1
|
Fernandes GM, Alcarde AR, Rocha FRP. Kinetic determination of ethyl carbamate in sugarcane spirits exploiting digital videos. Talanta 2025; 292:127897. [PMID: 40081246 DOI: 10.1016/j.talanta.2025.127897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Kinetic methods are useful analytical methods, whose widespread application is often hindered by the need for strict time control. In this study, digital videos obtained using a smartphone camera were exploited for the first time for a kinetic enzymatic method. The inhibition of the acetylcholinesterase activity on the hydrolysis of acetylthiocholine to thiocholine was exploited for ethyl carbamate determination. This toxic and potentially carcinogenic contaminant must be controlled in beverages with a threshold limit of 210 μg L-1 for sugarcane spirits. Ethyl carbamate binds to the active site of acetylcholinesterase in an alkaline medium (pH 8), thus diminishing the hydrolysis rate. Digital videos were recorded for 25 min, and analytical information (channel B, RGB color system) was extracted from frames taken every 10 s. The time required to achieve a reaction plateau, which is proportional to the analyte concentration, was used as the analytical parameter. Under the optimized conditions a linear response was observed for ethyl carbamate concentrations from 50 to 500 μg L-1 (r2 > 0.99) with a limit of detection of 15 μg L-1 and a coefficient of variation of 3.2 % (n = 10). The proposed kinetic method is a cost-effective alternative for the determination of ethyl carbamate in sugarcane spirits, which compares favorably with other methods reported in the literature with regard to detectability and greenness (AGREE score of 0.77), while yielding results in agreement with the gas chromatography-mass spectrometry reference method.
Collapse
Affiliation(s)
- Gabriel M Fernandes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - André R Alcarde
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Fábio R P Rocha
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil.
| |
Collapse
|
2
|
Liu Q, Wang H, Li X, Tian S, Wu C, Chen Y, Qian S, Zhao S, Zhang W, Cheng F, Yang G, Wang T. A highly thermostable ethyl carbamate-degrading urethanase from Thermoflavimicrobium dichotomicum. Int J Biol Macromol 2025; 307:142245. [PMID: 40112972 DOI: 10.1016/j.ijbiomac.2025.142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The carcinogen ethyl carbamate (EC) in food is a potential threat to health. Available urethanases cannot efficiently degrade EC because of their instability or low activity under acidic conditions. Here, a novel thermostable urethanase was identified in Thermoflavimicrobium dichotomicum using a database-mining approach. The enzyme displayed exceptional thermotolerance, with an optimum temperature of 75 °C, and exhibited 58.6 % of its maximum activity at 90 °C. After incubation at temperatures below 70 °C for 30 min, 100 % activity was maintained. Following treatment at 4 °C for 6 h, it retained 59-87 % of its activity at pH 4.0-5.0, demonstrating the highest acid stability reported so far. This enzyme showed good ethanol tolerance. 80.4 % of its activity was retained after incubation in 10 % (v/v) ethanol solution at 37 °C for 1 h. The enzyme exhibited the highest EC affinity (Km, 3.545 mM), and catalytic efficiency (kcat/Km, 46.75 ± 2.34 s-1·mM-1) at pH 4.5. After reacting with 200 U/L purified enzyme at 30 °C for 5 h, 62.4 % and 9.7 % of EC were degraded from rice wine samples with pH 6.0 and 4.5, respectively. Furthermore, the enzyme exhibited significant hydrolytic activity against the 2A carcinogen acrylamide. These findings suggest that this urethanase is a promising industrial enzyme.
Collapse
Affiliation(s)
- Qingtao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Shufang Tian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shiguang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Guoqiang Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
3
|
Xia T, Chen K, Zhou H, Chen T, Lin W, Xiao G, Fang R. Regulation of Arginine Metabolism and Ethanol Tolerance in Saccharomyces cerevisiae by BTN2. Food Sci Nutr 2025; 13:e70244. [PMID: 40321608 PMCID: PMC12045926 DOI: 10.1002/fsn3.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Ethyl carbamate (EC), primarily formed by the reaction between urea and ethanol, is a natural carcinogen prevalent in fermented alcoholic beverages. Urea is an arginine metabolite produced by Saccharomyces cerevisiae. Previous studies have shown that BTN2 influences arginine metabolism. In this study, we compared the effects of BTN2-modified strains on key metabolites, enzymes, and transcriptional gene expressions in the arginine metabolic pathway, and assessed cell growth and oxidative damage under different ethanol stresses. It revealed that the knockout of BTN2 inhibited arginine intake and promoted urea reduction. RT-qPCR results demonstrated that BTN2 regulate arginine transportation, catabolism, and urea degradation by modulating the expression of GAP1, CAN1, CAR1, and DUR1,2. Moreover, the results showed that BTN2 enhanced ethanol tolerance and alleviated cellular damage. These findings provide a promising method for reducing arginine uptake by Saccharomyces cerevisiae and consequently urea accumulation in wine.
Collapse
Affiliation(s)
- Ting Xia
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Keiwei Chen
- Youxian Shop (Zhejiang) Food Co. Ltd.HuzhouChina
| | - Huqi Zhou
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Tangchao Chen
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Wenjing Lin
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Gongnian Xiao
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Ruosi Fang
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| |
Collapse
|
4
|
Sanchez CA, Treviso EM, Rocha CDS, Antunes LMG. Diallyl Disulfide Reduces Ethyl Carbamate-Induced Cytotoxicity and Apoptosis in Intestinal and Hepatic Cells. Chem Res Toxicol 2025; 38:623-634. [PMID: 40145834 PMCID: PMC12015961 DOI: 10.1021/acs.chemrestox.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Epidemiological studies indicate that lifestyle and dietary habits are associated with an increasing cancer incidence. Consuming fermented foods and alcoholic beverages and smoking can expose humans to ethyl carbamate (EC), a probable human carcinogen classified as group 2A by the International Agency for Research on Cancer (IARC). Increasing the intake of bioactive compounds can reduce EC-induced toxicity. Diallyl disulfide (DADS), found in garlic, may protect against damage induced by chemical agents and natural compounds. Here, the potential protective effect of DADS against EC was investigated by evaluating EC-induced cytotoxicity, DNA damage, apoptosis, and reactive oxygen species production in colorectal adenocarcinoma (Caco-2) and hepatocarcinoma (HepG2) cells. To this end, resazurin, comet, and annexin V-FITC staining assays and CM-H2DCFDA markers were used to evaluate the effect on Caco-2 and HepG2 cells of protocols combining DADS (10-120 μM) and EC (80 mM). The protocols were as follows: (i) cells pretreated with DADS for 2 h and exposed to EC for 24 h; (ii) cells pretreated with DADS for 24 h and exposed to EC for 24 h; (iii) cells simultaneously exposed to DADS and EC for 24 h; (iv) cells exposed to EC for 24 h and treated with DADS for 2 h. EC induced cytotoxicity and apoptosis in Caco-2 and HepG2 cells and oxidative damage in Caco-2 cells. Combined exposure to DADS and EC for 24 h decreased EC-mediated cytotoxicity and apoptosis in both Caco-2 and HepG2 cells. These findings encourage further studies on the mechanisms of action of the combined DADS and EC.
