1
|
Wang H, Yuan J, Wu Y, Wen Y, Lin Y, Chen Y, Lin H. Bacillus amyloliquefaciens LY-1 culture broth enhances the storage properties of fresh litchi through acting on ROS metabolism. Food Chem 2025; 480:143811. [PMID: 40117812 DOI: 10.1016/j.foodchem.2025.143811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
The impacts of Bacillus amyloliquefaciens LY-1 culture broth (BLCB) on the fruit storage properties and reactive oxygen species (ROS) metabolism of postharvest 'Wuye' litchis were studied. In comparation with control fruit, BLCB-treated litchis showed a lower fruit disease index, a higher rate of commercially acceptable fruit, higher amounts of pericarp pigments (total phenolics, anthocyanin, carotenoid, chlorophyll and flavonoid), higher chromaticity C, a*, b* and L* values but lower hue angle h° of fruit surface. Additionally, BLCB-treated litchis exhibited lower malonaldehyde (MDA) accumulation and superoxide anion radical (O2.-) production rate, higher APX, CAT and SOD activities, higher GSH and AsA amounts, higher reducing power, and higher ability of scavenging DPPH radical. Furthermore, the pericarp browning index and fruit disease index were positively correlated with O2.- production rate. These findings suggested that BLCB treatment increased the storability of postharvest litchi fruit through enhancing scavenging capacity of ROS and inhibiting overaccumulation of ROS.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Junhui Yuan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yijing Wu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yifan Wen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Shen X, Liu Y, Zeng Y, Zhao Y, Bao Y, Shao X, Wu Z, Zheng Y, Jin P. Hydrogen sulfide attenuates chilling injury in loquat fruit by alleviating oxidative stress and maintaining cell membrane integrity. Food Chem 2025; 463:141094. [PMID: 39270496 DOI: 10.1016/j.foodchem.2024.141094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
The effects of hydrogen sulfide (H2S) on chilling injury (CI), reactive oxygen species (ROS) metabolism, sugar metabolism, pentose phosphate pathway (PPP), and membrane lipid metabolism in loquat fruit throughout the refrigerated period were investigated in this study. The findings indicated that H2S application restrained the increase in internal browning (IB), malondialdehyde (MDA) content, and electrolyte leakage, while sustaining higher total phenolic and total flavonoid levels, and lower soluble quinone content in loquat fruit. Besides, H2S promoted antioxidant accumulation and increased antioxidant enzyme activities by the regulation of ROS metabolism, along with increasing fructose and glucose levels and reducing power by activating sugar metabolism and PPP. Furthermore, H2S treatment retarded the degradation of phospholipids and fatty acids in loquat fruit by modulating membrane lipid metabolism relevant enzyme activities. These findings indicated that H2S application mitigated CI in loquat fruit by alleviating oxidative stress and maintaining cell membrane structural integrity.
Collapse
Affiliation(s)
- Xinyan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaqin Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yinqiu Bao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Yang Q, Hou J, Wang F, Qi Y, Zhao Q. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:54-64. [PMID: 39113578 DOI: 10.1002/jsfa.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND In order to comprehend the regulatory mechanisms that result in the alleviation of sweet cherry pitting disorder through cold shock (0 °C ice-water mixture for 10 min), an investigation was conducted into the impacts of cold shock treatment (CST) on membrane lipid metabolism, antioxidant enzyme activity, as well as pitting of cold-stored sweet cherry fruit. RESULTS CST significantly inhibited the increase in pitting incidence, pitting index, and decay incidence. The CST treatment provided greater titratable acidity, firmness as well as total content of soluble solids. The use of CST prevented the build-up of superoxide anions, hydrogen peroxide, malondialdehyde, and reduced permeability of cell membranes. When in contrast to control group, the CST also raised the expression levels along with activity of the antioxidant enzymes ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Furthermore, CST reduced the amount of fruit cell membrane peroxidation, suppressed the activity of phospholipase and lipoxygenase, postponed the rise in saturated fatty acids (SFAs) and decrease in unsaturated fatty acids (USFAs), ultimately keeping a high ratio of USFAs to SFAs. CONCLUSION CST can alleviating pitting disorder in sweet cherry fruit via preventing peroxidation of membrane lipid and elevating the antioxidant enzymes activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingzhen Yang
- Department of Life Sciences, Yuncheng University, Yuncheng, P. R. China
- Featured Fruit Quality Control and Application Laboratory, Department of Life Science, Yuncheng University, Yuncheng, P. R. China
| | - Jie Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P. R. China
| | - Feng Wang
- Department of Life Sciences, Yuncheng University, Yuncheng, P. R. China
- Featured Fruit Quality Control and Application Laboratory, Department of Life Science, Yuncheng University, Yuncheng, P. R. China
| | - Yingjian Qi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P. R. China
| | - Qifeng Zhao
- Research Institute of Pomology, Shanxi Agricultural University, Taigu, P. R. China
| |
Collapse
|
4
|
Lin Y, Chen H, Chen Y, Tan B, Jiang X. Melatonin alleviated chilling injury of cold-stored passion fruit by modulating cell membrane structure via acting on antioxidant ability and membrane lipid metabolism. Curr Res Food Sci 2024; 10:100951. [PMID: 39802647 PMCID: PMC11721212 DOI: 10.1016/j.crfs.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Fresh passion fruit is sensitive to chilling injury (CI) during storage at improper low temperature of 5 °C, which lowers the fruit quality and limits its shelf life. The present study aimed to determine the impacts of melatonin on CI development of passion fruit in relation to antioxidant ability and membrane lipid metabolism during refrigeration. In present study, passion fruit was treated with 0.50 mmol L-1 melatonin and distilled water (control) for 20 min, hereafter stockpiled at 5 °C. The results indicated that, in storage, melatonin-treated passion fruit showed the lower CI index and cell membrane permeability, lower superoxide anion production rate and malondialdehyde level, greater activities of catalase, superoxide dismutase and ascorbate peroxidase, higher levels of ascorbic acid and glutathione, and higher 1, 1-diphenyl-2-picrylhydrazyl radical scavenging capacity than control passion fruit. Besides, lower membrane lipid-degrading enzyme activities, lower contents of phosphatidic acid and saturated fatty acids (SFAs), higher levels of phosphatidylcholine, phosphatidylinositol and unsaturated fatty acids (USFAs), and greater ratio of USFAs to SFAs and index of USFAs were revealed in melatonin-treated passions than control passions. Thus, these results indicated that melatonin retained cell membrane structure via boosting antioxidant capacity and restricting membrane lipid degradation, accordingly increased the chilling resistance and delayed the CI development in fresh passion fruit.
