1
|
da Silva RT, de Souza Pedrosa GT, Dos Santos Franco AJ, de Souza Grilo MM, de Lucena FA, Barão CE, Jung J, Schaffner DW, Magnani M. Transfer, survival and photoinactivation of Salmonella enterica on fresh produce and gloves. Int J Food Microbiol 2025; 431:111089. [PMID: 39904111 DOI: 10.1016/j.ijfoodmicro.2025.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
This study quantified the transfer of Salmonella between fruit (tomato and cucumber) and gloves (High-density polyethylene-HDPE, Vinyl-VY) after different contact time (2, 5, 10 and 30 s). The survival of Salmonella in discarded gloves and the photodynamic inactivation (PDI; curcumin 7.5 μM; 16.1, 20.2 and 24.2 J/cm2) of the pathogen were also evaluated. Scanning electronic micrographs showed the cell morphology of Salmonella on discarded HDPE and VY gloves. The highest transfer (p > 0.05) of Salmonella occurred after 30 s (4.0 %; -1.4 log %) from tomato to HDPE. Salmonella on contaminated gloves survived for up to 9 days (2.1-1.5 log CFU/sample). PDI reduced (p > 0.05) Salmonella counts ∼3.0 and 2.0 log CFU/sample after 12 min on tomato and cucumber, respectively. These results contribute important information about transfer and survival of Salmonella on gloves and fruit. The obtained data can be used to support the development of risk assessment models and measures to mitigate the risks of Salmonella contamination in fresh- produce.
Collapse
Affiliation(s)
- Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Geany Targino de Souza Pedrosa
- Food Technology Academic Unit, Agrifood Science and Technology Center, Federal University of Campina Grande, Campus Pombal, 58840-000 Pombal, Brazil
| | - Alyson José Dos Santos Franco
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Fernando Azevedo de Lucena
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil
| | - Carlos Eduardo Barão
- Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná 87703-536, Brazil
| | - Jiin Jung
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Brazil.
| |
Collapse
|
2
|
Faisal M, Gani A, Muzaifa M, Heriansyah MB, Desvita H, Kamaruzzaman S, Sauqi A, Ardiansa D. Edible Coating Combining Liquid Smoke from Oil Palm Empty Fruit Bunches and Turmeric Extract to Prolong the Shelf Life of Mackerel. Foods 2025; 14:139. [PMID: 39796429 PMCID: PMC11719596 DOI: 10.3390/foods14010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1). TVB-N testing showed that the mixture of liquid smoke and turmeric at a ratio of CLS 6: 1 and CLS 8: 1 maintains the freshness of fish for 48 h. Meanwhile, organoleptic testing reports that the best mixture was CLS 8:1. The number of colonies in the CLS 2:1, CLS 4:1, CLS 6:1, and CLS 8:1 mixtures were 4.92, 4.92, 4.16, and 4 × 10⁵ colonies/g after 44 h of soaking. The MPN test result at 48 h of soaking is 1.1 × 103 MPN/g. Generally, mackerel preserved with a mixture of turmeric extract and liquid smoke with a ratio of 8:1 can be consumed up to a shelf life of 48 h at room temperature storage.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.F.); (A.G.); (S.K.); (A.S.); (D.A.)
- Climate Change Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Halal Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Oil Palm and Coconut Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Asri Gani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.F.); (A.G.); (S.K.); (A.S.); (D.A.)
- Oil Palm and Coconut Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Murna Muzaifa
- Department of Agriculture Product Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.M.); (M.B.H.)
| | - M. Bagas Heriansyah
- Department of Agriculture Product Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.M.); (M.B.H.)
| | - Hera Desvita
- Research Center for Chemistry, National Research and Innovation Agency, B.J. Habibie Science and Techno Park, Serpong, South Tangerang 15314, Indonesia
| | - Suraiya Kamaruzzaman
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.F.); (A.G.); (S.K.); (A.S.); (D.A.)
