1
|
Pan Q, Cheng Y, Bai Q, Zeng S, Jiang W, Yu X, Zhang M, Chai W. Anti-polyphenol oxidase and antibacterial activities of 1-(2,5-dichlorophenyl)-2-thiourea as an anti-browning agent. Food Chem 2025; 486:144609. [PMID: 40359796 DOI: 10.1016/j.foodchem.2025.144609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
1-(2,5-Dichlorophenyl)-2-thiourea (DCPT) was selected from thiourea due to its extraordinary polyphenol oxidase (PPO) inhibitory activity (IC50 = 33.2 ± 0.2 nmol L-1). The binding of DCPT to PPO affected the microenvironment of amino acid residues at the binding site, subsequently inducing structural stretching and relaxation in PPO, and ultimately altering the secondary structure and conformation of the enzyme. These alterations resulted in a significant suppression of PPO activity. In antibacterial experiments, DCPT exhibited remarkable bacteriostatic properties by enhancing the permeability of cell membrane and cell wall in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), leading to cellular content leakage and bacterial cell death. In addition, studies on browning inhibition indicated that DCPT mitigated the browning of fresh-cut apples by inhibiting lipid peroxidation, enhancing antioxidant capacities, and regulating phenolic metabolism. Furthermore, cell assays and oral toxicity tests demonstrated that the concentration of DCPT used in the anti-browning experiment was safe. These findings offered some new insights into the inhibition of DCPT against PPO, bacteria, and browning, providing scientific evidence for its potential application in food preservation.
Collapse
Affiliation(s)
- Qiuxia Pan
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yifan Cheng
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiuhan Bai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Shanmei Zeng
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wumei Jiang
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xia Yu
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingyi Zhang
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Weiming Chai
- College of Life Science and Jiangxi Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Songoen W, Phanchai W, Schinnerl J, Brecker L, Thabpho M, Tharamak S, Pluempanupat W, Sukkhaeng S, Chansuthep S. Identification of specialized metabolites from Artocarpus lacucha as potent α-glucosidase and acetylcholinesterase inhibitors: enzyme kinetic, in vitro and in silico study. J Nat Med 2025:10.1007/s11418-025-01904-8. [PMID: 40329121 DOI: 10.1007/s11418-025-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025]
Abstract
Artocarpus species play an important role in the folk medicine of various ethnic groups in Africa, South Asia, and Southeast Asia. In the present study, we investigated the potential of Artocarpus lacucha in the treatment of diabetes mellitus and Alzheimer's disease. During this work, one previously undescribed compound (1), along with 10 known compounds (2-11), were isolated from the leaves of Artocarpus lacucha. Their molecular structures were established using NMR and HRMS experiments. Among the tested compounds, flavan-benzofuran artocarpinol B, displayed significant α-glucosidase inhibitory activity with an IC50 value of 4.01 ± 0.04 µM (positive control acarbose: 475.14 ± 4.65 µM). The conducted enzyme kinetic study revealed their inhibition mode through competitive type. This is also supported by the molecular docking and dynamics simulations which gave insight into the interactions and stability between α-glucosidase and artocarpinol B in the active site. In addition, 4-geranyl-2',3,4',5-tetrahydroxy-trans-stilbene (5) further shows potent acetylcholinesterase inhibition, with IC50 = 8.57 ± 0.39 µM. Compounds 5 and 6 displayed moderate activity against Staphylococcus aureus and Streptococcus agalactiae, with MIC and MBC values ranging from 26.9 to 69.9 μM. This study explored the potential of constituents from A. lacucha as α-glucosidase and acetylcholinesterase inhibitors, which are crucial in the treatment of Diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Weerasak Songoen
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| | - Lothar Brecker
- Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Morakot Thabpho
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Sorachat Tharamak
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Wanchai Pluempanupat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Siriphan Sukkhaeng
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Sasiwimol Chansuthep
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
3
|
Si Y, Zhu J, Xu X, Xu Y, Lee J, Park YD. Diphenolic boldine, an aporphine alkaloid: inhibitory effect evaluation on α-glucosidase by molecular dynamics integrating enzyme kinetics. J Biomol Struct Dyn 2025; 43:4227-4239. [PMID: 38189319 DOI: 10.1080/07391102.2024.2301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.
Collapse
Affiliation(s)
- Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
- Key Labortary of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, P.R. China
| | - Jiabo Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Xia Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Yueyuan Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
4
|
Li Y, Shen Y, Zou X, Cao Y, Wang X, Zhang R, Qi Y, Hu Y. Protopanaxadiol (PPD)-type ginsenosides inhibit the key element of α-glucosidase - The glycosyl group. Int J Biol Macromol 2025; 306:141843. [PMID: 40058427 DOI: 10.1016/j.ijbiomac.2025.141843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 05/11/2025]
Abstract
In this study, the inhibitory effects of ten protopanaxadiol (PPD)-type ginsenosides on α-glucosidase in vitro were firstly investigated, and selected four ginsenosides with stronger inhibitory effects, namely CY, C-Mc, F2 and CK. The kinetic results of enzyme inhibition indicated that CY, C-Mc, F2 and CK were all non-competitive inhibitors of α-glucosidase. Fluorescence quenching and circular dichroism (CD) analyses showed that the inhibition of α-glucosidase by CY, C-Mc, F2, and CK was a static process, and that they altered the structure of α-glucosidase. The interaction of the four ginsenosides with α-glucosidase was a spontaneous reaction, mainly driven by hydrogen bonding. At 298 K, the binding constants of CY, C-Mc, F2, and CK with α-glucosidase were 0.70 × 104 mol/L, 0.75 × 104 mol/L, 1.46 × 104 mol/L, 1.65 × 104 mol/L respectively, and the number of binding sites was about 1 for all of them. The molecular docking results showed that CY, C-Mc, F2 and CK bound to sites other than the active center of the α-glucosidase through hydrogen bonds. All the above results showed the structure and hypoglycemic effects of CY, C-Mc, F2 and CK, and they can be used as potential α-glucosidase inhibitors for the treatment of Type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yiming Li
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Xianjun Zou
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Xi Wang
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Ruining Zhang
- School of Agriculture, Yanbian University, Yanbian 133002, China
| | - Yanjie Qi
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China.
| |
Collapse
|
5
|
Shi X, Zhang X, Wang L, Ge Y, Chen G. Comparative study of Idesia polycarpa Maxim cake meal polysaccharides: Conventional versus innovative extraction methods and their impact on structural features, emulsifying, antiglycation, and hypoglycemic properties. Food Chem 2025; 471:142745. [PMID: 39761606 DOI: 10.1016/j.foodchem.2024.142745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 02/12/2025]
Abstract
Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.05 %), increased uronic acid content (39.12 %), and a greater proportion of the rhamnogalacturonan I (RG-I) domain (42.88 %), along with improved homogeneity (Mw/Mn: 2.79) and enhanced functional properties, including improved thermal stability, emulsion ability, and emulsion stability. Compared to IPMPs extracted via conventional methods, emulsions stabilized with IPMP-UT exhibited superior performance across different pH levels and polysaccharide concentrations. At pH 6.0, IPMP-UT emulsion formed thicker interfacial layers and exhibited the strongest storage (G') and loss (G″) module. Bioactivity assays further revealed that IPMP-UT had the most potent in vitro inhibition of α-glucosidase and was the most effective at reducing the formation of fructosamine, α-dicarbonyl compounds, and advanced glycation end products (AGEs). All IPMPs inhibited α-glucosidase through a combined mechanism, primarily reducing fluorescence via static quenching, with IPMP-UT demonstrating the greatest binding affinity. Fluorescence and FT-IR spectroscopy confirmed that IPMPs induced structural rearrangements in the enzyme. In conclusion, the UTPP method emerged as the most promising and environmentally sustainable technique for producing pectic polysaccharides with optimal functional properties from IPM cake meal.