Collapse
Affiliation(s)
- Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yazhen Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Bowen Tan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| |
Collapse
|
5
|
Lin Y, Chen J, Lin Y, Lin M, Wang H, Fan Z, Lu W, Chen Y, Lin H. DNP and ATP modulate the pulp softening and breakdown in fresh longan by acting on the antioxidant system and the metabolisms of membrane lipids and cell wall polysaccharides. Food Chem 2024; 460:140531. [PMID: 39059331 DOI: 10.1016/j.foodchem.2024.140531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Compared to the control longan, DNP treatment elevated pulp breakdown index, reduced the values of pulp firmness, CSP, ISP, cellulose, and hemicellulose by enhancing the activities of PE, PG, Cx, XET, and β-Gal. Additionally, DNP treatment increased the levels of PLD, lipase, LOX, PA, and SFA, and decreased the values of PC, PI, USFA, U/S, and IUFA, displaying higher cell membrane permeability and more severe cell membrane damage in longan pulp. Furthermore, DNP treatment weakened the levels of SOD, CAT, APX, AsA, GSH, TP, and TF, thereby exacerbating ROS outbreak and MDA production. These results indicate that DNP treatment destroyed the antioxidant system to cause ROS eruption. This disruption further disturbed the metabolisms of membrane lipids and cell wall polysaccharides, leading to the breakdown of cell membrane and cell wall, and eventually aggravated longan pulp softening and breakdown. However, ATP treatment exhibited the opposite effects of DNP treatment.
Collapse
Affiliation(s)
- Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Jin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wangjin Lu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Huang T, Kou X, Qiao L, Li J, Luo D, Wang X, Cao S. Maintaining quality of postharvest green pepper fruit using melatonin by regulating membrane lipid metabolism and enhancing antioxidant capacity. Food Chem 2024; 460:140671. [PMID: 39089033 DOI: 10.1016/j.foodchem.2024.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Green pepper quality often deteriorates during storage because of membrane lipid damage and oxidative stress. This study investigated the effects of exogenous melatonin (MT) on green pepper storage quality, membrane lipids, and antioxidant metabolism. The results showed that MT increased the activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase in green peppers compared to the control group. It upregulated expression of multiple enzymes; reduced accumulation of reactive oxygen species such as dehydroascorbic acid, H2O2, and O2.-; and maintained high ascorbic acid, glutathione, coenzyme II, and nicotinamide adenine dinucleotide while reducing oxidized glutathione levels. In addition, MT decreased lipoxygenase and phospholipase D activities, downregulated ReLOX and RePLD expression, and delayed the degradation of phosphatidylcholine, phosphatidylethanolamine, and oleic, linoleic, and linolenic acids in green peppers. These results suggest that MT helps to improve the chilling injury and quality of green peppers and extends shelf life.
Collapse
Affiliation(s)
- Tianyu Huang
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - LinXiang Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Donglan Luo
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Xiufen Wang
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guizhou Province, 550005, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Ye S, Chen J, Cao S, Luo D, Ba L. Thymol application delays the decline of fruit quality in blueberries via regulation of cell wall, energy and membrane lipid metabolism. Food Chem 2024; 458:140193. [PMID: 38959798 DOI: 10.1016/j.foodchem.2024.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
In this study, we evaluated the potential for exogenous thymol to slow this decline by measuring the effects of thymol application on cell wall, energy, and membrane lipid metabolism. The results showed that thymol application improved the preservation of the total soluble solids, titratable acidity, decay rate, and anthocyanin content, and effectively inhibited the accumulation of O2·-, H2O2, and malondialdehyde in blueberries during storage. Thymol application also effectively maintained fruit firmness, cell wall structure, and energy levels, while delaying the degradation of membrane phospholipids and unsaturated fatty acids during the storage of post-harvest blueberries. Therefore, exogenous thymol can maintain the quality of blueberry fruits by regulating energy and membrane lipid metabolism and reducing cell wall degradation. Thus, thymol-treatment could be a suitable biocontrol agent for maintaining blueberry quality and extending blueberry fruit storage life.
Collapse
Affiliation(s)
- Shengjie Ye
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Jianye Chen
- College of Horticulture Science, South China Agricultural University, Guangzhou 510642, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Donglan Luo
- School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Liangjie Ba
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
8
|
Shao J, Bian Y, Wang Q, Mei H, Makarem A, Soloshonok VA, Han J. Synthesis of dithioacetals via nucleophilic substitution and their antifungal activity evaluation. Org Biomol Chem 2024; 22:8418-8422. [PMID: 39359118 DOI: 10.1039/d4ob01495b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel dual nucleophilic substitution reaction of dichloromethane with thiols has been developed, which affords dithioacetals in up to 96% yields. This dual substitution reaction with two different nucleophiles is also successfully developed with α-acyloxy sulfides as the product. In addition, in vitro antifungal activity tests against L. theobromae disclose that these α-acyloxy sulfides exhibit excellent antifungal activity with an inhibition rate up to 100 ± 0%. This reaction provides efficient access to potential bioactive dithioacetals from readily available starting materials.
Collapse
Affiliation(s)
- Jiaqing Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yeping Bian
- Department of Intensive Care Unit, Geriatric Hospital of Nanjing Medical University, Nanjing 210024, China.
| | - Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ata Makarem
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Huang C, Yi P, Li J, Xie L, Huang F, Huang M, Gan T, Sun J, Li L. Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism. Foods 2024; 13:3132. [PMID: 39410165 PMCID: PMC11475893 DOI: 10.3390/foods13193132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Bananas are economically important fruits, but they are vulnerable to mechanical damage during harvesting and transport. This study examined the effects of methyl jasmonate (MeJA) on the cell membrane integrity and membrane lipid metabolism of wounded banana fruits after harvest. The results showed that 10 and 50 μM MeJA treatments on mechanically wounded bananas significantly delayed ripening and senescence in comparison with the control. At the end of storage, MeJA-treated groups showed a significant reduction in electrolyte leakage and malondialdehyde content, indicating that MeJA protected cell membrane integrity. MeJA also led to a significant decrease in the activity of antioxidant enzymes, including lipoxygenase, diacylglycerol kinase, and lipid phosphate phosphatase. Furthermore, MeJA reduced phospholipase (C and D), phosphatidic acid, and diacylglycerol levels, as well as slowed down the decrease in phosphatidylcholine and phosphatidylinositol contents. Compared to the control, MeJA significantly downregulated the expression of MaPLDγ, MaPLDα, and MaPLDζ. Therefore, MeJA treatment could be a reliable method to delay the senescence of harvested banana fruits subjected to mechanical wounding.
Collapse
Affiliation(s)
- Chunxia Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (C.H.); (J.L.)
