1
|
Zhang Q, Zang H, Guo X, Li S, Xin X, Li Y. A systematic study on composition and antioxidant of 6 varieties of highbush blueberries by 3 soil matrixes in China. Food Chem 2025; 472:142974. [PMID: 39862608 DOI: 10.1016/j.foodchem.2025.142974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Blueberries are the most popular small berries, in order to solve the problem of unbalanced blueberry resources in different regions of China. In this study, 18 blueberries were analyzed by chromatography and mass spectrometry for 9 soil elements, 6 anthocyanins, 7 phenolic acids, 9 organic acids, and 12 flavonoids. The result showed that blueberry physico-chemical indicators were significantly variable across production regions by Wenn and volcano maps, chlorogenic acid, ascorbic acid, citric acid, catechin were the main antioxidant active components, soil pH was significantly correlated with low content of anthocyanins and organic acids, soil elements were not significantly correlated with fruits antioxidant activity by the network correlation analysis. Cluster analysis and principal component analysis classified the antioxidant activity and fruit quality: represented by YNorthland, SNorthland, JSharpblue. It provides theoretical support for screening high quality blueberries and promoting the development of blueberry industry.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Huiming Zang
- Jilin Province Pulan High Technology Company, Changchun 130103, China.
| | - Xiaoni Guo
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China.
| | - Shunyao Li
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China.
| | - Xiulan Xin
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China.
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, Changchun, Jilin 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
2
|
Zhang H, Yu Y, Zhang H, Zhao X, Wang J. A comprehensive profiling of phenolic compounds and antioxidant activities of 24 varieties of red raspberry cultivated in Northeast China. J Food Sci 2025; 90:e17623. [PMID: 39731726 DOI: 10.1111/1750-3841.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024]
Abstract
Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities. The results showed that 'DNS1' had the highest total phenolic content (TPC), 'Willamette' had the highest total flavonoid content (TFC), and 'Boyne' had the highest total anthocyanin content (TAC). Phenolic compounds in red raspberries were predominantly found in esterified form, while glycosylated phenolics should not be overlooked. Chlorogenic acid, cryptochlorogenic acid, ellagic acid, and arbutin were the main phenolic compounds, and the distribution of their contents varied between varieties. The antioxidant activity in the red raspberry had a close association with the content of phenolic compounds. Principal component analysis (PCA) showed that phenolic compounds and antioxidant activities were higher in samples from 'DNS1', 'Boyne', 'Beijing10', 'DNS5', and 'Willamette' varieties. These varieties should be given priority in breeding programs that aim to boost the utility and bioactive profile of red raspberries. PRACTICAL APPLICATION: Red raspberry is becoming a desirable commercially grown fruit species and is viewed as a new functional food. In this context, this research offers strong support for confirming the quality of 24 varieties of red raspberry and plays a critical role in the food industry. It also indicates the potential sources of superior varieties of red raspberry, which are advantageous for growers and consumers in search of high-quality red raspberry varieties.
Collapse
Affiliation(s)
- Haonan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yiping Yu
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Hegu Zhang
- Faulty of Arts and Sciences, University of Toronto, Toronto, Canada
| | - Xin Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
3
|
Neagu E, Paun G, Albu C, Radu GL. Valorization of Bioactive Compounds from Lingonberry Pomace and Grape Pomace with Antidiabetic Potential. Molecules 2024; 29:5443. [PMID: 39598832 PMCID: PMC11597371 DOI: 10.3390/molecules29225443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, increased attention has been paid to the recovery of bioactive compounds from waste and by-products resulting from the agro-industrial sector and their valorization into new products, which can be used in the health, food, or agricultural industry, as innovative and sustainable approaches to waste management. In this work, two of these by-products resulting from the fruit-processing industry were used for the recovery of bioactive compounds (polyphenols), namely lingonberry pomace (Vaccinium vitis-idaea) and grape pomace (Vitis vinifera). Two green extraction techniques were employed to obtain hydroalcoholic extracts (solvent: 50% EtOH, 10% mass): ultrasound-assisted extraction (UAE) and accelerated solvent extraction (ASE). The extracts were subjected to micro- and ultrafiltration processes, and further analyzed to determine the bioactive compound content through spectrophotometric (UV-Vis) and chromatographic (HPLC-PDA) methods. Additionally, the extracts exhibited significant enzyme inhibition, particularly against α-amylase and β-glucosidase, suggesting potential anti-diabetic properties. The extracts characteristics, polyphenolic content, antioxidant capacity and enzyme inhibitory ability, were statistically compared, and significant differences were found between the two extraction methods. The grape pomace concentrated extracts showed a pronounced inhibitory activity on both analyzed enzymes compared to the lingonberry pomace concentrated extracts, closer to the standard used; e.g., IC50 α-amylase = 0.30 ± 0.01 µg/mL (IC50 acarbose = 0.3 ± 0.01 µg/mL), IC50 α-glucosidase = 0.60 ± 0.01 µg/mL (IC50 acarbose = 0.57 ± 0.02 µg/mL). These findings highlight the potential of agro-industrial residues as bioactive compound resources, with their valorization through application in food, nutraceutical, or pharmaceutical industries therefore contributing to the sustainable development and promotion of circular economy principles with the recovery of valuable inputs from plant by-products.
Collapse
Affiliation(s)
| | - Gabriela Paun
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (C.A.)
| | | | - Gabriel Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (C.A.)
| |
Collapse
|
4
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Zhao Y, Sun J, Liu Y, Zhang X, Cao Y, Zheng B, Zhang RX, Zhao C, Ai X, He H, Han Y. Metabolic basis for superior antioxidant capacity of red-fleshed peaches. Food Chem X 2024; 23:101698. [PMID: 39211764 PMCID: PMC11357884 DOI: 10.1016/j.fochx.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Peach fruit is an important natural source of phenolic compounds that are well-known to have health benefits, but their metabolic basis remain elusive. Here, we report on phenolic compounds accumulation and antioxidant activity of ripe fruits in peach. A considerable variation in phenolic compounds content was observed among peach germplasm, with significantly higher levels detected in red-fleshed peaches compared to non-red-fleshed peaches. Antioxidant activity of crude extracts from ripe fruits showed significant differences among peach germplasm, with red-fleshed peaches having the strongest antioxidant activity. Intriguingly, it was observed that total phenolics instead of anthocyanins were strongly associated with antioxidant activity. Phenolic compounds content and antioxidant activity showed dynamic changes throughout fruit development, and these were much higher in the peel than in the flesh. Metabolomic analysis unveiled a coordinated accumulation of anthocyanins as well as key components of flavonoids and phenolic acids, which endows red-fleshed peaches with superior antioxidant activity.
Collapse
Affiliation(s)
- Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juanli Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiaoyan Ai
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Chiang Yu Y, Lu D, Rege B, Polli JE. Lack of Effect of Antioxidants on Biopharmaceutics Classification System (BCS) Class III Drug Permeability. J Pharm Sci 2024; 113:2215-2222. [PMID: 38484875 DOI: 10.1016/j.xphs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 08/30/2024]
Abstract
The addition of antioxidants to pharmaceutical products is a potential approach to inhibit nitrosamine formation, particularly in solid oral dosage forms like tablets and capsules. The objective was to assess the effect of ten antioxidants on the permeability of four Biopharmaceutics Classification System (BCS) Class III drugs. Bi-directional drug permeability studies in the absence and presence of antioxidants were performed in vitro across MDCK-II monolayers. No antioxidant increased drug permeability, while the positive control sodium lauryl sulfate always increased drug permeability. Results support that any of the ten antioxidants, up to at least 10 mg, can be added to a solid oral dosage form without modulating passive drug intestinal permeability. Additional considerations are also discussed.
Collapse
Affiliation(s)
- Yuly Chiang Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Dongmei Lu
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bhagwant Rege
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Fang S, Zhang K, Liu D, Yang Y, Xi H, Xie W, Diao K, Rao Z, Wang D, Yang W. Polyphenol-based polymer nanoparticles for inhibiting amyloid protein aggregation: recent advances and perspectives. Front Nutr 2024; 11:1408620. [PMID: 39135555 PMCID: PMC11317421 DOI: 10.3389/fnut.2024.1408620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.
