1
|
Sim SY, Cho HD, Lee SB. Amelioration of Alcoholic Hepatic Steatosis in a Rat Model via Consumption of Poly-γ-Glutamic Acid-Enriched Fermented Protaetia brevitarsis Larvae Using Bacillus subtilis. Foods 2025; 14:861. [PMID: 40077563 PMCID: PMC11899319 DOI: 10.3390/foods14050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation and counteract AHS through the consumption of microorganism-fermented Protaetia brevitarsis larvae (FPBs). By using an AHS rat model, we assessed the efficacy of FPB by examining the lipid profile of liver/serum and liver function tests to evaluate lipid metabolism modulation. After FPB administration, the lipid profile-including high-density lipoprotein, total cholesterol, and total triglycerides-and histopathological characteristics exhibited improvement in the animal model. Interestingly, AHS amelioration via FPBs administration was potentially associated with poly-γ-glutamic acid (PγG), which is produced by Bacillus species during fermentation. These findings support the formulation of novel natural remedies for AHS through non-clinical animal studies, suggesting that PγG-enriched FPBs are a potentially valuable ingredient for functional foods, providing an ameliorative effect on AHS.
Collapse
Affiliation(s)
- So-Yeon Sim
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Uthaiah NM, Venkataramareddy SR, Mudhol S, Sheikh AY. EPA-rich Nannochloropsis oceanica biomass regulates gut microbiota, alleviates inflammation and ameliorates liver fibrosis in rats. Food Res Int 2025; 202:115733. [PMID: 39967180 DOI: 10.1016/j.foodres.2025.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Omega-3 fatty acids are believed to show anti-fibrotic effects by lowering inflammation and regulating the gut microflora. Marine microalgae are an alternative, sustainable source of omega-3 fatty acids to the conventionally used fish oil. Microalgae N. oceanica is a promising source of EPA, one of the essential omega-3 PUFAs. Current study investigates the inhibitory effects of EPA rich N. oceanica biomass against CCl4 induced liver fibrosis in rats. Here, we studied the anti-fibrotic effects in N. oceanica biomass fed groups: T1 - Low dose (4.16 mg/kg EPA), T2 - Medium dose (8.33 mg/kg EPA) and T3 - High dose (16.66 mg/kg EPA), when compared to fish oil fed group (FO - 16.66 mg/kg EPA) as a positive control. The elevated levels of serum liver biomarker enzymes and cholesterol induced by CCl4 showed a significant reduction in T3. Histopathological analysis showed the protective effects of biomass feeding on inflammation and hepatocyte degeneration. In addition, the abundance of the SCFA producing bacteria like Blautia argi, Romboutsia ilealis, Romboutsia timonensis, Stomatobaculum longum and Limosilactobacillus reuteri markedly increased in the PUFA fed groups. The cholesterol metabolising bacteria Eubacterium coprostanoligenes showed a noteworthy increase upon PUFA administration. Overall results indicate that the ameliorative effects observed upon administration of N. oceanica biomass were comparable to FO in a dose dependent manner. Therefore, we can conclude that N. oceanica biomass supplementation is associated with the alleviation of liver fibrosis in rats.
Collapse
Affiliation(s)
- Nethravathy Malachira Uthaiah
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Reddampalli Venkataramareddy
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Seema Mudhol
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Azam Yakub Sheikh
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wang X, Sun Z, Wang X, Li M, Zhou B, Zhang X. Solanum nigrum L. berries extract ameliorated the alcoholic liver injury by regulating gut microbiota, lipid metabolism, inflammation, and oxidative stress. Food Res Int 2024; 188:114489. [PMID: 38823872 DOI: 10.1016/j.foodres.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.
Collapse
Affiliation(s)
- Xueying Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziqi Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoli Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Boru Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Wu D, Cheng M, Yi X, Xia G, Liu Z, Shi H, Shen X. Effects of Mactra chinenesis Peptides on Alcohol-Induced Acute Liver Injury and Intestinal Flora in Mice. Foods 2024; 13:1431. [PMID: 38790731 PMCID: PMC11119424 DOI: 10.3390/foods13101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.