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Ping Yi
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Jing Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (C.H.); (J.L.)
| | - Lihong Xie
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Fang Huang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Min Huang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Ting Gan
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
10
|
Li M, Lin H, Wang C, Chen Y, Lin M, Hung YC, Lin Y, Fan Z, Wang H, Chen Y. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism. Food Chem 2024; 449:139175. [PMID: 38593723 DOI: 10.1016/j.foodchem.2024.139175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.
Collapse
Affiliation(s)
- Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Chao Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
12
|
Li Q, Lin H, Lin HT, Lin MS, Wang H, Wei W, Chen JY, Lu WJ, Shao XF, Fan ZQ. The metabolism of membrane lipid participates in the occurrence of chilling injury in cold-stored banana fruit. Food Res Int 2023; 173:113415. [PMID: 37803753 DOI: 10.1016/j.foodres.2023.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.
Collapse
Affiliation(s)
- Qian Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Meng-Shi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Zhong-Qi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Chang X, Liang Y, Shi F, Guo T, Wang Y. Biochemistry behind firmness retention of jujube fruit by combined treatment of acidic electrolyzed water and high-voltage electrostatic field. Food Chem X 2023; 19:100812. [PMID: 37780323 PMCID: PMC10534160 DOI: 10.1016/j.fochx.2023.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
Harvested jujube (Zizyphus jujuba Mill) is prone to softening due to active metabolism. This study investigated the effects of acidic electrolyzed water (AEW), high-voltage electrostatic field (HVEF) and their combination (AEW + HVEF) on softening and associated cell wall degrading enzymes (CWDEs), cell membrane integrity and antioxidant system of 'Huping' jujube during storage at 0 ± 1 °C. The results indicated that fruit subjected to AEW + HVEF, AEW or HVEF treatments maintained firmness 15.7%, 10.7%, and 5.3% higher than that of untreated control fruit at the end of 90 days cool storage. Fruit treated with AEW + HVEF could better maintain cell membrane integrity and exhibit lower activities of CWDEs and higher antioxidant capacity than that treated with either AEW or HVEF. Correlation analysis suggested that inhibition of softening was associated with reduction of CWDEs activities, and maintenance of membrane integrity and antioxidant system.
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China
- Life Sciences Department, Yuncheng University, Yuncheng 044000, China
- Shanxi Center of Technology Innovation for High Value Added echelon Utilization of Premium Agro-Products, Yuncheng University, Yuncheng 044000, China
| | - Yueguang Liang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Fei Shi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Tianjing Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Yu Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| |
Collapse
|
14
|
Kuang X, Chen Y, Lin H, Lin H, Chen G, Lin Y, Chen Y, Wang H, Fan Z. Comprehensive analyses of membrane lipids and phenolics metabolisms reveal the developments of chilling injury and browning in Chinese olives during cold storage. Food Chem 2023; 416:135754. [PMID: 36871509 DOI: 10.1016/j.foodchem.2023.135754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
The impacts of chilling injury (CI) temperature (2 °C) and non-CI temperature (8 °C) on the CI development, browning occurrence, and its underlying mechanism in Chinese olives were investigated. The results showed that, 2 °C induced higher levels of CI index, browning degree, chromaticity a* and b* values, but lower values of h°, chlorophyll and carotenoid contents in Chinese olives as compared to 8 °C. Furthermore, 2 °C raised cell membrane permeability, increased the activities of phospholipase D, lipase and lipoxygenase, accelerated the hydrolyses of phosphatidylcholine and phosphatidylinositol to phosphatidic acid, and promoted the conversions of unsaturated fatty acids to saturated fatty acids in Chinese olives. Moreover, 2 °C-stored Chinese olives showed higher activities of peroxidase and polyphenol oxidase, but lower contents of tanin, flavonoid and phenolics. These findings demonstrated that the CI and browning developments in Chinese olives were closely associated with the metabolisms of membrane lipid and phenolics.
Collapse
Affiliation(s)
- Xiaoyong Kuang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Guo Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
15
|
Niu B, Fei Y, Liu R, Chen H, Fang X, Wu W, Mu H, Gao H. Effect of oxyresveratrol on the quality and membrane lipid metabolism of shiitake mushroom (Lentinus edodes) during storage. Food Chem 2023; 427:136700. [PMID: 37356268 DOI: 10.1016/j.foodchem.2023.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The effect of oxyresveratrol on postharvest quality and membrane lipid metabolism of shiitake mushroom was investigated. The result exhibited that oxyresveratrol retarded browning, maintained firmness and alleviated occurrence of decay of shiitake mushroom. The oxidation and hydrolysis of membrane phospholipids were suppressed by oxyresveratrol treatment, which was associated with reduced LOX and PLD activities and increased SOD and CAT activities. The membrane lipidomics of shiitake mushroom was determined by LC-MS. 385 lipid species and 13 fatty acids in membrane lipids were identified by multiple reaction monitoring method. Compared with control group, the phospholipic acid and lysophospholipid reduced by 29.24% and 21.29% in oxyresveratrol-treated group, respectively, which alleviated hydrolysis of phospholipid. Meanwhile, oxyresveratrol maintained the unsaturation of fatty acids and alleviated oxidation of phospholipid. These results demonstrated that oxyresveratrol could play a dual role of inhibiting the oxidation and hydrolysis of phospholipids to mitigate cellular damage of shiitake mushroom.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchang Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
16
|
Lin Y, Lin H, Zeng L, Lin M, Chen Y, Fan Z, Wang H, Lin Y. DNP and ATP regulate the breakdown occurrence in the pulp of Phomopsis longanae Chi-infected longan fruit through modulating the metabolism of membrane lipid. Food Chem 2023; 409:135330. [PMID: 36599287 DOI: 10.1016/j.foodchem.2022.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to illustrate how DNP and ATP affected the pulp breakdown occurrence in P. longanae-infected longan and their relationship with the membrane lipid metabolism. Compared with P. longanae-inoculated samples, the pulp of DNP-treated P. longanae-infected longan exhibited higher cellular membrane permeability, breakdown index, activities of PI-PLC, PLD, PC-PLC, LOX, and lipase, and values of SFAs, PA, and DAG, while lower levels of PI, PC, USFAs, IUFA and U/S. However, the opposite findings were observed in ATP-treated P. longanae-infected longan. The data manifested that DNP-increased the pulp breakdown occurrence in P. longanae-inoculated samples was due to the elevated MLDEs activities that reduced the contents of phospholipids (PI, PC) and USFAs, disrupting the cell membrane structures. Nevertheless, ATP decreased the pulp breakdown occurrence in P. longanae-inoculated samples, which was ascribed to the reduced MLDEs activities that raised phospholipids (PI, PC) and USFAs contents, thus maintaining the cell membrane structures.