Collapse
Affiliation(s)
- Shuzhen Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea, Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Danqing Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Yulong Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Hu Xi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Wenting Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Ke Diao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhihong Rao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
8
|
Dong W, Liu X, Yi Y, Wang L, Hou W, Ai Y, Wang H, Min T. Evaluation of Pre-Harvest Nutrient Composition and Functional Active Substances in Various Lotus Roots. Foods 2024; 13:2297. [PMID: 39063381 PMCID: PMC11276218 DOI: 10.3390/foods13142297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the impact of variety and harvest time on the visual appearance, nutritional quality, and functional active substances of six lotus root cultivars: "Xinsanwu", "Wuzhi No. 2", "Baiyuzhan", "Huaqilian", "Elian No. 6", and "Elian No. 5". Samples were collected monthly from December 2023 to April 2024. A nutrient analysis revealed a decrease in the water content with a delayed harvest. The total soluble solids and soluble sugar content peaked towards the end and middle-to-late harvest periods, respectively. Starch levels initially increased before declining, while the soluble protein exhibited a triphasic trend with an initial rise, a dip, and a final increase. The vitamin C (Vc) content varied across cultivars. Functional active substances displayed dynamic changes. The total phenolics initially decreased, then increased, before ultimately declining again. The total flavonoid content varied by both cultivar and harvest time. The phenolic acid and flavonoid content mirrored the trends observed for total phenolics and total flavonoids. Gastrodin was the most abundant non-flavonoid compound across all varieties. "Wuzhi No. 2" and "Baiyuzhan" displayed higher levels of functional active substances and starch, while the Elian series and "Xinsanwu" cultivar exhibited a greater content of Vc, soluble sugar, and soluble protein. Specific harvest periods yielded optimal results: "Wuzhi No. 2" (H1 and H5), "Huaqilian" (H2), and "Baiyuzhan" (H3 and H4) demonstrated a high nutrient and functional active substance content. Overall, the lotus roots harvested in period H4 achieved the highest score. Overall, this study provides the foothold for the rapid identification of superior lotus root cultivars and the valorization of lotus root by-products via advanced processing methods. Additionally, it offers valuable insights for market participants and consumers to select optimal varieties and harvest times based on their specific needs.
Collapse
Affiliation(s)
- Wanyu Dong
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
| | - Xueting Liu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Limei Wang
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Wenfu Hou
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
| | - Youwei Ai
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
| | - Hongxun Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China;
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.D.); (X.L.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China;
| |
Collapse
|
9
|
Zhang J, Hong B, Abdollahi M, Wu H, Undeland I. Role of lingonberry press cake in producing stable herring protein isolates via pH-shift processing: A dose response study. Food Chem X 2024; 22:101456. [PMID: 38808166 PMCID: PMC11130683 DOI: 10.1016/j.fochx.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
The effects of cross-processing lingonberry press cake (LPC) (2.5-30 %, dw/dw) with herring co-products on protein yield, oxidative stability and color of pH-shift-produced protein isolates were investigated. Even at 2.5 % LPC, the formation of volatile oxidation-derived aldehydes, including hexanal, (E)-2-hexenal, heptanal, octanal, and 2,4-heptadienal, were prevented during the actual protein isolate production. Adding 10 % LPC successfully prevented formation of all these aldehydes also during eight days ice storage which was explained by the partitioning of phenolics, especially ideain (1.09 mg/g dw) and procyanidin A1 (65.5 mg/g dw), into isolates. Although higher amounts of LPC (20-30 %) further prolonged the oxidation lag phase, it reduced total protein yield, increased the consumption of acid and base, and darkened protein isolates. Therefore, it is recommended to use 10 % LPC when pH-shift-processing sensitive fish raw materials as a route to mitigate lipid oxidation and at the same time promote industrial symbiosis and more circular food production.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Bovie Hong
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Haizhou Wu
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ingrid Undeland
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Ștefănescu BE, Socaci SA, Fărcaș AC, Nemeș SA, Teleky BE, Martău GA, Călinoiu LF, Mitrea L, Ranga F, Grigoroaea D, Vodnar DC, Socaciu C. Characterization of the Chemical Composition and Biological Activities of Bog Bilberry ( Vaccinium uliginosum L.) Leaf Extracts Obtained via Various Extraction Techniques. Foods 2024; 13:258. [PMID: 38254559 PMCID: PMC10814626 DOI: 10.3390/foods13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Silvia Amalia Nemeș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Bernadette Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Floricuța Ranga
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Dan Grigoroaea
- Călimani National Park Administration, Șaru Dornei, 727515 Suceava, Romania;
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| |
Collapse
|
11
|
Wang S, Cheng Y, Wang J, Ding M, Fan Z. Antioxidant Activity, Formulation, Optimization and Characterization of an Oil-in-Water Nanoemulsion Loaded with Lingonberry ( Vaccinium vitis-idaea L.) Leaves Polyphenol Extract. Foods 2023; 12:4256. [PMID: 38231701 DOI: 10.3390/foods12234256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
The active ingredients in lingonberry leaves and their beneficial properties to the human body have been well confirmed. In order to improve the stability and antioxidant activity of the active ingredients in lingonberry leaves, the response surface optimization method was used to prepare an oil-in-water nanoemulsion of polyphenol extract from lingonberry leaves. The active components in the extract were analyzed by ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UPLC-TQ-MS), and bioactive compounds such as apigenin, sorbitol, and hesperidin were mainly found. Nanoemulsion droplets of 120 nm in diameter were prepared using ultrasonic emulsification. The optimal nanoemulsion formulation was determined through rigorous testing, and it was determined to be 10% (w/w) lingonberry extract and 20% (w/w) medium chain triglyceride (MCT). Additionally, a surfactant mixture was used, which combined soy protein isolate (SPI) and whey protein isolate (WPI) at 4% (w/w). The preparation method utilized ultrasonic emulsification, applying an ultrasonic power of 360 W for a duration of 300 s. The antioxidant activity (DPPH inhibition rate, ABTS inhibition rate and total reducing power) of the lingonberry nanoemulsion was significantly higher than that of the lingonberry polyphenol (LBP) extract. The nanoemulsion prepared using the optimal formulation had an entrapping efficiency of 73.25% ± 0.73% and a diameter of 114.52 ± 0.015 nm, with a satisfactory particle size of nanoscale and a PDI of 0.119 ± 0.065, demonstrating good stability of the emulsion.
