD and ID exhibit varying degrees of shrinkage and collapse. Seventy-five common volatile substances were detected in the three dried samples, mainly alkanes, alcohols, and esters. The polysaccharides (PS-H, PS-I, and PS-V) extracted from the dried samples of these three species of O. raphanipes had similar infrared spectral features, indicating that their structures are basically consistent. The highest yield was obtained for PS-V, and the polysaccharide content and glucuronic acid content of PS-I were higher than those of the remaining two polysaccharides. In addition, PS-V also showed better antioxidant activity and inhibitory activity against α-glucosidase as well as α-amylase. In conclusion, among the above three drying methods, the quality of O. raphanipes obtained by vacuum freeze drying is the best, and this experiment provides a theoretical basis for the selection of drying methods for O. raphanipes.
Collapse
Affiliation(s)
- Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Dongmei Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Hao Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Ruiting Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
20
|
Sathiyabama M, Boomija RV, Muthukumar S, Gandhi M, Salma S, Prinsha TK, Rengasamy B. Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice. Sci Rep 2024; 14:7381. [PMID: 38548964 PMCID: PMC10978976 DOI: 10.1038/s41598-024-58066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
The aim of the present work is to biosynthesize Chitosan nanoparticles (CTNp) using tea (Camellia sinensis) extract, with potent antimicrobial properties towards phytopathogens of rice. Preliminary chemical analysis of the extract showed that they contain carbohydrate as major compound and uronic acid indicating the nature of acidic polysaccharide. The structure of the isolated polysaccharide was analyzed through FTIR and 1H NMR. The CTNp was prepared by the addition of isolated tea polysaccharides to chitosan solution. The structure and size of the CTNp was determined through FTIR and DLS analyses. The surface morphology and size of the CTNp was analysed by SEM and HRTEM. The crystalinity nature of the synthesized nanoparticle was identified by XRD analysis. The CTNp exhibited the antimicrobial properties against the most devastating pathogens of rice viz., Pyricularia grisea, Xanthomonas oryzae under in vitro condition. CTNp also suppressed the blast and blight disease of rice under the detached leaf assay. These results suggest that the biosynthesized CTNp can be used to control the most devastating pathogens of rice.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - R V Boomija
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - S Muthukumar
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Gandhi
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - S Salma
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - T Kokila Prinsha
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - B Rengasamy
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| |
Collapse
|
21
|
Wang L, Zhang Z, Zhao W, Lin C, Zhou X, Pang H, Qin G, Li H, Ma B. Physicochemical, rheological, antioxidant and immunological properties of four novel non-inulin (poly)saccharides from Asparagus cochinchinensis. Int J Biol Macromol 2024; 258:129034. [PMID: 38151080 DOI: 10.1016/j.ijbiomac.2023.129034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
The impacts of four extraction techniques, including hot water, ultrasonic-assisted, complex enzyme-assisted and acid-assisted methods, on the morphological, physicochemical properties and bioactivities of Asparagus cochinchinensis (poly)saccharides (EACP, WACP, UACP, and AACP) were investigated and compared. The four samples were mainly composed of glucose, fructose, and galactose with molar ratios of 50.8:22.7:4.4 for WACP, 53.9:26.0:5.3 for UACP, 35.6:14.1:21.4 for AACP and 45.0:15.6:9.0 for EACP, respectively. The rheological result showed that ACPs were non-Newtonian fluids. EACP with high purity (97.65 %) had good DPPH, O2- and ABTS+ radical scavenging activities, and significantly promoted the proliferation of the RAW264.7 cells at low concentration. UACP had good Fe2+ chelating ability, radical (DPPH, O2- and OH) scavenging activities, which might be attributed to the existence of triple-helix structure. AACP had high yield, molecular weight (17,477.2 Da), high crystallinity (23.33 %), and good radical (OH and ABTS+) scavenging activities. All four significantly stimulated the transcript expression levels of TNF-α, IL-1β and IL-6, as determined by RT-PCR. These results suggest that the exploitation and utilization of non-inulin (poly)saccharides extracted by ultrasonic-assisted, complex enzyme-assisted and acid-assisted extraction methods are potentially valuable as effective and natural immune adjuvants and antioxidants.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiqiang Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wanlin Zhao
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoyang Lin
- High and New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Xianyu Zhou
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huili Pang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Guangyong Qin
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Li
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bingji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
22
|
Kostecka-Gugała A. Quinces ( Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants (Basel) 2024; 13:71. [PMID: 38247495 PMCID: PMC10812678 DOI: 10.3390/antiox13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the evaluation of many plant-derived compounds as potential new drugs or functional foods has become an active research topic. The morphological characteristics of quinces of the genera Cydonia sp., Chaenomeles sp., and Pseuocydonia sp. are largely similar, which is why these fruits are often confused. Although they have been appreciated in Asia for centuries as a valuable component of local ethnomedicine, they are less known in Western countries, and scientific knowledge about their health benefits remains fragmentary. This literature review summarizes studies on the content of chemical compounds responsible for the health-promoting and functional properties of the quince fruit. It focuses on the content of carotenoids, vitamins, minerals, and carboxylic acids, although the main emphasis is on the content and diversity of bioactive polyphenols, which are extremely abundant in these fruits. The quince fruits are rich in antioxidants and compounds with proven anti-inflammatory, anticancer, antiallergic, and immunomodulatory effects. Their phytochemicals effectively regulate glycemia and improve the blood lipid profile, suggesting potential antidiabetic and cardioprotective benefits. Analysis of chemical characteristics showed that the Chaenomeles fruits. are underestimated as functional food ingredients. Studies on the molecular effects of their bioactive compounds and species-specific genomic analyses are sorely lacking in the scientific literature.