Collapse
Affiliation(s)
- Caroline Andolfato Sanchez
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Estefani Maria Treviso
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Cecília
Cristina de Souza Rocha
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis,
Toxicology Food Science, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
5
|
Zahir A, Ge Z, Khan IA. Public Health Risks Associated with Food Process Contaminants - A Review. J Food Prot 2025; 88:100426. [PMID: 39643160 DOI: 10.1016/j.jfp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The increasing complexity of food production and processing has raised concerns regarding food process contaminants, which pose significant public health risks. Food process contaminants can be introduced during diverse phases of food processing such as drying, heating, grilling, and fermentation, resulting in the synthesis of harmful chemicals including acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan and its naturally occurring derivatives, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), 2-chloropropane-1,2-diol esters (2-MCPDE), and 3-chloropropane-1,2-diol esters (3-MCPDE), ethyl carbamate (EC), glycidyl esters (GE), and 4-methylimidazole (4-MEI), all of these are harmful to human health. Although these compounds can be somewhat prevented during processing, eliminating them can often be challenging due to their unknown formation mechanism. Moreover, prolonged exposure to these dangerous compounds might harm human health. There is limited understanding of the sources, formation processes, and hazards of food processing contaminants, and a lack of knowledge of the mechanisms involved in how to control their generation. In this review, we provide a comprehensive overview of the harmful effects associated with food process contaminants generated during thermal processing and fermentation, alongside elemental process contaminants and their potential threats to human health. Furthermore, this study identifies existing knowledge gaps proposes avenues for future inquiry and emphasizes the necessity of employing a multi-disciplinary approach to alleviate the public health risks posed by food process contaminants, advocating for cooperative initiatives among food scientists, public health officials, and regulatory entities to enhance food safety and protect consumer health.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar 3801, Afghanistan.
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Mansour ST, Ibrahim H, Zhang J, Farag MA. Extraction and analytical approaches for the determination of post-food processing major carcinogens: A comprehensive review towards healthier processed food. Food Chem 2025; 464:141736. [PMID: 39461318 DOI: 10.1016/j.foodchem.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Different food processing methods, e.g. fermentation, grilling, frying, etc., to improve food sensory attributes or shelf-stability are typically employed in different cuisines worldwide. These methods may illicit in-situ health-hazardous chemicals via thermal or enzymatic-mediated processes or chemical interactions with food preservatives. This review provides a comparative overview of the occurrence, extraction, and determination of the major food carcinogens such as nitrosamines (NAs), biogenic amines (BAs), heterocyclic aromatic amines (HAAs), polycyclic aromatic hydrocarbons (PAHs), ethyl carbamate (EC), and malondialdehyde (MDA). Their carcinogenicity levels vary from group 1 (carcinogenic to humans) e.g. benzo[a]pyrene, group 2A (probably carcinogenic to humans) e.g. N-nitrosodiethylamine, group 2B (possibly carcinogenic to humans) e.g. chrysene or group 3 (non-classifiable as carcinogenic to humans) e.g. MDA. Chromatography-based methods are the most predominant techniques used for their analysis. LC-MS is widely used for both volatile/non-volatile NAs, HAAs, BAs, and EC, whereas GC-MS is applied more for volatile NAs, PAHs and MDA.
Collapse
Affiliation(s)
- Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt.
| | - Hany Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Jiachao Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering Hainan University, Haikou 570228, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
7
|
Peng Q, Zheng H, Xue J, Xu Y, Hou Q, Yang K, Xia H, Xie G. Mechanism of Polygonum hydropiper reducing ethyl carbamate in Chinese rice wine (Huangjiu) brewing. Food Microbiol 2025; 125:104628. [PMID: 39448146 DOI: 10.1016/j.fm.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
Polygonum hydropiper (PH) is a rich source of active compounds and serves as a pivotal ingredient in Chinese rice wine (Huangjiu) production. This study investigates the impact of PH and Polygonum hydropiper extract (PHE) on ethyl carbamate (EC) production during Huangjiu fermentation. Our findings reveal that PH enhances the relative abundance of Bacillus subtilis in Huangjiu fermentation, thereby facilitating its interaction with Saccharomyces cerevisiae. Furthermore, PH modulates the urea metabolism of S. cerevisiae. In the PH-B. subtilis-S. cerevisiae fermentation system, the expression of DUR1,2 and DUR3 genes in S. cerevisiae is upregulated. This augmentation leads to increased urea uptake and metabolism by S. cerevisiae in the fermentation broth, subsequently reducing the urea concentration in the fermentation medium (The EC content in the CK group was approximately 355.55 % and 356.05 % higher than those in the PH and PHE groups, respectively). Consequently, PH demonstrates promise in reducing the EC concentration of Huangjiu, offering a novel approach to enhance the safety of Huangjiu consumption.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Jingrun Xue
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, 312000, China
| | - Qifan Hou
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Kaiming Yang
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huangjia Xia
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Srdjenović Čonić B, Kladar N, Kusonić D, Bijelić K, Torović L. A Chemometric Exploration of Potential Chemical Markers and an Assessment of Associated Risks in Relation to the Botanical Source of Fruit Spirits. TOXICS 2024; 12:720. [PMID: 39453140 PMCID: PMC11511030 DOI: 10.3390/toxics12100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Chemometric evaluation of potentially harmful volatile compound and toxic metal(loid) distribution patterns in fruit spirits relating to distinct fruit classes most commonly used in spirit production highlighted the potential of several volatiles as candidates for differentiation markers while dismissing toxic metal(loid)s. Pome fruit and grape pomace spirits were mostly characterized by a lower abundance of n-propanol, methanol, ethyl acetate and acetaldehyde, while stone fruit spirits contained lower amounts of isoamyl alcohol and isobutanol. Chemometric analysis of the fruit spirit composition of aromatics identified additional potential markers characteristic for certain fruits-benzoic acid ethyl ester, benzyl alcohol, benzaldehyde, butanoic acid 3-methyl-ethyl ester, butanoic acid 2-methyl-ethyl ester and furfural. This study explored the variability in the risk potential of the investigated spirits, considering that some chemicals known to be detected in spirits are potent health hazards. Ethyl carbamate in combination with acetaldehyde showed a higher potential risk in stone fruit spirits, methanol in stone and pome fruit spirits and acetaldehyde in grape pomace spirits. It is of great interest to evaluate to what extent consumers' preference for spirits of distinct fruit types affects health risks. Consumers of stone fruit spirits are potentially at higher risk than those consuming pome fruit or grape pomace spirits.