Collapse
Affiliation(s)
- Yuzhao Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Lingzhen Zeng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
17
|
Wang X, Zhang X, Jia P, Luan H, Qi G, Li H, Guo S. Transcriptomics and metabolomics provide insight into the anti-browning mechanism of selenium in freshly cut apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1176936. [PMID: 37223812 PMCID: PMC10200898 DOI: 10.3389/fpls.2023.1176936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023]
Abstract
Enzymatic browning has a considerable negative impact on the acceptability and marketability of freshly cut apples. However, the molecular mechanism by which selenium (Se) positively affects freshly cut apples in this regard is not yet clear. In this study, 0.75 kg/plant of Se-enriched organic fertilizer was applied to "Fuji" apple trees during the young fruit stage (M5, May 25), the early fruit enlargement stage (M6, June 25), and the fruit enlargement stage (M7, July 25), respectively. The same amount of Se-free organic fertilizer was applied as a control. Herein, the regulatory mechanism by which exogenous Se exerts its anti-browning effect in freshly cut apples was investigated. The results showed that the M7 treatment applied in Se-reinforced apples could remarkably inhibit their browning at 1 h after being freshly cut. Additionally, the expression of polyphenol oxidase (PPO) and peroxidase (POD) genes treated with exogenous Se was significantly reduced compared to controls. Moreover, the lipoxygenase (LOX) and phospholipase D (PLD) genes, which are involved in membrane lipid oxidation, were expressed at higher levels in the control. The gene expression levels of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and ascorbate peroxidase (APX) were upregulated in the different exogenous Se treatment groups. Similarly, the main metabolites measured during the browning process were phenols and lipids; thus, it could be speculated that the mechanism by which exogenous Se produces its anti-browning effect may be by reducing phenolase activity, improving the antioxidant capacity of the fruits, and alleviating membrane lipid peroxidation. In summary, this study provides evidence regarding and insight into the response mechanism employed by exogenous Se to inhibit browning in freshly cut apples.
Collapse
|
18
|
Xiao P, Tian X, Zhu P, Xu Y, Zhou C. The use of surfactin in inhibiting Botrytis cinerea and in protecting winter jujube from the gray mold. AMB Express 2023; 13:37. [PMID: 37118318 PMCID: PMC10147881 DOI: 10.1186/s13568-023-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
Surfactin has the potential to be used as a food preservative. However, efficiency and action mechanism in various applications need more assessments and research. In this study, the antifungal effects and the mechanism of action of surfactin on the fungus Botrytis cinerea were investigated. The effects of applying surfactin for the removal of gray mold on the quality of winter jujube were investigated based on the changes in fruit fatty acids. The results showed that (1) surfactin significantly inhibited the growth of B. cinerea, the EC50 at 5 d was 46.42 mg/L. (2) Surfactin significantly reduced the disease incidence and diameter of gray mold-inoculated winter jujube in a concentration-dependent manner. For that treated with surfactin at the EC50, the incidence decreased by 38.89%. (3) For B. cinerea under surfactin treatment, the mycelial morphology changed, the levels of total lipids and ergosterol decreased, the reactive oxygen species levels increased, and the cell integrity was completely damaged. (4) For winter jujube inoculated by B. cinerea, the contents of saturated fatty acids decreased and unsaturated fatty acids increased. For those under the surfactin treatments, winter jujube maintained the fatty acid composition at the level of non-inoculated groups. Mechanical injury significantly changed the fatty acid composition of winter jujube; however, surfactin not only was able to inhibit the growth of gray mold but also mitigated the adverse effects from mechanical injury. The present study demonstrated the potential applications of surfactin in the preservation of postharvest fruit quality.
Collapse
Affiliation(s)
- Peng Xiao
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaoyu Tian
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Peng Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yangyang Xu
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Hong K, Yao Q, Golding JB, Pristijiono P, Zhang X, Hou X, Yuan D, Li Y, Chen L, Song K, Chen J. Low temperature storage alleviates internal browning of ‘Comte de Paris’ winter pineapple fruit by reducing phospholipid degradation, phosphatidic acid accumulation and membrane lipid peroxidation processes. Food Chem 2023; 404:134656. [DOI: 10.1016/j.foodchem.2022.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
20
|
Liu X, Li Y, Liu Q, Du H, Ma G, Shen F, Hu Q. Mechanism of electron beam irradiation on the lipid metabolism of paddy during high temperature storage. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Wang T, Yan T, Shi J, Sun Y, Wang Q, Li Q. The stability of cell structure and antioxidant enzymes are essential for fresh-cut potato browning. Food Res Int 2023; 164:112449. [PMID: 36738009 DOI: 10.1016/j.foodres.2022.112449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.
Collapse
Affiliation(s)
- Tingting Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Ting Yan
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Jingkun Shi
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Yanmei Sun
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China.
| |
Collapse
|
22
|
Amelioration of Chilling Injury by Fucoidan in Cold-Stored Cucumber via Membrane Lipid Metabolism Regulation. Foods 2023; 12:foods12020301. [PMID: 36673394 PMCID: PMC9858243 DOI: 10.3390/foods12020301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cucumber fruit is very sensitive to chilling injury, which rapidly depreciates their commodity value. Herein, the effect of fucoidan treatment on cucumber under cold stress were investigated. Fucoidan treatment of cold-stored cucumber alleviated the occurrence of chilling injury, delayed weight loss, lowered electrolyte leakage and respiration rate, and retarded malondialdehyde accumulation. Different from the control fruit, fucoidan treated fruit showed a high level of fatty acid unsaturated content, fatty acid unsaturation, and unsaturation index and increased ω-FDAS activity, along with upregulated expression levels of CsSAD and CsFAD genes. Fucoidan reduced the phosphatidic acid content and membrane lipid peroxidation, lowered the phospholipase D (PLD) and lipoxygenase (LOX) activity, and downregulated the expression levels of CsPLD and CsLOX genes. Collectively, fucoidan treatment maintained the integrity of cell membrane in cold-stress cucumbers. The results provide a new prospect for the development of fucoidan as a preservative agent in the low-temperature postharvest storage of cucumbers.