Collapse
Affiliation(s)
- Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
23
|
Yuan S, Zhang M, Yao Z, Liu J, Li X, Zhang Z, Li D. Isolation, structural characterization, and bioactivities of neutral polysaccharides from Zizania latifolia. Int J Biol Macromol 2024; 254:127679. [PMID: 37890741 DOI: 10.1016/j.ijbiomac.2023.127679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/01/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The swollen culm (also known as Jiaobai) of Zizania latifolia is formed by the smut Ustilago esculenta invades the Z. latifolia. The new tissue formed due to the symbiotic relationship has entices the attention of researchers to study its polysaccharide structure along with biological evaluation. Five fractions of polysaccharides were obtained owing to hot water extraction, alcoholic precipitation, and chromatographic purification. Bioactivity assays showed that ZLPs have good antioxidant, hypoglycemic activities and protective activity against oxidative damage. The ZLP-1 and ZLP-2 were determined to be neutral polysaccharides with high purity, exhibiting propitious bioactivity, consequently they were subjected to indispensable structural characterization. These results showed that ZLP-1 has molecular weight (Mw) of 103 kDa and glucose (Glc) (76.68 %) as the primary monosaccharide; the ZLP-2 has Mw of 122 kDa and galactose (Gal) (41.04 %) and arabinose (Ara) (27.12 %). Structural elucidation by methylation and nuclear magnetic resonance (NMR) analysis suggested ZLP-1 is a glucan, with →3)-β-Glcp-(1→3)-β-Glcp-(1→4)-β-Glcp-(1→4)-β-Glcp-(1→3,6)-β-Galp-(1→3)-β-Glcp-(1→ as the mainchain and the terminal Araf and Glcp; the ZLP-2 is a Galactoxylan, with →3,4)-β-xylp-(1→3)-β-Galp-(1→3,6)-β-Galp-(1→3,6)-β-Galp-(1→ as the mainchain and the terminal Araf and Glcp. The structural arrangements provide a chemical basis for understanding the nutritional and pharmacological activities of polysaccharides from Zizania latifolia.
Collapse
Affiliation(s)
- Shuwei Yuan
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China; Pharmacy Department, Children's Hospital of Soochow University, Suzhou 215123, PR China
| | - Miaomiao Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhen Yao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Jiangyun Liu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| | - Xiang Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
24
|
Zhang Z, Wang L, Zeng D, Ma X, Wang H. Preparation, identification, and application of PEG/ZIF-8@ Dendrobium huoshanense polysaccharide as an adjuvant to enhance immune responses. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109038. [PMID: 37678477 DOI: 10.1016/j.fsi.2023.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles loaded with polysaccharides are excellent drug-delivery carriers with high loading capacity and pH sensitivity. This study describes the one-step encapsulation of Dendrobium huoshanense polysaccharides (DHP) in ZIF-8. The resultant PEG6000/ZIF-8@DHP complex exhibited drug release properties in acidic microenvironments, possessed water solubility, demonstrated high drug loading capacity, and displayed effective encapsulation. The effects of PEG6000/ZIF-8@ DHP administration on immunoregulation, antioxidant activities, and resistance against Aeromonas veronii in channel catfish were assessed. The study revealed that the PEG6000/ZIF-8@DHP complex stimulated cellular proliferation and phagocytosis, while also inducing the production of cytokines and nitric oxide. Additionally, the complex exhibited improved antioxidant properties and increased serum lysozyme and alkaline phosphatase activities. PEG6000/ZIF-8@DHP exhibited efficacy in vivo against Aeromonas veronii infection. These results indicate that PEG6000/ZIF-8@DHP is an efficient immunostimulant and vaccine adjuvant for enhancing immunity in channel catfish.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, 450001, Henan Province, China
| | - Dai Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Xia Ma
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China.
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China.
| |
Collapse
|
25
|
Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res 2023; 46:825-854. [PMID: 38062238 DOI: 10.1007/s12272-023-01475-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Chaenomeles plants belong to the Rosaceae family and include five species, Chaenomeles speciosa (Sweet) Nakai, Chaenomeles sinensis (Thouin) Koehne, Chaenomeles japonica (Thunb.) Lindl, Chaenomeles cathayensis (Hemsl.) Schneid and Chaenomeles thibetica Yu. Chaenomeles plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the Chaenomeles genus, and all Chaenomeles species except for C. japonica are indigenous to China. Chaenomeles spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus Chaenomeles exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus Chaenomeles to serve as a valuable reference for further investigations.
Collapse
Affiliation(s)
- Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
26
|
Ke J, Zhang Y, Wang X, Sun J, Wang S, Ma Y, Guo Q, Zhang Z. Structural characterization of cell-wall polysaccharides purified from chayote ( Sechium edule) fruit. Food Chem X 2023; 19:100797. [PMID: 37780328 PMCID: PMC10534154 DOI: 10.1016/j.fochx.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
Chayote (Sechium edule), an underutilized cucurbit vegetable crop, has gained attention as it exhibits health-promoting properties. However, the primary structure of chayote cell-wall polysaccharides has not been comprehensively studied. In this study, two cell-wall polysaccharides, CP-1 (41.1 KDa) and CP-2 (15.6 KDa), were extracted from chayote, and the structural analysis of CP-1 and CP-2 was carried out by monosaccharide composition analysis, Fourier transform infrared spectroscopy (FTIR), methylation analysis, and nuclear magnetic resonance spectroscopy (NMR). The results demonstrated that CP-1 was a galactan, and CP-2 was an anionic heteropolysaccharide composed of galacturonic acid, galactose, arabinose, rhamnose, glucose, glucuronic acid, mannose, and xylose in the molar ratio of 31.2:26.3:24.9:7.4:6.5:1.9:1.3:0.5. CP-2 has a backbone of → 4)-β-d-Galp-(1 → 3,6)-β-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-α-d-GalpA-(1→, with branches at O-6 of → 3,6)-β-d-Galp-(1→, consisting of α-l-Araf-(1 → 5)-α-l-Araf-(1 → 4)-β-d-Glcp-(1 →. Analysis of the structural and physicochemical properties confirmed the excellent application characteristics of CP-1 and CP-2. Hence, cell-wall polysaccharides of chayote could be used as new polysaccharides materials.
Collapse
Affiliation(s)
- Jingxuan Ke
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yuhao Zhang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jing Sun
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Siqi Wang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yanli Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
27
|
Jin Y, Chen L, Yu Y, Hussain M, Zhong H. Bioactive Components in Fruit Interact with Gut Microbes. BIOLOGY 2023; 12:1333. [PMID: 37887043 PMCID: PMC10604038 DOI: 10.3390/biology12101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fruits contain many bioactive compounds, including polysaccharides, oligosaccharides, polyphenols, anthocyanins, and flavonoids. All of these bioactives in fruit have potentially beneficial effects on gut microbiota and host health. On the one hand, fruit rich in active ingredients can act as substrates to interact with microorganisms and produce metabolites to regulate the gut microbiota. On the other hand, gut microbes could promote health effects in the host by balancing dysbiosis of gut microbiota. We have extensively analyzed significant information on bioactive components in fruits based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Although the deep mechanism of action of bioactive components in fruits on gut microbiota needs further study, these results also provide supportive information on fruits as a source of dietary active ingredients to provide support for the adjunctive role of fruits in disease prevention and treatment.