Collapse
Affiliation(s)
- Branislava Srdjenović Čonić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (B.S.Č.); (N.K.); (D.K.); (Lj.T.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (B.S.Č.); (N.K.); (D.K.); (Lj.T.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Kusonić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (B.S.Č.); (N.K.); (D.K.); (Lj.T.)
| | - Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (B.S.Č.); (N.K.); (D.K.); (Lj.T.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (B.S.Č.); (N.K.); (D.K.); (Lj.T.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Yang L, Zhao T, Zhang X, Fan T, Zhang Y, Feng Z, Liu J. Crystal structure of urethanase from Candida parapsilosis and insights into the substrate-binding through in silico mutagenesis and improves the catalytic activity and stability. Int J Biol Macromol 2024; 278:134763. [PMID: 39151849 DOI: 10.1016/j.ijbiomac.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Ting Zhao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
10
|
Li C, Zhang X, Tang Q, Guo Y, Zhang Z, Zhang W, Zou X, Sun Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on "on-off" nanozyme-catalyzing process. Food Chem 2024; 453:139626. [PMID: 38759440 DOI: 10.1016/j.foodchem.2024.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Ethyl carbamate (EC) is a carcinogen widely found in the fermentation process of Baijiu. Herein, we construct a molecularly imprinted polymers/MXene/cobalt (II) based zeolitic imidazolate frameworks (MIP/MXene/ZIF-67) nano-enzyme sensor for the detection of EC during Baijiu production. The ZIF-67 is synthesized in situ on the MXene nanosheets to provide a superior catalytic activity to H2O2 and amplify the electrochemical signal. The MIP is prepared by the polymerization reaction to recognize EC. Owing to the interaction between EC and EC-MIP, the interferences are effectively eliminated, greatly improving the accuracy of the expected outcome. This approach attains an ultrasensitive assay of EC ranging from 8.9 μg/L to 44.5 mg/L with detection limit of 0.405 μg/L. The accuracy of this method is confirmed by the recovery experiment with good recoveries from 95.07% to 107.41%. This method is applied in natural EC analyses, and the results are consistent with certified gas chromatograph- mass spectrometer.
Collapse
Affiliation(s)
- Chen Li
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qunyong Tang
- Jiangsu King's Luck Brewery Co. Ltd., Lianshui 223411, China
| | - Yiqing Guo
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Liu Q, Wang H, Zhang W, Cheng F, Qian S, Li C, Chen Y, Zhu S, Wang T, Tian S. High Salt-Resistant Urethanase Degrades Ethyl Carbamate in Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21266-21275. [PMID: 39268855 DOI: 10.1021/acs.jafc.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Urethanase is a promising biocatalyst for degrading carcinogen ethyl carbamate (EC) in fermented foods. However, their vulnerability to high ethanol and/or salt and acidic conditions severely limits their applications. In this study, a novel urethanase from Alicyclobacillus pomorum (ApUH) was successfully discovered using a database search. ApUH shares 49.4% sequence identity with the reported amino acid sequences. It belongs to the Amidase Signature family and has a conserved "K-S-S" catalytic triad and the characteristic "GGSS" motif. The purified enzyme overexpressed in Escherichia coli exhibits a high EC affinity (Km, 0.306 mM) and broad pH tolerance (pH 4.0-9.0), with an optimum pH 7.0. Enzyme activity remained at 58% in 12% (w/v) NaCl, and 80% in 10% (v/v) ethanol or after 1 h treatment with the same ethanol solution at 37 °C. ApUH has no hydrolytic activity toward urea. Under 30 °C, the purified enzyme (200 U/L) degraded about 15.4 and 43.1% of the EC in soy sauce samples (pH 5.0, 6.0), respectively, in 5 h. Furthermore, the enzyme also showed high activity toward the class 2A carcinogen acrylamide in foods. These attractive properties indicate their potential applications in the food industry.
Collapse
Affiliation(s)
- Qingtao Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Senhe Qian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sibao Zhu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Shufang Tian
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| |
Collapse
|
12
|
Gong AY, Qiao YJ, Chen M, Alam Z, Malhotra DK, Dworkin L, Ju W, Gunning WT. Glomerular injury induced by vinyl carbamate in A/J inbred mice: a novel model of membranoproliferative glomerulonephritis. Front Pharmacol 2024; 15:1462936. [PMID: 39309006 PMCID: PMC11412833 DOI: 10.3389/fphar.2024.1462936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Ethyl carbamate (EC) is a process contaminant found in fermented foods and alcoholic beverages. Metabolic conversion of ethyl carbamate generates vinyl carbamate (VC), a carcinogenic metabolite. EC, as a Group 2A probable human carcinogen, and the more potent VC, are known to cause tumors in rodents. However, their effects on the kidney are unknown and were explored here. Female A/J inbred mice received an intraperitoneal injection of vehicle or VC. Beginning 5 weeks after VC injection, mice showed signs of moribund state. Mouse necropsies revealed renal glomerular injury that histopathologically recapitulated human membranoproliferative glomerulonephritis (MPGN), as evidenced by light microscopy, immunostaining for immunoglobulins and complements, and electron microscopy. To determine the molecular pathomechanisms, a post-hoc analysis was performed on a publicly available RNA-Seq transcriptome of kidneys from control rats and rats treated with fermented wine containing high concentrations of EC. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes revealed that the complement and coagulation cascades were a top predicted biological process involved. Furthermore, pathway-based data integration and visualization revealed that key regulators of complement activation were altered by high EC treatment. Among these, complement factors (CF) D and H, critical positive and negative regulators of the alternative pathway, respectively, were most affected, with CFD induced by 3.49-fold and CFH repressed by 5.9-fold, underscoring a hyperactive alternative pathway. Consistently, exposure of primary glomerular endothelial cells to EC or VC resulted in induction of CFD and repression of CFH, accompanied by increased fixation of C3 and C5b9. This effect seems to be mediated by Ras, one of the top genes that interact with both EC and VC, as identified by analyzing the chemical-gene/protein interactions database. Indeed, EC or VC-elicited complement activation was associated with activation of Ras signaling, but was abolished by the Ras inhibitor farnesyl thiosalicylic acid. Collectively, our findings suggest that VC, a metabolite of EC, induces glomerular injury in mice akin to human MPGN, possibly via perturbing the expression of complement regulators, resulting in an effect that favors activation of the alternative complement pathway.
Collapse
Affiliation(s)
- Athena Y. Gong
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, United States
- Michigan O’Brien Kidney National Resource Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Ying Jin Qiao
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mengxuan Chen
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Zubia Alam
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Deepak K. Malhotra
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Wenjun Ju
- Michigan O’Brien Kidney National Resource Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - William T. Gunning
- Department of Pathology, Medical College of Ohio at University of Toledo, Toledo, OH, United States
| |
Collapse
|
13
|
Jung S, Lee H, Kim I, Kim S, Lee B, Lee J. The effect of plum extracts and antioxidants on reduction of ethyl carbamate in plum liqueur. Food Sci Biotechnol 2024; 33:2357-2366. [PMID: 39145126 PMCID: PMC11319578 DOI: 10.1007/s10068-024-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 08/16/2024] Open
Abstract
Stone-fruit liqueurs contain high contents of the carcinogen ethyl carbamate (EC). In this study, we investigated the effect of plum fruit extract and single antioxidants present in plum fruit extracts on the reduction in the EC content during the macerating process in a plum liqueur model system and authentic plum liqueur. 30% ethanol model plum liqueur treated with 0.2% plum extract showed the lowest EC content with 55% reduction rate after the macerating process compared to the content in the control. Interestingly, neither 0.1% ascorbic acid nor 0.1% p-coumaric acid lowered the EC contents in the model liqueur, while they decreased the EC contents in authentic plum liqueur. This was possibly attributed to the synergistic effect of the plum fruit phenolics with the ascorbic acid and p-coumaric acid antioxidants. Thus, plum extracts can be applied to plum liqueurs to reduce the rate of EC formation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01585-1.