Collapse
Affiliation(s)
- Dong Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ming Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
5
|
Wang D, Lv J, Fu Y, Shang Y, Liu J, Lyu Y, Wei M, Yu X. Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods 2024; 13:647. [PMID: 38472759 DOI: 10.3390/foods13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this study was to determine the optimal extraction conditions for total flavonoids from S. bigelovii using microwave-assisted extraction and to analyze the protective effect of total flavonoids from S. bigelovii on alcoholic liver injury in mice. The optimization of the process conditions for the microwave-assisted extraction of total flavonoids from S. bigelovii was performed using response surface methodology, and an alcohol-induced acute liver injury model in mice was used to investigate the effects of different doses of total flavonoids (100 mg/kg, 200 mg/kg, and 400 mg/kg) on the levels and activities of serum alanine aminotransferase kits (ALT), glutamic oxaloacetic transaminase kits (AST), superoxide dismutase kits (SOD), glutathione peroxidase kits (GSH-Px), and malondialdehyde (MDA). We performed hematoxylin-eosin (H&E) staining analysis on pathological sections of mouse liver tissue, and qRT-PCR technology was used to detect the expression levels of the inflammatory factors IL-1 β, IL-6, and TNF-α. The results revealed that the optimal extraction process conditions for total flavonoids in S. bigelovii were a material-to-liquid ratio of 1:30 (g/mL), an ethanol concentration of 60%, an extraction temperature of 50 °C, an ultrasound power of 250 W, and a yield of 5.71 ± 0.28 mg/g. Previous studies have demonstrated that the flavonoids of S. bigelovii can significantly inhibit the levels of ALT and AST in the serum (p < 0.001), reduce MDA levels (p < 0.001), increase the activity of the antioxidant enzymes SOD and GSH-Px (p < 0.001), and inhibit the IL-1 β, IL-6, and TNF-α gene expression levels (p < 0.001) of inflammatory factors. The total flavonoids of S. bigelovii exert a protective effect against alcoholic liver injury by reducing the levels of inflammation, oxidative stress, and lipid peroxidation caused by alcohol. The results of this study lay the foundation for the high-value utilization of S. bigelovii and provide new resources for the development of liver-protective drugs.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Lv
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yan Fu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
Duan C, Xiao X, Yu Y, Xu M, Zhang Y, Liu X, Dai H, Pi F, Wang J. In situ Raman characterization of the stability of blueberry anthocyanins in aqueous solutions under perturbations in temperature, UV, pH. Food Chem 2024; 431:137155. [PMID: 37591141 DOI: 10.1016/j.foodchem.2023.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Blueberry anthocyanin (BA) is a functional ingredient to enhance the biological activity of food, and the stability of BA is of great interest. BA stability in aqueous solutions stored in polypropylene and glass bottles was analyzed in-situ using confocal Raman spectroscopy, and the acceptable depth of focus was optimized. The Raman characteristics of BA degradation were explained by multivariate analysis. The degradation rate of BA was significantly accelerated by heating above 65 °C for 2 h or ultraviolet irradiation (10 W) for 96 h. The first order kinetic reaction rate was accelerated with the increase of pH value and temperature and the prolongation of ultraviolet irradiation time. The synergistic effect of multiple factors promoted BA degradation. This study provides an in-situ, nondestructive method for the analysis of anthocyanin stability, which has great utility in the food industry to optimize processing, storage, and transportation measures to reduce the degradation of BA.
Collapse
Affiliation(s)
- Chuchu Duan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Xiaofeng Xiao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yonghui Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Mengting Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yanpeng Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Xiaodan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, People's Republic of China
| | - Huang Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, People's Republic of China
| | - Fuwei Pi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, People's Republic of China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, People's Republic of China.
| |
Collapse
|
7
|
Wang W, Xu C, Wang Q, Hussain MA, Wang C, Hou J, Jiang Z. Protective Effect of Polyphenols, Protein, Peptides, and Polysaccharides on Alcoholic Liver Disease: A Review of Research Status and Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37001022 DOI: 10.1021/acs.jafc.2c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alcoholic liver disease (ALD) has emerged as an important public health problem in the world. The polyphenols, protein, peptides, and polysaccharides have attracted attention for prevention or treatment of ALD. Therefore, this paper reviews the pathogenesis of ALD, the relationship between polyphenols, peptides, polysaccharides, and ALD, and expounds the mechanism of gut microbiota on protecting ALD. It is mainly found that the hydroxyl group of polyphenols endows it with antioxidation to protect ALD. The ALD protection of bioactive peptides is related to amino acid composition. The ALD protection of polysaccharides is related to the primary structure. Meanwhile, polyphenols, protein, peptides, and polysaccharides prevent or treat ALD by antioxidation, anti-inflammatory, antiapoptosis, lipid metabolism, and gut microbiota regulation. This contribution provides updated information on polyphenols, protein, peptides, and polysaccharides in response to ALD, which will not only facilitate the development of novel bioactive components but also the future application of functional food raw materials will be promoted.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd., Harbin 150090, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science Uthal, Balochistan 90150, Pakistan
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Meng M, Sun Y, Qi Y, Xu J, Sun J, Bai Y, Han L, Han R, Hou L, Sun H. Structural characterization and induction of tumor cell apoptosis of polysaccharide from purple sweet potato (Ipomoea batatas (L.) Lam). Int J Biol Macromol 2023; 235:123799. [PMID: 36828088 DOI: 10.1016/j.ijbiomac.2023.123799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The carbohydrate is the main ingredient of purple sweet potato. A polysaccharide, named PSP, was separated and purified from purple sweet potato by extraction with hot water, precipitation with ethanol, deproteinization with Sevag reagent and column chromatography with Sephadex G-100. The purity and structure were studied with HPLC, UV-Vis, GC-MS and NMR. The PSP is a neutral polysaccharide with Mw of 470 kDa. The monosaccharide composition of PSP contained D-xylose, d-glucose, D-galactose with ratio of 1.0: 8.3: 1.3. The backbone of PSP was composed of the residues of →6)-D-Glcp-(1 → and →2, 6)-D-Glcp-(1→. The branches of PSP contained the residues of →3)-D-Galp-(1→, and D-Xylp-(1→. The antitumor activity in vitro of PSP was analyzed with HT-29 cells. And the SEM, AO staining, MDC staining and hoechst 33342 staining were performed to study the effect on apoptosis of HT-29 cells by PSP. The results revealed that the PSP can significantly inhibit the proliferation of HT-29 cells from induction apoptosis. The manuscript provided valuable knowledges on structural characteristics of the polysaccharides from purple sweet potato.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ying Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yanlong Qi
- Synthetical Test Site of Xinjiang Academy of Agricultural Sciences, No. 1, Xiaokang Road, New Urban District, Urumqi 830000, China
| | - Jin Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jingge Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yuhe Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
9
|
Tong Y, Li L, Meng X. Anthocyanins from Aronia melanocarpa Bound to Amylopectin Nanoparticles: Tissue Distribution and In Vivo Oxidative Damage Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:430-442. [PMID: 36562990 DOI: 10.1021/acs.jafc.2c06115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The in vivo applications of anthocyanins are limited by their instability. Nano-encapsulation using amylopectin nanoparticles (APNPs) stabilizes anthocyanins to deliver them to tissues to ameliorate their physiological functions. Herein, rats are fed four Aronia melanocarpa anthocyanins encapsulated with APNPs, and their subsequent distributions and bioactivity in nine tissues are revealed using UHPLC-MS. Among digestive tissues, the concentration of the APNP-protected cyanidin 3-O-arabinoside in the stomach is 134.54% of that of the free anthocyanin, while among non-digestive tissues, the APNP-protected cyanidin 3-O-glucoside concentration in the lungs improved by 125.49%. Concentration maxima "double peaks" in the liver and kidney arise from different modes of transport. Sustained release of anthocyanins from anthocyanin-APNPs and stable concentration curves suggest controlled delivery, with most APNPs consumed in the digestive system. APNPs did not affect the overall anthocyanin absorption time or tissues. The superoxide dismutase and malondialdehyde concentrations indicate that APNPs enhance the oxidative damage protection in vivo.