Collapse
Affiliation(s)
- Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
6
|
Chen M, Wang J. Polysaccharides from Exocarpium Citri Grandis: Graded Ethanol Precipitation, Structural Characterization, Inhibition of α-Glucosidase Activity, Anti-Oxidation, and Anti-Glycation Potentials. Foods 2025; 14:791. [PMID: 40077493 PMCID: PMC11899376 DOI: 10.3390/foods14050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The endocarp of Exocarpium Citri Grandis (ECG) is abundant in various bioactive components, such as polysaccharides; however, there are few studies on them. Thus, it is highly necessary to carry out further research on the structural characterization and biological activities of ECG polysaccharides (EPs), which are important bioactive substances. In this study, water-extracted EPs were precipitated by ethanol with final concentrations of 50%, 70%, and 90% (v/v), respectively. Three crude polysaccharides (EP50, EP70, and EP90) were fractioned successively. The three polysaccharide fractions were structurally elucidated and were investigated in vitro for their biological activities related to glucose metabolism containing inhibitory effects on α-glucosidase and non-enzymatic glycosylation and their antioxidant capacities. The main results are summarized as follows: (1) Gradient ethanol precipitation and physicochemical properties of EPs: The yields of EP50, EP70, and EP90 were 11.18%, 0.57%, and 0.18%, respectively. The total sugar contents were 40.01%, 52.61%, and 53.46%, and the uronic acid contents were 30.25%, 18.11%, and 8.17%, respectively. In addition, the three fractions had the same composition of monosaccharides, including rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid, with differences in the content of neutral and acidic monosaccharides. They all may be branched polymers and spherical conformation, and they were acidic polysaccharides containing esterified and non-esterified uronic acids, pyranose-form sugars, and glycosidic linkages of α-configuration and β-configuration, with esterification degrees of 32.25%, 28.82%, and 15.58%, respectively. Meanwhile, EP50, EP70, and EP90 were mainly amorphous, and the molecular conformation in solution was a spherical branching polymer without a triple helix structure. The EPs exhibited excellent thermal stability, with their structures remaining stable below 170 °C. (2) In terms of activity research, the results showed that EPs had a good α-glucosidase inhibitory effect with IC50 values of 1.17 mg/mL, 1.40 mg/mL, and 2.72 mg/mL, respectively, among which EP50 was the best. EP50, EP70, and EP90 displayed antioxidant activity by scavenging DPPH and ABTS radicals as well as oxygen radical absorbance capacity. Among them, EP90 had the strongest antioxidant activity. Furthermore, the EPs showed prominent effects on the inhibitory activity of non-enzymatic glycosylation. In summary, the research on the extraction of polysaccharide from ECG provides a technical reference for the further utilization of ECG resources. This study on antioxidant activity provides theoretical support for their use as a natural antioxidant. As oxidation and glycation are relevant to diabetic complications, the result of this work suggests that EPs may be effective in preventing and treating diabetic complications.
Collapse
Affiliation(s)
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| |
Collapse
|
7
|
Zhang Q, Huang R, Wang L, Ge Y, Fang H, Chen G. Comparative study on the effects of different drying technologies on the structural characteristics and biological activities of polysaccharides from Idesia polycarpa maxim cake meal. Food Chem X 2025; 26:102348. [PMID: 40160202 PMCID: PMC11951029 DOI: 10.1016/j.fochx.2025.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
To extract oil, the fruits of Idesia polycarpa Maxim (IPM) must first undergo a drying process. This study aimed to investigate how different industrial drying techniques-microwave vacuum drying (MVD), microwave drying, infrared drying, and hot air drying-affect the structural characteristics and bioactivities of IPM cake meal polysaccharides (IPMPs). The results revealed significant differences in the structure and composition of the four IPMPs. MVD-IPMP, dried using MVD, exhibited a lower molecular weight (346.26 kDa), higher uronic acid content (30.74 %), and a distinct triple-helix structure. These structural features contributed to its enhanced antioxidant activity, α-glucosidase inhibition, and prevention of glycation. IPMPs induced secondary conformational changes in α-glucosidase, leading to decreased enzyme activity. Additionally, IPMPs caused static quenching of the enzyme's intrinsic fluorescence, suggesting a specific interaction mechanism, with MVD-IPMP demonstrating the highest binding affinity. These findings suggest that MVD is an effective technique for the large-scale production of high-quality IPMPs.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Renshuai Huang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Honggang Fang
- Guizhou Lincao Development Co., Ltd, Guiyang, Guizhou 550001, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
8
|
Guo J, Yang L, Dai L, Ma Q, Yan J, Xie Q, Wu Y, Dai H, Zhao Y. Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum. Chin J Nat Med 2025; 23:245-256. [PMID: 39986700 DOI: 10.1016/s1875-5364(25)60828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 02/24/2025]
Abstract
Eight previously undescribed lanostane triterpenoids, including five nortriterpenoids with 26 carbons, ganothenoids A-E (1-5), and three lanostanoids, ganothenoids F-H (6-8), along with 24 known ones (9-32), were isolated from the fruiting bodies of Ganodrma theaecolum. The structures of the novel compounds were elucidated using comprehensive spectroscopic methods, including electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) calculations. Compounds 1-32 were assessed for their neuroprotective effects against H2O2-induced damage in human neuroblastoma SH-SY5Y cells, as well as their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Compound 4 demonstrated the most potent neuroprotective activity against H2O2-induced oxidative stress by suppressing G0/G1 phase cell cycle arrest, reducing reactive oxygen species (ROS) levels, and inhibiting cell apoptosis through modulation of B-cell lymphoma 2 protein (Bcl-2) and Bcl-2 associated X-protein (Bax) protein expression. Compounds 26, 12, and 28 exhibited PTP1B inhibitory activities with IC50 values ranging from 13.92 to 56.94 μmol·L-1, while compound 12 alone displayed significant inhibitory effects on α-glucosidase with an IC50 value of 43.56 μmol·L-1. Additionally, enzyme kinetic analyses and molecular docking simulations were conducted for compounds 26 and 12 with PTP1B and α-glucosidase, respectively.
Collapse
Affiliation(s)
- Jiaocen Guo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Luting Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingyun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiaoyang Yan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qingyi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Youxing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
9
|
Zhang Q, Huang R, Chen G, Guo F, Hu Y. Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides. Foods 2025; 14:238. [PMID: 39856904 PMCID: PMC11765286 DOI: 10.3390/foods14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Suitable planting systems are critical for the physicochemical and bioactivities of strawberry (Fragaria × ananassa Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated. A higher extraction yield was observed for EP-SP (5.88%) than for GP-SP (4.67%), and slightly higher values were measured for the average molecular weight (632.10 kDa vs. 611.88 kDa) and total sugar content (39.38% vs. 34.92%) in EP-SP. In contrast, a higher protein content (2.12% vs. 1.65%) and a more ordered molecular arrangement were exhibited by GP-SP. Monosaccharide composition analysis revealed that EP-SP contained higher levels of rhamnose (12.33%) and glucose (49.29%), whereas GP-SP was richer in galactose (11.06%) and galacturonic acid (19.12%). Thermal analysis indicated only minor differences in decomposition temperatures (approximately 225-226 °C) and thermal stability between the samples. However, GP-SP showed a higher enthalpy change (ΔHg = 18.74 J/g) compared to EP-SP (13.93 J/g). Biological activity assays revealed that GP-SP generally exerted stronger non-enzymatic glycation inhibition at both early and final stages (IC50: 7.47 mg/mL vs. 7.82 mg/mL and 11.18 mg/mL vs. 11.87 mg/mL, respectively), whereas EP-SP was more effective against intermediate α-dicarbonyl compounds (maximum inhibition of 75.32%). Additionally, GP-SP exerted superior α-glucosidase inhibition (IC50 = 2.4583 mg/mL), in line with kinetic and fluorescence quenching analyses showing a higher enzyme-substrate complex binding affinity (Kis = 1.6682 mg/mL; Ka = 5.1352 × 105 M-1). Rheological measurements demonstrated that EP-SP solutions exhibited a pronounced increase in apparent viscosity at higher concentrations (reaching 3477.30 mPa·s at 0.1 s-1 and 70 mg/mL) and a stronger shear-thinning behavior, while GP-SP showed a comparatively lower viscosity and lower network order. These findings suggest that different planting systems significantly affect both the molecular structures and functionalities of SPs, with GP-SP demonstrating enhanced hypoglycemic and anti-glycation properties. It is therefore recommended that suitable planting systems be selected to optimize the functionality of plant-derived polysaccharides for potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | - Yan Hu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (R.H.); (G.C.); (F.G.)
| |
Collapse
|
10
|
Safavi F, Andrade-Cetto A, Escandón-Rivera SM, Espinoza-Hernández FA. Assessing the potential fasting and postprandial mechanisms involved in the acute hypoglycemic and anti-hyperglycemic effects of four selected plants from Iran used in traditional Persian medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118742. [PMID: 39197806 DOI: 10.1016/j.jep.2024.118742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.