Collapse
Affiliation(s)
- Yuanyuan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, Sanya 572011, China;
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| |
Collapse
|
28
|
Zhao Y, Chen J, Ding Y, Luo M, Tong Y, Hu T, Wei Y. A Novel Polysaccharide from Sargassum weizhouense: Extraction Optimization, Structural Characterization, Antiviral and Antioxidant Effects. Antioxidants (Basel) 2023; 12:1832. [PMID: 37891911 PMCID: PMC10604564 DOI: 10.3390/antiox12101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens in the global swine industry over the past three decades. There is no licensed antiviral medication that can effectively control this infection. In the present study, the structure of SP-1 isolated and purified from Sargassum weizhouense was analyzed, and its antioxidant capacity and antiviral effect in MARC-145 cells against PRRSV were investigated. The results showed that SP-1 is a novel polysaccharide which mainly is composed of →4)-β-D-ManpA-(1→, →4)-α-L-GulpA-(1→ and a small amount of →4)-β-D-GalpA-(1→. PRRSV adsorption, replication, and release were all suppressed by SP-1. SP-1 therapy down-regulated mRNA expression of the CD163 receptor while increasing the antioxidant gene expression of Nrf2, TXNIP, and HO-1; increasing the protein expression of NQO1 and HO-1; and drastically reducing the protein expression of p-p65. The findings indicated that SP-1 reduces PRRSV adsorption, replication, and release through blocking the expression of the crucial CD163 receptor during infection. Meanwhile, SP-1 exerts antioxidant effects in PRRSV-infected cells through the activation of the Nrf2-HO1 signaling pathway.
Collapse
Affiliation(s)
- Yi Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Jiaji Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Yiqu Ding
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Mengyuan Luo
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Yanmei Tong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
| | - Tingjun Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.Z.); (J.C.); (Y.D.); (M.L.); (Y.T.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| |
Collapse
|
29
|
Zhang Z, Wang L, Zeng D, Ma X, Wang H. Lotus-Flower- and Lotus-Seedpod-Derived Polysaccharide: Structural Characterization and Biological Activity. Polymers (Basel) 2023; 15:3828. [PMID: 37765682 PMCID: PMC10536264 DOI: 10.3390/polym15183828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 09/29/2023] Open
Abstract
Lotus flower polysaccharide (LFP) and lotus seedpod polysaccharide (LSP) were separated by water extract-alcohol precipitation, and their structures and biological activities were investigated. The results of monosaccharide composition showed that LFP and LSP were composed of nine monosaccharides, fucose, rhamnose, arabinose, glucose, galactose, mannose, fructose, galacturonic acid, and glucuronic acid, with the molar percentages of 0.18: 0.43: 2.26: 45.22: 32.14: 4.28: 8.20: 6.28: 1.01 and 2.70: 1.02: 8.15: 45.63: 20.63: 1.44: 2.59: 16.45. LSP and LFP exhibited molecular weights of 9.37 × 104 Da and 1.24 × 106 Da, respectively. SEM showed that LFP and LSP have similar structures; XRD analysis showed that both polysaccharides had crystalline structure and amorphous structure. The results of ABTS+, DPPH, hydroxyl radical scavenging experiment, and a reducing power experiment showed that LFP and LSP had good antioxidant capacity. Cell viability findings showed that polysaccharide concentrations of lotus flower and lotus seedpod could enhance cellular proliferation ranging from 25 to 400 μg/mL without cytotoxicity. By inducing the production of crucial proteins in the TLR4/NF-κB pathway, LFP and LSP were able to induce autophagy in RAW264.7, according to the results of the RT-PCR and Western blotting assays.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450045, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dai Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450045, China
| | - Xia Ma
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450045, China
| |
Collapse
|
30
|
Zhang J, Xu X, Liu X, Chen M, Bai B, Yang Y, Bo T, Fan S. The Separation, Purification, Structure Identification, and Antioxidant Activity of Elaeagnus umbellata Polysaccharides. Molecules 2023; 28:6468. [PMID: 37764243 PMCID: PMC10534330 DOI: 10.3390/molecules28186468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In order to investigate the antioxidant activity of Elaeagnus umbellata polysaccharides, the physicochemical characteristics of purified Elaeagnus umbellata polysaccharides (EUP, consisting of two fractions, EUP1 and EUP2) were investigated using UV spectrophotometry, high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), and Fourier transform infrared spectroscopy (FT-IR). This revealed that EUP1 and EUP2 were acidic polysaccharides with an average molecular weight (MW) of 63 and 38 kDa, respectively. EUP1 mainly consisted of L-rhamnose and D-galactose in a molar ratio of 2.05:1, and EUP2 consisted of D-mannose, L-rhamnose, D-galactose, and D-arabinose in a molar ratio of 2.06:1:2.78:1. Furthermore, EUP exhibited considerable antioxidant potential for scavenging hydroxyl, superoxide anion, DPPH, and ABTS radicals. Therefore, EUP can be developed as a potential antioxidant for the functional food or pharmaceutical field.