- Climate Change Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Ahmad Sauqi
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.F.); (A.G.); (S.K.); (A.S.); (D.A.)
| | - Daru Ardiansa
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (M.F.); (A.G.); (S.K.); (A.S.); (D.A.)
| |
Collapse
|
3
|
Gupta M, Sahu A, Mukherjee T, Mohanty S, Das P, Nayak N, Kumari S, Singh RP, Pattnaik A. Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects. Photochem Photobiol Sci 2025; 24:191-214. [PMID: 39654006 DOI: 10.1007/s43630-024-00669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.
Collapse
Affiliation(s)
- Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anwesha Sahu
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyamjeet Das
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Nikita Nayak
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Shivangi Kumari
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashok Pattnaik
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Olszewska MA, Draszanowska A, Zimińska A, Starowicz M. Improvement of Selected Quality and Safety Traits in Turmeric-Enriched Kale Pesto Using Blue Light and Sous-Vide. Molecules 2024; 29:5831. [PMID: 39769920 PMCID: PMC11728637 DOI: 10.3390/molecules29245831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The potential of blue light (BL) and sous-vide (S-V) as a novel approach for food preservation was investigated via measurements of the total phenolic content (TPC), antioxidative activity, color, and their antibacterial effect on Listeria monocytogenes in two versions of laboratory-prepared kale pesto, with and without the addition of turmeric. The TPC ranged from 85 to 208 mg/100 g GAE d.m. and 57 to 171 mg/100 g GAE d.m., respectively. In both versions, the highest TPC was in the blue light-sous-vide samples, while the lowest was after the sous-vide, with a loss of polyphenols of almost 40% during storage when turmeric was absent. Antioxidative capabilities of the pesto were initially estimated at 54.07 and 7.46 µmol TE/g d.m., respectively, indicating significant bioactivity enhancement by turmeric. In turmeric-enriched pesto, sous-vide decreased the antioxidative activity levels by 12% in fresh pesto and by 45% during storage. Meanwhile, blue light compensated for the losses caused by the sous-vide treatment. Although the hue angle (h°) of sous-vide pesto was lower than that of blue light pesto in most samples, sequential BL and S-V ultimately yielded the lowest h°. The sequential BL and S-V treatment resulted in a 1.7 log reduction in the L. monocytogenes population, whereas adding turmeric increased the treatment efficacy by another 2.0 logs. Thus, as a source of photosensitizing molecules, turmeric was highly antibacterial after photothermal activation with blue light and sous-vide. This study suggests that blue light could be an effective (pre)treatment used on pesto sauces to preserve bioactivity and to improve safety when enriched with a natural additive like turmeric.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Juliana Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
5
|
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024; 13:3980. [PMID: 39683052 DOI: 10.3390/foods13233980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing antibiotic resistance is one of the world's greatest health problems, and biocide use in food disinfection, alongside other application fields, could increase antibiotic resistance. Effective and eco-friendly food decontamination treatment with minimal chemical intervention in food production is urgently needed. Synergistic antimicrobial interaction of photoactive compounds and blue-light-emitting diodes have recently been proven effective in agricultural and environmental applications. Curcumin-based non-thermal treatment has been reviewed in this work for the development of a safe and effective decontamination tool that could be adapted to the food industry. The antimicrobial mechanism of the synergistic interaction and the inhibitory efficacy against foodborne pathogens (bacteria in both vegetative form and spore, as well as in biofilms) are discussed. Further studies on curcumin and its derivative, as well as light illumination patterns, were compared for enhanced bactericidal efficacy. Moreover, studies relating to photodynamic inactivation treatment for food sanitation and food quality enhancement (cereal grains and other food products) were summarized, as well as the impact on food organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Haihong Yang
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Olszewska MA, Zimińska A, Draszanowska A, Sawicki T. Blackthorn fruit peel polyphenol extracts and photodynamic effect under blue light against Listeria monocytogenes. Food Microbiol 2024; 124:104608. [PMID: 39244360 DOI: 10.1016/j.fm.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Photodynamic inactivation is an emerging antimicrobial treatment that can be enhanced by employing exogenous photosensitizers to eradicate foodborne pathogens. This study investigated a novel combinatory strategy to eradicate Listeria monocytogenes using blackthorn fruit peel (BFP) and blue light (BL). Extracts of BFP were characterized in terms of polyphenolic content, individual constituents, and antioxidant and antimicrobial activity. The concentration of phenolic compounds and antioxidant activity were both found to be determinants of antimicrobial activity. It was further speculated that flavonols, predominantly quercetin and rutin, were responsible for the activity of BFP against L. monocytogenes. A combination of BFP and BL resulted in a rapid inactivation of the pathogen by up to 4 log CFU/mL at 58.5 J/cm2, corresponding to 15 min BL illumination. Flow cytometry analysis revealed that the bacterial cells lost activity and suffered extensive membrane damage, exceeding 90% of the population. After photosensitizing L. monocytogenes with the BFP constituents quercetin and rutin, a 1.3-log reduction was observed. When applied together, these compounds could inflict the same damaging effect on cells as they did individually when effects were added. Therefore, the results indicate that BFP represents a natural source of (pro-)photosensitizers, which act additively to create inactivation effects. This study may help identify more effective plant-based photosensitizers to control L. monocytogenes in food-related applications.