Collapse
Affiliation(s)
- Sunghyeon Jung
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Hyunjun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Inhwan Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Seongjae Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan, 49315 Republic of Korea
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Republic of Korea
| |
Collapse
|
14
|
Wang Z, Liu Q, Luo J, Luo P, Wu Y. A Straightforward, Sensitive, and Reliable Strategy for Ethyl Carbamate Detection in By-Products from Baijiu Production by Enzyme-Linked Immunosorbent Assay. Foods 2024; 13:1835. [PMID: 38928776 PMCID: PMC11203372 DOI: 10.3390/foods13121835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Baijiu is a renowned Chinese distilled liquor, notable for its distinctive flavor profile and intricate production process, which prominently involves fermentation and distillation. Ethyl carbamate (EC), a probable human carcinogen, can be potentially formed during these procedures, thus prompting significant health concerns. Consequently, the contamination of EC during Baijiu production has become an increasingly pressing issue. In this study, we developed a rapid and easily operable immunoassay for determining EC in the fermented materials used in Baijiu production. The development of a high-quality antibody specific to EC facilitated a streamlined analytical procedure and heightened method sensitivity. Furthermore, we systematically evaluated other essential parameters. Following optimization, the method achieved an IC50 value of 11.83 μg/kg, with negligible cross-reactivity against EC analogs. The recovery study demonstrated the method's good accuracy and precision, with mean recovery rates ranging from 86.0% to 105.5% and coefficients of variation all below 10%. To validate the feasibility of the technique, we collected and analyzed 39 samples simultaneously using both the proposed immunoassay and confirmatory gas chromatography-mass spectrometry (GC-MS). A robust correlation was observed between the results obtained from the two methods (R2 > 0.99). The detected EC levels ranged from 2.36 μg/kg to 7.08 μg/kg, indicating an increase during the fermentation process.
Collapse
Affiliation(s)
- Zifei Wang
- Research Unit of Food Safety, NHC Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Chinese Academy of Medical Sciences (2019RU014), Beijing 100021, China; (Z.W.); (Q.L.); (Y.W.)
| | - Qing Liu
- Research Unit of Food Safety, NHC Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Chinese Academy of Medical Sciences (2019RU014), Beijing 100021, China; (Z.W.); (Q.L.); (Y.W.)
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China;
| | - Pengjie Luo
- Research Unit of Food Safety, NHC Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Chinese Academy of Medical Sciences (2019RU014), Beijing 100021, China; (Z.W.); (Q.L.); (Y.W.)
| | - Yongning Wu
- Research Unit of Food Safety, NHC Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Chinese Academy of Medical Sciences (2019RU014), Beijing 100021, China; (Z.W.); (Q.L.); (Y.W.)
| |
Collapse
|
15
|
Gao M, Li W, Fan L, Wei C, Yu S, Chen R, Ma L, Du L, Zhang H, Yang W. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae. J Biotechnol 2024; 385:65-74. [PMID: 38503366 DOI: 10.1016/j.jbiotec.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Ethyl carbamate (EC), a multisite carcinogenic compound, is naturally produced from urea and ethanol in alcoholic beverages. In order to reduce the content of EC in wine, the accumulation of arginine in Saccharomyces cerevisiae was regulated by genetic modifying genes involved in arginine transport and synthesis pathways to reduce the production of urea. Knockout of genes encoding arginine permease (Can1p) and amino acid permease (Gap1p) on the cell membrane as well as argininosuccinate synthase (Arg1) respectively resulted in a maximum reduction of 66.88% (9.40 µg/L) in EC, while overexpressing the gene encoding amino acid transporter (Vba2) reduced EC by 52.94% (24.13 µg/L). Simultaneously overexpressing Vba2 and deleting Arg1 showed the lowest EC production with a decrease of 68% (7.72 µg/L). The yield of total higher alcohols of the mutants all decreased compared with that of the original strain. Comprehensive consideration of flavor compound contents and sensory evaluation results indicated that mutant YG21 obtained by deleting two allele coding Gap1p performed best in must fermentation of Cabernet Sauvignon with the EC content low to 9.40 μg/L and the contents of total higher alcohols and esters of 245.61 mg/L and 41.71 mg/L respectively. This study has provided an effective strategy for reducing the EC in wine.
Collapse
Affiliation(s)
- Manman Gao
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenyao Li
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Linlin Fan
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chunhui Wei
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Yibin 644005, PR China
| | - Shuo Yu
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ru Chen
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Huiling Zhang
- College of Food and Wine, Ningxia University, Yinchuan 750021, PR China
| | - Weiming Yang
- Ningxia Zhihui Yuanshi Winery Co., Ltd., Yinchuan 750026, PR China
| |
Collapse
|
16
|
Benedetti F, Silvestri G, Denaro F, Finesso G, Contreras-Galindo R, Munawwar A, Williams S, Davis H, Bryant J, Wang Y, Radaelli E, Rathinam CV, Gallo RC, Zella D. Mycoplasma DnaK expression increases cancer development in vivo upon DNA damage. Proc Natl Acad Sci U S A 2024; 121:e2320859121. [PMID: 38412130 PMCID: PMC10927570 DOI: 10.1073/pnas.2320859121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased β-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Giovannino Silvestri
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Giovanni Finesso
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Arshi Munawwar
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sumiko Williams
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Harry Davis
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph Bryant
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yin Wang
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Surgery, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Enrico Radaelli
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Chozha V. Rathinam
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
17
|
Li M, Jia W. Formation and hazard of ethyl carbamate and construction of genetically engineered Saccharomyces cerevisiae strains in Huangjiu (Chinese grain wine). Compr Rev Food Sci Food Saf 2024; 23:e13321. [PMID: 38517033 DOI: 10.1111/1541-4337.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Huangjiu, a well-known conventional fermented Chinese grain wine, is widely consumed in Asia for its distinct flavor. Trace amounts of ethyl carbamate (EC) may be generated during the fermentation or storage process. The International Agency for Research on Cancer elevated EC to a Class 2A carcinogen, so it is necessary to regulate EC content in Huangjiu. The risk of intake of dietary EC is mainly assessed through the margin of exposure (MOE) recommended by the European Food Safety Authority, with a smaller MOE indicating a higher risk. Interventions are necessary to reduce EC formation. As urea, one of the main precursors of EC formation in Huangjiu, is primarily produced by Saccharomyces cerevisiae through the catabolism of arginine, the construction of dominant engineered fermentation strains is a favorable trend for the future production and application of Huangjiu. This review summarized the formation and carcinogenic mechanism of EC from the perspectives of precursor substances, metabolic pathways after ingestion, and risk assessment. The methods of constructing dominant S. cerevisiae strains in Huangjiu by genetic engineering technology were reviewed, which provided an important theoretical basis for reducing EC content and strengthening practical control of Huangjiu safety, and the future research direction was prospected.