Collapse
Affiliation(s)
- Siyu Wang
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Yuan Cheng
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Jingyi Wang
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Miao Ding
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Ziluan Fan
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
12
|
Xu J, Yang H, Nie C, Wang T, Qin X, Yang J, Chang Y, Nie S, Fu Y. Comprehensive phytochemical analysis of lingonberry ( Vaccinium vitis-idaea L.) from different regions of China and their potential antioxidant and antiproliferative activities. RSC Adv 2023; 13:29438-29449. [PMID: 37818259 PMCID: PMC10561374 DOI: 10.1039/d3ra05698h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Lingonberry are underutilised due to the lack of evaluating active compounds in different parts. In this study, the phytochemical profiles, antioxidant and antiproliferative activities of lingonberry's fruits, leaves and stems from different regions of China were compared. Ninety-five bioactive compounds were rapidly identified using a molecular network based on UPLC-Q-Exactive Orbitrap mass spectrometry. The UPLC-QqQ-MS/MS method combined with principal component analysis (PCA) quantified 18 bioactive components in 6 classes. The highest content of arbutin (15 mg/100 g DW) was found in leaves of Huzhong (P6). Ursolic acid and cyanidin-3-O-galactoside were highest in fruits of Tahe (P4) (4.5 mg/100 g DW and 3.2 mg/100 g DW, respectively). Antioxidant activities determined by DPPH, ABTS+ and FRAP methods were significantly correlated with total phenolic content (TPC), total flavonoid content (TFC) and total anthocyanin content (TAC). The results indicate that the strongest antioxidant activity and antiproliferative efficacy are observed in the fruits of Tahe (P4) and leaves of Huzhong (P6), respectively. Our results provide valuable insights into lingonberry's comprehensive development and utilization.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Han Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Chengdong Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Yuanhang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Siming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University Harbin 150040 China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 150040 Harbin China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University 100083 Beijing China
| |
Collapse
|
13
|
Choroszy-Król I, Futoma-Kołoch B, Kuźnik K, Wojnicz D, Tichaczek-Goska D, Frej-Mądrzak M, Jama-Kmiecik A, Sarowska J. Exposing Salmonella Senftenberg and Escherichia coli Strains Isolated from Poultry Farms to Formaldehyde and Lingonberry Extract at Low Concentrations. Int J Mol Sci 2023; 24:14579. [PMID: 37834022 PMCID: PMC10572950 DOI: 10.3390/ijms241914579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
European Union (EU) countries strive to improve the quality and safety of food of animal origin. Food production depends on a good microbiological quality of fodder. However, feed can be a reservoir or vector of pathogenic microorganisms, including Salmonella or Escherichia coli bacteria. Salmonella spp. and E. coli are the two most important food-borne pathogens of public health concern. Contamination with these pathogens, mainly in the poultry sector, can lead to serious food-borne diseases. Both microorganisms can form biofilms on abiotic and biotic surfaces. The cells that form biofilms are less sensitive to disinfectants, which in turn makes it difficult to eliminate them from various surfaces. Because the usage of formaldehyde in animal feed is prohibited in European countries, the replacement of this antibacterial with natural plant products seems very promising. This study aimed to assess the inhibitory effectiveness of Vaccinium vitis-idaea extract against biofilm produced by model Salmonella enterica and E. coli strains. We found that formaldehyde could effectively kill both species of bacterial cells in biofilm, while the lingonberry extract showed some antibiofilm effect on S. enterica serovar Senftenberg. In conclusion, finding natural plant products that are effective against biofilms formed by Gram-negative bacteria is still challenging.
Collapse
Affiliation(s)
- Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Klaudia Kuźnik
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| |
Collapse
|
14
|
Sharma U, Sikdar A, Igamberdiev AU, Debnath SC. Exploring Genetic and Epigenetic Changes in Lingonberry Using Molecular Markers: Implications for Clonal Propagation. Curr Issues Mol Biol 2023; 45:6296-6310. [PMID: 37623216 PMCID: PMC10453208 DOI: 10.3390/cimb45080397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) is an important and valuable horticultural crop due to its high antioxidant properties. Plant tissue culture is an advanced propagation system employed in horticultural crops. However, the progeny derived using this technique may not be true-to-type. In order to obtain the maximum return of any agricultural enterprise, uniformity of planting materials is necessary, which sometimes is not achieved due to genetic and epigenetic instabilities under in vitro culture. Therefore, we analyzed morphological traits and genetic and epigenetic variations under tissue-culture and greenhouse conditions in lingonberry using molecular markers. Leaf length and leaf width under greenhouse conditions and shoot number per explant, shoot height and shoot vigor under in vitro conditions were higher in hybrid H1 compared to the cultivar Erntedank. Clonal fidelity study using one expressed sequence tag (EST)-polymerase chain reaction (PCR), five EST-simple sequence repeat (SSR) and six genomic (G)-SSR markers revealed monomorphic bands in micropropagated shoots and plants in lingonberry hybrid H1 and cultivar Erntedank conforming genetic integrity. Epigenetic variation was studied by quantifying cytosine methylation using a methylation-sensitive amplification polymorphism (MSAP) technique. DNA methylation ranged from 32% in greenhouse-grown hybrid H1 to 44% in cultivar Erntedank under a tissue culture system. Although total methylation was higher in in vitro grown shoots, fully methylated bands were observed more in the greenhouse-grown plants. On the contrary, hemimethylated DNA bands were more prominent in tissue culture conditions as compared to the greenhouse-grown plants. The study conclude that lingonberry maintains its genetic integrity but undergoes variable epigenetic changes during in vitro and ex vitro conditions.
Collapse
Affiliation(s)
- Umanath Sharma
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| | - Arindam Sikdar
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
| | - Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| |
Collapse
|
15
|
Scrob T, Filip GA, Baldea I, Varodi SM, Cimpoiu C. Sweeteners' Influence on In Vitro α-Glucosidase Inhibitory Activity, Cytotoxicity, Stability and In Vivo Bioavailability of the Anthocyanins from Lingonberry Jams. Foods 2023; 12:2569. [PMID: 37444306 DOI: 10.3390/foods12132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Several lines of evidence demonstrate the multiple health-promoting properties of anthocyanins, but little is known regarding the bioavailability of these phytochemicals. Therefore, the stability during storage and bioavailability of anthocyanins from lingonberries jams were determined by HPLC, together with the impact of used sweeteners on their adsorption. Further, the in vitro α-glucosidase inhibition using spectrophotometric methods and cytotoxicity determined on normal and colon cancer cells were communicated. The content of anthocyanins was significantly decreased during storage in coconut sugar-based jam, but was best preserved in jam with fructose and stevia. Fructose and stevia-based jams showed the highest inhibition activity upon α-glucosidase. Lingonberry jams showed no cytotoxic effects on normal cells, but at low concentration reduced the tumor cells viability. Anthocyanins were still detectable in rats' blood streams after 24 h, showing a prolonged bioavailability in rats. This study brings important results that will enable the development of functional food products.
Collapse
Affiliation(s)
- Teodora Scrob
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sânziana Maria Varodi
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Amundsen M, Hykkerud AL, Kelanne N, Tuominen S, Schmidt G, Laaksonen O, Yang B, Martinussen I, Jaakola L, Aaby K. Composition of Sugars, Organic Acids, Phenolic Compounds, and Volatile Organic Compounds in Lingonberries ( Vaccinium vitis-idaea L.) at Five Ripening Stages. Foods 2023; 12:2154. [PMID: 37297398 PMCID: PMC10253110 DOI: 10.3390/foods12112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Wild lingonberries are a traditional source of food in the Nordic countries and an important contributor to economic activity of non-wood forest products in the region. Lingonberries are a rich source of bioactive compounds and can be a valuable contributor to a healthy diet. However, there are few studies available on how the bioactive compounds in lingonberries develop as they ripen. In this investigation, we examined the content of 27 phenolic compounds, three sugars, four organic acids, and 71 volatile organic compounds at five ripening stages. The study showed that, while the highest content of phenolic compounds was found early in the development, the organoleptic quality of the fruits improved as they ripened. From the first to the last stage of development, anthocyanins went from being nearly absent to 100 mg/100 g fw, and there was an increased content of sugars from 2.7 to 7.2 g/100 g fw, whereas the content of organic acids decreased from 4.9 to 2.7 g/100 g fw, and there were several changes in the profile of volatiles. The contents of flavonols, cinnamic acid derivatives, flavan-3-ols, and the total concentration of phenolic compounds were significantly lower in the fully ripe berries compared to berries in the early green stage. In addition to the changes occurring due to ripening, there was observed variation in the profile of both phenolic compounds and volatiles, depending on the growth location of the berries. The present data are useful for the assessment of harvest time to obtain the desired quality of lingonberries.
Collapse
Affiliation(s)
- Mathias Amundsen
- Nofima AS, Osloveien 1, 1340 Ås, Norway; (G.S.); (K.A.)