Collapse
|
23
|
Comparison between two cultivars of longan fruit cv. ‘Dongbi’ and ‘Fuyan’ in the metabolisms of lipid and energy and its relation to pulp breakdown. Food Chem 2023; 398:133885. [DOI: 10.1016/j.foodchem.2022.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
|
24
|
Bhan C, Asrey R, Meena NK, Rudra SG, Chawla G, Kumar R, Kumar R. Guar gum and chitosan-based composite edible coating extends the shelf life and preserves the bioactive compounds in stored Kinnow fruits. Int J Biol Macromol 2022; 222:2922-2935. [DOI: 10.1016/j.ijbiomac.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
25
|
Zhou Z, Han P, Bai S, Ma N, Fang D, Yang W, Hu Q, Pei F. Caffeic acid-grafted-chitosan/polylactic acid film packaging enhances the postharvest quality of Agaricus bisporus by regulating membrane lipid metabolism. Food Res Int 2022; 158:111557. [DOI: 10.1016/j.foodres.2022.111557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
|
26
|
Li J, Wu Z, Zhu Z, Xu L, Wu B, Li J. Botrytis cinerea mediated cell wall degradation accelerates spike stalk browning in Munage grape. J Food Biochem 2022; 46:e14271. [PMID: 35715997 DOI: 10.1111/jfbc.14271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Munage grape (Vitis vinifera L. cv. Munage.) is a unique cultivar in southern Xinjiang, China. Spike stalk browning in this species has becomes more common in recent years, negatively impacting the shelf life, and causing severe economic losses during storage. This study investigated the changes in metabolisms of cell wall by Botrytis cinerea infection in association with spike stalk browning. Morphological and physiological observations showed that preharvest B. cinerea infection accelerates the spike stalk browning during storage in Munage grapes by promoting cell wall degradation. Accordingly, the cell structures in infected spike stalk showed severe collapse, while the cell structures in uninfected spike stalk remained relatively complete. Furthermore, the contents of CDTA-soluble pectin (CSP), Na2 CO3 -soluble pectin (NSP), cellulose, and hemicellulose were reduced, while the water-soluble pectin (WSP) content was increased during infection. In addition, the activities of polygalacturonase (PG), pectin methylesterase (PME), beta-galactosidase (β-Gal), and cellulase (Cx) were highly promoted by B. cinerea. Correspondingly, the expression levels of VvPG were markedly upregulated after inoculation and played a major role in cell wall degradation. Additionally, the spike stalk inoculated by B. cinerea showed higher activities of PPO and POD, and content of total phenolics. These results contribute to elucidating the relationship between cell wall degradation induced by B. cinerea during spike stalk browning and provide a basis for future research on improving the ability of the host cell wall to resist degrading enzymes. PRACTICAL APPLICATIONS: Botrytis cinerea is the main fungal pathogen causing the gray mold of grapes. It usually enters the tissue early in crop development, has a long incubation period, and rapidly infects the tissue when the environment is favorable and the host physiology changes. Gray mold has been reported as one of the major postharvest diseases of grapes. However, there are relatively few reports on the pathways through which B. cinerea causes the browning of grape stalks. Controlling browning caused by B. cinerea may require clarification of the physiological and molecular mechanisms by which browning occurs. The elucidation of the role of B. cinerea in causing browning of grape stalks through the cell wall degradation pathway will help to provide scientific basis for further controlling browning, maintaining freshness of stalks, developing biological agents to prevent browning, improving grape quality, and extending storage period.
Collapse
Affiliation(s)
- Jie Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Zhonghong Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, People's Republic of China
| | - Zhaoshuai Zhu
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi, People's Republic of China
| | - Le Xu
- College of Food and Pharmacology, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, People's Republic of China
| | - Jiang Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, People's Republic of China
| |
Collapse
|
27
|
Wang L, Wang W, Wang Q, Tang T, Liu W, Wang Z, Zhang J. Identification of the miRNAs and their target genes involved in fresh‐cut potato browning inhibition by nitrogen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihua Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Wenjun Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Qingjun Wang
- Zaozhuang Agricultural and Mechanical Technology Promotion Center Zaozhuang Shandong 277800 China
| | - Tiantian Tang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Wenrui Liu
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Zhidong Wang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jie Zhang
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
28
|
Liu F, Huang W, Fan Y, He W, Tao Y, Wang C. Effects of dehydration speed on the metabolism of membrane lipids and its relation to the browning of the Thompson seedless grape. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Xinjiang is the main producing area of raisins and the largest green raisins production base in China. The browning of Thompson seedless grape raisin is extremely serious during drying process, which has become the key issue in the development of Xinjiang raisin industry. Previous studies have shown that the dehydration speed has a great impact on the browning of Thompson seedless grape, but few relevant mechanisms have been studied. Here, we demonstrate the effect of dehydration speed on the lipid metabolism and its relation to the browning of the Thompson seedless grape during drying. Compared to slow dehydration treatment, the rapid dehydration treatment of the Thompson seedless grape exhibited a lower degree of browning and activities of lipoxygenase (LOX), a higher index of unsaturated fatty acids and degree of unsaturated fatty acid. Moreover, the Thompson seedless grape treated with rapid dehydration resulted in a lower rate of superoxide anion production, hydrogen peroxide content, membrane permeability, and malondialdehyde content. These findings demonstrate that rapid dehydration inhibiting the browning of Thompson seedless grapes might be due to the inhibiting activities of LOX and the lower accumulation of reactive oxygen species. These activities can inhibit lipid peroxidation and slow the decomposition of unsaturated fatty acid in the membrane in Thompson seedless grapes, protecting the cellular membrane structural integrity which may result in less contact of polyphenol oxidase with phenolic substrates and less enzymatic browning during drying. The results provide a theoretical basis for the application of rapid dehydration in drying Thompson seedless grapes.
Collapse
|
29
|
Sun T, Ouyang H, Sun P, Zhang W, Wang Y, Cheng S, Chen G. Postharvest UV-C irradiation inhibits blackhead disease by inducing disease resistance and reducing mycotoxin production in 'Korla' fragrant pear (Pyrus sinkiangensis). Int J Food Microbiol 2022; 362:109485. [PMID: 34823080 DOI: 10.1016/j.ijfoodmicro.2021.109485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Blackhead disease is a major fungal disease causing the quality deterioration of postharvest 'Korla' fragrant pear. In this study, the relationships of resistance to blackhead disease with the enzyme activity, phenolic compounds, and mycotoxin metabolism of 'Korla' fragrant pear were investigated, through UV-C irradiation of 0.12, 0.24, 0.36, 0.48, 0.72 and 1.08 kJ/m2 on 'Korla' fragrant pear inoculated with Alternaria alternata (Fries) Keissler (A. alternata). The results showed that the low-dose UV-C irradiation (0.36 kJ/m2) effectively controlled blackhead disease. The activities of chitinase (CHI), β-1,3-glucanase (GLU), peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia-lyase (PAL), and the content of phenolic compounds in fruit were enhanced, whereas the activities of lipoxygenase (LOX), polyphenol oxidase (PPO), and the contents of hydrogen peroxide (H2O2) and mycotoxins (including AOH, AME, and TeA) were decreased. Therefore, the low-dose UV-C irradiation could improve the resistance to blackhead disease and reduce the production of mycotoxins in 'Korla' fragrant pear. This study proves that UV-C irradiation may be a potentially effective strategy for the control of blackhead disease and the improvement of quality of postharvest 'Korla' fragrant pear.