Collapse
Affiliation(s)
- Mi Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
18
|
de Athayde Moncorvo Collado A, Socías SB, González-Lizárraga F, Ploper D, Vera Pingitore E, Chehín RN, Chaves S. Magnetic amyloid-based biocatalyst for the hydrolysis of urea. Food Chem 2024; 433:136830. [PMID: 37683486 DOI: 10.1016/j.foodchem.2023.136830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 09/10/2023]
Abstract
The presence of urea in wines and other alcoholic beverages represents a critical problem since it can chemically react with ethanol, which leads to the formation of ethyl carbamate, a carcinogenic agent according to the World Health Organization. Here we report the creation of a biocatalyst for the hydrolysis of urea, which could potentially be used before bottling alcoholic drinks. For this, the effective surface area of streptavidin-labeled magnetic microparticles was amplified by functionalization with biotin-labeled hen egg lysozyme amyloid fibers. Subsequently, by using copper and hydrogen peroxide induced cross-linking of unmodified proteins (CHICUP), soybean urease was immobilized to the fibers. This gave rise to a magnetic biocatalyst with remarkable urease activity, which was maintained even after 10 reuses. We propose that this strategy could be used as a platform for immobilizing other molecules to design and develop a myriad of biocatalysts for the food industry.
Collapse
Affiliation(s)
- A de Athayde Moncorvo Collado
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S B Socías
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - F González-Lizárraga
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - D Ploper
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - E Vera Pingitore
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - R N Chehín
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S Chaves
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| |
Collapse
|
19
|
Wang Z, Qu P, Zhao Y, Wu Y, Lyu B, Miao H. A Nationwide Survey and Risk Assessment of Ethyl Carbamate Exposure Due to Daily Intake of Alcoholic Beverages in the Chinese General Population. Foods 2023; 12:3129. [PMID: 37628128 PMCID: PMC10453565 DOI: 10.3390/foods12163129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/27/2023] Open
Abstract
Ethyl carbamate (EC) is carcinogenic, and, in China, oral intake of EC mainly occurs as a result of the consumption of alcoholic beverages. To obtain the latest EC intake and risk analysis results for the general population in China, the China National Center for Food Safety Risk Assessment (CFSA) conducted the sixth total diet study (TDS) as a platform to analyze EC contents and exposure due to the intake of alcoholic beverages. A total of 100 sites in 24 provinces were involved in the collection and preparation of alcohol mixture samples for the sixth TDS. There were 261 different types of alcohol collected across the country, based on local dietary menus and consumption survey results. Ultimately, each province prepared a mixed sample by mixing their respective samples according to the percentage of local consumption. The EC levels of these twenty-four mixed samples were determined using our well-validated gas chromatography-mass spectrometry (GC-MS) method. The values ranged from 1.0 μg/kg to 33.8 μg/kg, with 10.1 μg/kg being the mean. China's EC daily intake ranged from 0.001 ng/kg bw/d to 24.56 ng/kg bw/d, with a mean of 3.23 ng/kg bw/d. According to the margin of exposure (MOE), virtually safe dose (VSD), and T25 risk assessments of the carcinogenicity of EC, the mean lifetime cancer risk for the Chinese population was 9.8 × 104, 1.5 × 10-7, and 8.6 × 10-8, respectively. These data show that the carcinogenicity of EC in the general Chinese population due to alcoholic intake is essentially minimal.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), Beijing 100021, China; (Z.W.); (P.Q.); (Y.Z.); (Y.W.); (B.L.)
| |
Collapse
|
20
|
Meng C, Xie C, He J, Chen X, Liu H, Sun B. Ionic liquid-enhanced lemon biomass carbon dots with sustainable use in bionic antibody microspheres for urea capture and ethyl carbamate inhibition. Food Chem 2023; 415:135715. [PMID: 36842375 DOI: 10.1016/j.foodchem.2023.135715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Herein, we reported the room-temperature fabrication of ionic liquid-modified carbon dots encapsulated in bionic antibodies (IL-modified CDs@BAs) by one-pot green synthesis. In order to enhance the fluorescence intensity of CDs, imidazole ILs and lemon rich in heteroatoms were selected as CDs modifiers and sources. The resulting IL-modified CDs@BAs showed good selectivity and capture toward urea and obviously induced fluorescence quenching by template-binding. The inhibition rate ofIL-modified CDs@BAs on the urea pathway of ethyl carbamate was about 29.07% in the simulated Huangjiu system, indicating a good inhibitory effect. The IL-modified CDs@BAs system was also reproducible after five consecutive uses, thus reducing the economic cost. This research would expand the application fields of BAs-based optical sensing system from the perspectives of energy conservation, environmental protection and resource recovery, focusing on their application in the field of food safety control.
Collapse
Affiliation(s)
- Chen Meng
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Chenchen Xie
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jingbo He
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Xiaolin Chen
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
21
|
Chen W, Su H. Special issue: molecular nutrition and chronic diseases. J Zhejiang Univ Sci B 2023; 24:549-553. [PMID: 37455133 PMCID: PMC10350371 DOI: 10.1631/jzus.b2310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
"Let food be thy medicine and medicine be thy food"-the ancient adage proposed by Greek philosopher Hippocrates of Kos thousands of years ago already acknowledged the importance of the beneficial and health-promoting effects of food nutrients on the body (Mafra et al., 2021). Recent epidemiological and large-scale community studies have also reported that unhealthy diets or eating habits may contribute heavily to the burden of chronic, non-communicable diseases, such as obesity, type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), cancer, neurodegenerative diseases, arthritis, chronic kidney disease (CKD), and chronic obstructive pulmonary disease (COPD) (Jayedi et al., 2020; Gao et al., 2022). Emerging evidence highlights that a diet rich in fruits and vegetables can prevent various chronic diseases (Chen et al., 2022). Food bioactive compounds including vitamins, phytochemicals, and dietary fibers are responsible for these nutraceutical benefits (Boeing et al., 2012). Recently, phytochemicals such as polyphenols, phytosterols, and carotenoids have gained increasing attention due to their potential health benefits to alleviate chronic diseases (van Breda and de Kok, 2018). Understanding the role of phytochemicals in health promotion and preventing chronic diseases can inform dietary recommendations and the development of functional foods. Therefore, it is crucial to investigate the health benefits of phytochemicals derived from commonly consumed foods for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul 55108, USA
| |
Collapse
|
22
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
23
|
Zan Q, Long M, Zheng N, Zhang Z, Zhou H, Xu X, Osire T, Xia X. Improving ethanol tolerance of ethyl carbamate hydrolase by diphasic high pressure molecular dynamic simulations. AMB Express 2023; 13:32. [PMID: 36920541 PMCID: PMC10017909 DOI: 10.1186/s13568-023-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method. However, poor tolerance to ethanol severely hinders application of EC hydrolase. In this study, the mutants of EC hydrolase were screened by diphasic high pressure molecular dynamic simulations (dHP-MD). The best variant with remarkable improvement in specific activity and was H68A/K70R/S325N, whose specific activity was approximately 3.42-fold higher than WT, and relative enzyme activity under 20% (v/v) was 5.02-fold higher than WT. Moreover, the triple mutant increased its stability by acquiring more hydration shell and forming extra hydrogen bonds. Furthermore, the ability of degrading EC of the immobilized triple mutant was both detected in mock wine and under certain reaction conditions. The stability of immobilized triple mutant and WT were both improved, and immobilized triple mutant degraded nearly twice as much EC as that of immobilized WT. Overall, dHP-MD was proved to effectively improve enzyme activity and ethanol tolerance for extent application at industrial scale.