Collapse
Affiliation(s)
- Yuqi Tong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| |
Collapse
|
10
|
Yao Y, Zhang X, Xu Y, Zhao Y, Song F, Tian Z, Zhao M, Liang Y, Ling W, Mao YH, Yang Y. Cyanidin-3- O-β-Glucoside Attenuates Platelet Chemokines and Their Receptors in Atherosclerotic Inflammation of ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8254-8263. [PMID: 35758304 DOI: 10.1021/acs.jafc.2c01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platelet chemokines play well-established roles in the atherosclerotic inflammation. Cyanidin-3-O-β-glucoside (Cy-3-g) is one of the main bioactive compounds in anthocyanins, but its effects on chemokines during atherosclerosis have not been determined yet. In the present study, ApoE-/- mice were fed on the chow diet, high-fat diet (HFD), and HFD-supplemented Cy-3-g at 200, 400, and 800 mg/kg diet. After 16 weeks, Cy-3-g significantly alleviated the atherosclerotic lesion and inhibited platelet aggregation and activation. Moreover, Cy-3-g significantly reduced inflammatory chemokines CXCL4, CXCL7, CCL5, CXCL5, CXCL12, and CCL2 in plasma and downregulated CXCR4, CXCR7, and CCR5 on platelets and peripheral blood mononuclear cells. Besides, Cy-3-g decreased the mRNA of TNFα, IFNγ, ICAM-1, VCAM-1, CD68, MMP7, CCL5, CXCR4, and CCR5 in the aorta of mice. Therefore, it suggests that Cy-3-g plays important preventive roles in the process of atherosclerosis via attenuating chemokines and receptors in ApoE-/- mice.
Collapse
Affiliation(s)
- Yanling Yao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province 518033, China
| | - Xiandan Zhang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Zhuang Autonomous Region, Nanning, Guangxi 530000, China
| | - Yixuan Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province 510006, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Mingzhu Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yu-Heng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| |
Collapse
|
11
|
Dong Y, Wu X, Han L, Bian J, He C, El-Omar E, Gong L, Wang M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022; 14:nu14142836. [PMID: 35889793 PMCID: PMC9316990 DOI: 10.3390/nu14142836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases affecting the heart and blood vessels and is the leading cause of morbidity and mortality worldwide. Increasingly more evidence has shown that the senescence of vascular endothelial cells is the key to endothelial dysfunction and cardiovascular diseases. Anthocyanin is a type of water-soluble polyphenol pigment and secondary metabolite of plant-based food widely existing in fruits and vegetables. The gut microbiome is involved in the metabolism of anthocyanins and mediates the biological activities of anthocyanins and their metabolites, while anthocyanins also regulate the growth of specific bacteria in the microbiota and promote the proliferation of healthy anaerobic flora. Accumulating studies have shown that anthocyanins have antioxidant, anti-inflammatory, and anti-aging effects. Many animal and in vitro experiments have also proven that anthocyanins have protective effects on cardiovascular-disease-related dysfunction. However, the molecular mechanism of anthocyanin in eliminating aging endothelial cells and preventing cardiovascular diseases is very complex and is not fully understood. In this systematic review, we summarize the metabolism and activities of anthocyanins, as well as their effects on scavenging senescent cells and cardioprotection.
Collapse
Affiliation(s)
- Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia;
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
12
|
Wang X, Li X, Liu Y, Jiang X, Wu L, Liu R, Jin R, Zhou N, Cao C, Hu X, Xu B, Tong X, Bai W, Bai S. Cyanidin-3-Ο-glucoside supplementation in cryopreservation medium improves human sperm quality. Andrologia 2022; 54:e14493. [PMID: 35671952 DOI: 10.1111/and.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the cryopreservation of human spermatozoa must overcome the adverse effects of excessive oxidation. In this study, we aimed to evaluate the effect of supplementation of cryopreservation medium with cyanidin-3-Ο-glucoside (C3G) on sperm quality. Semen samples were obtained from men with normozoospermia according to WHO criteria (n = 39). The sperm parameter values were compared after cryopreservation in medium supplemented with and without C3G.Compared with the control group (without additive), low doses (50 μM and 100 μM) of C3G improved sperm viability and motility and decreased the reactive oxygen species (ROS) of spermatozoa, while high doses (200 μM) of C3G did not obviously enhance sperm quality. The amount of DNA fragmentation index (DFI) and high DNA stainability (HDS) after freezing were higher in the control group than in the C3G supplementation groups. Low-concentration C3G supplementation (50 μM) was negatively correlated with sperm ROS levels (r = -0.2, p = 0.03). Collectively, our findings suggest that C3G could be an efficient semen cryoprotectant that ameliorates oxidative stress in human sperm during cryopreservation.