Collapse
Affiliation(s)
- Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Xin Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Xinyi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Min Chen
- Shanxi Food Research Institute, Co., Ltd., Taiyuan 030024, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
31
|
Bakky MAH, Tran NT, Zhang M, Zhang Y, Liang H, Wang Y, Zhang Y, Ma H, Zheng H, Li S. In vitro fermentation of Gracilaria lemaneiformis and its sulfated polysaccharides by rabbitfish gut microbes. Int J Biol Macromol 2023; 246:125561. [PMID: 37364810 DOI: 10.1016/j.ijbiomac.2023.125561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
This study intended to characterize the Gracilaria lemaneiformis (SW)-derived polysaccharide (GLP) and explore the fermentation aspects of SW and GLP by rabbitfish (Siganus canaliculatus) intestinal microbes. The GLP was mainly composed of galactose and anhydrogalactose (at 2.0:0.75 molar ratio) with the linear mainstay of α-(1 → 4) linked 3,6-anhydro-α-l-galactopyranose and β-(1 → 3)-linked galactopyranose units. The in vitro fermentation results showed that the SW and GLP could reinforce the short-chain fatty (SCFAs) production and change the diversity and composition of gut microbiota. Moreover, GLP boosted the Fusobacteria and reduced the Firmicutes abundance, while SW increased the Proteobacteria abundance. Furthermore, the adequacy of feasibly harmful bacteria (such as Vibrio) declined. Interestingly, most metabolic processes were correlated with the GLP and SW groups than the control and galactooligosaccharide (GOS)-treated groups. In addition, the intestinal microbes degrade the GLP with 88.21 % of the molecular weight reduction from 1.36 × 105 g/mol (at 0 h) to 1.6 × 104 g/mol (at 24 h). Therefore, the findings suggest that the SW and GLP have prebiotic potential and could be applied as functional feed additives in aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
32
|
Ermiş IS, Deveci E, Aşır F. Effects of Quince Gel and Hesperidin Mixture on Experimental Endometriosis. Molecules 2023; 28:5945. [PMID: 37630196 PMCID: PMC10458919 DOI: 10.3390/molecules28165945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVES Endometriosis (EM) is the presence of endometrial tissue outside the uterus. This study aimed to examine the effects of quince gel and hesperidin treatment on uterine tissue in an experimental endometriosis model. MATERIALS AND METHODS Thirty-two rats were categorized into four groups as sham, EM, EM+quince gel (QG), and EM+QG+Hesperidin (HES). The endometriosis (EM) model was induced with surgical intervention. Estradiol benzoate (EB) was used to induce endometrial hyperplasia. In the EM group, EB was given to rats for 7 days. The EM+QG group received 2 cc QG for 21 days. HES treatment was given for 21 days after EM induction. At the end of the experiment, blood was taken from the animals and the serum total antioxidant status (TAS) and total oxidant status (TOS) values were studied. Uterine tissues were dissected and processed for histological paraffin embedding. Tissues were fixed in 4% glutaraldehyde solution and processed for ultrastructural analysis. RESULTS After EM, QG and HES treatment significantly increased the TAS and decreased the TOS value. EM caused epithelial and glandular degeneration, thinning of the basal membranes, and vascular dilatation with increased fibrosis and edema. QG+HES restored the pathology and showed protective effects in uterine tissues. Caspase-3 expression was increased in the epithelium, glands, and muscle layers of the EM group. In EM+QG+HES, hesperidin protected cell survival and decreased Caspase-3 expression in uterine tissues. TNF-α expression was intense in inflammatory cells and the muscle layer in the EM group. HES reduced inflammation by decreasing the TNF-α expression. MAPK expression was increased after EM induction in epithelial, glandular, and inflammatory cells in the EM group. After HES treatment, MAPK expression was mainly negative in cells of uterine tissue in the EM+QG+HES group. Ultrastructurally, in the EM group, organelles were disrupted and dilated and degenerated after EM induction. QG and HES treatment improved cellular organelles. CONCLUSION Local vaginal applications can be an alternative treatment method in the endometriosis model via QG+HES treatment promoting cell proliferation and angiogenesis and preventing cell death.
Collapse
Affiliation(s)
- Işılay Sezen Ermiş
- Department of Gynecology and Obstetrics, Medical Faculty, Harran University, Şanlıurfa 63050, Turkey
| | - Engin Deveci
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır 21280, Turkey; (E.D.); (F.A.)
| | - Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır 21280, Turkey; (E.D.); (F.A.)
| |
Collapse
|
33
|
Kong T, Liu S, Feng Y, Fan Y, Yu J, Zhang H, Cai M, Ma H, Duan Y. Slit dual-frequency ultrasound-assisted pulping of Lycium barbarum fresh fruit to improve the dissolution of polysaccharides and in situ real-time monitoring. ULTRASONICS SONOCHEMISTRY 2023; 98:106509. [PMID: 37406542 PMCID: PMC10422114 DOI: 10.1016/j.ultsonch.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.
Collapse
Affiliation(s)
- Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute Co., Ltd, Zhongning 755100, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Nourse Pet Nutrition Jiangsu Research Institute, Zhenjiang 212009, China.
| |
Collapse
|
34
|
Hou S, Tan M, Chang S, Zhu Y, Rong G, Wei G, Zhang J, Zhao B, Zhao QS. Effects of different processing (Paozhi) on structural characterization and antioxidant activities of polysaccharides from Cistanche deserticola. Int J Biol Macromol 2023:125507. [PMID: 37355072 DOI: 10.1016/j.ijbiomac.2023.125507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
In this study, five polysaccharides were extracted from processed Cistanche deserticola. The processing included crude product, enzymatic hydrolysis, hot air drying, stir-baking with wine and high-pressure steaming, and these polysaccharides were named as CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs and HPS-CDPs, respectively. The structural characteristics and biological activities were explored. The results showed that processing changed properties of C. deserticola polysaccharides. CP-CDPs had the highest brightness value L*(93.84) and carbohydrate content (61.27 %). EH-CDPs had minimum Mw (1531.50 kDa), while SBW-CDPs had maximum Mw (2526.0 kDa). Glucose was major predominant monosaccharide in CP-CDPs (89.82 %), HAD-CDPs (79.3 %), SBW-CDPs (59.41 %) and HPS-CDPs (63.86 %), while galactose was major monosaccharide in EH-CDPs (29.44 %). According to SEM, SBW-CDPs showed compact structures, while HPS-CDPs and HAD-CDPs had similar looser structure than SBW-CDPs; meanwhile, CP-CDPs showed irregular agglomeration shape and EH-CDPs was dense blocky shape. The AFM showed SBW-CDPs had the largest molecular chain than other polysaccharides. When scavenging activity reaching 50 %, the concentrations of CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs, HPS-CDPs are 2.25, 0.25, 0.75, 1.8 and 1.5 mg/mL, respectively. This study sheds light on the effects of traditional Chinese medicine processing on characteristics, bioactivities of C. deserticola polysaccharides, and provides the basis for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shoubu Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Senlin Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guang Rong
- HiperCog Group, Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Gaojie Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinyu Zhang
- Inner Mongolia Alashan Cistanche Co. ltd, Alashanzuoqi, Inner Mongolia 750306, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
35
|
Zhang T, Huang D, Liu X, Chen F, Liu Y, Jiang Y, Li D. Antioxidant activity and semi-solid emulsification of a polysaccharide from coffee cherry peel. Int J Biol Macromol 2023:125207. [PMID: 37276904 DOI: 10.1016/j.ijbiomac.2023.125207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
In order to further improve the economic benefits of the coffee industry chain, we carried out the following systematic research on processing by-products. In this research, the obtained coffee cherry peel polysaccharide (CCP) which was removed from the coffee cherry peel by hot acid method had a galacturonic acid content of 20.50 % and a molecular weight of 3.05 kg/mol. According to the results of monosaccharide analysis, Fourier transform infrared spectroscopy, molecular weight distribution, and thermal analysis, CCP was a typical high methoxy polysaccharide. In vitro antioxidant results showed that CCP had better antioxidant capacity than commercial citrus polysaccharide (APC). When it came to emulsification performance, the water-oil bonding ability and disturbance resistance to the fluid of CCP were also significantly higher than that of APC. Specially, we found that 0.50 % (wt%) CCP could form a solid-liquid gel with very high plasticity at low oil phase fraction. In conclusion, the coffee cherry peel could be used as a natural source of a novel emulsifier, providing a promising alternative for polysaccharide in the food industry.