Collapse
Affiliation(s)
- Magdalena A Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| |
Collapse
|
8
|
Seididamyeh M, Netzel ME, Mereddy R, Sultanbawa Y. Curcumin-mediated photodynamic treatment to extend the postharvest shelf-life of strawberries. J Food Sci 2024; 89:6616-6627. [PMID: 39230384 DOI: 10.1111/1750-3841.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
This study investigated the potential use of curcumin-mediated photodynamic treatment as a postharvest decontamination technique to reduce microbial load and growth and therefore extend the shelf life of strawberries. Curcumin was applied on strawberries, followed by illumination and storage at 4°C for 16 days. Strawberries were evaluated for decay, microbial load, and physicochemical properties such as weight loss, color, and firmness during storage. The findings revealed that curcumin-mediated photodynamic treatment effectively reduced the decay incidence and severity in strawberries, with 20% less decay occurrence compared to untreated fruits, which was shown to be dependent on curcumin concentration. While a complete reduction in microbial load was observed upon treatment, microbial growth remained unaffected throughout storage. Moreover, photodynamic treatment did not show any adverse impact on color properties and firmness of strawberries. This eco-friendly technique presents potential for fruit's shelf-life extension, although optimization of treatment parameters and photodynamic unit design seems to be essential.
Collapse
Affiliation(s)
- Maral Seididamyeh
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland, Australia
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland, Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, Queensland, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland, Australia
| |
Collapse
|
9
|
Ruan S, Zhu T, Zuo C, Peng J, Liu L, Lan W, Pan L, Tu K. Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods 2024; 13:2367. [PMID: 39123557 PMCID: PMC11311309 DOI: 10.3390/foods13152367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fresh-cut radishes are susceptible to quality loss and microbial contamination during storage, resulting in a short shelf life. This study investigated the effects of photodynamic technology (PDT) on fresh-cut radishes stored at 4 °C for 10 d and developed appropriate models to predict the shelf life. Results showed that curcumin-mediated PDT maintained sensory acceptability, color, and firmness, decreased weight loss, and increased ascorbic acid and total phenolics of samples by inactivating polyphenol oxidase and peroxidase, resulting in improved antioxidant capacity and quality. The total bacteria count in samples was significantly (p < 0.05) reduced by 2.01 log CFU g-1 after PDT and their shelf life was extended by 6 d compared to the control. To accurately predict the shelf life, the kinetic models based on microbial growth were established, while weight loss, b* value, firmness, and ascorbic acid were selected as representative attributes for developing quality-based prediction models through correlation analysis. Modeling results showed prediction models based on ascorbic acid best fitted PDT-treated samples, while the modified Gompertz model based on bacteria growth was the best for control and samples treated by sodium hypochlorite. This study suggests that PDT is promising in extending the shelf life of fresh-cut radishes, and using critical indexes to establish the prediction model can provide a more reliable shelf-life estimation.