Collapse
Affiliation(s)
- Fereshteh Safavi
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P, 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P, 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| | - Sonia M Escandón-Rivera
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P, 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Fernanda A Espinoza-Hernández
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P, 04510, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Li S, Liu C, Liang J, Nong Y, Chen M, Sun R. Quaternity method for integrated screening, separation, extraction optimization, and bioactivity evaluation of acetylcholinesterase inhibitors from Sophora flavescens Aiton. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:52-67. [PMID: 38957046 DOI: 10.1002/pca.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects. OBJECTIVES The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs. METHODS With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds. RESULTS Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect. CONCLUSION This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.
Collapse
Affiliation(s)
- Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ming Chen
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ruijun Sun
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
12
|
Wen R, Chai X, Wang P, Wu K, Duan X, Chen J, Zhang T, Zeng L. Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro. Foods 2024; 13:4183. [PMID: 39767125 PMCID: PMC11675673 DOI: 10.3390/foods13244183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Tea polyphenols have been reported to decrease the rate of starch hydrolysis by inhibiting α-glucosidase. However, the effect of the tea harvesting season and the structure of catechin monomers on the inhibitory activity of α-glucosidase is not understood. In this study, the inhibitory effect and underlying mechanism of four seasons of Dancong tea against α-glucosidase were investigated by in vivo and in vitro experiments, multi-spectroscope and molecular dynamic. The Dancong tea harvested in spring and winter showed a stronger inhibitory effect on α-glucosidase due to a higher content of catechin, especially EGCG ((-)-epigallocatechin-3-gallate). The results of in vivo and in vitro experiments showed that EGCG and ECG ((-)-epicatechin-3-gallate) with a higher content of gallate and hydroxyl groups exhibited a stronger inhibitory effect on starch hydrolysis, rise of postprandial blood glucose and activities of α-glucosidase compared to EGC ((-)-epigallocatechin) and EC ((-)-epicatechin). These gallate and hydroxy groups were more effective in interacting with the amino acid residues in the active site of α-glucosidase, leading to structural changes in the enzyme. Certainly, the inhibitory effect of Dancong tea on α-glucosidase explains one of the mechanisms by which it helps alleviate diabetes; the other hypoglycaemic mechanisms of Dancong tea will be further explored.
Collapse
Affiliation(s)
- Rourou Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Xianghua Chai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
- Guangdong Province Laborary of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Kegang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Xuejuan Duan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Jiasi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Tong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Liya Zeng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| |
Collapse
|
13
|
Shi X, Zhang Q, Yang J, Huang R, Ge Y, Wang J, Chen G. Simultaneous extraction of oil, protein and polysaccharide from Idesia polycarpa Maxim cake meal using ultrasound combined with three phase partitioning. ULTRASONICS SONOCHEMISTRY 2024; 110:107043. [PMID: 39186918 PMCID: PMC11396072 DOI: 10.1016/j.ultsonch.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
This study explored the potential of ultrasonic-assisted three-phase partitioning (UTPP) to simultaneously extract lipids, proteins, and polysaccharides from Idesia polycarpa Maxim (IPM) cake meal, a significant byproduct of oil extraction. The impact of variables such as inorganic salt type, solid-liquid ratio, salt concentration, pH, ultrasonic time, temperature, and volume of dimethyl carbonate was examined. Based on the single-factor tests and response surface methodology (RSM), optimal conditions were identified as 30 % ammonium citrate, a 1:26 solid-liquid ratio, pH 3, 31 min of ultrasonic time, 30 °C temperature, and 15 mL of dimethyl carbonate. These conditions achieved extraction rates of 8.10 % for lipids, 5.03 % for proteins, and 10.03 % for polysaccharides, with recovery rates of 91.62 %, 83.08 %, and 93.95 % respectively. Chemical analysis showed the lipid fraction rich in linoleic acid, and the protein fraction high in glutamic acid, aspartate, and serine. The polysaccharide fraction, mainly RG-I pectin with a molecular weight of 226.58 kDa, exhibited strong thermal stability and inhibitory effects on α-glucosidase and glycation, suggesting potential for functional food and dietary supplement applications. This highlights UTPP as a sustainable method for effectively utilizing valuable compounds from IPM cake meal, outperforming traditional extraction techniques.
Collapse
Affiliation(s)
- Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Jintao Yang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Renshuai Huang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Jinhua Wang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
14
|
Zhang J, Wang H, Liao Y, Li Y. The combined effects of bisphenol S and hexavalent chromium on alpha-glucosidase: Intermolecular interaction, structural and functional changes. Int J Biol Macromol 2024; 280:136120. [PMID: 39343258 DOI: 10.1016/j.ijbiomac.2024.136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The co-contamination of heavy metal ions and organic pollutants has posed a threat to human health. Herein, this study investigated the intermolecular interactions of bisphenol S (BPS) and hexavalent chromium (Cr(VI)) under both individual and coexisting conditions, with alpha-glucosidase (AG), a key enzyme in carbohydrate metabolism, and the corresponding effects on the structure and function of AG. Multiple spectroscopic and molecular docking methods were employed to conduct the investigation in vitro and in silico. The results indicated that both BPS and Cr(VI) quenched the fluorescence of AG via a combined static and dynamic quenching processes. At 310 K, the binding constants of AG with BPS in the AG-BPS and (AG-Cr(VI))-BPS systems were 1.84 × 104 and 2.03 × 104 L mol-1, and the binding constants of AG with Cr(VI) in the AG-Cr(VI) and (AG-BPS)-Cr(VI) systems were 6.14 × 103 and 4.35 × 103 L mol-1. Cr(VI) could significantly affect the binding site of BPS in AG, while BPS had a minimal impact on the binding site of Cr(VI) in AG. BPS and Cr(VI) caused varied structural alterations of AG, and the impact of their coexistence on the structure of AG was related to the order in which they were added. Both BPS and Cr(VI) had a concentration-related effect on AG activity. This study provides valuable insights into the molecular mechanisms underlying the combined toxic effects of BPS and Cr(VI) on AG, highlighting the potential health risks associated with their environmental co-exposure.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| | - Honghui Wang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yingmin Liao
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yan Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| |
Collapse
|
15
|
Wang Y, Li S, Zhang T, Wang J, Zhang X, Li M, Gao Y, Zhang M, Chen H. Effects of myricetin and its derivatives on nonenzymatic glycation: A mechanism study based on proteomic modification and fluorescence spectroscopy analysis. Food Chem 2024; 455:139880. [PMID: 38852282 DOI: 10.1016/j.foodchem.2024.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 μmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to β-sheet, and reducing amyloid-like cross-β structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
16
|
Yu G, Fu X, Mo X, Tan L, Yang S. Multi-target anti-diabetic styrylpyrones from Phellinus igniarius: Inhibition of α-glucosidase, protein glycation, and oxidative stress. Int J Biol Macromol 2024; 278:134854. [PMID: 39168223 DOI: 10.1016/j.ijbiomac.2024.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bioactivity screening revealed that the EtOAc extract from the culture broth of Phellinus igniarius SY489 exhibited remarkable α-glucosidase inhibitory activity, with an IC50 value of 1.92 μg/mL. Activity- and ultraviolet (UV) profile-guided isolation led to the discovery of four anti-diabetic styrylpyrones (1-4), including two novel compounds, phelignidins A (1) and B (2). Compounds 1 and 2 represent a rare structural type of styrylpyrone dimer, in which one of the pyrone moieties exists in an open-ring state. The absolute configurations of the new compounds 1 and 2, as well as the previously unresolved compound 3, were established. Compounds 1-4 were effective in α-glucosidase inhibition, anti-glycation, and antioxidant assays, surpassing or being comparable to the positive control drugs, with minimal cytotoxicity. Furthermore, studies on α-glucosidase inhibition mechanisms suggested that these compounds interact with α-glucosidase at a single binding site, causing secondary structure unfolding and exerting inhibitory activity via a mixed-type mechanism. These results provide an important basis for developing novel, low-toxicity, multi-target anti-diabetic drugs from edible and medicinal fungi.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiangji Fu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
17
|
Xu X, Djohari KN, Jiang Y, Zhou W. Deciphering the inhibitory mechanisms of betanin and phyllocactin from Hylocereus polyrhizus peel on protein glycation, with insights into their application in bread. Food Chem 2024; 452:139594. [PMID: 38749142 DOI: 10.1016/j.foodchem.2024.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Kelly Natalia Djohari
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Yingfen Jiang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, 215123, China.