Collapse
Affiliation(s)
- Tianjun Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Xianyu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Fabin Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China..
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China..
| |
Collapse
|
36
|
Li Y, Guo X, Zhong R, Ye C, Chen J. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: Cell antioxidant, anticancer and immune-modulatory activities. Int J Biol Macromol 2023:125204. [PMID: 37271268 DOI: 10.1016/j.ijbiomac.2023.125204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polysaccharides LNP-1 and LNP-2 were extracted and purified from Lepista nuda, and their structural characteristics and biological activities were evaluated. The molecular weights of LNP-1 and LNP-2 were determined to be 16,263 Da and 17,730 Da, respectively. The monosaccharide composition analysis showed that LNP-1 and LNP-2 were composed of fucose, mannose, glucose, and galactose in a molar ratio of 1.00:2.42:1.09:4.04 and 1.00:2.39:1.61:4.23, respectively. The structure analysis revealed that these two polysaccharides were mainly composed of T-Fuc, T-Man, T-Glc, 1,6-Glc 1,6-Gal, and 1,2,6-Man, 1,2,6-Gal. Additionally, LNP-2 contained an additional 1,4-Glc glycosidic linkage in comparison to LNP-1. Both LNP-1 and LNP-2 exhibited anti-proliferation effects on A375 cells, but not on HepG2 cells. Furthermore, LNP-2 showed better cellular antioxidant activity (CAA) than LNP-1. RT-PCR results indicated that LNP-1 and LNP-2 could induce macrophages to secrete immune-modulatory factors NO, IL-6, and TNF-α by regulating their mRNA expression. Overall, this study provides a theoretical basis for the further development of the structure-function relationship of polysaccharides from L. nuda.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuxiang Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changming Ye
- Era Biotechnology(Shenzhen)Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
37
|
Jiang XL, Ma GF, Zhao BB, Meng Y, Chen LL. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng. Front Pharmacol 2023; 14:1190233. [PMID: 37256230 PMCID: PMC10225580 DOI: 10.3389/fphar.2023.1190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polysaccharides are important components of Panax notoginseng that contribute to its immunomodulatory ability. This study aimed to isolate polysaccharides from notoginseng and investigate the structural feature and potential immunomodulatory activity. Methods: The polysaccharide was isolated from notoginseng by anion exchange and gel permeation chromatography. Its preliminary structure was characterized by Fourier transform infrared (FT-IR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The immunoregulatory function was further investigated in cyclophosphamide induced immunosuppressive mice, murine splenocytes and macrophages. Results: A novel homogeneous polysaccharide (PNPB1) was isolated from notoginseng with the molecular weight of 9.3 × 105 Da. Monosaccharide composition analysis indicated that PNPB1 consisted of Glc (88.2%), Gal (9.0%), Ara (2.4%) and trace GlcA, with the major backbone of (1→4)-linked α-Glcp, (1→6)-linked β-Glcp, and (1, 4→6)-linked β-Glcp. The polysaccharide was found to significantly enhance murine body weight, improve their thymus and spleen indices and increase the white blood cells (WBC). PNPB1 significantly enhanced splenic lymphocyte proliferation, NO and cytokine (TNF-α, IL-2, IL-10 and IFN-γ) production, as well as the phagocytosis and TLR2 expression of peritoneal macrophages, indicating potent immunoenhancement effect. Discussion: These findings provide a theoretical basis for elucidating the structure and immune activity of notoginseng polysaccharides.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Gai-Fan Ma
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
38
|
Wang Z, Ma X, Shi S, He S, Li J, Wilson G, Cai W, Liu L. Structural Characterization and Anti-Inflammatory Activity of a Novel Polysaccharide from Duhaldea nervosa. Polymers (Basel) 2023; 15:polym15092081. [PMID: 37177224 PMCID: PMC10180711 DOI: 10.3390/polym15092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In the present study, a novel water-soluble polysaccharide (DNP-1) was isolated and purified from the root of Duhaldea nervosa via column chromatography. Structural analyses indicated that DNP-1 had a linear backbone consisting of (2→1)-linked β-D- fructofuranosyl residues, ending with a (2→1) bonded α-D-glucopyranose. DNP-1 was a homogeneous polysaccharide with an average molecular weight of 3.7 kDa. Furthermore, the anti-inflammatory activity of DNP-1 was investigated in vitro. The concentration of pro-inflammatory cytokines, including NO, TNF-α, MCP-1, IL-2, and IL-6, in the DNP-1 treatment group was suppressed in LPS-induced RAW 264.7 cells. DNP-1 was able to improve inflammatory injury by inhibiting the secretion of pro-inflammatory cytokines. These investigations into this polysaccharide from the root of Duhaldea nervosa provide a scientific basis for the further development of this plant. The results indicate that this Duhaldea nervosa polysaccharide could be used as a potential natural source for the treatment of inflammatory injury.