Collapse
Affiliation(s)
- Tongrui Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Hui Ouyang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Pengcheng Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Weida Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Yue Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Shaobo Cheng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| | - Guogang Chen
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
30
|
Ma Y, Hu S, Chen G, Zheng Y, Jin P. Cold shock treatment alleviates chilling injury in peach fruit by regulating antioxidant capacity and membrane lipid metabolism. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
The work intended to reveal the effect of cold shock (CS) treatment on chilling injury (CI), antioxidant capacity, and membrane fatty acid of peach fruit.
Materials and methods
Peaches were soaked in ice water (0 °C) for 10 min and stored at 5 °C for 28 days for determination, except CI, and then stored for 3 days at 20 °C, only CI was measured. The electrolyte leakage (EL) was measured by conductivity meter. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase) and key enzymes of membrane lipid metabolism (phospholipase D, lipase, and lipoxygenase) as well as reactive oxygen species (ROS; O2·– and H2O2) were measured with a spectrophotometer. An ELISA kit and gas chromatography were used to determine membrane lipids and membrane fatty acids. The relative gene expression was measured by real-time polymerase chain reaction analysis.
Results
The results showed that CS treatment effectively delayed CI, suppressed the increase of EL and malondialdehyde content. Meanwhile, CS-treated fruit exhibited lower level of ROS and higher activities of antioxidant enzymes. Furthermore, CS treatment inhibited the activities as well as the relative gene expression of key enzymes in membrane lipid metabolism. CS-treated fruits maintained higher membrane fatty acid unsaturation and lower phosphatidic acid content.
Conclusions
These results indicated that CS treatment effectively alleviated CI and maintained the integrity of cell membranes by inducing antioxidant-related enzyme activity and maintaining a higher ratio of unsaturated fatty acids to saturated fatty acids.
Collapse
|
31
|
Dong J, Kebbeh M, Yan R, Huan C, Jiang T, Zheng X. Melatonin treatment delays ripening in mangoes associated with maintaining the membrane integrity of fruit exocarp during postharvest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:22-28. [PMID: 34741888 DOI: 10.1016/j.plaphy.2021.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
Abstract
The effects of exogenous melatonin on postharvest ripening of mango (Mangifera indica L. cv. Keitt) were investigated after the fruit were dipped in 0 (as the control), 100, or 200 μM melatonin solution for 30 min, and then stored at room temperature (25 ± 1 °C). The results showed that melatonin treatments could delay the ripening process as indicated by inhibition to softening, respiration, color change and chlorophyll degradation in fruit during storage. Notably, 200 μM melatonin treatment delayed the degradation of phosphatidylglycerol (PG) and phosphatidylinositol (PI), and the accumulation of phosphatidylserine (PS) and phosphatidic acid (PA) in membrane phospholipids, inhibited the decrease in unsaturated fatty acids (IUFA) index and also decreased the contents of H2O2 and malondialdehyde (MDA) in the exocarp of the fruit, which might collectively contribute to the integrity of the membrane associated with the delay in the ripening process of mango fruit during postharvest.
Collapse
Affiliation(s)
- Jingxian Dong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mariama Kebbeh
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ran Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tianjia Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
32
|
The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh longan fruit. Food Chem 2021; 351:129294. [PMID: 33640774 DOI: 10.1016/j.foodchem.2021.129294] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Cell wall polysaccharides in fruits act a pivotal role in their resistance to fungal invasion. Lasiodiplodia theobromae (Pat.) Griff. & Maubl. is a primary pathogenic fungus causing the spoilage of fresh longan fruit. In this study, the influences of L. theobromae inoculation on the disassembly of cell wall polysaccharides in pericarp of fresh longans and its association with L. theobromae-induced disease and softening development were investigated. In contrast to the control, samples with L. theobromae infection showed more severe disease development, lower firmness, lower amounts of cell wall materials, covalent-soluble pectin, ionic-soluble pectin, cellulose and hemicellulose, whereas higher value of water-soluble pectin, higher activities of cell wall polysaccharide-disassembling enzymes (cellulase, β-galactosidase, polygalacturonase and pectinesterase). These findings revealed that cell wall polysaccharides disassembly induced by enzymatic manipulation was an essential pathway for L. theobromae to infect harvested longans, and thus led to the disease occurrence and fruit softening.
Collapse
|
33
|
Zhou X, Wang Z, Zhu C, Yue J, Yang H, Li J, Gao J, Xu R, Deng X, Cheng Y. Variations of membrane fatty acids and epicuticular wax metabolism in response to oleocellosis in lemon fruit. Food Chem 2020; 338:127684. [PMID: 32916584 DOI: 10.1016/j.foodchem.2020.127684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
Oleocellosis is a physiological disorder causing blemishes on fruit surface. This study investigated the influence of oleocellosis on the membrane fatty acids and wax in lemon fruit rinds at the morphological, physiological, metabolic and molecular levels by using a variety with a high incidence rate of oleocellosis (green lemon). Oleocellosis-damaged rinds showed loose and flaky wax layers with more fissures on the surface, as well as higher contents of C16 and C18 fatty acids and very long chain (VLC) fatty alkanes while lower contents of VLC fatty aldehydes. The main differentially expressed genes, including FabZ, FAD2 and SAD6 involved in the accumulation of C16 and C18 fatty acids and CER1 involved in the transformation of VLC fatty aldehydes to VLC fatty alkanes, were up-regulated by oleocellosis. These results indicate that oleocellosis accelerates the accumulation of membrane free fatty acids and transformation of VLC fatty aldehydes to VLC fatty alkanes.
Collapse
Affiliation(s)
- Xianyan Zhou
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; National R&D Center for Citrus Preservation, Wuhan 430070, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Zhiquan Wang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Chunhua Zhu
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Jianqiang Yue
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Hongbin Yang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Jinxue Li
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Junyan Gao
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Rangwei Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Xiuxin Deng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Yunjiang Cheng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|
34
|
Wang H, Chen G, Shi L, Lin H, Chen Y, Lin Y, Fan Z. Influences of 1-methylcyclopropene-containing papers on the metabolisms of membrane lipids in Anxi persimmons during storage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
The aim of this work was to analyse the effects of 1-methylcyclopropene (1-MCP) treatment on the metabolisms of membrane lipids in postharvest Anxi persimmons during storage.
Materials and methods
Anxi persimmon (Diospyros kaki L. f. cv. Anxi) fruits were treated by paper containing 1-MCP with a concentration of 1.35 μl/l. The cellular membrane permeability was analysed by the electric conductivity meter. The activities of lipoxygenase (LOX), phospholipase (PLD) and lipase were determined by spectrophotometry. The component and relative amounts of membrane fatty acids were determined using gas chromatograph (GC).