Collapse
Affiliation(s)
- Sijia Ruan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Beganovic S, Wittmann C. Medical properties, market potential, and microbial production of golden polyketide curcumin for food, biomedical, and cosmetic applications. Curr Opin Biotechnol 2024; 87:103112. [PMID: 38518404 DOI: 10.1016/j.copbio.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Curcumin, a potent plant polyketide in turmeric, has gained recognition for its outstanding health benefits, including anti-inflammatory, antioxidant, and anticancer effects. Classical turmeric farming, which is widely used to produce curcumin, is linked to deforestation, soil degradation, excessive water use, and reduced biodiversity. In recent years, the microbial synthesis of curcumin has been achieved and optimized through novel strategies, offering increased safety, improved sustainability, and the potential to revolutionize production. Here, we discuss recent breakthroughs in microbial engineering and fermentation techniques, as well as their capacity to increase the yield, purity, and cost-effectiveness of curcumin production. The utilization of microbial systems not only addresses supply chain limitations but also helps meet the growing demand for curcumin in various industries, including pharmaceuticals, foods, and cosmetics.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
11
|
Merin Rinky K, Gayathri Devi D, Priya VK. Fagopyrin F fraction from Fagopyrum tataricum demonstrates photodynamic inactivation of skin infecting bacterium and squamous cell carcinoma (A431) cells. Photochem Photobiol Sci 2024; 23:1011-1029. [PMID: 38753286 DOI: 10.1007/s43630-024-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Photodynamic therapy (PDT) stands out as a noteworthy development as an alternative targeted treatment against skin ailments. While PDT has advanced significantly, research into photo-activatable "Green drugs" derived from plants which are less toxic than the synthetic drugs has not kept pace. This study investigates the potential of Fagopyrin F Containing Fraction (FCF) derived from Fagopyrum tataricum in mediating PDT against Staphylococcus aureus and skin cancer cells (A431). FCF was isolated from the plant extract using thin-layer chromatography, followed by identification of the compound through high-performance liquid chromatography and high-resolution liquid chromatography-mass spectrometry. FCF was tested to determine its antibacterial and anticancer efficacy. Results revealed that FCF-mediated PDT exhibited potent action against S. aureus, significantly reducing bacterial viability (MIC 19.5 μg/100 μL). Moreover, FCF-mediated PDT showed good efficacy against A431 cells, resulting in a notable reduction in cell viability (IC50 29.08 μg/mL). Given the known association between S. aureus and squamous cell carcinoma (SCC), FCF shows the potential to effectively target and eradicate both SCC and the related S. aureus present within the lesions. In silico study reveals that Fagopyrin F effectively binds with the epidermal growth factor (EGFR), one among the highly expressed proteins in the A431 cells, with a binding energy of - 9.6 kcal/mol. The affinity of Fagopyrin F for EGFR on A431 cancer cells along with its cytotoxicity against skin cancer cells while safeguarding the normal cells (L929) plays a major part in the way it targets cancer cells. However, its safety, efficacy, and long-term advantages in treating skin conditions require more investigation, including in vivo investigations and clinical trials.
Collapse
Affiliation(s)
- K Merin Rinky
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - D Gayathri Devi
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| | - V K Priya
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
12
|
Losantos R, Prampolini G, Monari A. A Portrait of the Chromophore as a Young System-Quantum-Derived Force Field Unraveling Solvent Reorganization upon Optical Excitation of Cyclocurcumin Derivatives. Molecules 2024; 29:1752. [PMID: 38675572 PMCID: PMC11052401 DOI: 10.3390/molecules29081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, which are suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent's reorganization, in terms of both structure and time scale evolution.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy;
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| |
Collapse
|
13
|
Zimińska A, Lipska I, Gajewska J, Draszanowska A, Simões M, Olszewska MA. Antibacterial and Antibiofilm Effects of Photodynamic Treatment with Curcuma L. and Trans-Cinnamaldehyde against Listeria monocytogenes. Molecules 2024; 29:685. [PMID: 38338429 PMCID: PMC10856099 DOI: 10.3390/molecules29030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.