Collapse
Affiliation(s)
- Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinjie Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
24
|
Wang S, Tian X, Tian L, Guo Q, Liu Y, Zhao F, Zhang J, Li D, Luo J, He Z, Guan T. Degradation of ethyl carbamate in strong-flavor Baijiu by the microbial combination culture. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Cao Y, Yang F, Xie Y, Liu S, Hua L, Zhang S, Chen P, Wen Y, Li H, Wang L. Rapid Determination of Ethyl Carbamate in Chinese Liquor via a Direct Injection Mass Spectrometry with Time-Resolved Flash-Thermal-Vaporization and Acetone-Assisted High-Pressure Photoionization Strategy. Anal Chem 2023; 95:4235-4242. [PMID: 36795494 DOI: 10.1021/acs.analchem.2c05752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ethyl carbamate (EC), a carcinogenic compound, is naturally produced in fermented foods and alcoholic beverages. Rapid and accurate measurement of EC is necessary and important for quality control and safety evaluation of Chinese liquor, a traditionally distilled spirit with the highest consumption in China, but it remains a great challenge. In this work, a direct injection mass spectrometry (DIMS) with time-resolved flash-thermal-vaporization (TRFTV) and acetone-assisted high-pressure photoionization (HPPI) strategy has been developed. EC was rapidly separated from the main matrix components, ethyl acetate (EA) and ethanol, by the TRFTV sampling strategy due to the retention time difference of these three compounds with large boiling point differences on the inner wall of a poly(tetrafluoroethylene) (PTFE) tube. Therefore, the matrix effect of EA and ethanol was effectively eliminated. The acetone-assisted HPPI source was developed for efficient ionization of EC through a photoionization-induced proton transfer reaction between EC molecules and protonated acetone ions. The accurate quantitative analysis of EC in liquor was achieved by introducing an internal standard method (ISM) using deuterated EC (d5-EC). As a result, the limit of detection (LOD) for EC was 8.88 μg/L with the analysis time of only 2 min, and the recoveries ranged from 92.3 to 113.1%. Finally, the prominent capability of the developed system was demonstrated by rapid determination of trace EC in Chinese liquors with different flavor types, exhibiting wide potential applications in online quality control and safety evaluation of not only Chinese liquors but also other liquor and alcoholic beverages.
Collapse
Affiliation(s)
- Yixue Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Song Liu
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory for Online Analytical Instrumentation, Dalian 116023, China
| | - Li Wang
- Kweichow Moutai Co., Ltd., Renhuai 564500, China.,Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai 564500, China
| |
Collapse
|
27
|
Di Y, Li J, Chen J, Zhao X, Du G. Simulation and Control of the Formation of Ethyl Carbamate during the Fermentation and Distillation Processes of Chinese Baijiu. Foods 2023; 12:foods12040821. [PMID: 36832896 PMCID: PMC9956628 DOI: 10.3390/foods12040821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Baijiu is a popular alcoholic beverage with a long history in China. However, the widespread presence of the ethyl carbamate (EC) carcinogen has raised many food safety concerns. To date, the main precursors of EC and its formation process have not been determined, resulting in difficulty controlling EC in Baijiu. In this study, the main precursors of EC are identified as urea and cyanide during the process of brewing for different flavors of Baijiu, while the dominant stage in which EC formation occurs is during the process of distillation rather than fermentation. In addition, the effects of temperature, pH value, alcohol concentration and metal ions on the formation of EC are confirmed. In the following study, the main precursor of EC is identified as cyanide during the process of distillation, and a combination of optimizing the distillation device and adding copper wire is proposed. Furthermore, the effect of this novel strategy is examined in gaseous reactions between cyanide and ethanol, reducing the concentration of EC by 74.0%. Finally, the feasibility of this strategy is verified in simulated distillations of fermented grains, reducing the formation of EC by 33.7-50.2%. This strategy has great application potential in industrial production.