Collapse
Affiliation(s)
- Xiaohan Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaohua Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ran Liu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Rentao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Naru Zhou
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cheng Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, People's Republic of China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
13
|
Wang X, Wang Y, Liu Y, Cong P, Xu J, Xue C. Hepatoprotective effects of sea cucumber ether-phospholipids against alcohol-induced lipid metabolic dysregulation and oxidative stress in mice. Food Funct 2022; 13:2791-2804. [PMID: 35174375 DOI: 10.1039/d1fo03833h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sea cucumber is widely consumed as food and folk medicine in Asia, and its phospholipids are rich sources of dietary eicosapentaenoic acid enriched ether-phospholipids (ether-PLs). Emerging evidence suggests that ether-PLs are associated with neurodegenerative disease and steatohepatitis. However, the function and mechanism of ether-PLs in alcoholic liver disease (ALD) are not well understood. To this end, the present study sought to investigate the hepatoprotective effects of sea cucumber ether-PLs, including plasmenyl phosphatidylethanolamine (PlsEtn) and plasmanyl phosphatidylcholine (PlsCho), and their underlying mechanisms. Our results showed that compared with EtOH-induced mice, ether-PL treated mice showed improved liver histology, decreased serum ALT and AST levels, and reduced alcohol metabolic enzyme (ALDH2 and ADH1) expressions. Mechanistic studies showed that ether-PLs attenuated "first-hit" hepatic steatosis and lipid accumulation evoked by alcohol administration. Moreover, PlsEtn more effectively restored endogenous plasmalogen levels than PlsCho, thereby enhancing hepatic antioxidation against "second-hit" reactive oxygen species (ROS) due to the damaged mitochondria and abnormal ethanol metabolism. Taken together, sea cucumber ether-PLs show great potential to become a natural functional food against chronic alcohol-induced hepatic steatosis and lipid metabolic dysregulation.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yuliu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,School of Food Science & Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs and Biological Products, Qingdao, 266237, Shandong, China
| |
Collapse
|
14
|
Li D, Hu Z, He Q, Guo Y, Chong Y, Xu J, Qin L. Lactoferrin Alleviates Acute Alcoholic Liver Injury by Improving Redox-Stress Response Capacity in Female C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14856-14867. [PMID: 34873911 DOI: 10.1021/acs.jafc.1c06813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lactoferrin (Lf) can attenuate alcoholic liver injury (ALI) in male mice; however, the effects of Lf on acute ALI in female mice are still unknown. Female C57BL/6J mice were randomly divided into four groups and fed with different diets for 4 weeks: an AIN-93G diet for control (CON) and ethanol (EtOH) groups; an AIN-93G diet with 0.4 and 4% casein replaced by Lf for low-dose Lf (LLf) and high-dose Lf (HLf) groups. Acute ALI was induced by intragastric administration of ethanol (4.8 g/kgbw) every 12 h continuously for three times. HLf had obvious alleviating effects on acute ALI. Lf pretreatment did not affect hepatic alcohol metabolism key enzymes. Meanwhile, the ethanol-induced hepatic reactive oxygen species level increase was not ameliorated by Lf. Metabolomics and bioinformatics analysis results suggested an important role of redox-stress response capacity (RRC). Western blots showed HLf-promoted AKT and AMP-activated protein kinase activations and upregulated Nrf2 and LC3-II expressions, which was associated with RRC improvement. In summary, HLf could prevent acute ALI in female mice, and RRC likely played an important role.
Collapse
Affiliation(s)
- Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Zhiqiang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yaxin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Black soybean-derived peptides exerted protective effect against alcohol-induced liver injury in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Genetically encoded probiotic EcN 1917 alleviates alcohol-induced acute liver injury and restore gut microbiota homeostasis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
Yang W, Yang Z, Zou Y, Sun X, Huang G. Extraction and deproteinization process of polysaccharide from purple sweet potato. Chem Biol Drug Des 2021; 99:111-117. [PMID: 34407290 DOI: 10.1111/cbdd.13935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Extraction and deproteinization process of polysaccharide from purple sweet potato (PPSP) were optimized via the response surface methodology (RSM). The results indicated that the optimal conditions of extraction in hot water of PPSP were as follows: The extraction temperature was 120℃, the extraction time was 2.5 hr, and the solid-liquid ratio was 1∶10 (g/ml). The optimal conditions of Sevage deproteinization were as under the oscillation time was 20 min, the deproteinization times was twice, and polysaccharide solution-Sevage reagent ratio was 1:1 (ml/ml). The extraction yield of PPSP was 3.32%, and the protein removal rate was 93.14% in such a condition.
Collapse
Affiliation(s)
- Wenjian Yang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Zixuan Yang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Yi Zou
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Xinke Sun
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Pan F, Cai Z, Ge H, Ma S, Yu Y, Liu J, Zhang T. Transcriptome analysis reveals the hepatoprotective mechanism of soybean meal peptides against alcohol-induced acute liver injury mice. Food Chem Toxicol 2021; 154:112353. [PMID: 34146619 DOI: 10.1016/j.fct.2021.112353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
This study aimed was to explore the hepatoprotective potential of soybean meal peptides (SPs) against alcohol-induced liver injury and investigate the underlying mechanisms through transcriptome analysis. The chemical antioxidant analysis of SPs exhibited potent ABTS radical scavenging capacity (11.94 ± 0.41 mg TE/100 mg peptide), ferric reducing antioxidant power (6.42 ± 0.32 mmol Fe2+/100 mg peptide), and oxygen radical absorption capacity (14.78 ± 0.01 mg TE/100 mg peptide). Moreover, SPs increased cell viability and reduced intracellular reactive oxygen species levels in Caco-2 cells by H2O2-induced, and without cytotoxicity. In the mice model, preintervention with SPs reduced the levels of aspartate transaminase/alanine transaminase, total cholesterol, triglyceride and malondialdehyde by alcohol-induced, meanwhile, increased the levels of total superoxide dismutase, glutathione and catalase by alcohol-induced. Histological analysis showed that SPs alleviated the liver injury by alcohol-induced and no toxic effects on the kidneys. According to transcriptome analysis, 1737 genes were significantly differentially expressed (1076 up-regulated and 661 down-regulated) after SPs pretreatment. The main functions of these genes were related to inflammation, lipid metabolism and oxidation. The findings from the present study suggested that SPs produced positive hepatoprotection and showed potential to be used as a dietary supplement or an ingredient of functional food.