Collapse
Affiliation(s)
- Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Izabela Lipska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Joanna Gajewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland;
| | - Manuel Simões
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Magdalena A. Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland (J.G.)
| |
Collapse
|
14
|
Bertolo MRV, Dias LD, Lima AR, Aguiar ASN, Alves F, de Souza M, Napolitano HB, Bagnato VS, Junior SB. Photoantimicrobial chitosan-gelatin-pomegranate peel extract films for strawberries preservation: From microbiological analysis to in vivo safety assessment. Int J Biol Macromol 2023; 253:127085. [PMID: 37774819 DOI: 10.1016/j.ijbiomac.2023.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to investigate the application of biopolymeric materials (chitosan, gelatin, and pomegranate peel extract as photosensitizer) and antimicrobial photodynamic therapy (aPDT) on the physicochemical and microbial safety of strawberries. The photosensitizer potential of the materials was confirmed by a light-dose-dependent photobleaching profile. The application of light (525 nm; 50 J cm-2) decreased by >2 log CFU mL-1 the survival of Staphylococcus aureus on the surface of the photoactive-biopolymeric films. Moreover, the materials did not present in vivo cytotoxicity using Danio rerio (Zebrafish) as well as cytophytotoxic, genotoxic, or mutagenic potentials against Allium cepa plant model, which points out their safety to be used as films without posing a risk to the humans and the environment. The photoactive-polymeric coatings were able to maintain the strawberries weight, and the association with green light was 100 % effective in delaying fungal contamination. These coated-strawberries presented a significant reduction in S. aureus survival after light application (5.47-4.34 log CFU mL-1). The molecular level analysis of the photoactive compound cyanidin-3-glucoside indicates absorption on UV-Vis consistent with aPDT action. Therefore, this study showed that the antimicrobial effects of aPDT combined with photoactive-biopolymeric coatings were enhanced, while the quality of the strawberries was maintained.
Collapse
Affiliation(s)
- Mirella R V Bertolo
- University of São Paulo, São Carlos Institute of Chemistry (USP/IQSC), São Carlos, SP, Brazil
| | - Lucas D Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil; University of São Paulo, São Carlos Institute of Physics (USP/IFSC), São Carlos, SP, Brazil.
| | - Alessandra R Lima
- University of São Paulo, São Carlos Institute of Physics (USP/IFSC), São Carlos, SP, Brazil
| | - Antonio S N Aguiar
- State University of Goiás, Theoretical and Structural Chemistry Research Group, Anápolis, GO, Brazil
| | - Fernanda Alves
- University of São Paulo, São Carlos Institute of Physics (USP/IFSC), São Carlos, SP, Brazil
| | - Mariana de Souza
- University of São Paulo, São Carlos Institute of Physics (USP/IFSC), São Carlos, SP, Brazil
| | - Hamilton B Napolitano
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil; State University of Goiás, Theoretical and Structural Chemistry Research Group, Anápolis, GO, Brazil
| | - Vanderlei S Bagnato
- State University of Goiás, Theoretical and Structural Chemistry Research Group, Anápolis, GO, Brazil; Texas A&M University, Department of Biomedical Engineering, College Station, TX, USA
| | - Stanislau Bogusz Junior
- University of São Paulo, São Carlos Institute of Chemistry (USP/IQSC), São Carlos, SP, Brazil
| |
Collapse
|
15
|
Galindo-Pérez MJ, Martínez-Acevedo L, Vidal-Romero G, Serrano-Mora LE, Zambrano-Zaragoza MDLL. Preservation of Fresh-Cut 'Maradol' Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin. Polymers (Basel) 2023; 15:3515. [PMID: 37688140 PMCID: PMC10489897 DOI: 10.3390/polym15173515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Papaya is one of the most consumed fruits in the world; however, tissue damage caused by cuts quickly leads to its decay. Therefore, this study aimed to prepare and characterize lemon oil and curcumin nanocapsules to evaluate their capacity for preserving fresh-cut papaya. Lemon essential oil and curcumin nanocapsules were prepared using ethyl cellulose (EC) and poly-(ε-caprolactone) (PCL) by the emulsification-diffusion method coupled with ultrasound. The particles had sizes smaller than 120 nm, with polydispersity indices below 0.25 and zeta potentials exceeding -12 mV, as confirmed by scanning electron microscopy. The nanoparticles remained stable for 27 days, with sedimentation being the instability mechanism observed. These nanoparticles were employed to coat fresh-cut papaya, which was stored for 17 days. The results demonstrated their remarkable efficacy in reducing the respiration rate. Furthermore, nanocapsules maintained the pH and acidity levels of the papayas for an extended period. The lemon oil/EC nanocapsule treatment retained the color better. Additionally, all systems exhibited the ability to minimize texture loss associated with reduced pectin methylesterase activity. Finally, the nanocapsules showed a notable reduction in polyphenol oxidase activity correlating with preserving total phenolic compounds in the fruit. Therefore, the lemon oil and curcumin nanoparticles formed using EC and PCL demonstrated their effectiveness in preserving fresh-cut 'Maradol' papaya.