| |
Collapse
|
18
|
Yang Y, Guo T, Huang F, Zheng H, Li W, Yuan H, Xie Q, Hussain N, Wang W, Jian Y. α-Glucosidase inhibitory flavonol glycosides from Cyclocarya paliurus (Batalin) Iljinskaja and their kinetics characteristics. PHYTOCHEMISTRY 2024; 225:114195. [PMID: 38925355 DOI: 10.1016/j.phytochem.2024.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Seven previously undescribed flavonol glycosides including four rare flavonol glycoside cyclodimers, dicyclopaliosides A-C (1-3) with truxinate type and dicyclopalioside D (4) with truxillate type, as well as three kaempferol glycoside derivatives cyclopaliosides A-C (5-7), were obtained from the leaves of Cyclocarya paliurus. Their structures were elucidated by extensive spectroscopic methods and chemical analyses. All compounds were evaluated for their inhibitory α-glucosidase activities. Among them, compounds 1-4 display strong inhibitory activities with IC50 values of 82.76 ± 1.41, 62.70 ± 4.00, 443.35 ± 16.48, and 6.31 ± 0.88 nM, respectively, while compounds 5-7 showed moderate activities with IC50 values of 4.91 ± 0.75, 3.64 ± 0.68, and 5.32 ± 0.53 μΜ, respectively. The structure-activity relationship analysis assumed that the cyclobutane cores likely contribute to the enhancement of α-glucosidase inhibitory activities of dimers. Also, the interaction mechanism between flavonol glycoside dimers and α-glucosidase were explored by the enzyme kinetic assay, indicating that compounds 1-3 exhibited mixed-type inhibition, while 4 showed uncompetitive inhibition. Additionally, the active compounds have also undergone molecular docking evaluation.
Collapse
Affiliation(s)
- Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Tingsi Guo
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Wenchu Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, 16100, Pakistan
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
19
|
Xu X, Jiang Y, Yeo QX, Zhou W. Purification and characterization of betacyanin monomers from Hylocereus polyrhizus peel: A comparative study of their antioxidant and antidiabetic activities with mechanistic insights. Food Chem 2024; 451:139467. [PMID: 38678661 DOI: 10.1016/j.foodchem.2024.139467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Betacyanins have garnered escalating research interest for their promising bioactivities. However, substantial challenges in purification and separation have impeded a holistic comprehension of the distinct bioactivities of individual betacyanins and their underlying mechanisms. Herein, betanin and phyllocactin monomers with purity exceeding 95% were successfully obtained from Hylocereus polyrhizus peel using a feasible protocol. These monomers were subsequently employed for comparative bioactivity assessments to uncover underlying mechanisms and illuminate structure-activity relationships. Interestingly, phyllocactin exhibited superior antioxidant activities and 36.1% stronger inhibitory activity on α-glucosidase compared to betanin. Mechanistic studies have revealed that they function as mixed-type inhibitors of α-amylase and competitive inhibitors of α-glucosidase, with interactions predominantly driven by hydrogen bonding. Notably, phyllocactin demonstrated a greater binding affinity with enzymes than betanin, thereby substantiating its heightened inhibitory activity. Overall, our results highlight novel bioactivities of betacyanin monomers and provide profound insights into the intricate interplay between structures and properties.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore
| | - Yingfen Jiang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore
| | - Qi Xuan Yeo
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
20
|
Chen G, Sun J, Dai Q, Sun M, Hu P. Polysaccharides from Seedless Chestnut Rose ( Rosa sterilis) Fruits: Insights into Innovative Drying Technologies and Their Structural Characteristics, Antioxidant, Antiglycation, and α-Glucosidase Inhibitory Activities. Foods 2024; 13:2483. [PMID: 39200410 PMCID: PMC11353437 DOI: 10.3390/foods13162483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The selection of an optimal drying method is essential for extending the shelf life and enhancing the quality of Rosa sterilis fruits. This study investigated the effects of both innovative (microwave vacuum drying and infrared drying) and traditional (freeze-drying and hot air drying) techniques on the structural characteristics and bioactivities of polysaccharides from R. sterilis fruits (RSPs). Four different RSPs were obtained from fruits dried using these methods. Results demonstrated that the structural characteristics and bioactivities of RSPs varied significantly with the drying method. Notable differences were observed in extraction yield, total sugar, uronic acid content, monosaccharide molar ratios, molecular weight distribution, particle size, thermal stability, and microstructures of RSPs. Despite these variations, the types of constituent monosaccharides and major glycosidic linkages remained consistent across all methods. Notably, RSPs obtained via microwave vacuum drying (RSPs-MVD) showed a higher uronic acid content and lower molecular weight, and exhibited stronger in vitro antioxidant, α-glucosidase inhibitory, and antiglycation activities. These findings suggest that microwave vacuum drying is an effective pre-drying technique for extracting RSPs, making them suitable as bioactive ingredients in functional foods and pharmaceuticals for managing diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.S.); (Q.D.); (M.S.)
| | - Juyan Sun
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.S.); (Q.D.); (M.S.)
| | - Qinghua Dai
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.S.); (Q.D.); (M.S.)
| | - Meiwen Sun
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (J.S.); (Q.D.); (M.S.)
| | - Peng Hu
- School of Pharmacy, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
| |
Collapse
|
21
|
Liao J, Zhang Y, Deng Z, Li H, Zhang B. Characterization of the covalent binding of cyanidin-3-glucoside to bovine serum albumin and its inhibition mechanism for advanced nonenzymatic glycosylation reactions. J Food Sci 2024; 89:4899-4913. [PMID: 38980988 DOI: 10.1111/1750-3841.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Nonenzymatic glycosylation of proteins can generate advanced glycosylation end products, which are closely associated with the pathogenesis of certain chronic physiological diseases and aging. In this study, we characterized the covalent binding of cyanidin-3-glucoside (C3G) to bovine serum albumin (BSA) and investigated the mechanism by which this covalent binding inhibits the nonenzymatic glycosylation of BSA. The results indicated that the covalent interaction between C3G and BSA stabilized the protein's secondary structure. Through liquid chromatography-electrospray ionization tandem mass spectrometry analysis, we identified the covalent binding sites of C3G on BSA as lysine, arginine, asparagine, glutamine, and cysteine residues. This covalent interaction significantly suppressed the nonenzymatic glycosylation of BSA, consequently reducing the formation of nonenzymatic glycosylation products. C3G competitively binds to nonenzymatic glycosylation sites (e.g., lysine and arginine) on BSA, thereby impeding the glycosylation process and preventing the misfolding and structural alterations of BSA induced by fructose. Furthermore, the covalent attachment of C3G to BSA preserves the secondary structure of BSA and hinders subsequent nonenzymatic glycosylation events.
Collapse
Affiliation(s)
- Jinqiang Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yujing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Zhang Q, Wu S, Dai Q, Hu P, Chen G. Effects of Different Drying Methods on the Structural Characteristics and Multiple Bioactivities of Rosa roxburghii Tratt Fruit Polysaccharides. Foods 2024; 13:2417. [PMID: 39123608 PMCID: PMC11312052 DOI: 10.3390/foods13152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Drying conditions significantly impact the compositions and microstructures of polysaccharides, leading to various effects on their chemical characteristics and bioactivities. The objective of this study was to investigate how different industrial drying techniques, i.e., hot air drying, infrared drying, microwave vacuum drying, and freeze drying, affect the structural properties and biological activities of polysaccharides extracted from Rosa roxburghii Tratt fruit (RRTP). Results revealed that these drying methods significantly altered the extraction yield, molecular weights, monosaccharide ratios, contents of uronic acid and total sugars, gelling properties, particle sizes, thermal stability, and microstructures of RRTPs. However, the monosaccharide composition and functional groups of polysaccharides remained consistent across the different drying techniques. Biological activity assays demonstrated that RRTPs, particularly those processed through microwave vacuum drying (MVD-RRTP), exhibited excellent anti-linoleic acid oxidation, robust anti-glycosylation effects, and significant α-glucosidase inhibition in vitro. The outcomes of this research demonstrate that microwave vacuum drying serves as an effective pre-extraction drying method for RRTPs, enhancing their biological activities. This technique is particularly advantageous for preparing RRTPs intended for use in functional foods and pharmaceuticals, optimizing their health-promoting properties for industrial applications.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Sha Wu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Qinghua Dai
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Peng Hu
- School of Pharmacy, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| |
Collapse
|
23
|
Wu S, Dong C, Zhang M, Cheng Y, Cao X, Yang B, Li C, Peng X. Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin. Foods 2024; 13:1573. [PMID: 38790873 PMCID: PMC11120408 DOI: 10.3390/foods13101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Red yeast rice dietary supplements have been proven to ameliorate hyperglycemia, but the mechanism was unclear. In this work, ankaflavin (AK) and monascin (MS), as typical pigments derived from red yeast rice, were found to exert noteworthy inhibitory ability against α-glucosidase, with an IC50 of 126.5 ± 2.5 and 302.6 ± 2.5 μM, respectively, compared with acarbose (IC50 = 341.3 ± 13.6 μM). They also exhibited mixed-type inhibition of α-glucosidase in vitro and caused fluorescence quenching through the static-quenching process. Molecular-docking studies indicated that AK and MS bind to amino acid residues outside the catalytic center, which induces structural changes in the enzyme, thus influencing its catalytic activity. The anti-glycation ability of Monascus-fermented products was evaluated, and they exhibited a high inhibition rate of 87.1% in fluorescent advanced glycation end-product formation at a concentration of 0.2 mg mL-1, while aminoguanidine showed a rate of 75.7% at the same concentration. These results will be significant in broadening the application scope of Monascus pigments, especially AK and MS, in treating type 2 diabetes.