Collapse
Affiliation(s)
- Ziming Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Silin Shi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuo He
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Jian Li
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Cai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lianghong Liu
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
39
|
Liu J, Zhang Z, Deng Y, Sato Y, Wu D, Chen G. Coupling methane and bioactive polysaccharide recovery from wasted activated sludge: A sustainable strategy for sludge treatment. WATER RESEARCH 2023; 233:119775. [PMID: 36871381 DOI: 10.1016/j.watres.2023.119775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioactive polysaccharides (PSs) are valuable resources that can be extracted from waste activated sludge (WAS). The PS extraction process causes cell lysis that may enhance hydrolytic processes during anaerobic digestion (AD) and thus increase the methane production. Thus, coupling PSs and methane recovery from WAS could be an efficient and sustainable sludge treatment. In present study, we comprehensively evaluated this novel process from the efficiencies of different coupling strategies, properties of the extracted PSs, and environmental impacts. The results showed that when the PS extraction was before AD, it produced 76.03 ± 2.00 mL of methane per gram of volatile solids (VS) and afforded a PS yield of 6.3 ± 0.09% (w:w), with a PS sulfate content of 13.15% ± 0.06%. In contrast, when PS extraction was after AD, the methane production decreased to 58.14 ± 0.99 mL of methane per gram of VS and afforded a PS yield of 5.67% ± 0.18% (w:w) in VS, with a PS sulfate content of 2.60% ± 0.04%. When there were two PS extractions before and after AD, the methane production, PS yield and sulfate content were 76.03 ± 2.00 mL of methane per gram of VS, 11.54 ± 0.62% and 8.35 ± 0.12%, respectively. Then, the bioactivity of the extracted PSs was assessed by one anti-inflammation assay and three anti-oxidation assays, and statistical analysis revealed that these four bioactivities of PSs were influenced by their sulfate content, protein content and monosaccharide composition, especially the ratios of arabinose and rhamnose. Furthermore, the environmental impact analysis shows that S1 was the best in five environmental indicators compared with other three non-coupled processes. These findings suggest that the coupling PSs and methane recovery process should be further explored to determine its potential for large-scale sludge treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Yugo Sato
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, Republic of Korea
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
40
|
Tan L, Liu S, Li X, He J, He L, Li Y, Yang C, Li Y, Hua Y, Guo J. The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice. Molecules 2023; 28:molecules28083351. [PMID: 37110586 PMCID: PMC10141569 DOI: 10.3390/molecules28083351] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cordyceps has anti-cancer effects; however, the bioactive substance and its effect are still unclear. Polysaccharides extracted from Cordyceps sinensis, the fugus of Cordyceps, have been reported to have anti-cancer properties. Thus, we speculated that polysaccharides might be the key anti-tumor active ingredients of Cordyceps because of their larger molecular weight than that of polysaccharides in Cordyceps sinensis. In this study, we aimed to investigate the effects of wild Cordyceps polysaccharides on H22 liver cancer and the underlying mechanism. The structural characteristics of the polysaccharides of WCP were analyzed by high-performance liquid chromatography, high-performance gel-permeation chromatography, Fourier transform infrared spectrophotometry, and scanning electron microscopy. Additionally, H22 tumor-bearing BALB/c mice were used to explore the anti-tumor effect of WCP (100 and 300 mg/kg/d). The mechanism by WCP inhibited H22 tumors was uncovered by the TUNEL assay, flow cytometry, hematoxylin-eosin staining, quantitative reverse transcription-polymerase chain reaction, and Western blotting. Here, our results showed that WCP presented high purity with an average molecular weight of 2.1 × 106 Da and 2.19 × 104 Da. WCP was determined to be composed of mannose, glucose, and galactose. Notably, WCP could inhibit the proliferation of H22 tumors not only by improving immune function, but also by promoting the apoptosis of tumor cells, likely through the IL-10/STAT3/Bcl2 and Cyto-c/Caspase8/3 signaling pathways, in H22 tumor-bearing mice. Particularly, WCP had essentially no side effects compared to 5-FU, a common drug used in the treatment of liver cancer. In conclusion, WCP could be a potential anti-tumor product with strong regulatory effects in H22 liver cancer.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxing Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Caixia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
41
|
Zhou H, Chen Y, Wang Z, Xie C, Ye D, Guo A, Xie W, Xing J, Zheng M. Preparation, characterization and antioxidant activity of cobalt polysaccharides from Qingzhuan Dark Tea. Heliyon 2023; 9:e15503. [PMID: 37151649 PMCID: PMC10161692 DOI: 10.1016/j.heliyon.2023.e15503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
The paradoxical effects of cobalt in biological processes have caused controversy regarding the application of cobalt-based biomaterials. Cobalt has recently been shown to be a trace element that promotes bone growth. Qingzhuan Dark Tea polysaccharides (TPS) has been shown to be a biomaterial with antioxidant and immunomodulatory effects. In order to develop a novel immunomodulatory biomaterial, we synthesized polysaccharide cobalt complex (TPS-Co) to prevent the paradoxical effects of cobalt while maintaining its beneficial effects, and evaluated its morphology, structure, and antioxidant activity. Fourier-transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy demonstrated that cobalt complexed successfully with TPS. Scanning electron microscopy and atomic mechanical microscopy demonstrated that TPS-Co has a more homogeneous and concentrated morphological distribution compared to TPS. Thermal performance analysis demonstrated that TPS-Co has higher thermal stability. Atomic absorption spectroscopy showed a cobalt content of 3.8%. Ultraviolet spectroscopy indicated that TPS-Co does not contain nucleic acids and proteins. Antioxidant activity assays showed that TPS-Co has better antioxidant activity than TPS in the concentration range of 0.4-2 mg/mL. Proliferation assay of MC3T3-E1 cells demonstrated that TPS-Co has the best cell proliferation effect at a cobalt concentration of 2 ppm. Therefore, TPS-Co may have potential applications in bone regeneration.