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway;
| | - Anne Linn Hykkerud
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Niina Kelanne
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Sanni Tuominen
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | | | - Oskar Laaksonen
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Inger Martinussen
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway;
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Kjersti Aaby
- Nofima AS, Osloveien 1, 1340 Ås, Norway; (G.S.); (K.A.)
| |
Collapse
|
17
|
Amundsen M, Jaakola L, Aaby K, Martinussen I, Kelanne N, Tuominen S, Laaksonen O, Yang B, Hykkerud AL. Effect of ripening temperature on the chemical composition of lingonberries (Vaccinium vitis-idaea L.) of northern and southern origin. Food Res Int 2023; 167:112738. [PMID: 37087220 DOI: 10.1016/j.foodres.2023.112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
Lingonberries (Vaccinium vitis-idaea L.) from two locations, northern (69°N, 18°E) and southern (59°N, 10°E) Norway, were grown under controlled conditions in a phytotron at two temperatures (9 and 15 °C) to study the effects of the ripening temperature and origin on the chemical composition of the berries. The concentrations of phenolic compounds, sugars, and organic acids as well as the profile of volatile organic compounds (VOCs) were determined using chromatographic and mass spectrometric methods. Five anthocyanins, eleven flavonols, eight cinnamic acid derivatives, three flavan-3-ols, three sugars, three organic acids, and 77 VOCs were identified, of which 40 VOCs had not previously been reported in lingonberries. Berries from both locations, were found to have higher contents of anthocyanins and cinnamic acid derivatives when ripened at lower temperature (9 °C), compared to the higher temperature (15 °C). Lingonberries of northern origin had a different VOC profile and higher contents of anthocyanins and organic acids than berries originating from the south. Lingonberries from the northern location also had higher proportions of cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside than lingonberries from the southern location. The results show that the composition of lingonberries is influenced by both the environment and the origin of the plants, with phenolic compounds mainly influenced by the growth temperature and VOCs mainly influenced by plant origin.
Collapse
|
18
|
Aaby K, Amundsen MR. The stability of phenolic compounds and the colour of lingonberry juice with the addition of different sweeteners during thermal treatment and storage. Heliyon 2023; 9:e15959. [PMID: 37215818 PMCID: PMC10192756 DOI: 10.1016/j.heliyon.2023.e15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Lingonberries (Vaccinium vitis-idaea L.) are rich in phenolic compounds associated with several health benefits. The berries are also astringent, sour, and bitter and the addition of a sweetener is necessary to increase the palatability of lingonberry products. The addition of a sweetener may, however, affect the stability of phenolic compounds in the product. The aim of this study was thus to determine the effects of the addition of sweeteners (sucrose, acesulfame K or sucralose) and temperature on the stability of anthocyanins, flavonols, flavan-3-ols, hydroxycinnamic acids and the colour of lingonberry juice during thermal treatment and storage. The addition of sweeteners did not affect the stability of phenolic compounds or the colour of lingonberry juice during thermal treatment or storage. The stability of the phenolic compounds was significantly affected by temperature. Anthocyanins were the least stable of the phenolic compounds. The half-lives of total anthocyanins were 3.8, 2.0 and 0.8 h at 75, 85 and 95 °C, respectively. The half-lives during storage were 12.8 and 2.7 weeks at 6 and 22 °C, respectively. Cyanidin-3-galactoside, the major anthocyanin in lingonberries, was extensively degraded during storage, probably due to galactoside side-activities of the enzyme preparation used in juice production. After thermal treatment, the juices were darker and bluer, with lower chromaticity, while after storage, the juices were lighter, more yellow, and had higher chromaticity.
Collapse
Affiliation(s)
- Kjersti Aaby
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1431, Ås, Norway
| | - Mathias Rudolf Amundsen
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1431, Ås, Norway
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| |
Collapse
|
19
|
Mikheev VS, Struchkova IV, Ageyeva MN, Brilkina AA, Berezina EV. The Role of Phialocephala fortinii in Improving Plants' Phosphorus Nutrition: New Puzzle Pieces. J Fungi (Basel) 2022; 8:1225. [PMID: 36422046 PMCID: PMC9695368 DOI: 10.3390/jof8111225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Plants' mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants' phosphorus nutrition levels. Bright-field and confocal laser scanning microscopy were used for the visualization of endophytes. A model system of co-cultivation with Vaccinium macrocarpon Ait. was used to study a fungal isolate's ability to supply plants with phosphorus. Fungal phytase activity and phosphorus content in plants were estimated spectrophotometrically. In V. vitis-idaea L. roots, we obtained a Phialocephala fortinii Wang, Wilcox DSE2 isolate with acid phytase activity (maximum 6.91 ± 0.17 U on 21st day of cultivation on potato-dextrose broth medium) and the ability to accumulate polyphosphates in hyphae cells. The ability of the isolate to increase both phosphorus accumulation and biomass in V. macrocarpon is also shown. The data obtained for the same isolate, as puzzle pieces put together, indicate the possible mediation of P. fortinii DSE2 isolate in the process of phosphorus intake from inorganic soil reserves to plants.
Collapse
|
20
|
Vilkickyte G, Zilius M, Petrikaite V, Raudone L. Proanthocyanidins from Vaccinium vitis-idaea L. Leaves: Perspectives in Wound Healing and Designing for Topical Delivery. PLANTS (BASEL, SWITZERLAND) 2022; 11:2615. [PMID: 36235484 PMCID: PMC9572574 DOI: 10.3390/plants11192615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The compositions and health-beneficial properties of lingonberry leaves (Vaccinium vitis-idaea L.) are well established; however, their proanthocyanidins are still heavily underutilized. Optimizing their delivery systems is key to enabling their wider applications. The present study investigates the phytochemical and 'wound-healing' properties of proanthocyanidin-rich fraction(s) (PRF) from lingonberry leaves as well as the development of optimal dermal film as a proanthocyanidin delivery system. The obtained PRF was subjected to HPLC-PDA and DMAC analyses to confirm the qualitative and quantitative profiles of different polymerization-degree proanthocyanidins. A 'wound healing' in vitro assay was performed to assess the ability of PRF to modulate the wound environment for better healing. Low concentrations of lingonberry proanthocyanidins were found to accelerate 'wound' closures, while high levels inhibited human fibroblast migration. Fifteen dermal films containing PRF were prepared and evaluated based on their polymer (MC, HEC, PEG 400) compositions, and physical, mechanical, and biopharmaceutical properties using an experimental design. The composition containing 0.30 g of MC, 0.05 g of HEC, and 3.0 g of PEG 400 was selected as a promising formulation for PRF delivery and a potentially effective functional wound dressing material, supporting the need for further investigations.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Modestas Zilius
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
21
|
Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants (Basel) 2022; 11:antiox11101961. [PMID: 36290690 PMCID: PMC9599021 DOI: 10.3390/antiox11101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
The red raspberry is one of the world’s most popular berries. The main direction of its breeding has switched to nutritional quality, and the evaluation of raspberry germplasm for antioxidant content and activity is very important. As berries, raspberry leaves contain valuable bioactive compounds, but the optimal time for their collection is unknown. We evaluated 25 new breeding lines and standard raspberry cultivars for their polyphenolic content and antioxidant capacity. The antioxidant activity of berries correlated better with the content of total phenolics (0.88 and 0.92) and flavonoids (0.76 and 0.88) than with anthocyanins (0.37 and 0.66). Two breeding lines were significantly superior to the standard cultivars and can be used in further breeding. Leaves collected in three phenological phases of the raspberry contained more phenolics (5.4-fold) and flavonoids (4.1-fold) and showed higher antioxidant activities (2.4-fold in FRAP assay, 2.2-fold in ABTS) than berries. The optimal time for harvesting raspberry leaves is the fruit ripening stage, with exceptions for some cultivars. Genetic diversity analysis using microsatellite (SSR) markers from flavonoid biosynthesis genes divided the genotypes into five clusters, generally in agreement with their kinships. The relationship between genetic data based on metabolism-specific SSR markers and the chemical diversity of cultivars was first assessed. The biochemical and genetic results show a strong correlation (0.78). This study is useful for further the improvement of raspberry and other berry crops.
Collapse
|
22
|
Lee YG, Woo H, Choi C, Ryoo GH, Chung YJ, Lee JH, Jung SJ, Chae SW, Bae EJ, Park BH. Supplementation with Vitis vinifera Jingzaojing Leaf and Shoot Extract Improves Exercise Endurance in Mice. Nutrients 2022; 14:nu14194033. [PMID: 36235689 PMCID: PMC9573418 DOI: 10.3390/nu14194033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Switching myofibers from the fast-glycolytic type to the slow-oxidative type is associated with an alleviation of the symptoms associated with various cardiometabolic diseases. This study investigates the effect of Vitis vinifera Jingzaojing leaf and shoot extract (JLSE), which is rich in phenolic compounds, on the regulation of skeletal muscle fiber-type switching, as well as the associated underlying mechanism. Male C57BL/6N mice were supplemented orally with vehicle or JLSE (300 mg/kg) and subjected to treadmill exercise training. After four weeks, mice in the JLSE-supplemented group showed significantly improved exercise endurance and mitochondrial oxidative capacity. JLSE supplementation increased the expression of sirtuin 6 and decreased Sox6 expression, thereby elevating the number of mitochondria and encouraging fast-to-slow myofiber switching. The results of our experiments suggest that JLSE supplementation reprograms myofiber composition to favor the slow oxidative type, ultimately enhancing exercise endurance.