Collapse
Affiliation(s)
- Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (S.W.)
| | - Changyan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (S.W.)
| | - Meihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (S.W.)
| | - Yi Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (S.W.)
| | - Xiaobo Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (S.W.)
| | - Benxu Yang
- Tianjin Lida Food Technology Co., Ltd., Tianjin 300393, China
| | - Chao Li
- Tianjin Food Group Co., Ltd., Tianjin 300074, China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Phyo SH, Ghamry M, Bao G, Zeng A, Zhao W. Potential inhibitory effect of highland barley protein hydrolysates on the formation of advanced glycation end-products (AGEs): A mechanism study. Int J Biol Macromol 2024; 268:131632. [PMID: 38643911 DOI: 10.1016/j.ijbiomac.2024.131632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.
Collapse
Affiliation(s)
- Su Hlaing Phyo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Guina Bao
- Xizang Highland Barley Agricultural Science & Technology Co., Ltd., No.66, 532 Yuyuan Rd., Jiang'an District, Shanghai City 200040, PR China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
25
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J, Mao Y. Hypoglycemic Activity of Rice Resistant-Starch Metabolites: A Mechanistic Network Pharmacology and In Vitro Approach. Metabolites 2024; 14:224. [PMID: 38668351 PMCID: PMC11052319 DOI: 10.3390/metabo14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yangchen Mao
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
26
|
Dlamini BS, Chen CR, Chang YL, Ho PH, Chao CH, Chang CI. Characterization of four new cycloartane triterpenoids from Swietenia macrophylla and their angiotensin-I-converting enzyme inhibitory activity. Fitoterapia 2024; 174:105862. [PMID: 38354823 DOI: 10.1016/j.fitote.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Angiotensin I-converting enzyme (ACE) inhibition is currently a common method for the treatment and control of hypertension. In this study, four new (1-4) and one known (5) cycloartane triterpenoids were isolated from the leaves of Swietenia macrophylla by chromatographic techniques and identified by their spectroscopic data and a comprehensive comparison of published data. The triterpenoids were evaluated for their ACE inhibitory potential using in vitro inhibition assays and in silico methods. The inhibition assay and enzyme kinetics results showed that the most active triterpenoid, compound 4, inhibited ACE in a mixed-type manner with an IC50 value of 57.7 ± 6.07 μM. Computer simulations revealed that compound 4 reduces the catalytic efficiency of ACE by competitive insertion into the active pocket blocking the substrate, and the binding activity occurs mainly through hydrogen bonds and hydrophobic interactions. The study showed that S. macrophylla can be a source of bioactive material and the ACE inhibitory triterpenoid could be a potential antihypertensive agent.
Collapse
Affiliation(s)
- Bongani Sicelo Dlamini
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung 950302, Taiwan
| | - Ya-Lin Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Pei-Hsuan Ho
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chia-Ho Chao
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan.
| |
Collapse
|
27
|
Zhang T, Li Y, Guo J, Sun W, Lv Y. Synthetic Polymer Nanoparticles as an Abiotic Artificial Inhibitor of Tyrosinase. Adv Healthc Mater 2024; 13:e2303615. [PMID: 38174888 DOI: 10.1002/adhm.202303615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Indexed: 01/05/2024]
Abstract
An innovative methodology is presented for synthesizing synthetic polymer nanoparticles (TINPs) as potent tyrosinase inhibitors. This inhibition strategy combines the integration of two distinct functionalities, phenol, and phenylboronic acid, within the TINPs structure. The phenyl group mimics the natural monophenol substrate, forming a strong coordination with the catalytic copper ion, significantly inhibiting tyrosinase activity. Additionally, phenylboronic acid interacts with catechol, another tyrosinase substrate, further reducing enzyme efficiency. The shared benzene ring in phenyl and phenylboronic acid enhances binding to tyrosinase's hydrophobic pocket near its copper active site, contributing to potent inhibition. TINPs exhibit exceptional performance, boasting an impressive IC50 value of 3.5×10-8 m and an inhibition constant of 9.8×10-9 m. Validation of the approach is unequivocally demonstrated through the successful inhibition of tyrosinase activity and melanin production, substantiated in both in vitro and in vivo scenarios. The mechanism of TINP inhibition is elucidated through circular dichroism and Fourier transform infrared spectroscopy. This study introduces a versatile design approach for developing abiotic polymer-based enzyme inhibitors, expanding possibilities in enzyme inhibition research.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Weiliang Sun
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
28
|
Jiang J, Fan H, Zhou J, Qin J, Qin Z, Chen M, Shen Y, Liu X. In vitro inhibitory effect of five natural sweeteners on α-glucosidase and α-amylase. Food Funct 2024; 15:2234-2248. [PMID: 38318730 DOI: 10.1039/d3fo05234f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A promising and efficacious approach to manage diabetes is inhibiting α-glucosidase and α-amylase activity. Therefore, the inhibitory activities of five natural sweeteners (mogrosides (Mog), stevioside (Ste), glycyrrhizinic acid (GA), crude trilobatin (CT), and crude rubusoside (CR)) against α-glucosidase and α-amylase and their interactions were evaluated in vitro using enzyme kinetics, fluorescence spectroscopy, Fourier infrared spectroscopy, and molecular docking. The inhibitor sequence was CT > GA > Ste, as GA competitively inhibited α-glycosidase activity while CT and Ste exhibited mixed inhibitory effects. Compared to a positive control acarbose, the inhibitory activity of CT was higher. For α-amylase, the mixed inhibitors CT, CR, and Mog and the competitive inhibitor Ste effectively inhibited the enzyme, with the following order: CT > CR > Ste > Mog; nevertheless, the inhibitors were slightly inferior to acarbose. Three-dimensional fluorescence spectra depicted that GA, CT, and CR bound to the hydrophobic cavity of α-glucosidase or α-amylase and changed the polarity of the hydrophobic amino acid-based microenvironment and structure of the polypeptide chain backbone. Infrared spectroscopy revealed that GA, CT, and CR could disrupt the secondary structure of α-glucosidase or α-amylase, which decreased enzyme activity. GA, trilobatin and rubusoside bound to amino acid residues through hydrogen bonds and hydrophobic interactions, changing the conformation of enzyme molecules to decrease the enzymatic activity. Thus, CT, CR and GA exhibit promising inhibitory effects against α-glucosidase and α-amylase.