Collapse
Affiliation(s)
- Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Zhuanzhang Cai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
20
|
Tang S, Kan J, Sun R, Cai H, Hong J, Jin C, Zong S. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. J Food Biochem 2021; 45:e13869. [PMID: 34287964 DOI: 10.1111/jfbc.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
In this study, anthocyanins were extracted and purified from purple sweet potato anthocyanins (PSPA) and the alleviative effect of PSPA on doxorubicin (DOX)-induced cardiotoxicity was investigated. High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) results showed that 10 kinds of substances were identified in PSPA and the PSPA was mainly composed of cyanidin (62.9%) and peonidin (21.46%). In in vitro experiments, PSPA reduced the excessive release of inflammatory factors (NO and TNF-α) induced by DOX and decreased the secretion of trimethylamine oxide (TMAO), lactic dehydrogenase (LDH), and creatine kinase (CK) caused by myocardial injury. In in vivo experiments, PSPA inhibited the release of NO and MDA levels in heart tissue. Meanwhile, mice treated with PSPA decreased the levels of LDH, CK, TNF-α, and TMAO in serum and heart tissue when compared with the DOX group. In addition, the histopathological results of the heart tissue also showed a protective effect of PSPA on the pathological changes in heart. These results provide a reference for the application of PSPA as a functional food to intervene in DOX-induced cardiotoxicity. PRACTICAL APPLICATIONS: The effects of anthocyanins from purple sweet potato anthocyanins (PSPA) on doxorubicin (DOX)-induced cardiotoxicity were investigated in vitro and in vivo. The results indicated that PSPA could significantly ameliorate DOX-induced heart failure. The obtained results could provide the potential application of PSPA as an alternative therapy for cardiotoxicity caused by DOX in the functional food industry.
Collapse
Affiliation(s)
- Sixue Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
21
|
Xiao T, Luo Z, Guo Z, Wang X, Ding M, Wang W, Shen X, Zhao Y. Multiple Roles of Black Raspberry Anthocyanins Protecting against Alcoholic Liver Disease. Molecules 2021; 26:molecules26082313. [PMID: 33923467 PMCID: PMC8073606 DOI: 10.3390/molecules26082313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
This study aimed to investigate the protective effect of black raspberry anthocyanins (BRAs) against acute and subacute alcoholic liver disease (ALD). Network analysis and docking study were carried out to understand the potential mechanism. Thereafter, the serum biochemical parameters and liver indexes were measured, the histopathological changes of the liver were analyzed in vivo. The results showed that all tested parameters were ameliorated after the administration of BRAs with alcohol. Meanwhile, there was increased protein expression of NF-κB and TGF-β in extracted livers, which was associated with hepatitis and hepatic fibrosis. Furthermore, BRAs and cyanidin-3-O-rutinoside exhibited cytotoxic effects on t-HSC/Cl-6, HepG2, and Hep3B and induced the apoptosis of HepG2 cells; downregulated the protein expression level of Bcl-2; upregulated the level of Bax; and promoted the release of cytochrome C, cleaved caspase-9, cleaved caspase-3, and cleaved PARP in HepG2 cells. In addition, the antioxidant activity of BRAs was tested, and the chemical components were analyzed by FT-ICR MS. The results proved that BRAs exert preventive effect on ALD through the antioxidant and apoptosis pathways.
Collapse
Affiliation(s)
- Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Department of Pharmaceutic Preparation of Chinse Medicine, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China;
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
- The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Zhonghua Luo
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
| | - Zhenghong Guo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China;
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
| | - Meng Ding
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
| | - Wei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, The Department of Pharmaceutic Preparation of Chinse Medicine, The High Educational Key Laboratory of Guizhou Province for Natural Medicianl Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China;
- The Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (X.S.); (Y.Z.); Tel.: +86-851-88416149 (X.S.); +86-24-43520309 (Y.Z.); Fax: +86-851-88416149 (X.S.); +86-24-43520309 (Y.Z.)
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.L.); (X.W.); (M.D.); (W.W.)