Collapse
Affiliation(s)
- Yong Gyun Lee
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Chul Choi
- Department of Neurosurgery, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Korea
| | - Yun-Jo Chung
- Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Jeonbuk, Korea
| | - Ju-Hyung Lee
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
- Correspondence: (E.J.B.); (B.-H.P.)
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, Korea
- Correspondence: (E.J.B.); (B.-H.P.)
| |
Collapse
|
23
|
Zhang J, Ström A, Bordes R, Alminger M, Undeland I, Abdollahi M. fRadial discharge high shear homogenization and ultrasonication assisted pH-shift processing of herring co-products with antioxidant-rich materials for maximum protein yield and functionality. Food Chem 2022; 400:133986. [DOI: 10.1016/j.foodchem.2022.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
24
|
Baltuonytė G, Eisinaitė V, Kazernavičiūtė R, Vinauskienė R, Jasutienė I, Leskauskaitė D. Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace. Foods 2022; 11:foods11152213. [PMID: 35892797 PMCID: PMC9330628 DOI: 10.3390/foods11152213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, bigel-based vegetable oil spreads with lingonberry pomace addition were prepared. The impact of gelatin, agar and collagen was examined as structuring agents as was the effect of lecithin concentration (0.5, 1.0, 1.5%). Prepared systems were evaluated by physical and chemical stability and structural and rheological properties. It was found that all bigel formulations were self-standing with no signs of phase separation at ambient temperature immediately after preparation and after two weeks of storage at 4 °C temperature. The lingonberry pomace addition affected grainy structure formation with homogenous and uniform distribution of fiber particles throughout the bigel matrix and it also altered the colour of the bigels toward a purple-red. Texture, rheological properties and colour of the spread formulations were affected by the type of the structuring agent as well as the lecithin concentration. The presence of the lingonberry pomace enhanced the resistance of the bigel samples to the oxidation process and it was confirmed by the DPPH• inhibition, peroxide value and oxipress test. Overall, the formulated bigel-based spreads could be beneficial and had a potential application as healthier fat spreads and be a source of dietary fibers (11 g of fibre per 100 g of the spread).
Collapse
|
25
|
Sikdar A, Sharma U, Barua R, Igamberdiev AU, Debnath SC. Epigenomic insight of lingonberry and health-promoting traits during micropropagation. Sci Rep 2022; 12:12487. [PMID: 35864145 PMCID: PMC9304418 DOI: 10.1038/s41598-022-16530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic variation plays a role in developmental gene regulation and responses to the environment. An efficient interaction of zeatin-induced cytosine methylation and secondary compounds has been displayed for the first time in tissue-culture shoots/plants of lingonberry (Vaccinium vitis-idaea L.) cultivar Erntedank in vitro (NC1, in a liquid medium; NC2, on a semi-solid medium), ex vitro (NC3, node culture-derived plants; LC1, leaf culture-derived plants) and its cutting-propagated (ED) plants. Through methylation-sensitive amplification polymorphism (MSAP) assay, we observed highest methylated sites in leaf regenerants (LC1) from all primer combinations (108 bands), along with the highest secondary metabolites. The four types of tissue culture-derived shoots/plants (NC1, NC2, NC3, LC1) showed higher methylation bands than cutting propagated donor plants (ED) that exhibited 79 bands of methylation, which is comparatively low. Our study showed more methylation in micropropagated shoots/plants than those derived from ED plants. On the contrary, we observed higher secondary metabolites in ED plants but comparatively less in micropropagated shoots (NC1, NC2) and plants (NC3, LC1).
Collapse
Affiliation(s)
- Arindam Sikdar
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Umanath Sharma
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Rajesh Barua
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Samir C Debnath
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
26
|
Zhu L, Zhang Y, Li Y, Wang H, Shen G, Wang Z. Inhibitory effect of lingonberry extract on HepG2 cell proliferation, apoptosis, migration, and invasion. PLoS One 2022; 17:e0270677. [PMID: 35802745 PMCID: PMC9269931 DOI: 10.1371/journal.pone.0270677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) extract contains various active ingredients with strong inhibitory effects on cancer cell growth. HepG2 cells were treated with various concentrations of lingonberry extract, cell inhibition rate was measured by CCK-8 assay, and apoptosis rate by annexin-propidium iodide double-staining assay. The cell cycle was analyzed by flow cytometry, and cell migration and invasion by transwell assay. Real-time reverse transcription-PCR and western blotting were employed to analyze the expression of C-X-C motif chemokine ligand 3 (CXCL3). Ki-67, TUNEL, and transwell assays were used to verify the relationship between CXCL3 expression and cell proliferation, apoptosis, migration, and invasion. The composition of lingonberry extract was: 37.58% cyanidin-3-O-glucoside, 10.96% kaempferol 3-O-arabinoside, 4.52% epicatechin, 4.35% chlorogenic acid, 3.83% catechinic acid, 1.54% isoquercitrin, 1.05% 4-hydroxycinnamon acid, 1.03% cyanidin chloride, 0.85% 2,3-dihydroxybenzoic acid, 0.55% quercetin, 0.36% D-(-)-quininic acid, 0.96% caffeic acid, 0.16% ferulic acid, 0.12% oleanolic acid, and 0.03% ursolic acid. Lingonberry extract inhibited the proliferation of HepG2 cells in a dose-dependent manner. After 48 h exposure to 100 μg/mL extract the inhibition rate and IC50 were 80.89±6.05% and 22.62 μg/mL, respectively. Lingonberry extract promoted late apoptosis in HepG2 cells and arrested the cell cycle at G2/M and S phases. Lingonberry extract also promoted the apoptosis of HepG2 cancer cells, inhibiting their proliferation, migration, and invasion by regulating the expression of CXCL3. This study offers new insight into the antihepatoma activity of lingonberry extract and provides a basis for the development of pilot antitumor drugs.
Collapse
Affiliation(s)
- Liangyu Zhu
- School of Forestry, Northeast Forestry University, Harbin, China
- Heilongjiang Academy of Sciences Institute of Natural Resources and Ecology, Harbin, China
| | - Yandong Zhang
- School of Food Science and Engineering, Harbin Institute of Technology University, Harbin, China
| | - Yongchun Li
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Hua Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Guang Shen
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhenyu Wang
- School of Food Science and Engineering, Harbin Institute of Technology University, Harbin, China
- * E-mail:
| |
Collapse
|
27
|
Vilkickyte G, Motiekaityte V, Vainoriene R, Raudone L. Promising cultivars and intraspecific taxa of lingonberries (Vaccinium vitis-idaea L.): profiling of phenolics and triterpenoids. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Vilkickyte G, Petrikaite V, Pukalskas A, Sipailiene A, Raudone L. Exploring Vaccinium vitis-idaea L. as a potential source of therapeutic agents: antimicrobial, antioxidant, and anti-inflammatory activities of extracts and fractions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115207. [PMID: 35306039 DOI: 10.1016/j.jep.2022.115207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vaccinium vitis-idaea L. (lingonberry) leaves and fruits have traditionally been used in Asian and European countries as a natural solution for urinary tract infections, gastrointestinal distress, neurodegenerative diseases, and related inflammatory disorders, which are overall associated with free radical damage and presence of triggering pathogenic strains in the human body. Considering growing attention to natural products, there are not enough scientific data to confirm predominant specialized metabolites, responsible for the traditional therapeutic use of lingonberries. AIM OF THE STUDY The present study aimed at an in-depth study of specialized metabolite profiling and biological activity evaluation of lingonberry crude extracts and isolated fractions. MATERIALS AND METHODS Crude dry extracts and fractions from lingonberry leaves and fruits were analyzed by the UPLC-MS method. Potential inhibiting properties against different bacterial strains and hyaluronidase, ability to scavenge hydrogen peroxide, and effect on its production in a macrophage culture J774 were examined. RESULTS Findings suggested the tentative presence of 59 compounds, mainly phenolics, displayed higher bioactivities of particular fractions than that of crude extracts and elucidated particular compounds as candidates in pharmaceuticals. Trimeric and dimeric proanthocyanidins from lingonberry leaves and fruits were shown to have the strongest antimicrobial, antioxidant, and anti-inflammatory potential. CONCLUSIONS This study revealed specialized metabolites responsible for the traditional medicinal properties of lingonberries and pointed out demand for further purification and new research directions of proanthocyanidins in the frame of their multipharmacological perspectives.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| | - Audrius Pukalskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254, Kaunas, Lithuania.
| | - Ausra Sipailiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254, Kaunas, Lithuania.