Collapse
Affiliation(s)
- Jiequn Jiang
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Heliang Fan
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jie Zhou
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jingkai Qin
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zhongyi Qin
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Mei Chen
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuanyuan Shen
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Xiaoling Liu
- College of Light and Food Engineering, Guangxi University, Nanning 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| |
Collapse
|
29
|
Zhang Y, Li Y, Zhai Y, Zhao X, Lv M, Yu S, Xiao H, Song Y. Inhibitory mechanism of chrysin and diosmetin to α-glucosidase: insights from kinetics, multispectroscopy and molecular docking investigations. J Biomol Struct Dyn 2024:1-13. [PMID: 38289727 DOI: 10.1080/07391102.2024.2310207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Inhibition of α-glucosidase activity is a promising method to prevent postprandial hyperglycemia. The inhibitory effect and interaction of chrysin and diosmetin on α-glucosidase were studied in this study. The results of inhibition kinetics showed that chrysin and diosmetin reversibly inhibited α-glucosidase activity with IC50 value of 26.445 ± 1.406 μmol L-1 and 18.380 ± 1.264 μmol L-1, respectively. Further research revealed that chrysin exhibited a mixed-type inhibitory pattern against α-glucosidase, while diosmetin was noncompetitive inhibitory with Ki value of (2.6 ± 0.04) ×10-4 mol L-1. Fluorescence spectroscopy showed that both chrysin and diosmetin could quench the intrinsic fluorescence of α-glucosidase, the maximum emission wavelength of tyrosine (Tyr) and tryptophan (Trp) were not moved by chrysin, but red shifted by diosmetin. UV-Vis, fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) measurements showed that the secondary structure and microenvironment of α-glucosidase were changed by chrysin and diosmetin. Further analysis of molecular docking showed that chrysin and diosmetin could bind with α-glucosidase and might cause the decrease of α-glucosidase activity. The results of molecular dynamics (MD) simulation showed that the stability of chrysin (or diosmetin)-α-glucosidase complex system was changed during binding process. In conclusion, chrysin and diosmetin are good α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Yuqing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yaping Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhan Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Xing Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Mingxing Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Haifang Xiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
30
|
Peng J, Liang G, Wen W, Huang W, Qiu Y, Xiao G, Wang Q. Blueberry anthocyanins extract inhibits advanced glycation end-products (AGEs) production and AGEs-stimulated inflammation in RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:75-82. [PMID: 37528063 DOI: 10.1002/jsfa.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Pharmacological interference is considered to be a successful approach to inhibit advanced glycation end-products (AGEs) production and to block AGEs-induced diseases. Some synthetic medicines are effective for inhibiting the glycation reaction, but they cannot be widely applied in clinical as a result of their side effects and security concerns. The present study uses blueberry anthocyanins extract (BAE) to attenuate AGEs formation and AGEs-induced inflammatory response in vitro. RESULTS In a bovine serum albumin-glucose model, BAE showed similar inhibitory activity on AGEs compared to the synthetic anti-glycation agent (aminoguanidine). The results showed that BAE exhibit strong anti-glycative action by scavenging glycosylated intermediates (Schiff base, fructosamine and α-dicarbonyl compounds), attenuating the molecular aggregation and amyloid-like fibrils formation, and preventing conformational modification. Additionally, BAE was found to dose-dependently inhibit the AGEs-induced secretions of nitric oxide and pro-inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α) in RAW264.7 cells. The anti-inflammation activity of BAE was mediated by down-regulating the expressions of critical inflammatory markers, inducible nitric oxide synthase and cyclooxygenase-2, through nuclear factor-kappa B signaling pathways inhibition. CONCLUSION BAE could serve as a natural inhibitor for controlling AGEs and AGEs-induced chronic inflammation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guiqiang Liang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Wen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenye Huang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuanxin Qiu
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
31
|
Tang L, Guan Q, Zhang L, Xu M, Zhang M, Khan MS. Synergistic interaction of Cu(II) with caffeic acid and chlorogenic acid in α-glucosidase inhibition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:518-529. [PMID: 37661343 DOI: 10.1002/jsfa.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Phenolic acids are widespread in foods and are beneficial to human health. However, the role of metal ions in influencing the binding of proteins with phenolic acids that contain the same parent nucleus structure remains unclear. This study investigated the inhibitory effect of caffeic acid (CA) and chlorogenic acid (CHA) on α-glucosidase and the biological effect of copper on this process. RESULTS It was found that the esterification of CA with quinic acid could increase the fluorescence quenching, conformational change, and inhibitory effect of CHA on α-glucosidase. Copper ions reduced their fluorescence quenching and conformation-changing ability by binding to the neighboring phenolic hydroxyl group but also increased their ability to alter secondary structure and to inhibit α-glucosidase and in vitro anti-glycation. CONCLUSION Overall, this study shows that the binding of copper ions to the phenolic hydroxyl group adjacent to CA and CHA synergistically inhibited α-glucosidase. The findings will offer a theoretical basis for investigating the properties of metal ions and phenolic acid in food chemistry and their potential applications in the prevention and treatment of diabetes mellitus. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Meng Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | | |
Collapse
|
32
|
Liu L, Wang Z, Yap PL, Zhang Q, Ni Y, Losic D. Inhibition of α-glucosidase activity by curcumin loaded on ZnO@rGO nanocarrier for potential treatment of diabetes mellitus. LUMINESCENCE 2024; 39:e4668. [PMID: 38286596 DOI: 10.1002/bio.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Linghong Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Kaliaperumal K, Zhang L, Gao L, Xiong Q, Liang Y, Jiang Y, Zhang J. Insight into the Inhibitory Mechanisms of Hesperidin on α-Glucosidase through Kinetics, Fluorescence Quenching, and Molecular Docking Studies. Foods 2023; 12:4142. [PMID: 38002199 PMCID: PMC10670601 DOI: 10.3390/foods12224142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The α-glucosidase inhibitor is of interest to researchers due to its association with type-II diabetes treatment by suppressing postprandial hyperglycemia. Hesperidin is a major flavonoid in orange fruit with diverse biological properties. This paper evaluates the effects of hesperidin on α-glucosidase through inhibitory kinetics, fluorescence quenching, and molecular docking methods for the first time. The inhibition kinetic analysis shows that hesperidin reversibly inhibited the α-glucosidase activity with an IC50 value of 18.52 μM and the inhibition was performed in an uncompetitive type. The fluorescence quenching studies indicate that the intrinsic fluorescence of α-glucosidase was quenched via a static quenching process and only one binding site was present between the hesperidin and α-glucosidase. The interaction between them was spontaneous and mainly driven by hydrogen bonds, as well as hydrophobic forces. Furthermore, the molecular docking results suggest that hesperidin might bond to the entrance or outlet part of the active site of α-glucosidase through a network of five hydrogen bonds formed between hesperidin and the four amino acid residues (Trp709, Arg422, Asn424, and Arg467) of α-glucosidase and the hydrophobic effects. These results provide new insight into the inhibitory mechanisms of hesperidin on α-glucosidase, supporting the potential application of a hesperidin-rich orange product as a hypoglycemic functional food.
Collapse
Affiliation(s)
- Kumaravel Kaliaperumal
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 602105, India
| | - Linyan Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| |
Collapse
|
35
|
Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, Xia CY, He J, Xu JK, Zhang WK. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155061. [PMID: 37689035 DOI: 10.1016/j.phymed.2023.155061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Xu Li
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
36
|
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023; 12:3344. [PMID: 37761053 PMCID: PMC10529981 DOI: 10.3390/foods12183344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the easy cultivation of microorganisms and their short cycle time, research on α-glucosidase inhibitors (α-GIs) of microbial origin is receiving extensive attention. Raw materials used in food production, such as cereals, dairy products, fruits, and vegetables, contain various bioactive components, like flavonoids, polyphenols, and alkaloids. Fermentation with specific bacterial strains enhances the nutritional value of these raw materials and enables the creation of hypoglycemic products rich in diverse active ingredients. Additionally, conventional food processing often results in significant byproduct generation, causing resource wastage and environmental issues. However, using bacterial strains to ferment these byproducts into α-GIs presents an innovative solution. This review describes the microbial-derived α-GIs that have been identified. Moreover, the production of α-GIs using industrial food raw materials and processing byproducts as a medium in fermentation is summarized. It is worth analyzing the selection of strains and raw materials, the separation and identification of key compounds, and fermentation broth research methods. Notably, the innovative ideas in this field are described as well. This review will provide theoretical guidance for the development of microbial-derived hypoglycemic foods.
Collapse
Affiliation(s)
- Fei Ren
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Nairu Ji
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
37
|
Li LZ, Chen L, Tu YL, Dai XJ, Xiao SJ, Shi JS, Li YJ, Yang XS. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules 2023; 28:6426. [PMID: 37687255 PMCID: PMC10489651 DOI: 10.3390/molecules28176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived phytochemicals have recently drawn interest in the prevention and treatment of diabetes mellitus (DM). The seeds of Moringa oleifera Lam. are widely used in food and herbal medicine for their health-promoting properties against various diseases, including DM, but many of their effective constituents are still unknown. In this study, 6 new phenolic glycosides, moringaside B-G (1-6), together with 10 known phenolic glycosides (7-16) were isolated from M. oleifera seeds. The structures were elucidated by 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data analysis. The absolute configurations of compounds 2 and 3 were determined by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 especially are combined with a 1,3-dioxocyclopentane moiety at the rhamnose group, which are rarely reported in phenolic glycoside backbones. A biosynthetic pathway of 2 and 3 was assumed. Moreover, all the isolated compounds were evaluated for their inhibitory activities against α-glucosidase. Compounds 4 and 16 exhibited marked activities with IC50 values of 382.8 ± 1.42 and 301.4 ± 6.22 μM, and the acarbose was the positive control with an IC50 value of 324.1 ± 4.99 μM. Compound 16 revealed better activity than acarbose.