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (X.S.); (Y.Z.); Tel.: +86-851-88416149 (X.S.); +86-24-43520309 (Y.Z.); Fax: +86-851-88416149 (X.S.); +86-24-43520309 (Y.Z.)
| |
Collapse
|
22
|
Ruta LL, Oprea E, Popa CV, Farcasanu IC. Saccharomyces cerevisiae cells lacking transcription factors Skn7 or Yap1 exhibit different susceptibility to cyanidin. Heliyon 2020; 6:e05352. [PMID: 33145450 PMCID: PMC7592074 DOI: 10.1016/j.heliyon.2020.e05352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Anthocyanidins – the aglycone moiety of anthocyanins – are responsible for the antioxidant traits and for many of the health benefits brought by the consumption of anthocyanin-rich foods, but whether excessive anthocyanidins are deleterious to living organisms is still a matter of debate. In the present study we used the model eukaryotic microorganism Saccharomyces cerevisiae to evaluate the potential toxicity of cyanidin, one of the most prevalent anthocyanidins found in berries, grapes, purple vegetables, and red wine. We found that yeast cells lacking the transcription factors responsible for regulating the response to oxidative stress – Skn7 and Yap1 – exhibited different sensitivities to cyanidin. Cells lacking the transcription factor Skn7 were sensitive to low concentrations of cyanidin, a trait that was augmented by exposure to visible light, notably blue or green light. In contrast, the growth of yeast cells devoid of Yap1 was stimulated by low concentrations, but it was impaired by high cyanidin exposure. High, but not low cyanidin was shown to induce Yap1 translocation from cytosol to nucleus, probably by generating reactive oxygen species such as H2O2. Taken together, these observation suggested that Skn7 and Yap1 have complementary roles in adaptation to cyanidin stress, with Skn7 involved in adaptation to low concentrations and with Yap1 responsible for adaptation to high concentrations of cyanidin. The results imply that caution is needed when utilizing cyanidin-enriched supplements, especially when in combination with prolonged exposure to visible light.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Claudia Valentina Popa
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
23
|
Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W. Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts. Molecules 2020; 25:E4055. [PMID: 32899830 PMCID: PMC7570557 DOI: 10.3390/molecules25184055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Aronia fruits contain many valuable components that are beneficial to human health. However, fruits are characterized by significant variations in chemical composition dependent on the growing conditions and harvesting period. Therefore, there is a need to formulate the extracts with a precisely defined content of health-promoting substances. Aronia dry extracts (ADE) were prepared from frozen pomace applying water extraction, followed by purification and spray-drying. Subsequently, the content of anthocyanins, phenolic acids, and polyphenols was determined. The high-quality chokeberry pomace enabled obtaining extracts with anthocyanin content much higher than the typical market standards. Moreover, it was found that the antioxidant capacity of aronia extracts exceeded those found in other fruit preparations. Antioxidant and free-radical scavenging properties were evaluated using a 2,2'-diphenyl-1-picrylhydrazyl using Electron Paramagnetic Resonance (EPR) spectroscopy (DPPH-EPR) test and Oxygen Radical Absorbance Capacity (ORAC) assay. The inhibition of lipid peroxidation and the level of inflammatory markers have been also investigated using lipopolysaccharide (LPS)-stimulated RAW 264 cells. It was revealed that ADE standardized to 25% of anthocyanins depresses the level of markers of inflammation and lipid peroxidation (Interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA)) in in vitro conditions. Additionally, it was confirmed that ADE at all analyzed concentrations did not show any cytotoxic effect as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Mariusz Banach
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | | | - Katarzyna Zawada
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Wojciech Cyplik
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
24
|
Ye X, An Q, Chen S, Liu X, Wang N, Li X, Zhao M, Han Y, Zhao Z, Ouyang K, Wang W. The structural characteristics, antioxidant and hepatoprotection activities of polysaccharides from Chimonanthus nitens Oliv. leaves. Int J Biol Macromol 2020; 156:1520-1529. [PMID: 31783077 DOI: 10.1016/j.ijbiomac.2019.11.200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
This work aimed to investigate the structural characteristics, antioxidant activities and hepatoprotection effect of Chimonanthus nitens Oliv. leaves polysaccharides (COP) on alcohol-induced oxidative damage in mice. Physical and chemical analysis showed that COP contained four monosaccharides including arabinose (Ara), mannose (Man), glucose (Glu) and galactose (Gal), with mass percentages of 26.6%, 5.1%, 32.2% and 36.0%, respectively, which was a heteropolysaccharide with both α- and β- configurations. In vivo experiments indicated that oral administration COP significantly reduced the levels of ALT, AST and MDA in serum, and significantly increased the activity of SOD and GSH-Px. Mice pretreated with COP had a higher superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in liver and lower content of TNF-α, IL-6 and IL-1β in the liver and serum when compared with alcohol exposure. In addition, the liver histopathological changes induced by alcohol returned to normal in the COP pretreatment group. These results suggest that COP has a protective effect on acute liver injury induced by alcohol.
Collapse
Affiliation(s)
- Ximei Ye
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Li
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Hepatoprotective effect of pyrroloquinoline quinone against alcoholic liver injury through activating Nrf2-mediated antioxidant and inhibiting TLR4-mediated inflammation responses. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ye P, Lu J, Li M, Zhang H, Chen Y, Wei F. Comprehensive analysis of the compound profiles of Folium Camelliae Nitidissimae extract by ultrafast liquid chromatography with quadrupole-time-of-flight mass spectrometry and hepatoprotective effect against CCl 4 -induced liver injury in mice. Biomed Chromatogr 2020; 34:e4817. [PMID: 32112425 DOI: 10.1002/bmc.4817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 11/08/2022]
Abstract
Folium Camelliae Nitidissimae (jinhuacha in Chinese, JHC) is a kind of caffeine-less tea with antioxidant, antitumor and antibacterial effects. Studies on the chemical profiles and hepatoprotective effects of JHC extracts have not been systematically conducted so far. This study comprehensively investigated the compound profiles of JHC extract by ultrafast liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. We also determined JHC's hepatoprotective effects against CCl4 -induced liver injury in mice. A JHC extract was administered orally to mice at 1.95 and 7.80 g/kg body weight once daily for 14 consecutive days prior to CCl4 treatment. Eighty-four compounds including flavonoids, organic acids, catechins, coumarins, phenylpropanol, amino acids, anthraquinones, saponins and nucleosides in JHC extract were authentically identified or tentatively identified by comparing MS information and retention times with those of authentic standards or available references. JHC administration significantly decreased elevated levels of aspartate aminotransferase and alanine aminotransferase in mouse serum, inhibited hepatic malondialdehyde formation and enhanced glutathione and superoxide dismutase activities in the liver of CCl4 -treated mice. The histological observations also further supported the results. These results demonstrate that JHC contains various chemical compounds and its hepatoprotective effects against CCl4 -induced liver injury correlated with decreasing lipid oxidation are significant.