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania; Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| |
Collapse
|
29
|
Olennikov DN, Shamilov AA. Catechin-O-Rhamnosides from Vaccinium vitis-idaea Stems. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Ștefănescu BE, Nemes SA, Teleky BE, Călinoiu LF, Mitrea L, Martău GA, Szabo K, Mihai M, Vodnar DC, Crișan G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11040674. [PMID: 35453359 PMCID: PMC9030406 DOI: 10.3390/antiox11040674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, Vaccinium spp. (bilberry-VMT, lingonberry-VVIT, and blueberry-VCS) have sparked particular interest for their prospective health benefits. The latest investigations have place them as important alternative sources of nutraceuticals as their leaves are the main by-products of berry harvesting. The present study is aimed at investigating the bioaccessibility of phenolic compounds from leaves of the Vaccinium species, both as microencapsulated powder and aqueous extracts, following exposure to in vitro simulated digestion. Moreover, the impact of maltodextrin and glucose microencapsulation carriers on the extracts’ phenolic content was assessed. Prior to encapsulation, the viscosity of the emulsions was shown at a shear stress of 50 s−1 dilatant and a Newtonian behaviour above this value with a final viscosity between 1.024 and 1.049 mPa·s. The final microencapsulation yield for the samples ranged between 79 and 81%. Although the microencapsulated forms presented a targeted release at the intestinal level, the phenolic content decreased after gastrointestinal digestion. The bioaccessibility of the microencapsulated extracts showed higher values than their non-encapsulated counterparts, with the highest value of 45.43% in the VVIT sample, followed by VCS with 41.07%. However, the non-encapsulated VCS sample presented high bioaccessibility after in vitro digestion (38.65%). As concluded, further in vivo research should be conducted on the leaves of the Vaccinium species.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Silvia-Amalia Nemes
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Lavinia Florina Călinoiu
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Laura Mitrea
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Katalin Szabo
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Mihaela Mihai
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Dan Cristian Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
| |
Collapse
|
31
|
Kostka T, Ostberg-Potthoff JJ, Stärke J, Guigas C, Matsugo S, Mirčeski V, Stojanov L, Veličkovska SK, Winterhalter P, Esatbeyoglu T. Bioactive Phenolic Compounds from Lingonberry ( Vaccinium vitis-idaea L.): Extraction, Chemical Characterization, Fractionation and Cellular Antioxidant Activity. Antioxidants (Basel) 2022; 11:467. [PMID: 35326117 PMCID: PMC8944762 DOI: 10.3390/antiox11030467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Lingonberries contain high contents of bioactive compounds such as chlorogenic acids and anthocyanins. In addition to radical scavenging and antioxidant activities, these compounds can protect cells from DNA damage. For this reason, lingonberries might be well suited for nutraceuticals or natural biomedicines. To assess these applications, the present study characterized and identified the most effective extract, only consisting of anthocyanins, copigments or a mixture of both, obtained from a lingonberry juice concentrate. An extract was generated by using a XAD-7 column followed by fractionation into anthocyanins and copigments using adsorptive membrane chromatography. After identification of main polyphenols by HPLC-photodiode array-electrospray ionization-tandem mass spectrometry, free radical scavenging activity was analyzed by electron spin resonance spectroscopy using 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl radicals. Furthermore, cyclic voltammetry analyses and the Trolox equivalent antioxidant capacity (TEAC) assay were applied. Finally, the reactive oxygen species (ROS) reducing effects of the lingonberry extract and its fractions were evaluated in HepG2 cells. While the combination of anthocyanins and copigments possessed the highest antioxidant activities, all samples (XAD-7 extract, anthocyanin and copigment fraction) protected cells from oxidative stress. Thus, synergistic effects between phenolic compounds may be responsible for the high antioxidant potential of lingonberries, enabling their use as nutraceuticals.
Collapse
Affiliation(s)
- Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | | | - Joachim Stärke
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Claudia Guigas
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Seiichi Matsugo
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| | - Valentin Mirčeski
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
- Institute of Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Leon Stojanov
- Institute of Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | | | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| |
Collapse
|
32
|
Zhang J, Abdollahi M, Alminger M, Undeland I. Cross-processing herring and salmon co-products with agricultural and marine side-streams or seaweeds produces protein isolates more stable towards lipid oxidation. Food Chem 2022; 382:132314. [PMID: 35149464 DOI: 10.1016/j.foodchem.2022.132314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Herring and salmon filleting co-products were pH-shift processed together with seven antioxidant-containing raw materials ("helpers") including lingonberry-, apple-, oat-, barley- and shrimp-co-products, and two seaweeds (Saccharina latissima, Ulva fenestrata) to produce protein isolates stable towards lipid oxidation. Malondialdehyde (MDA) and 4-hydroxy-(E)-2-hexenal (HHE) levels revealed that all helpers, except shrimp shells, to different extents retarded lipid oxidation both during pH-shift-processing and ice storage. The three helpers performing best were: lingonberry press-cake > apple pomace ∼ Ulva. Color of protein isolates was affected by helper-derived pigments (e.g., anthocyanins, carotenoids, chlorophyll) and lipid oxidation-induced changes (e.g., metHb-formation, pigment-bleaching). In conclusion, combining fish co-products with other food side-streams or seaweeds during pH-shift processing appears a promising new tool to minimize lipid oxidation of protein isolates, both during their production and subsequent storage. Lingonberry press-cake was the most efficient helper but provided dark color which may narrow product development possibilities, something which requires further attention.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Marie Alminger
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
33
|
M Soliman S, Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv 2022; 29:427-439. [PMID: 35098843 PMCID: PMC8812757 DOI: 10.1080/10717544.2022.2032875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cranberry extract (CBE) is a major source of the antioxidant polyphenolics but suffers from limited bioavailability. The goal of this research was to encapsulate the nutraceutical (CBE), into bile salt augmented liposomes (BSALs) as a promising oral delivery system to potentiate its hepatoprotective impact against dimethylnitrosamine (DMN) induced liver injury in rats. The inclusion of bile salt in the liposomal structure can enhance their stability within the gastrointestinal tract and promote CBE permeability. CBE loaded BSALs formulations were fabricated utilizing a (23) factorial design to explore the impact of phospholipid type (X1), phospholipid amount (X2), and sodium glycocholate (SGC) amount (X3) on BSALs properties, namely; entrapment efficiency percent, (EE%); vesicle size, (VS); polydispersity index; (PDI); zeta potential, (ZP); and release efficiency percent, (RE%). The optimum formulation (F1) exhibited spherical vesicles with EE% of 71.27 ± 0.32%, VS; 148.60 ± 6.46 nm, PDI; 0.38 ± 0.02, ZP; −18.27 ± 0.67 mV and RE%; 61.96 ± 1.07%. Compared to CBE solution, F1 had attenuated DMN-induced hepatic injury, as evidenced by the significant decrease in serum level of ALT, AST, ALP, MDA, and elevation of GSH level, as well as SOD and GPX activities. Furthermore, F1 exhibited an anti-inflammatory character by suppressing TNF-α, MCP-1, and IL-6, as well as downregulation of VEGF-C, STAT-3, and IFN-γ mRNA levels. This study verified that when CBE was integrated into BSALs, F1, its hepatoprotective effect was significantly potentiated to protect the liver against DMN-induced damage. Therefore, F1 could be deliberated as an antioxidant, antiproliferative, and antifibrotic therapy to slow down the progression of hepatic damage.