Collapse
Affiliation(s)
- Lin-Zhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| | - Liang Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Yang-Li Tu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiang-Jie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Sheng-Jia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| |
Collapse
|
38
|
Cui XR, Wang YS, Chen Y, Mu HY, Chen HH. Understanding the digestibility of wheat starch- caffeic acid complexes prepared by hot-extrusion 3D printing technology. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Peng X, Hu X, Liu K, Gong D, Zhang G. Exploring inhibitory effect and mechanism of hesperetin-Cu (II) complex against protein glycation. Food Chem 2023; 416:135801. [PMID: 36870150 DOI: 10.1016/j.foodchem.2023.135801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Inhibition of advanced glycation end products (AGEs) formed in protein glycosylation is crucial for minimizing diabetic complications. Herein, the anti-glycation potential of hesperetin-Cu (II) complex was investigated. Hesperetin-Cu (II) complex strongly inhibited three stages glycosylation products in bovine serum albumin (BSA)-fructose model, especially for the inhibition of AGEs (88.45%), which was stronger than hesperetin (51.76%) and aminoguanidine (22.89%). Meanwhile, hesperetin-Cu (II) complex decreased the levels of BSA carbonylation and oxidation products. 182.50 µg/mL of hesperetin-Cu (II) complex inhibited 66.71% β-crosslinking structures of BSA, and scavenged 59.80% superoxide anions and 79.76% hydroxyl radicals. Moreover, after incubating with methylglyoxal for 24 h, hesperetin-Cu (II) complex removed 85.70% methylglyoxal. The mechanisms of protein antiglycation by hesperetin-Cu (II) complex may be through protecting structure, trapping methylglyoxal, scavenging free radicals and interacting with BSA. This study may contribute to the development of hesperetin-Cu (II) complex as a functional food additive against protein glycation.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Kai Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
40
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
41
|
Zhu M, Fei X, Gong D, Zhang G. Effects of Processing Conditions and Simulated Digestion In Vitro on the Antioxidant Activity, Inhibition of Xanthine Oxidase and Bioaccessibility of Epicatechin Gallate. Foods 2023; 12:2807. [PMID: 37509901 PMCID: PMC10378779 DOI: 10.3390/foods12142807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The bioactivity and gastrointestinal stability of epicatechin gallate (ECG) may be affected by processing conditions. Results showed that the antioxidant ability and inhibitory activity on xanthine oxidase (XO) of ECG were higher at low pH values. Appropriate microwave and heating treatments improved the antioxidant (the scavenging rate increased from 71.75% to 92.71% and 80.88% under the microwave and heating treatments) and XO inhibitory activity (the inhibitory rate increased from 47.11% to 56.89% and 51.85% at the microwave and heating treatments) of ECG. The treated ECG led to a more compact structure of XO. Moreover, there may be synergistic antioxidant and inhibitory effects between ECG and its degradation products. The bioaccessibility of ECG after simulated digestion was untreated > microwave > heating, and the microwave-treated ECG still had good XO inhibitory activity after digestion. These findings may provide some significant information for the development of functional foods enriched in catechins.
Collapse
Affiliation(s)
- Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
42
|
Liu C, Qiao L, Gao Q, Zhang F, Zhang X, Lei J, Ren M, Xiao S, Kuang J, Deng S, Yuan X, Jiang Y, Wang G. Total biflavonoids extraction from Selaginella chaetoloma utilizing ultrasound-assisted deep eutectic solvent: Optimization of conditions, extraction mechanism, and biological activity in vitro. ULTRASONICS SONOCHEMISTRY 2023; 98:106491. [PMID: 37379745 PMCID: PMC10320385 DOI: 10.1016/j.ultsonch.2023.106491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this study, the deep eutectic solvent based ultrasound-assisted extraction (DES-UAE) was investigated for the efficient and environmentally friendly extraction of Selaginella chaetoloma total biflavonoids (SCTB). As an extractant for optimization, tetrapropylaminium bromide-1,4-butanediol (Tpr-But) was employed for the first time. 36 DESs were created, with Tpr-But producing the most effective results. Based on response surface methodology (RSM), the greatest extraction rate of SCTB was determined to be 21.68 ± 0.78 mg/g, the molar ratio of HBD to HBA was 3.70:1, the extraction temperature was 57 °C, and the water content of DES was 22 %. In accordance with Fick's second rule, a kinetic model for the extraction of SCTB by DES-UAE has been derived. With correlation coefficients 0.91, the kinetic model of the extraction process was significantly correlated with the general and exponential equations of kinetics, and some important kinetic parameters such as rate constants, energy of activation and raffinate rate were determined. In addition, molecular dynamics simulations were used to study the extraction mechanisms generated by different solvents. Comparing the effect of several extraction methods on S.chaetoloma using ultrasound-assisted extraction and conventional methods, together with SEM examination, revealed that DES-UAE not only saved time but also enhanced SCTB extraction rate by 1.5-3 folds. SCTB demonstrated superior antioxidant activity in three studies in vitro. Furthermore, the extract could suppress the growth of A549, HCT-116, HepG2, and HT-29 cancer cells. Alpha-Glucosidase (AG) inhibition experiment and molecular docking studies suggested that SCTB exhibited strong inhibitory activity against AG and potential hypoglycemic effects. The results of this study indicated that a Tpr-But-based UAE method was suitable for the efficient and environmentally friendly extraction of SCTB, and also shed light on the mechanisms responsible for the increased extraction efficiency, which could aid in the application of S.chaetoloma and provide insight into the extraction mechanism of DES.
Collapse
Affiliation(s)
- Chao Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Feng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Jie Lei
- Huabang Shengkai Pharmaceutical Co., Ltd, 400000 Chongqing, China
| | - Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shiji Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Juxiang Kuang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Shixing Deng
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Xinglin Yuan
- School of Pharmacy, Zunyi Medical and Pharmaceutical College, Zunyi 563003, Guizhou, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China.
| |
Collapse
|
43
|
Wang R, Fan R, Meng T, Wang L. Exploration of the inhibitory mechanisms of trans-polydatin/resveratrol on α-glucosidase by multi-spectroscopic analysis, in silico docking and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122866. [PMID: 37201332 DOI: 10.1016/j.saa.2023.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Plant-derived phenolics as natural α-glucosidase (α-GLU) inhibitors have attached great attention in the treatment of type-II diabetes mellitus currently. In this study, trans-polydatin and its aglycone resveratrol were found to show a notable inhibitory activity on α-GLU in a mixed-type manner with IC50 values of 18.07 and 16.73 μg/mL, respectively, which were further stronger than anti-diabetic drug acrabose (IC50 = 179.86 μg/mL). Multi-spectroscopic analysis results indicated that polydatin/resveratrol bound to α-GLU with one affinity binding site which was mainly driven by hydrogen bonds and van der Waals forces, and this binding process resulted in conformational alteration of α-GLU. In silico docking study showed that polydatin/resveratrol can well interact with the surrounding amino acid residues in the active cavity of α-GLU. Molecular dynamics simulation further clarified the structure and characterization of α-GLU-polydatin/resveratrol complexes. This study might supply a theoretical basis for the designing of novel functional foods with polydatin/resveratrol.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingyu Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
44
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
45
|
Soy Protein Isolate Interacted with Acrylamide to Reduce the Release of Acrylamide in the In Vitro Digestion Model. Foods 2023; 12:foods12061136. [PMID: 36981063 PMCID: PMC10048519 DOI: 10.3390/foods12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Acrylamide (AA), a common carcinogen, has been found in many dietary products.. This study aimed to explore the interaction of soybean protein isolate (SPI) with AA and further research the different effects of SPI on the AA release due to interactions in the in vitro digestion model. Analysis of variance was used to analyze the data. The results suggested that AA could bind with SPI in vitro, leading to the variation in SPI structure. The intrinsic fluorescence of SPI was quenched by AA via static quenching. The non-covalent (van der Waals forces and hydrogen bonding) and covalent bonds were the main interaction forces between SPI and AA. Furthermore, the release of AA significantly decreased due to its interaction with SPI under simulated gastrointestinal conditions. SPI had different effects on the AA release rate after different treatments. The thermal (80, 85, 90, and 95 °C for either 10 or 20 min) and ultrasound (200, 300, and 400 W for either 15, 30, or 60 min) treatments of SPI were useful in reducing the release of AA. However, the high pressure-homogenized (30, 60, 90, and 120 MPa once, twice, or thrice) treatments of SPI were unfavorable for reducing the release of AA.