Collapse
Affiliation(s)
- Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Ziyao Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Anran Guo
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Wenjing Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| |
Collapse
|
42
|
Hao M, Song J, Zhai X, Cheng N, Xu C, Gui S, Chen J. Improvement of loperamide-hydrochloride-induced intestinal motility disturbance by Platycodon grandiflorum polysaccharides through effects on gut microbes and colonic serotonin. Front Cell Infect Microbiol 2023; 13:1105272. [PMID: 36992686 PMCID: PMC10040651 DOI: 10.3389/fcimb.2023.1105272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Constipation is a common gastrointestinal symptom characterized by intestinal motility disorder. The effects of Platycodon grandiflorum polysaccharides (PGP) on intestinal motility have not been confirmed. We established a rat model of constipation induced by loperamide hydrochloride to elucidate the therapeutic effect of PGP on intestinal motility disorder and to explore the possible mechanism. After PGP treatment (400 and 800 mg/kg) for 21 d, PGP clearly relieved gastrointestinal motility, including fecal water content, gastric emptying rate, and intestinal transit rate. Moreover, the secretion of motility-related hormones, gastrin and motilin, were increased. Enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and immunofluorescence results confirmed that PGP significantly increased the secretion of 5-hydroxytryptamine (5-HT) and the expression of related proteins, such as tryptophan hydroxylase 1, 5-HT4 receptor, and transient receptor potential ankyrin 1. 16S rRNA gene sequencing showed that PGP significantly increased the relative abundance of Roseburia, Butyricimonas, and Ruminiclostridium, which were positively correlated with 5-HT levels. However, the relative abundance of Clostridia_UCG-014, Lactobacillus, and Enterococcus were decreased. PGP improved intestinal transport by regulating the levels of 5-HT, which interacts with the gut microbiota and the intestinal neuro-endocrine system, further affecting constipation. Overall, PGP is a potential supplement for the treatment of constipation.
Collapse
Affiliation(s)
- Mengqi Hao
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Song
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaohu Zhai
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nuo Cheng
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Cong Xu
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuangying Gui
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
| | - Juan Chen
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
- *Correspondence: Juan Chen,
| |
Collapse
|
43
|
Luo B, Wang Z, Chen J, Chen X, Li J, Li Y, Li R, Liu X, Song B, Cheong KL, Zhong S. Physicochemical Characterization and Antitumor Activity of Fucoidan and Its Degraded Products from Sargassum hemiphyllum (Turner) C. Agardh. Molecules 2023; 28:2610. [PMID: 36985583 PMCID: PMC10057303 DOI: 10.3390/molecules28062610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Fucoidan has many biological functions, including anti-tumor activity. Additionally, it has been suggested that low-molecular-weight fucoidans have greater bioactivities. This study aimed to examine the degradation, purification, physicochemical characterization and in vitro antitumor activity of fucoidan from Sargassum hemiphyllum (Turner) C. Agardh. Fucoidan was isolated using DEAE-cellulose-52 (F1, F2), Vc-H2O2 degration, and Sepharose CL-6B gel (DF1, DF2) from crude Sargassum fucoidans. Physicochemical characteristics of four isolated fucoidans were examined using chemical and monosaccharide composition, average molecular weight (Mw), and FTIR. Furthermore, the anti-proliferative effects of purified fucoidans on human hepatocellular carcinoma cells (HepG2), human Burkitt Lymphoma cells (MCF-7), human uterine carcinoma cells (Hela) and human lung cancer cells (A549) were analyzed by MTT method. The apoptosis of HepG2 cells was detected by flow cytometry. Our data suggest that the contents of polysaccharide, L-fucose and sulfate of DF2 were the highest, which were 73.93%, 23.02% and 29.88%, respectively. DF1 has the smallest molecular weight (14,893 Da) followed by DF2 (21,292 Da). The four fractions are mainly composed of fucose, mannose and rhamnose, and the infrared spectra are similar, all of which contain polysaccharide and sulfate characteristic absorption peaks. The results of MTT assay showed that the four fractions had inhibitory effects on HepG2 and A549 in the range of 0.5-8 mg/mL, and the four fractions had strong cytotoxic effects on HepG2 cells. DF2 had the best inhibitory effect on HepG2 (IC50 = 2.2 mg/mL). In general, the antitumor activity of Sargassum fucoidans is related to the content of L-fucose, sulfate and molecular weight, and Sargassum fucoidan has the best inhibitory effect on HepG2 hepatocellular carcinoma cells. Furthermore, when compared to MCF-7, Hela, and A549 cells, Sargassum fucoidans had the best capacity to reduce the viability of human hepatocellular carcinoma cells (HepG2) and to induce cell apoptosis, proving itself to have a good potential in anti-liver cancer therapy.
Collapse
Affiliation(s)
- Baozhen Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuehua Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Jiarui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China;
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
44
|
Zhang Y, Liu Y, Ni G, Xu J, Tian Y, Liu X, Gao J, Gao Q, Shen Y, Yan Z. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
45
|
Ying Y, Ma C, Zhang Y, Li X, Wu H. Purification and Characterization of a Low Molecular Weight Neutral Non-Starch Polysaccharide from <i>Panax ginsen</i>g by Enzymatic Hydrolysis. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
46
|
Miao W, Huang R, Huang X, Gao F, Leng X, Li Q. Physicochemical Properties and In Vivo Hepatoprotective Effect of Polysaccharides from Grape Pomace. Antioxidants (Basel) 2023; 12:antiox12020394. [PMID: 36829953 PMCID: PMC9952491 DOI: 10.3390/antiox12020394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Here, the polysaccharides from grape pomace, a by-product in the wine industry, were characterized and evaluated in vitro and in vivo. The polysaccharides were extracted and studied using spectroscopic and chemical methods. The results revealed that GPPs are rich in arabinose, galactose and glucuronic acid and are heteropolysaccharides without protein and nucleic acid, containing α-glycoside bonds with irregular clusters on the surface. In vitro antioxidant activity assays indicated that GPPs have concentration-dependent antioxidant activity. In vivo, GPPs markedly decreased the levels of TNF-a, IL-6, ALT, AST and MDA in serum and liver tissues and restored the levels of SOD, CAT and GSH. Additionally, further histopathological examination confirmed that GPPs could mitigate the injury of liver induced by CCl4. Our results demonstrate that GPPs had antioxidant and hepatoprotective effects, and they are expected to be a potential ingredient for functional foods or hepatoprotective drugs.