Collapse
Affiliation(s)
- Yuhang Di
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
28
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
30
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
31
|
Xia L, Yang Y, Yang H, Tang Y, Zhou J, Wu Y. Screening and identification of an aptamer as novel recognition molecule in the test strip and its application for visual detection of ethyl carbamate in liquor. Anal Chim Acta 2022; 1226:340289. [DOI: 10.1016/j.aca.2022.340289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
|
32
|
Zheng H, Meng K, Liu J, Lin Z, Peng Q, Xie G, Wu P, Elsheery NI. Identification and expression of bifunctional acid urea-degrading enzyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4599-4608. [PMID: 35179235 DOI: 10.1002/jsfa.11818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ethyl carbamate (EC) is a potential carcinogen existing in fermented foods such as Chinese rice wine (Huangjiu). Since urea is an important precursor of EC, the degradation of urea could be an effective way to reduce EC in foods. RESULTS In this study, an Enterobacter sp. R-SYB082 with acid urea degradation characteristics was obtained through microbial screening. Further research isolated a new acid urea-degrading enzyme from R-SYB082 strain - ureidoglycolate amidohydrolase (UAH) - which could degrade EC directly. The cloning and expression of UAH in Escherichia coli BL21 (DE3) suggested that the activity of urea-degrading enzyme reached 3560 U L-1 , while urethanase activity reached 2883 U L-1 in the optimal fermentation condition. The enzyme had the dual ability of degrading substrate urea and product EC. The removal rate of EC in Chinese rice wine could reach 90.7%. CONCLUSION This study provided a new method for the integrated control of EC in Chinese rice wine and other fermented foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huajun Zheng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Kai Meng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Jun Liu
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | - Zichen Lin
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Qi Peng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
- California Institute of Food and Agricultural Research, University of California, Davis, CA, USA
| | - Guangfa Xie
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | |
Collapse
|
33
|
Liang Z, Mahmoud Abdelshafy A, Luo Z, Belwal T, Lin X, Xu Y, Wang L, Yang M, Qi M, Dong Y, Li L. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chem 2022; 384:132494. [DOI: 10.1016/j.foodchem.2022.132494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
34
|
Jia W, Fan Z, Du A, Shi L. Molecular mechanism of Mare Nectaris and magnetic field on the formation of ethyl carbamate during 19 years aging of Feng-flavor Baijiu. Food Chem 2022; 382:132357. [PMID: 35144185 DOI: 10.1016/j.foodchem.2022.132357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Ethyl carbamate (EC) is carcinogen occurring naturally in fermented foods, while the EC formation pattern in Feng-flavor Baijiu during Mare Nectaris storage and magnetic field treatment remains controversial. In this work, variation of EC in Mare Nectaris and magnetic field were investigated for the first time through ultra high performance liquid chromatography quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap). Quantification results revealed that EC decreased significantly in the stage of 3-9 years and kept at 12.4 μg L-1 after 10 years of aging. Arginine succinate synthase (ASS) and urease were deemed as vital factors for EC decomposition. Degradation effetc of EC in 250 mT is simillar to that of EC in Baijiu stored in Mare Nectaris for 8 years. This is due to that aging process was accelerated by magnetic field and the content of total acid in Baijiu was increased, creating a favorable environment for decomposition of EC and urea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
35
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
36
|
Ethyl carbamate regulate esters degradation by activating hydrolysis during Baijiu ripening. Food Res Int 2022; 156:111157. [DOI: 10.1016/j.foodres.2022.111157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
37
|
Liang Z, Su H, Ren X, Lin X, He Z, Li X, Zheng Y. Analysis of Key Genes Responsible for Low Urea Production in Saccharomyces cerevisiae JH301. Front Microbiol 2022; 13:894661. [PMID: 35558109 PMCID: PMC9087593 DOI: 10.3389/fmicb.2022.894661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/23/2023] Open
Abstract
There is a potential safety risk with ethyl carbamate (EC) in Hongqu Huangjiu production; 90% of the EC in rice wine is produced by the reaction of the urea with the alcohol of Saccharomyces cerevisiae. In our previous experiments, we screened and obtained a S. cerevisiae strain JH301 that offered low urea production. However, the key genes responsible for low urea production of strain JH301 remain unclear. Here, the whole genome sequencing of S. cerevisiae strain JH301 was accomplished via a next-generation high-throughput sequencing and long-read sequencing technology. There are six main pathways related to the urea metabolism of strain JH301 based on KEGG pathway mapping. Three species-specific genes are related to the urea metabolism pathways and were found in comparative genome analysis between strains JH301 and S288c during Hongqu Huangjiu production for the first time. Finally, the ARG80 gene was found to be likely a key gene responsible for low urea production of S. cerevisiae strain JH301, as determined by PCR and qRT-PCR check analyses from DNA and RNA levers. In conclusion, the results are useful for a scientific understanding of the mechanism of low urea production by Saccharomyces cerevisiae during Hongqu Huangjiu fermentation. It also is important to control the urea and EC contents in Hongqu Huangjiu production.
Collapse
Affiliation(s)
- Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Hao Su
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd., Fuzhou, China
| | - Yan Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| |
Collapse
|
38
|
He Z, Li C, Xia W, Wang Z, Li R, Zhang Y, Wang M. Comprehensive Enantioselectivity Evaluation of Insecticidal Activity and Mammalian Toxicity of Fenobucarb. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5330-5338. [PMID: 35451821 DOI: 10.1021/acs.jafc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To comprehensively evaluate the efficiency and risk of the chiral pesticide fenobucarb, the bioactivity, toxicity, and environmental behavior of fenobucarb (FNC) enantiomers were investigated. The results showed that R-FNC possesses 1.8-2.7 times more bioactivity than S-FNC but 1.3-3.0 times lower toxicity than S-FNC against four nontarget organisms: Chlorella pyrenoidosa, HepG2, and Danio rerio and its embryos. The corresponding enzyme inhibitory activity showed consistent results; the acetylcholinesterase inhibitory activity of target organisms was ordered as R-FNC > rac-FNC > S-FNC, while the reduction in catalase activity after exposure to R-FNC was 2.5 times that after exposure to S-FNC in zebrafish. The enantioselective bioactivity mechanism of FNC enantiomers was further explored in silico. No significant enantioselective degradation was found in soils or rat liver microsomes. In sum, R-FNC possesses higher insecticidal activity and lower toxicity. The development of R-FNC as a commercial agrochemical is beneficial for reducing pesticide inputs.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chenglong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Weitong Xia
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
39
|
Bao T, Karim N, Xie L, Xie J, Chen W. Simulated gastrointestinal digestion and colonic fermentation of blue honeysuckle: Phenolic profile and protectivity on ethyl carbamate-induced oxidative damage. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Xu Y, Li Y, Li J, Chen W. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol 2022; 53:102349. [PMID: 35623314 PMCID: PMC9142717 DOI: 10.1016/j.redox.2022.102349] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Humans are inevitably exposed to ethyl carbamate (EC) via consumption of fermented food and beverages. EC, known as an environmental toxin, can cause oxidative stress-mediated severe toxicity, but the underlying mechanisms remain unveiled. Ferroptosis is a newly identified ROS-mediated non-apoptotic cell death characterized by iron accumulation and excessive lipid oxidation. In this study, we first found that EC triggered ferroptosis in liver cells by detection of decreased cell viability, GSH, GPX4 and Ferritin levels, as well as increased iron and MDA contents. Ferroptosis inhibitor ferrostatin-1 (Fer-1) pretreatment rescued ferroptotic damage, indicating that ferroptosis was critical for EC-caused cell death. Furthermore, GSH synthesis precursor N-acetylcysteine displayed significant anti-ferroptotic properties and we suggested that GSH depletion might be the main cause of ferroptosis under EC exposure. EC-triggered GSH depletion mainly depended on suppressed GSH synthesis via inhibition of SLC7A11 and GCLC expressions. Notably, EC blocked Nrf2 activation by repression of phosphorylation modification and nuclear translocation, which further resulted in ferroptosis occurrence. We also observed EC-induced liver dysfunction and inflammation, accompanied with oxidative stress, ferroptosis and downregulated Nrf2 signaling in Balb/c mice, which could be effectively reversed by Fer-1 and tBHQ pretreatment. Together, our study indicated that ferroptosis is a new mechanism for EC-caused toxicity, which was attributed to Nrf2 inactivation and GSH depletion. Ethyl carbamate (EC) caused ferroptosis in L02 cells and liver tissues. GSH depletion was critical for EC-induced ferroptotic cell death. EC exposure blocked GSH synthesis-related pathways. Inactivation of Nrf2 signaling was involved in EC-triggered ferroptosis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