Collapse
Affiliation(s)
- Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohammed Abdalla Hussein
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
34
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
35
|
Araujo RDC, Costa ALPD, Pinto JB, Silva LMAD, Silva GAD. Seasonal and pluviometric effects on the phenolic compound composition and antioxidant potential of Licania macrophylla Benth (Chrysobalanaceae), a medicinal plant from the Amazon rainforest. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
36
|
Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021; 10:3152. [PMID: 34945704 PMCID: PMC8701411 DOI: 10.3390/foods10123152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Procyanidins are an important group of bioactive molecules known for their benefits to human health. These compounds are promising in the treatment of chronic metabolic diseases such as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress. It is necessary to study effective extraction methods for the recovery of these components. In this review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally friendly techniques. There are few studies focused on the extraction and evaluation of biological activities of procyanidins. The identification and quantification of these compounds are the result of the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be an economical and easily accessible source for the extraction of procyanidins.
Collapse
Affiliation(s)
- Leidy Johana Valencia-Hernandez
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Jorge E. Wong-Paz
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles C.P. 79010, SL, Mexico;
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Juan Carlos Contreras-Esquivel
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| |
Collapse
|
37
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
38
|
Vilkickyte G, Raudone L. Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L. Leaves. PLANTS 2021; 10:plants10101986. [PMID: 34685794 PMCID: PMC8539284 DOI: 10.3390/plants10101986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023]
Abstract
Lingonberry leaves have been proposed as a potential raw material for nutraceutical products and functional food due to the richness of phenolic and triterpenic compounds. However, contents of these bioactive compounds tend to vary greatly with physiological, climatic, and edaphic conditions, resulting in lingonberry leaves’ nutritional-pharmaceutical quality changes. In this context, we examined the effects of seasonal and geographical factors on phenolic and triterpenoid contents in lingonberry leaves. Quantitative and qualitative differences between samples were determined using validated HPLC-PDA methods. A total of 43 bioactive compounds were found at a detectable level throughout the year in young and old lingonberry leaves, with the highest contents of most compounds observed in samples collected in autumn–first half of spring. This suggests the potential to exploit the continuous biosynthesis for a longer harvesting season. Considerable variations in phytochemical profiles of lingonberry leaves, obtained from 28 locations in Lithuania, were found. Correlation analyses revealed significant negative correlations between contents of particular constituents and sunshine duration, temperature, and precipitation, and positive correlation with air humidity, longitudes, and altitudes of collecting locations and macronutrients in soil. These results suggest that harsh weather is favorable for most identified compounds and it may be possible to achieve appropriate accumulation of secondary metabolites by adjusting edaphic conditions. Taken together, the accumulation of phenolics and triterpenoids in lingonberry leaves highly depends on phenological and geographical factors and the influence of both variables differ for the particular compounds due to different metabolic processes in response to stresses.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
39
|
Vilkickyte G, Raudone L. Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods 2021; 10:foods10102243. [PMID: 34681292 PMCID: PMC8535033 DOI: 10.3390/foods10102243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccinium vitis-idaea L. (lingonberry) fruits are promising sources of bioactive components with high potential in biomedical applications. Selection in plant breeding, determination of perspective wild clones with optimal growing conditions, and appropriate harvesting time leading to standardized extracts are key factors for achieving phytochemical quality to meet consumer’s needs. In the present study, lingonberry fruits collected along different phenological stages and from different geographical locations were analyzed for the composition of 56 constituents using validated chromatographic techniques. Early stages of lingonberries vegetation were determined as the best stages for obtaining high levels of most phenolics and triterpenoids, while the end of berry vegetation could be chosen as the optimal harvesting time in terms of anthocyanins. Furthermore, intensified continuous biosynthesis of triterpenoids and phenolic acids precursors after vegetation season in the winter sample was observed. Chemodiversity of lingonberries was affected by geographical factors as well as climatic and edaphic conditions, indicating different favorable growing conditions for the accumulation of particular compounds. Present findings could serve for breeders to obtain the highest yields of desirable lingonberry constituents, relevant in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
40
|
Figueira JA, Porto-Figueira P, Pereira JAM, Câmara JS. Free low-molecular weight phenolics composition and bioactivity of Vaccinium padifolium Sm fruits. Food Res Int 2021; 148:110580. [PMID: 34507727 DOI: 10.1016/j.foodres.2021.110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Uveira-da-serra (Vaccinium padifolium Sm) is a native blueberry from Madeira Island (Portugal). In this study, the free low-molecular weight phenolic composition of Vaccinium padifolium berries (uva-da-serra - UdS), was established using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) strategy combined with liquid chromatography electrospray ionization tandem mass spectroscopy (LC-ESI-MSMS). Total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical-scavenging activities and oxygen radical absorbance capacity (ORAC) were also evaluated. Twenty-six phenolic compounds were identified in the UdS, being chlorogenic acid (17.4 mg/g DW), epigallocatechin (2.33 mg/g DW), caffeic acid (0.66 mg/g DW), quercetin-3-glucoside (0.38 mg/g DW) and myricetin (0.33 mg/g DW) the predominant compounds. As far we are aware, this is the first time that the free low molecular weight phenolic composition of Vaccinium padifolium Sm is characterized, also unveiling (-)epigallocatechin gallate, o-coumaric acid and m-coumaric acids presence in a Vaccinium specie. TPC (3021.8 mg GAE/100 g DW), TFC (2645.2 mg QE/100 g DW), DPPH (20509.0 µmol TE/g DW), ORAC (18510.0 µmol TE/g DW) and ABTS (19338.0 µmol TE/g DW) suggest a high antioxidant potential which is to health benefits including on cardiovascular and neurodegenerative disease prevention, making UdS a useful biosource with potential applications in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- José A Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade das Ciências Exatas e Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
41
|
Jiang H, Zhang W, Li X, Xu Y, Cao J, Jiang W. The anti-obesogenic effects of dietary berry fruits: A review. Food Res Int 2021; 147:110539. [PMID: 34399516 DOI: 10.1016/j.foodres.2021.110539] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of obesity in the world is fearsomely climbing, which has brought about heavy threats on human health and economic development. For coping with this problem, researchers have looked at the profound potentials of natural products for resolving obesity because of their high efficiencies and few undesirable outcomes in the recent years. Berry fruits are huge reservoirs of bioactive components, and their anti-obesity potentials are arousing much interests. In this review, the current main strategies to manage obesity were summarized, including inhibiting appetite and lowering the food intake, improving energy expenditure and thermogenesis, suppressing absorption and digestion, reducing lipid synthesis and storage as well as modulating composition of gut microbiota. In addition, this review discussed the potentials of dietary berry fruits (blueberries, cranberries, raspberries, strawberries, mulberries, lingonberries, blackberries, black chokeberries, elderberries, bilberries, grape, blackcurrants, jaboticabas, red bayberries, sea-buckthorns, goldenberries and goji berries) to counteract obesity or obesity-associated complications based on recent animal experiments and human studies. Then, the bioaccessibility of phenolic compounds present in berry fruits was discussed. On the other hand, several challenges including securing effective dosage, further understanding their interaction with human tissues, improving bioavailability and protection of functional ingredients during delivery should be taken into account and conquered in the coming years.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
42
|
Nanda KK, Tignor S, Clancy J, Marota MJ, Allain LR, D'Addio SM. Inhibition of N-Nitrosamine Formation in Drug Products: A Model Study. J Pharm Sci 2021; 110:3773-3775. [PMID: 34400183 DOI: 10.1016/j.xphs.2021.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Nitrosamines, in the absence of toxicological data, are regarded as potential mutagens and need to be controlled at nanogram levels in drug products. Recent high profile product withdrawals have increased regulatory scrutiny of nitrosamine formation assessments for marketed products and for new drug applications. Formation of nitrosamine in drug product is possible when nitrite and vulnerable amines are present. Nitrite is often present as an impurity in excipients at ppm levels, whereas vulnerable amines, if present, stem mainly from the drug substance or its major impurities. In the event a drug product were to contain a major source of vulnerable amines (such as a moiety in the drug substance), it would be desirable to have an inhibitor which could be added to the formulation to minimize nitrosamine formation. This work demonstrates, for the first time, that the inhibition of nitrosamine formation in oral solid dosage forms is indeed feasible with suitable inhibitors. Five inhibitors investigated (ascorbic acid, sodium ascorbate, α-tocopherol, caffeic acid, and ferulic acid) showed >80% inhibition when spiked at ∼1 wt% level. This work has also shown the potential use of amino acids (glycine, lysine, histidine) as inhibitors of nitrosamine formation in solution.