Results
The 1-MCP-treated Anxi persimmons manifested a lower electrolyte leakage rate, lower LOX, PLD and lipase activities, higher levels of unsaturated fatty acids (USFAs), higher ratio of USFAs to saturated fatty acids (SFAs) (U/S), higher index of USFAs (IUFA), but lower levels of SFAs.
Conclusions
The degradation and the metabolisms of membrane lipids could be suppressed by 1-MCP treatment, which might be accountable for the delaying softening of postharvest Anxi persimmons during storage.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guo Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yifen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Zhongqi Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
35
|
Sun H, Zhou X, Zhou Q, Zhao Y, Kong X, Luo M, Ji S. Disorder of membrane metabolism induced membrane instability plays important role in pericarp browning of refrigerated ‘Nanguo’ pears. Food Chem 2020; 320:126684. [DOI: 10.1016/j.foodchem.2020.126684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023]
|
36
|
Effect of Ethylene on Cell Wall and Lipid Metabolism during Alleviation of Postharvest Chilling Injury in Peach. Cells 2019; 8:cells8121612. [PMID: 31835827 PMCID: PMC6952997 DOI: 10.3390/cells8121612] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Peach is prone to postharvest chilling injury (CI). Here it was found that exogenous ethylene alleviated CI, accompanied by an increased endogenous ethylene production. Ethylene treatment resulted in a moderately more rapid flesh softening as a result of stronger expression of genes encoding expansin and cell wall hydrolases, especially xylosidase and galactosidase. Ethylene treatment alleviated internal browning, accompanied by changes in expression of polyphenol oxidase, peroxidase and lipoxygenases. An enhanced content of phospholipids and glycerolipids and a reduced content of ceramide were observed in ethylene-treated fruit, and these were associated with up-regulation of lipid phosphate phosphatase, fatty acid alpha-hydroxylase, and golgi-localized nucleotide sugar transporter, as well as down-regulation of aminoalcohol phosphotransferases. Expression of two ethylene response factors (ERFs), ESE3 and ABR1, was highly correlated with that of genes involved in cell wall metabolism and lipid metabolism, respectively. Furthermore, the expression of these two ERFs was strongly regulated by ethylene treatment and the temperature changes during transfer of fruit into or out of cold storage. It is proposed that ERFs fulfill roles as crucial integrators between cell wall modifications and lipid metabolism involved in CI processes ameliorated by exogenous ethylene.
Collapse
|
37
|
Lin Y, Lin H, Chen Y, Wang H, Ritenour MA, Lin Y. Hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage. Food Chem 2019; 297:124955. [DOI: 10.1016/j.foodchem.2019.124955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
|
38
|
A novel chitosan alleviates pulp breakdown of harvested longan fruit by suppressing disassembly of cell wall polysaccharides. Carbohydr Polym 2019; 217:126-134. [DOI: 10.1016/j.carbpol.2019.04.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
|
39
|
Li T, Shi D, Wu Q, Zhang Z, Qu H, Jiang Y. Sodium para-aminosalicylate delays pericarp browning of litchi fruit by inhibiting ROS-mediated senescence during postharvest storage. Food Chem 2019; 278:552-559. [DOI: 10.1016/j.foodchem.2018.11.099] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
|
40
|
Wang H, Chen YH, Sun JZ, Lin YF, Lin YX, Lin M, Hung YC, Ritenour MA, Lin HT. The Changes in Metabolisms of Membrane Lipids and Phenolics Induced by Phomopsis longanae Chi Infection in Association with Pericarp Browning and Disease Occurrence of Postharvest Longan Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12794-12804. [PMID: 30403851 DOI: 10.1021/acs.jafc.8b04616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the changes in metabolisms of membrane lipids and phenolics caused by Phomopsis longanae Chi infection in association with pericarp browning and fruit disease occurrence of postharvest longans. Compared with the uninoculated-longans, the longans inoculated by P. longanae exhibited higher cellular membrane permeability; higher PLD, lipase, and LOX activities; and higher levels of saturated fatty acids (SFAs) and phosphatidic acid but lower levels of phosphatidylinositol, phosphatidylcholine, and unsaturated fatty acids (USFAs). Additionally, the longans inoculated by P. longanae showed higher activities of POD and PPO but a lower amount of total phenolics. These findings suggested that infection of P. longanae enhanced activities of PLD-, lipase-, and LOX- stimulated degradations of membrane lipids and USFAs, which destroyed the integrity of the cell membrane structure, resulting in enzymatic browning by contact of phenolics with POD and PPO, and resulting in reduction of resistance to pathogen infection and accordingly accelerated disease occurrence of postharvest longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Hui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jun-Zheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Fen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Xiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems & Bioengineering , University of Missouri , Columbia , Missouri 65211-5160 , United States
| | - Yen-Con Hung
- Department of Food Science and Technology , University of Georgia , 1109 Experiment Street , Griffin , Georgia 30223 , United States
| | - Mark A Ritenour
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences , University of Florida , Fort Pierce 34945 , United States
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| |
Collapse
|
41
|
Wang H, Chen Y, Lin H, Sun J, Lin Y, Lin M. Phomopsis longanae Chi-Induced Change in ROS Metabolism and Its Relation to Pericarp Browning and Disease Development of Harvested Longan Fruit. Front Microbiol 2018; 9:2466. [PMID: 30386318 PMCID: PMC6198053 DOI: 10.3389/fmicb.2018.02466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Phomopsis longanae Chi is a major pathogenic fungus that infects harvested longan fruit. This study aimed to investigate the effects of P. longanae on reactive oxygen species (ROS) metabolism and its relation to the pericarp browning and disease development of harvested longan fruit during storage at 28°C and 90% relative humidity. Results showed that compared to the control longans, P. longanae-inoculated longans displayed higher indexes of pericarp browning and fruit disease, higher O2 -. generation rate, higher accumulation of malondialdehyde (MDA), lower contents of glutathione (GSH) and ascorbic acid (AsA), lower 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability and reducing power in pericarp. In addition, P. longanae-infected longans exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the first 2 days of storage, and lower activities of SOD, CAT, and APX during storage day 2-5 than those in the control longans. These findings indicated that pericarp browning and disease development of P. longanae-infected longan fruit might be the result of the reducing ROS scavenging ability and the increasing O2 -. generation rate, which might lead to the peroxidation of membrane lipid, the loss of compartmentalization in longan pericarp cells, and subsequently cause polyphenol oxidase (PPO) and peroxidase (POD) to contact with phenolic substrates which result in enzymatic browning of longan pericarp, as well as cause the decrease of disease resistance to P. longanae and stimulate disease development of harvested longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
42
|
Zhang S, Lin H, Lin M, Lin Y, Chen Y, Wang H, Lin Y, Shi J. Lasiodiplodia theobromae (Pat.) Griff. & Maubl. reduced energy status and ATPase activity and its relation to disease development and pericarp browning of harvested longan fruit. Food Chem 2018; 275:239-245. [PMID: 30724192 DOI: 10.1016/j.foodchem.2018.09.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effects of Lasiodiplodia theobromae (Pat.) Griff. & Maubl (L. theobromae) inoculation on the energy status and activity of adenosine triphosphatase (ATPase) during L. theobromae-induced disease development and pericarp browning of harvested 'Fuyan' longan (Dimocarpus longan Lour. cv. Fuyan) fruit. The results showed that, compared to the control longans, L. theobromae-inoculated longans displayed higher indices of fruit disease and pericarp browning, lower pericarp ATP and ADP contents, higher AMP content, lower level of energy charge, as well as lower activities of Ca2+-ATPase, Mg2+-ATPase and H+-ATPase in membranes of plasma, vacuole, and mitochondria. These results indicated that the infection of L. theobromae reduced energy status and ATPase activities, caused ions disorder, damaged the integrity and function of the cell and organelles including vacuole and mitochondria in pericarp of longan fruit, which contributed to L. theobromae-promoted disease development and pericarp browning of harvested longan fruit during storage.