Collapse
Affiliation(s)
- Moises Job Galindo-Pérez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de Mexico 05348, Ciudad de Mexico, Mexico;
- Departamento del Área Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Campus II, Col. Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Ciudad de Mexico, Mexico;
| | - Lizbeth Martínez-Acevedo
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de Mexico 04960, Ciudad de Mexico, Mexico;
- Laboratorio de Posgrado e Investigación en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, Cuautitlán Izcalli 54745, Estado de Mexico, Mexico;
| | - Gustavo Vidal-Romero
- Departamento del Área Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Campus II, Col. Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Ciudad de Mexico, Mexico;
- Laboratorio de Posgrado e Investigación en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, Cuautitlán Izcalli 54745, Estado de Mexico, Mexico;
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Posgrado e Investigación en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, Cuautitlán Izcalli 54745, Estado de Mexico, Mexico;
| | - María de la Luz Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación de Alimentos y Tecnologías Emergentes, Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán–Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli 54714, Estado de Mexico, Mexico
| |
Collapse
|
16
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Liao X, Xing Y, Fan X, Qiu Y, Xu Q, Liu X. Effect of Composite Edible Coatings Combined with Modified Atmosphere Packaging on the Storage Quality and Microbiological Properties of Fresh-Cut Pineapple. Foods 2023; 12:foods12061344. [PMID: 36981269 PMCID: PMC10048421 DOI: 10.3390/foods12061344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the effect of edible coating (EC), modified atmosphere packaging (MAP), and edible coating + modified atmosphere packaging (EC + MAP) treatments on the quality of fresh-cut pineapples during storage at 4 °C. The quality differences were analyzed by measuring the quality, physiological indicators, and total microbial counts. After 8 d of storage, the brightness (L*) values of the EC + MAP and control samples were 72.76 and 60.83, respectively. The water loss and respiratory rate of the EC + MAP were significantly inhibited from 0% and 29.33 mg CO2 kg-1 h-1 to 4.13% and 43.84 mg CO2 kg-1 h-1, respectively. Furthermore, the fresh-cut pineapples treated with EC + MAP presented a good appearance, with lower total soluble solids (TSS) and relative conductivity and higher titratable acid (TA), ascorbic acid (AA), total phenol content, and firmness compared to the other treatment groups. At the end of storage, the EC + MAP samples exhibited the lowest polyphenol oxidase (PPO) activity, peroxidase (POD) activity, and malondialdehyde (MDA) content at 28.53 U, 60.37 U, and 1.47 nmol·g-1, respectively. Furthermore, the efficiency of EC + MAP treatment exceeded that of EC or MAP alone, preventing key problems involving the surface browning and microbiological safety of the fresh-cut pineapples. The results showed that EC + MAP treatment was more successful in maintaining the storage quality and extending the shelf life of fresh-cut pineapples.