Collapse
Affiliation(s)
- Kausik K Nanda
- Discovery Pharmaceutical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA.
| | - Steven Tignor
- Analytical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - James Clancy
- Oral Formulation Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Melanie J Marota
- Oral Formulation Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Leonardo R Allain
- Analytical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Suzanne M D'Addio
- Discovery Pharmaceutical Sciences, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
43
|
Del‐Toro‐Sánchez CL, Rodríguez‐Félix F, Cinco‐Moroyoqui FJ, Juárez J, Ruiz‐Cruz S, Wong‐Corral FJ, Borboa‐Flores J, Castro‐Enríquez DD, Barreras‐Urbina CG, Tapia‐Hernández JA. Recovery of phytochemical from three safflower (
Carthamus tinctorius
L.) by‐products: Antioxidant properties, protective effect of human erythrocytes and profile by UPLC‐DAD‐MS. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Josué Juárez
- Department of Physics University of Sonora Hermosillo Mexico
| | - Saúl Ruiz‐Cruz
- Department of Research and Posgraduate in Food (DIPA) University of Sonora Hermosillo Mexico
| | | | - Jesús Borboa‐Flores
- Department of Research and Posgraduate in Food (DIPA) University of Sonora Hermosillo Mexico
| | | | | | | |
Collapse
|
44
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
45
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Actinidia arguta Leaf as a Donor of Potentially Healthful Bioactive Compounds: Implications of Cultivar, Time of Sampling and Soil N Level. Molecules 2021; 26:molecules26133871. [PMID: 34202843 PMCID: PMC8270254 DOI: 10.3390/molecules26133871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to assess the enzymatic and non-enzymatic antioxidant status of kiwiberry (Actinidia arguta) leaf under different N regimes tested three times in field conditions during the 2015 growing season in two cultivars (‘Weiki’ and ‘Geneva’). Leaf total antioxidant capacity using ABTS, DPPH and FRAP tests was evaluated in the years 2015 to 2017, which experienced different weather conditions. Both cultivars exhibited a significant fall in leaf L-ascorbic acid (L-AA) and reduced glutathione (GSH) as well as global content of these compounds during the growing season, while total phenolic contents slightly (‘Weiki’) or significantly (‘Geneva’) increased. There was a large fluctuation in antioxidative enzyme activity during the season. The correlation between individual antioxidants and trolox equivalent antioxidant capacity (TEAC) depended on the plant development phase. The study revealed two peaks of an increase in TEAC at the start and end of the growing season. Leaf L-AA, global phenolics, APX, CAT and TEAC depended on the N level, but thiol compounds were not affected. Over the three years, TEAC decreased as soil N fertility increased, and the strength of the N effect was year dependent. The relationship between leaf N content and ABTS and FRAP tests was highly negative. The antioxidant properties of kiwiberry leaves were found to be closely related to the plant development phase and affected by soil N fertility.
Collapse
|
47
|
Kowalska K. Lingonberry ( Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects-A Review. Int J Mol Sci 2021; 22:ijms22105126. [PMID: 34066191 PMCID: PMC8150318 DOI: 10.3390/ijms22105126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Berries, especially members of the Ericaceae family, are among the best dietary sources of bioactive compounds with beneficial health effects. The most popular berries are in the genus Vaccinium, such as bilberry (Vaccinium myrtillus), cranberry (Vaccinium macrocarpon, V. oxycoccos), and blueberry (Vaccinium corymbosum). Lingonberry (Vaccinium vitis-idaea) is less prevalent in the daily human diet because they are collected from the wild, and plant breeding of lingonberry is still on a small scale. Lingonberries are classed as “superfruits” with the highest content of antioxidants among berries and a broad range of health-promoting effects. Many studies showed various beneficial effects of lingonberries, such as anti-inflammatory, antioxidant, and anticancer activities. Lingonberries have been shown to prevent low-grade inflammation and diet-induced obesity in diabetic animals. Moreover, lingonberry intake has been associated with a beneficial effect on preventing and treating brain aging and neurodegenerative disorders. The consumption of berries and their health-promoting activity is a subject receiving a great deal of attention. Many studies investigated the natural compounds found in berries to combat diseases and promote healthy aging. This article’s scope is to indicate the potential beneficial effect of lingonberry consumption on health, to promote well-being and longevity.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland
| |
Collapse
|
48
|
Vaitkeviciene R, Zadeike D, Gaizauskaite Z, Valentaviciute K, Marksa M, Mazdzieriene R, Bartkiene E, Lele V, Juodeikiene G, Jakstas V. Functionalisation of rice bran assisted by ultrasonication and fermentation for the production of rice bran–lingonberry pulp‐based probiotic nutraceutical. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ruta Vaitkeviciene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Zydrune Gaizauskaite
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Kristina Valentaviciute
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Ramute Mazdzieriene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
| | - Elena Bartkiene
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Vita Lele
- Department of Food Safety and Quality Veterinary Academy of Lithuanian University of Health Sciences Kaunas LT‐47181 Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology Kaunas University of Technology Kaunas LT‐50254 Lithuania
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies Lithuanian University of Health Sciences Kaunas LT‐50162 Lithuania
| |
Collapse
|
49
|
Fan M, Li T, Li Y, Qian H, Zhang H, Rao Z, Wang L. Vaccinium bracteatum Thunb. as a promising resource of bioactive compounds with health benefits: An updated review. Food Chem 2021; 356:129738. [PMID: 33839532 DOI: 10.1016/j.foodchem.2021.129738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/27/2022]
Abstract
Vaccinium bracteatum Thunb.(VBT) is well-known for many physiological and bioactivities in some ancient Chinese pharmacopeias and modern researches. The health benefits are related to the presence of various nutritional and bioactive compounds. This review aims to demonstrate an updated overview of VBT in respect of botanical characters, nutritional and bioactive composition, main biological activities, and current applications. Various studies have emphasized at promising health benefits of VBT against hyperglycemia, oxidative stress, inflammation, depressive disorder, and retinal damage. However, the applications of VBT are limited to some native traditional foods and Chinese medicine. The novel beneficial efficacy and applications are still needed to be investigated. In conclusion, more research is necessary to overcome these gaps between the in-depth insights of health benefits and potential industrial applications. This review will contribute in future research for developing the functional foods derived from VBT.
Collapse
Affiliation(s)
- Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiming Rao
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
50
|
Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci Rep 2021; 11:3240. [PMID: 33547351 PMCID: PMC7864976 DOI: 10.1038/s41598-021-82207-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinum myrtillus L., Ribes nigrum L., Rubus fruticosus L., Fragaria vesca L. leaves are considered an agro-waste of the berry industry. Although numerous studies indicate fruit is a rich source of bioactive compounds, the authors prove leaves can also be a valuable source of compounds used in the pharmaceutical and cosmetic industries. The study attempts to assess and compare the antioxidant and cytotoxic properties of berry leaves extracts. The total phenolic compounds, flavonoids, anthocyanins and procyanidins content were determined. Antioxidant potential was evaluated using the DPPH radical scavenging method. Cytotoxicity studies were conducted to evaluate the effect of the extracts on the metabolism and proliferation of keratinocytes and fibroblasts in vitro. The effect on the migration capacity of these cells was also assessed. The obtained results show that the examined extracts are a source of valuable bioactive agents. All tested extracts show significant ability to remove free radicals in higher concentrations. Cytotoxicity assessments have shown that leaf extracts of the analyzed plants differ in cytotoxicity, both for keratinocytes and fibroblasts. The results of the assessment of cell migration capacity correlate with cytotoxicity tests, because the concentration of extracts showing cytotoxic activity towards the tested cells also inhibited their migration.
Collapse
|