Collapse
Affiliation(s)
- Peiwen Ye
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingya Lu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meichang Li
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongwei Zhang
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghuan Wei
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Lu J, Zhu X, Zhang C, Lu F, Lu Z, Lu Y. Co-expression of alcohol dehydrogenase and aldehyde dehydrogenase in Bacillus subtilis for alcohol detoxification. Food Chem Toxicol 2020; 135:110890. [DOI: 10.1016/j.fct.2019.110890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
|
28
|
Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants (Basel) 2019; 8:E617. [PMID: 31817206 PMCID: PMC6943509 DOI: 10.3390/antiox8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
During the last few decades, the food and beverage industry faced increasing demand for the design of new functional food products free of synthetic compounds and artificial additives. Anthocyanins are widely used as natural colorants in various food products to replenish blue color losses during processing and to add blue color to colorless products, while other compounds such as carotenoids and betalains are considered as good sources of other shades. Root vegetables are well known for their broad palette of colors, and some species, such as black carrot and beet root, are already widely used as sources of natural colorants in the food and drug industry. Ongoing research aims at identifying alternative vegetable sources with diverse functional and structural features imparting beneficial effects onto human health. The current review provides a systematic description of colored root vegetables based on their belowground edible parts, and it highlights species and/or cultivars that present atypical colors, especially those containing pigment compounds responsible for hues of blue color. Finally, the main health effects and antioxidant properties associated with the presence of coloring compounds are presented, as well as the effects that processing treatments may have on chemical composition and coloring compounds in particular.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Crop Production and Rural Environment, Department of Agriculture, University of Thessaly, 38446 Nea Ionia, Greece
| | - Shirley L. Sampaio
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Isabel Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
29
|
Effects of dietary cyanidin-3-diglucoside-5-glucoside complexes with rutin/Mg(II) against H2O2-induced cellular oxidative stress. Food Res Int 2019; 126:108591. [DOI: 10.1016/j.foodres.2019.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
|
30
|
Research Advances of Purple Sweet Potato Anthocyanins: Extraction, Identification, Stability, Bioactivity, Application, and Biotransformation. Molecules 2019; 24:molecules24213816. [PMID: 31652733 PMCID: PMC6864833 DOI: 10.3390/molecules24213816] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022] Open
Abstract
Purple sweet potato anthocyanins are kinds of natural anthocyanin red pigments extracted from the root or stem of purple sweet potato. They are stable and have the functions of anti-oxidation, anti-mutation, anti-tumor, liver protection, hypoglycemia, and anti-inflammation, which confer them a good application prospect. Nevertheless, there is not a comprehensive review of purple sweet potato anthocyanins so far. The extraction, structural characterization, stability, functional activity, application in the food, cosmetics, medicine, and other industries of anthocyanins from purple sweet potato, together with their biotransformation in vitro or by gut microorganism are reviewed in this paper, which provides a reference for further development and utilization of anthocyanins.
Collapse
|
31
|
Wu Y, Tian WJ, Gao S, Liao ZJ, Wang GH, Lo JM, Lin PH, Zeng DQ, Qiu DR, Liu XZ, Zhou M, Lin T, Chen HF. Secondary metabolites of petri-dish cultured Antrodia camphorata and their hepatoprotective activities against alcohol-induced liver injury in mice. Chin J Nat Med 2019; 17:33-42. [PMID: 30704622 DOI: 10.1016/s1875-5364(19)30007-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 01/17/2023]
Abstract
Antrodia camphorata, a well-known and highly valued edible medicinal mushroom with intriguing activities like liver protection, has been traditionally used for the treatment of alcoholic liver disease. A. camphorata shows highly medicinal and commercial values with the demand far exceeds the available supply. Thus, the petri-dish cultured A. camphorata (PDCA) is expected to develope as a substitute. In this paper, nineteen triterpenes were isolated from PDCA, and thirteen of them were the unique anthroic acids in A. camphorata, including the main content antcin K, which suggested that PDCA produced a large array of the same anthroic acids as the wild one. Furthermore, no obvious acute toxicity was found suggesting the edible safety of PDCA. In mice alcohol-induced liver injury model, triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) had been reduced by the PDCA powder as well as the main content antcin K, which indicated that the PDCA could protect alcoholic liver injury in mice model and antcin K could be the effective component responsible for the hepatoprotective activities of PDCA against alcoholic liver diseases.