Collapse
Affiliation(s)
- Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
43
|
Lin Y, Chen M, Lin H, Lin M, Hung YC, Lin Y, Chen Y, Wang H, Ritenour MA. Phomopsis longanae-induced pericarp browning and disease development of longan fruit can be alleviated or aggravated by regulation of ATP-mediated membrane lipid metabolism. Food Chem 2018; 269:644-651. [PMID: 30100484 DOI: 10.1016/j.foodchem.2018.07.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/01/2022]
Abstract
Compared to P. longanae-inoculated longan fruit, DNP-treated P. longanae-inoculated longans displayed higher fruit disease index, pericarp browning index and cell membrane permeability. Moreover, they exhibited higher activities of phospholipase D, lipase and lipoxygenase, lower amounts of phosphatidylcholine, phosphatidylinositol and USFA (unsaturated fatty acids) as well as higher amounts of phosphatidic acid and SFA (saturated fatty acids). Additionally, lower ratio of USFA to SFA and USFA index were shown in DNP-treated P. longanae-inoculated longans. However, ATP-treated P. longanae-inoculated longans exhibited the opposite results. These findings indicated that DNP stimulated longan pericarp browning and disease development caused by P. longanae resulted from the increases in activities of membrane lipids-degrading enzymes, promoting degradation of membrane phospholipids and USFA, and disruption of membrane structural integrity. Whereas, the opposite results observed in ATP-treated P. longanae-inoculated longans were due to the reduction in activities of membrane lipids-degrading enzymes and the maintenance of membrane structural integrity.
Collapse
Affiliation(s)
- Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mark A Ritenour
- Indian River Research & Education Center, Horticultural Sciences Department, University of Florida, Fort Pierce 34945, USA
| |
Collapse
|
44
|
Chen Y, Lin H, Zhang S, Sun J, Lin Y, Wang H, Lin M, Shi J. Phomopsis longanae Chi-Induced Disease Development and Pericarp Browning of Harvested Longan Fruit in Association With Energy Metabolism. Front Microbiol 2018; 9:1454. [PMID: 30018608 PMCID: PMC6037842 DOI: 10.3389/fmicb.2018.01454] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022] Open
Abstract
Longan fruit is a popular subtropical fruit with a relatively short shelf life at room temperature mainly due to pericarp browning and fungal infection. This study aimed to investigate the infection of Phomopsis longanae Chi in longan fruit and its effects on the storability and shelf life of longan fruit. The relationship between the energy metabolism of harvested longan fruit and disease development and pericarp browning was elucidated. Results show that P. longanae-inoculation accelerated the deterioration of longan fruit and caused pericarp browning. It also led to the energy deficit in pericarp of longan fruit, which was reflected as lower contents of ATP and ADP, higher AMP content, and lower energy charge as compared to the control samples. Additionally, P. longanae-infection reduced the activities of H+-ATPase, Ca2+-ATPase, and Mg2+-ATPase in plasma, vacuolar, and mitochondrial membranes during the storage period. The results demonstrate that P. longanae-infection led to disease development and pericarp browning in harvested longan fruit, which were due to the infection-induced energy deficit and low ATPase activity that caused disorders of ion transport and distribution, and damaged the structure and function of vacuole, mitochondria, and eventually the whole cells of fruit tissues.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food System and Bioengineering, University of Missouri, Columbia, MO, United States
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
45
|
Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Chen Y, Zhang S, Lin H, Sun J, Lin Y, Wang H, Lin M, Shi J. Phomopsis longanae Chi-Induced Changes in Activities of Cell Wall-Degrading Enzymes and Contents of Cell Wall Components in Pericarp of Harvested Longan Fruit and Its Relation to Disease Development. Front Microbiol 2018; 9:1051. [PMID: 29875756 PMCID: PMC5974112 DOI: 10.3389/fmicb.2018.01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
The main goal of this study was to investigate the influences of Phomopsis longanae Chi infection on activities of cell wall-degrading enzymes (CWDEs), and contents of cell wall components in pericarp of harvested “Fuyan” longan (Dimocarpus longan Lour. cv. Fuyan) fruit and its relation to disease development. The results showed that, compared with the control samples, P. longanae-inoculated longans showed higher fruit disease index, lower content of pericarp cell wall materials (CWMs), as well as lower contents of pericarp cell wall components (chelate-soluble pectin (CSP), sodium carbonate-soluble pectin, hemicelluloses, and cellulose), but higher content of pericarp water-soluble pectin (WSP). In addition, the inoculation treatment with P. longanae significantly promoted the activities of CWDEs including pectinesterase, polygalacturonase, β-galactosidase, and cellulase. The results suggested that the P. longanae stimulated-disease development of harvested longans was due to increase in activities of pericarp CWDEs, which might accelerate the disassembly of pericarp cell wall components. In turn, resulting in the degradation of pericarp cell wall, reduction of pericarp mechanical strength, and subsequently leading to the breakdown of longan pericarp tissues. Eventually resulting in development of disease development and fruit decay in harvested longans during storage at 28°C.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO, United States
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
47
|
The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced pericarp browning and disease development of harvested longan fruit. Food Chem 2018; 247:16-22. [DOI: 10.1016/j.foodchem.2017.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
|