Collapse
Affiliation(s)
- Wenjun Miao
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rong Huang
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Huang
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Fei Gao
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangpeng Leng
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiu Li
- Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
47
|
Yuan X, Gao X, Zheng T, Wang J, Dong Y, Xue H. Carbon nanomaterial-treated cell cultures of Nostoc flagelliforme produce exopolysaccharides with ameliorative physio-chemical properties. Int J Biol Macromol 2023; 227:726-735. [PMID: 36565826 DOI: 10.1016/j.ijbiomac.2022.12.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The feasibility and efficiency of carbon nanomaterials (CNMs) in algal biotechnology are less known. In this study, the influences of four CNMs, graphene (G), graphene oxide (GO), multiwalled carbon nanotube (MWCNT), and aminated multiwalled carbon nanotube (MWCNT-NH2), on cell growth and exopolysaccharide (EPS) production, as well as the physiochemical properties of EPS, were investigated in cell culture of Nostoc flagelliforme. A proper concentration (15 mg L-1) of four CNMs was chosen for use after a preliminary test. Upon GO treatment, the biomass was improved by 11.1 % and the EPS production was increased by 36.1 % on day 16 compared to the nontreated control. Four CNM treatments significantly improved cellular O2·- and H2O2 levels as well as superoxide dismutase and catalase activities. The monosaccharide compositions and functional groups of the EPSs were obviously altered by the CNM treatments. Particularly, the GO treatment-resulting EPS showed obviously improved flocculating ability, water absorption ability, and reactive oxygen species scavenging ability. In general, four CNMs exerted distinct influences on the production and physio-chemical property alteration of the EPS in N. flagelliforme culture. This work expands our understanding of the application of CNMs in the induced production and functional modification of polysaccharides during algal cultivation.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China.
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| |
Collapse
|
48
|
Wang S, Wu H, Zhang X, Luo S, Zhou S, Fan H, Lv C. Preparation of nano-selenium from chestnut polysaccharide and characterization of its antioxidant activity. Front Nutr 2023; 9:1054601. [PMID: 36741999 PMCID: PMC9889657 DOI: 10.3389/fnut.2022.1054601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
Chestnut is widely cultivated and has high nutritional value due to its richness in polysaccharides. In order to improve the antioxidant activity of chestnut polysaccharide, chestnut polysaccharide (CP) was extracted by ultrasonic-assisted water extraction and alcohol precipitation and purified by cellulose DEAE-52 exchange and Sephadex G-100 chromatography in this study. CP isolates were characterized by I2-KI reaction, three-strand helical structure analysis, infrared spectrum analysis, and nuclear magnetic resonance detection. The results showed that CP is a pyrylan sugar with triple helical structure and connected by α-glycosidic bonds, with sugar residues 1,4-α-D-Glcp, 1,6-α-D-Galp, 1,5-α-L-Araf, 1,4-α-L-Rhap, and 1,4-β-D-Glcp in the CP backbone. After purification, the branching structure, rod, and spherical structure were significantly increased, with reduced lamellar structure. The in vitro scavenging rates of CP at 10 mg·mL-1 against DPPH, hydroxyl radicals, and ABTS were 88.95, 41.38, and 48.16%, respectively. The DPPH free radical scavenging rate of purified polysaccharide fraction CP-1a was slightly enhanced, and the other rates showed a small decrease. Selenized chestnut polysaccharide (CP-Se) was prepared using nano-selenium method. The selenization method was optimized and stable Se-CP was obtained. When the concentration was 5 mg·mL-1, Se-CP had significantly higher scavenging abilities 89.81 ± 2.33, 58.50 ± 1.60, and 40.66 ± 1.91% for DPPH, hydroxyl radical, and ABTS radicals, respectively, than those of CP. The results of this study provide insight into the effects purification and selenization of chestnut polysaccharide on antioxidant activity, and also provide a theoretical basis for the development of chestnut polysaccharide for use in functional foods or health products.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hao Wu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoshuang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China,*Correspondence: Haiyan Fan ✉
| | - Chunmao Lv
- Food Science College, Shenyang Agricultural University, Shenyang, China,Chunmao Lv ✉
| |
Collapse
|
49
|
Li X, Zhang Z, Wang L, Zhao H, Jia Y, Ma X, Li J, Wang Y, Ma B. Three-phase extraction of polysaccharide from Stropharia rugosoannulata: Process optimization, structural characterization and bioactivities. Front Immunol 2023; 13:994706. [PMID: 36713438 PMCID: PMC9878848 DOI: 10.3389/fimmu.2022.994706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023] Open
Abstract
The isolation of Stropharia rugosoannulata polysaccharide (SRP) by three-phase extraction was optimized, and its structure and biological activities were identified. The optimal extraction conditions were: mass fraction of ammonium sulfate, 20%; volume ratio of sample solution to t-butanol, 1:1.5; extraction temperature, 35°C. Under these conditions, the yield of SRP was 6.85% ± 0.13%. SRP was found to be composed of glucose (35.79%), galactose (26.80%), glucuronic acid (9.92%), fructose (8.65%), xylose (7.92%), fucose (4.19%), arabinose (3.46%) and rhamnose (3.26%), with the molecular weight of 27.52 kDa. The results of DPPH, hydroxyl, ABTS+ radical scavenging and reducing power tests showed that SRP had good antioxidant capacities. SRP had no cytotoxic effect on RAW264.7 macrophages at the concentrations of 25-200 μg/mL, and could significantly promote phagocytosis activity and cell migration according to CCK-8 assay, phagocytosis assay and cell scratch experiment. SRP can significantly stimulate the transcript expression levels of TNF-α, IL-1β and IL-6, as determined by RT-PCR and Western blot assays. SRP activated the TLR4/NF-κB signaling pathway, and autophagy also occurred. These results suggest that SRP is a safe antioxidant and immunomodulator, and that it can be used in the development of functional foods and/or pharmaceuticals.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China,School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,College of Animal medcine, Henan University of Animal husbandry and Economy, Zhengzhou, China
| | - Zhiqiang Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China,*Correspondence: Li Wang, ; Xia Ma, ; Bingji Ma,
| | - Haoqiang Zhao
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yahui Jia
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xia Ma
- College of Animal medcine, Henan University of Animal husbandry and Economy, Zhengzhou, China,*Correspondence: Li Wang, ; Xia Ma, ; Bingji Ma,
| | - Jinzhan Li
- Henan Jinlong Mushroom Industry Co. LTD, Shangqiu, China
| | - Yi Wang
- Business Development, GeneGenieDx Corporation, San Jose, CA, United States
| | - Bingji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China,*Correspondence: Li Wang, ; Xia Ma, ; Bingji Ma,
| |
Collapse
|
50
|
Zhao Z, Wang L, Ruan Y, Wen C, Ge M, Qian Y, Ma B. Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|