Collapse
|
46
|
Fu M, Gao L, Geng Q, Li T, Dai T, Liu C, Chen J. Noncovalent interaction mechanism and functional properties of flavonoid glycoside-β-lactoglobulin complexes. Food Funct 2023; 14:1357-1368. [PMID: 36648058 DOI: 10.1039/d2fo02791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interaction of flavonoid glycosides with milk protein and effects on the functional properties of flavonoid glycoside-β-lactoglobulin complexes are still inexplicit. The noncovalent interactions between flavonoid glycosides including quercetin (QE), quercitrin (QI), and rutin (RU) with β-lactoglobulin (β-LG) were determined by computer molecular docking and multispectral technique analysis. The fluorescence quenching results indicated that the flavonoid glycosides formed stable complexes with β-LG by the static quenching mechanism. The computer molecular docking and thermodynamic parameters analysis conclude that the main interaction of β-LG-QE was via hydrogen bonding, while for β-LG-QI and β-LG-RU it is via hydrophobic forces. The order of binding affinity to β-LG was QE (37.76 × 104 L mol-1) > RU (16.80 × 104 L mol-1) > QI (11.17 × 104 L mol-1), which indicated that glycosylation adversely affected the colloidal complex binding capacity. In this study, the physicochemical properties of the protein-flavonoid colloidal complex were determined. The analysis by circular dichroism spectroscopy demonstrated that flavonoid glycosides made the protein structure looser by inducing the secondary structure of β-LG to transform from the α-helix and β-sheet to random coils. The hydrophobicity of β-LG decreased due to binding with flavonoid glycosides, while functional properties including foaming, emulsification, and antioxidant capacities of β-LG were improved due to the noncovalent interactions. This study presents a part of the insight and guidance on the interactive mechanism of flavonoid glycosides and proteins and is helpful for developing functional protein-based foods.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Lizhi Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,West Yunnan University of Applied Sciences, Dali, Yunnan, 671000, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
47
|
Fan M, Yang W, Peng Z, He Y, Wang G. Chromone-based benzohydrazide derivatives as potential α-glucosidase inhibitor: Synthesis, biological evaluation and molecular docking study. Bioorg Chem 2023; 131:106276. [PMID: 36434950 DOI: 10.1016/j.bioorg.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In order to find new α-glucosidase inhibitors with high efficiency and low toxicity, novel chromone-based benzohydrazide derivatives 6a-6s were synthesized and characterized through 1H NMR, 13C NMR, and HRMS. All the new synthesized compounds were tested for inhibitory activities against α-glucosidase. Compounds 6a-6s with IC50 values ranging from 4.51 ± 0.09 to 27.21 ± 0.83 μM, showed a potential α-glucosidase inhibitory activity as compared to the positive control (acarbose: IC50 = 790.40 ± 0.91 μM). Compound 6i exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 4.51 ± 0.09 μM. Theinteractionbetween α-glucosidase and 6i was further confirmed by enzyme kinetic, fluorescence quenching, circular dichroism, and molecular docking study. In vivo experiment showed that 6i could suppress the rise of blood glucose levels after sucrose loading. The cytotoxicity result indicated that 6i exhibited low cytotoxicity in vitro.
Collapse
Affiliation(s)
- Meiyan Fan
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
48
|
Dong Q, Hu N, Yue H, Wang H, Wei Y. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS. Biomed Chromatogr 2023; 37:e5536. [PMID: 36264709 DOI: 10.1002/bmc.5536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
α-glucosidase inhibitors (AGIs) are widely used for the treatment of type 2 diabetes, but their side effects have made it to develop novel and alternative AGIs immediately. In this study, the extract of Hypericum perforatum L. (HPE) has been confirmed to have α-glucosidase inhibitory activity in vitro and in vivo. Seven active compounds, rutin, hyperoside, isoquercitrin, avicularin, quercitrin, quercetin, and biapigenin, were screened based on a bio-affinity chromatography column with α-glucosidase enzyme-conjugated solid phase and UPLC/MS, which exhibited excellent α-glycosidase inhibitory effects by the determined IC50 values. The mechanism of α-glycosidase inhibitory activity of biapigenin was studied for the first time. The results showed that biapigenin was a high-potential, reversible, and mixed enzyme inhibitor. Analysis by molecular docking further revealed that hydrophobic interactions were generated by interactions between biapigenin and amino acid residues LYS156, PHE303, PHE314, and LEU313. In addition, hydrogen bonding occurred between biapigenin and α-glucosidase amino acid residues ASP307, SER241, and LYS156. This research identified that biapigenin could be a novel AGI and further applied to the development of potential anti-diabetic drugs. Furthermore, our studies established a rapid in vitro screening method for AGIs from plants.
Collapse
Affiliation(s)
- Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Yue Wei
- Henan Natural Product Biotechnology, Co., LTD., Henan, China
| |
Collapse
|
49
|
Taha M, Rahim F, Khan IU, Uddin N, Farooq RK, Wadood A, Rehman AU, Khan KM. Synthesis of thiazole-based-thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study. J Biomol Struct Dyn 2023; 41:12077-12092. [PMID: 36695088 DOI: 10.1080/07391102.2023.2171134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
This work reports the convenient approach for the synthesis of thiazole based thiourea derivatives (1-21) from 2-bromo-1-(4-fluorophenyl)thiazole-1-one and phenyl isothiocyanates. The scope and diversity were achieved from readily available phenyl isothiocyanates. This protocol involves an oxidative C-S bond formation. Moreover, hybrid thiazole based thiourea scaffolds (1-21) according to literature known protocol were screened in vitro for anticancer Potential against breast cancer, antiglycation and antioxidant inhibitory profile. All newly developed scaffolds were showed moderate to good inhibitory potentials ranging from 0.10 ± 0.01 µM to 11.40 ± 0.20 µM, 64.20 ± 0.40 µM to 385.10 ± 1.70 µM and 8.90 ± 0.20 µM to 39.20 ± 0.50 µM against anticancer, antiglycation and antioxidant respectively. Among the series, compounds 12 (IC50 = 0.10 ± 0.01 µM), 10 (IC50 = 64.20 ± 0.40 µM) and 12 (IC50 = 8.90 ± 0.20 µM) with flouro substitution at phenyl ring of thiourea were identified to be the most potent among the series having excellent anticancer, antiglycation and antioxidant potential. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C-NMR spectroscopy. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah Khan
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
50
|
Zeng X, Zhao M, Yao H. Anti-lung Cancer, Anti-microbial, Anti-α-glucosidase, Anti-sorbitol Dehydrogenase, and in silico Studies of Wogonoside and Isoliquiritigenin as Natural Compounds. J Oleo Sci 2023; 72:919-927. [PMID: 37793822 DOI: 10.5650/jos.ess23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Natural substances have long been used in cancer treatment, particularly in Chinese or Indian traditional medicine. Natural compounds are defined as chemical molecules that are found in fungus, marine animals, plants, or bacteria and have significant biological and pharmacological effects. Wogonoside and isoliquiritigenin are two well-known examples of plant-derived chemicals. Several modern anti-cancer medications also come from natural sources. The mic test was used to conduct tests on various natural substances' antimicrobial and antifungal properties. MTT assay was used on lung cancer, and normal (HUVEC) cell lines for analyzing of cytotoxicity and anti-lung cancer effects of Wogonoside and Isoliquiritigenin. These Wogonoside and Isoliquiritigenin had high cell death and anti-lung cancer effects against SPC-A-1, SK-LU-1, and 95D cell lines. Among the above cell lines, the best result of anti-cancer properties of Wogonoside and Isoliquiritigenin was gained in the cell line of KATO III. We examined the inhibition effects on two important enzymes using these two compounds and determined the results. PnPG and NADPH were used as substrates for enzymes. IC50 of Wogonoside and Isoliquiritigenin compounds were 18.25±4.18 and 112.64±16.02 nM for α-glucosidase and 54.72±8.61 and 47.12±11.56 nM for sorbitol dehydrogenase, respectively. For Wogonoside, gram-negative bacteria (K. pneumoniae and E. coli) had MIC values of 9.75±0.95 and 13.77±1.43 µg/mL, gram-positive bacteria (E. faecalis and S. aureus) of 37.02±4.52 and 24.85±3.64 µg/mL, respectively. Finally, molecular docking was done for enzyme results and anticancer results. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be anti-diabetic, anticancer, antibacterial candidates for drug design.
Collapse
Affiliation(s)
- Xiancong Zeng
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital, Hubei University of Medicine
| | - Mengxia Zhao
- School of Public Hygiene and Health, Xianning Medical College, Hubei University of Science and Technology
| | - Hefeng Yao
- Department of Medical Oncology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University
| |
Collapse
|