Collapse
Affiliation(s)
- Xingmei Liao
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Yage Xing
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiangfeng Fan
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ye Qiu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qinglian Xu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaocui Liu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
18
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Influences of photosensitizer curcumin on microbial survival and physicochemical properties of chicken during storage. Poult Sci 2022; 102:102417. [PMID: 36565639 PMCID: PMC9801210 DOI: 10.1016/j.psj.2022.102417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Curcumin is a natural plant derived antimicrobial, which was shown to inactivate or inhibit the growth of a broad spectrum of microorganisms through photodynamic inactivation. The purpose of the present study is to evaluate the influence of curcumin against commensal spoilage bacteria on chicken, foodborne pathogens, and the chicken skin pH and color. Chicken skin samples were immersed into water, photosensitizer curcumin (PSC), or peracetic acid (PAA). PSC samples were subsequently subjected to illumination by LEDs (430 nm). The PSC treatments did not inhibit the outgrowth of the four groups of spoilage bacteria evaluated. PSC treatment resulted in 2.9 and 1.5 log CFU/cm2 reduction of L. monocytogenes and Salmonella, respectively. Over a 10-d period, population of Salmonella remained significantly lower on PSC treated samples compared to other treatments. PSC treatment resulted in no significant changes in pH or color as compared to water treated samples. This research suggests PSC effectively controlled pathogen outgrowth on chicken without negatively influencing quality; and may be suitable for use in commercial chicken processing.
Collapse
|
20
|
de Miera LS, Rúa J, Del Pilar Del Valle M, Sanz J, Armesto MRG. Synergistic Antimicrobial Effect of a Lippia citriodora Natural Extract with Vanillin against Verotoxigenic Escherichia coli in Refrigerated Piel de Sapo Melon Juice. J Food Prot 2022; 85:1506-1514. [PMID: 35894663 DOI: 10.4315/jfp-22-033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The antimicrobial activity of a commercial Lippia citriodora extract (LCE) at 2,500 μg mL-1 (maximum sensory acceptable level) and vanillin (MIC and 2 MIC) alone and in combination were analyzed in four strains of Escherichia coli (two nonverotoxigenic and two verotoxigenic) in cation-adjusted Mueller-Hinton medium and in Piel de Sapo melon juice (MJ) stored under refrigeration (4°C) for 7 days. The bacterial counts of the four strains together in untreated samples were higher (≈4 log CFU/mL) in cation-adjusted Mueller-Hinton medium than in stored MJ. LCE showed higher antimicrobial activity in MJ than in standard culture broth, but vanillin showed a higher effect in broth. The verotoxigenic strain E. coli O146:H stx2 was the most sensitive to LCE in refrigerated MJ. Combinations of vanillin (at MIC and 2 MIC) with LCE were very effective in reducing E. coli counts either in broth or in refrigerated MJ to undetectable levels. Bactericidal effects were observed for the combinations in all strains in broth and in MJ. Also, these combinations showed an antimicrobial synergistic effect after day 3 of storage in MJ in three of the bacterial strains tested. These results indicate that the combination of LCE (at maximum sensory acceptable levels) and vanillin (at low concentrations) could be considered as a promising natural antimicrobial agent to inhibit verotoxigenic E. coli growth in refrigerated MJ and improve its quality. HIGHLIGHTS
Collapse
Affiliation(s)
- Leire Sáenz de Miera
- Department of Food Hygiene and Food Technology, University of León, 24071, León, Spain
| | - Javier Rúa
- Department of Molecular Biology, University of León, 24071, León, Spain
| | | | - Javier Sanz
- Food Science and Food Technology Institute, 24007 León, Spain
| | | |
Collapse
|
21
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
22
|
Xing Y, Liao X, Wu H, Qiu J, Wan R, Wang X, Yi R, Xu Q, Liu X. Comparison of Different Varieties on Quality Characteristics and Microbial Activity of Fresh-Cut Pineapple during Storage. Foods 2022; 11:foods11182788. [PMID: 36140915 PMCID: PMC9497531 DOI: 10.3390/foods11182788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
This study compared the quality and storage characteristics of four pineapple varieties to select those displaying adequate storage resistance and those suitable for freshly cut processing. Four varieties of pineapple, namely Tainong No.16, Tainong No.17, Tainong No.11, and Bali, were used to analyze the quality differences in freshly cut pineapple during storage by measuring the quality, physiological indicators, and total microbial count. The results indicated that the nutritional quality and storability of freshly cut pineapples differed significantly among the varieties. During refrigeration at 4 °C, Tainong No.11 and Bali displayed the shortest storage period of 4 d, while Tainong No.17 and Tainong No.16 presented storage periods of 5 d and 6 d, respectively. A sensory evaluation indicated that the Tainong No.16 variety was superior in terms of consumer preference, while the Bali slices were generally rated lower than the other cultivars. Additionally, the sensory properties, weight loss, firmness, and ascorbic acid (AA) content of Tainong No.16 changed the least during storage, with values of 60.75%, 6.48%, 75.15%, and 20.44%, respectively. Overall, the quality order of the four varieties of freshly cut pineapples during storage was: Tainong No.16 > Tainong No.17 > Tainong No.11 > Bali. Moreover, two-way ANOVA showed that the main effect of variety and storage time on the storage quality of fresh-cut pineapple was significant (p < 0.05). The interaction effect of variety and storage time on other quality characteristics of fresh-cut pineapple was significant (p < 0.05) except for Titratable acid (TA) and AA. In conclusion, Tainong No.16 displayed higher storage potential than the other varieties. The results of this work provide application possibilities to promote the successful processing of pineapple cultivars as freshly cut produce.