Collapse
Affiliation(s)
- Yu Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Shuo Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zu-Jian Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Jir-Mehng Lo
- Industrial Technology Research Institute, Taiwan 10001, China
| | - Pei-Hsin Lin
- Industrial Technology Research Institute, Taiwan 10001, China
| | - De-Quan Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Da-Ren Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Xiang-Zhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
32
|
Hou R, Liu X, Yan J, Xiang K, Wu X, Lin W, Chen G, Zheng M, Fu J. Characterization of natural melanin from Auricularia auricula and its hepatoprotective effect on acute alcohol liver injury in mice. Food Funct 2019; 10:1017-1027. [PMID: 30706914 DOI: 10.1039/c8fo01624k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study characterized the natural melanin from Auricularia auricula and investigated its hepatoprotective effect on mice with acute alcoholic liver injury. The characterization of the melanin was analyzed based on elemental analysis, gel permeation chromatography (GPC), UV-visible spectroscopy (UV-visible), infrared spectrum (IR) and nuclear magnetic resonance spectra (NMR). To determine the liver protective effect of Auricularia auricula melanin, mice were administered with the melanin once daily for 3 weeks before ethanol induced liver injury. Biochemical parameters of liver function, histopathological sections, mRNA and protein expression of antioxidant enzyme were compared between mice with or without the melanin administered. Results showed that A. auricula melanin was a eumelanin and the average molecular weight was 48.99 kDa. The melanin can protect the mice from ethanol-induced liver injury by extending the duration of the righting reflex, and shortening the duration of the recovery. The liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GT) and liver malondialdehyde (MDA) levels in mice treated with the melanin were significantly decreased. At the same time, the levels of liver alcohol dehydrogenase (ADH), and antioxidase such as catalase (CAT), and superoxide dismutase (SOD) were increased. Its protective effect may be related to the activation of nuclear factor E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes such as glutamate cysteine ligase catalytic (GCLC), glutamate cysteine ligase modifier (GCLM), and NADP(H) quinine oxidoreductase 1 (NQO-1). These results suggested that A. auricula melanin may be an effective strategy to alleviate alcohol-induced liver damage.
Collapse
Affiliation(s)
- Ruolin Hou
- College of Food sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yea CS, Addelia Nevara G, Muhammad K, Ghazali HM, Karim R. Physical properties, resistant starch content and antioxidant profile of purple sweet potato powder after 12 months of storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1620765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chay Shyan Yea
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gita Addelia Nevara
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Nutrition, Universitas Mohammad Natsir, Bukittinggi, Indonesia
| | - Kharidah Muhammad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
34
|
Liu X, Hou R, Yan J, Xu K, Wu X, Lin W, Zheng M, Fu J. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice. Int J Biol Macromol 2019; 129:41-49. [PMID: 30731164 DOI: 10.1016/j.ijbiomac.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
|
35
|
Albertini MC, Fraternale D, Semprucci F, Cecchini S, Colomba M, Rocchi MB, Sisti D, Di Giacomo B, Mari M, Sabatini L, Cesaroni L, Balsamo M, Guidi L. Bioeffects of Prunus spinosa L. fruit ethanol extract on reproduction and phenotypic plasticity of Trichoplax adhaerens Schulze, 1883 (Placozoa). PeerJ 2019; 7:e6789. [PMID: 31024778 PMCID: PMC6475577 DOI: 10.7717/peerj.6789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to test and analyse the bioeffects of Prunus spinosa L. (Rosacaee) fruit ethanol extract on Trichoplax adhaerens Schulze, 1883 (Placozoa) laboratory cultures which-for the first time-were employed as in vivo biological model to assess the bioactivity of a natural extract. The ethanol extract of P. spinosa was administrated during a 46 day experimental period; ultrastructural (by optical, confocal, TEM and SEM microscopy) and morphometric analyses indicated that treated Trichoplax adhaerens showed significant differences in viability, reproductive modalities, body shape and colour with respect to the control group. Finally, P. spinosa bioactive compounds seem to exert profound protective effects on T. adhaerens reproduction and phenotype. Our results may support additional investigations related to other bioactive compounds properties useful for nutraceutical preparations to be used as food supplements.
Collapse
Affiliation(s)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Federica Semprucci
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Silvio Cecchini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Marco B.L. Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Luigia Sabatini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Lucia Cesaroni
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Maria Balsamo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| |
Collapse
|
36
|
Jiang X, Zhu C, Li X, Sun J, Tian L, Bai W. Cyanidin-3- O-glucoside at Low Doses Protected against 3-Chloro-1,2-propanediol Induced Testis Injury and Improved Spermatogenesis in Male Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12675-12684. [PMID: 30376326 DOI: 10.1021/acs.jafc.8b04229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent decades, the capability of mankind spermatogenesis is declining due to various threats. Anthocyanins as colorful polyphenols possess beneficial functions for the organisms, including Leydig cells, but their effects on male spermatogenesis remain underexplored. In our study, the protective effect of cyanidin-3- O-glucoside (C3G) was investigated on the 3-chloro-1,2-propanediol (3-MCPD) caused rat spermatogenic disorders. At low doses, C3G improved the number and motility of the sperms, alleviating the seminiferous tubule injury. Interestingly, C3G showed no influence on sexual hormone but increased the androgen receptor expression. Meanwhile, C3G reduced the oxidative stress and number of apoptotic cells and promoted the integrity of the blood-testis barrier in the testis. Additionally, C3G mediated the activation of p-ERK, p-JNK, and p53, which are related to the protection of Sertoli cells and spermatogenesis. In conclusion, C3G protected against the 3-MCPD caused testis damage and spermatogenic disorders under appropriate doses, which indicates the potential protection of anthocyanins on male reproduction.
Collapse
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection , Jinan University , Guangzhou 510632 , PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection , Jinan University , Guangzhou 510632 , PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection , Jinan University , Guangzhou 510632 , PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection , Jinan University , Guangzhou 510632 , PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection , Jinan University , Guangzhou 510632 , PR China
| |
Collapse
|
37
|
Lu J, Lyu Y, Li M, Sun J, Huang Z, Lu F, Lu Z. Alleviating acute alcoholic liver injury in mice with Bacillus subtilis co-expressing alcohol dehydrogenase and acetaldehyde dehydrogenase. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|