41
|
Non-canonical genomic driver mutations of urethane carcinogenesis. PLoS One 2022; 17:e0267147. [PMID: 35482806 PMCID: PMC9049545 DOI: 10.1371/journal.pone.0267147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
The carcinogen urethane induces pulmonary tumors in mice initiated by an incredibly specific Q61L/R oncogenic mutation in the proto-oncogene Kras. Previous Whole-Exome Sequencing of urethane-induced tumors revealed a bias towards A➙T/G and G➙A substitutions. Subsequent ultra-sensitive Maximum-Depth Sequencing of Kras shortly after urethane exposure suggest a further refinement to CA➙CT/G substitutions. As C182AA➙C182T/GA substitutions in Kras result in Q61L/R mutations, the extreme bias of urethane towards these genomic driver mutations can be ascribed to the specificity of the carcinogen for CA➙CT/G substitutions. However, we previously found that changing rare codons to common in the Kras gene to increase protein expression shifted mutations in urethane-induced tumors away from Kras, or when detected in Kras, to G12D mutations that are usually rarely detected in such tumors. Moreover, the loss of p53 partially reversed this effect, generating tumors with either Q61L/R or G12D oncogenic Kras mutations, or no Kras mutations, presumably due to other genomic driver mutations. Determining the origin of these G12D and other unknown non-canonical genomic driver mutations would provide critical insight into the extreme bias of carcinogens for specific genomic driver mutations. We thus compared the types of Single Nucleotide Variations detected by previously performed Maximum-Depth Sequencing immediately after urethane exposure to the mutation signatures derived from Whole Exome Sequencing of urethane-induced tumors. This identified two types of non-canonical mutations. First, a V637E oncogenic mutation in the proto-oncogene Braf that conforms to the mutation signature of urethane, suggesting that the mutational bias of the carcinogen may account for this non-canonical mutation, similar to that for canonical Q61L/R mutations in Kras. Second, G12D and Q61H mutations in Kras that did not fit this mutation signature, and instead shared similarity with Single Nucleotide Variations detected by Maximum-Depth Sequencing from normal cells, suggesting that perhaps these mutations were pre-existing. We thus posit that when canonical Kras mutations are selected against that the carcinogen may instead promote the expansion of pre-existing genomic driver mutations, although admittedly we cannot rule out other mechanisms. Interrogating the mutation signatures of human lung cancers similarly identified KRAS genomic driver mutations that failed to match the mutation signature of the tumor. Thus, we also speculate that the selection for non-canonical genomic driver mutations during urethane carcinogenesis may reflect the process by which discordance between genomic driver mutations and mutational signatures arises in human cancers.
Collapse
|
42
|
|
43
|
Magollah TM, Go JY, Kim HL, Park SY, Kwon SY, Lee JH, Yang JY, Lee YB. Ethyl Carbamate Formation from Cyanate in Model System of Ethanol-Water Media Using Response Surface Methodology. Prev Nutr Food Sci 2022; 27:127-135. [PMID: 35465106 PMCID: PMC9007705 DOI: 10.3746/pnf.2022.27.1.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tabu Mungia Magollah
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Ji-Yeun Go
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Hyo-Lim Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Su-Yeon Park
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Seo-Yeon Kwon
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Ji-Hyo Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Ji-Young Yang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Yang-Bong Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
44
|
Ma Z, Zhao T, Cui S, Zhao X, Fan Y, Song J. Determination of ethyl carbamate in wine by matrix modification-assisted headspace single-drop microextraction and gas chromatography-mass spectrometry technique. Food Chem 2022; 373:131573. [PMID: 34785112 DOI: 10.1016/j.foodchem.2021.131573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/24/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
A novel method for the analysis of ethyl carbamate in wine has been developed by coupling matrix modification-assisted headspace single-drop microextraction and gas chromatography-mass spectrometry (GC-MS) techniques. The method was developed by optimizing the matrix modifier and extraction parameters. The calibration method was followed by quantifying the internal isotope standard. The results suggested that the method was linear in the concentration range of 2-1000 ng/mL (R2 = 0.9996). The method presents a detection limit of 1.5 ng/mL, and the quantification limit is 5 ng/mL. The accuracy ranged between 94.9 and 99.9%, and the precision of the method was less than 5%. The method was applied for the detection of wine samples, and the results exhibited no significant difference when compared to the solid phase extraction method.
Collapse
Affiliation(s)
- Zexin Ma
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China.
| | - Tingyong Zhao
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Shiyao Cui
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Xiaoning Zhao
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Yong Fan
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Jiangping Song
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| |
Collapse
|
45
|
DiMarco AV, Maddalo D. In Vivo Modeling of Tumor Heterogeneity for Immuno-Oncology Studies: Failures, Improvements, and Hopes. Curr Protoc 2022; 2:e377. [PMID: 35255200 DOI: 10.1002/cpz1.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Murine tumor modeling is fundamental for the preclinical development of anti-cancer therapies. Use of immunocompetent mouse models is becoming increasingly relevant as we gain more knowledge of how cancer cells interact with the immune system in the tumor microenvironment and how we can harness the immune system to fight tumors. However, there are few intrinsically immunogenic preclinical tumor models, and the vast majority either do not respond to therapy or do not faithfully predict the responses of the therapy when applied in the clinic. Here, we discuss the limitations of commonly used murine tumor models in immuno-oncology and strategies to improve their immunogenicity and mutational burden to more accurately reflect the heterogeneity of patient tumors. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ashley V DiMarco
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
46
|
A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Effects of fortified starter culture containing Saccharomyces cerevisiae and Lactobacillus fermentum on microbial community structure and ethyl carbamate. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Abt E, Incorvati V, Robin LP, Redan BW. Occurrence of Ethyl Carbamate in Foods and Beverages: Review of the Formation Mechanisms, Advances in Analytical Methods, and Mitigation Strategies. J Food Prot 2021; 84:2195-2212. [PMID: 34347857 PMCID: PMC9092314 DOI: 10.4315/jfp-21-219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ethyl carbamate (EC) is a process contaminant that can be formed as a by-product during fermentation and processing of foods and beverages. Elevated EC concentrations are primarily associated with distilled spirits, but this compound has also been found at lower concentrations in foods and beverages, including breads, soy sauce, and wine. Evidence from animal studies suggests that EC is a probable human carcinogen. Consequently, several governmental institutions have established allowable limits for EC in the food supply. This review includes EC formation mechanisms, occurrence of EC in the food supply, and EC dietary exposure assessments. Current analytical methods used to detect EC will be covered, in addition to emerging technologies, such as nanosensors and surface-enhanced Raman spectroscopy. Various mitigation methods have been used to maintain EC concentrations below allowable limits, including distillation, enzymatic treatments, and genetic engineering of yeast. More research in this field is needed to refine mitigation strategies and develop methods to rapidly detect EC in the food supply. HIGHLIGHTS
Collapse
|
49
|
Liu X, Bai W, Zhao W, Qian M, Dong H. Correlation analysis of microbial communities and precursor substances of ethyl carbamate (EC) during soy sauce fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Han Y, Du J, Song Z. Effects of the yeast endogenous β-glucosidase on hawthorn (Crataegus pinnatifida Bunge) wine ethyl carbamate and volatile compounds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|