Collapse
Affiliation(s)
- Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
- Correspondence:
| | - Xingmei Liao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Haijun Wu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jiamin Qiu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rufeng Wan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaomin Wang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rumeng Yi
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
23
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Zhang Z, Qin J, Wang Z, Chen F, Liao X, Hu X, Dong L. Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage. Food Res Int 2022; 157:111472. [PMID: 35761703 DOI: 10.1016/j.foodres.2022.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Photodynamic technology (PDT) is an emerging non-thermal processing technique, however, due to a lack of edible photosensitizers, its application to the food industry is limited. To better understand sodium copper chlorophyll (SCC) feasibility as a photosensitizer, we analyzed the effects of PDT-SCC on Escherichia coli O157:H7 inactivation using different lighting times (15, 30, 45, 60, and 75 min), lighting power (30, 60, 90, 120, and 150 W), and SCC concentrations (2, 4, 6, 8, and 10 mM). We showed that bactericidal effects depended on all three parameters, but the most suitable sterilization condition for E. coli occurred at 10 mM SCC, for 60 min at 120 W. We also investigated cell morphology, reactive oxygen species (ROS) production, the activity of three oxidative response enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)), and ompA, ompF, uvrA, and recA expression. When compared with the control group, PDT-SCC destroyed bacterial morphology, increased ROS production, decreased antioxidant enzyme activity (SOD, CAT, and GPX), down-regulated membrane protein gene expression, including ompA and ompF, and up-regulated the DNA damage-repair related genes, uvrA and recA. Thus, bacterial rupture caused by oxidative damage could be the main mechanism underpinning PDT-SCC action.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianran Qin
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhe Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
25
|
Bhatkar NS, Shirkole SS, Brennan C, Thorat BN. Pre‐processed
fruits as raw materials: part I – different forms, process conditions and applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikita S. Bhatkar
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Shivanand S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Charles Brennan
- School of Science, STEM College RMIT University Melbourne Vic. Australia
| | - Bhaskar N. Thorat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| |
Collapse
|
26
|
Comparative Proteomic Analysis of Wild-type and a SlETR-3 (Nr) Mutant Reveals an Ethylene-Induced Physiological Regulatory Network in Fresh-Cut Tomatoes. Food Res Int 2022; 161:111491. [DOI: 10.1016/j.foodres.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
|
27
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Zhang X, Lu N, Li Z, Meng X, Cao W, Xue Y, Xue C, Tang Q. Effects of curcumin-mediated photodynamic treatment on lipid degradation of oysters during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1978-1986. [PMID: 34519034 DOI: 10.1002/jsfa.11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oyster's lipid degradation leads to a decrease in edible and nutritional value. Curcumin-mediated photodynamic treatment (PDT) is an innovative non-thermal technology, although evaluation of the oyster's lipid degradation has been scarce. In the present study, we investigated peroxide value, thiobarbituric acid reactive substance, triacylglycerol and free fatty acids to evaluate the effect of curcumin-mediated PDT on lipid degradation of oysters during refrigerated storage. RESULTS The results showed that curcumin-mediated PDT could delay oyster's lipid degradation. Next, the activities of enzymes were detected to determine the mechanisms behind the effects of curcumin-mediated PDT. It was revealed that the activities of lipase, phospholipase A2 (PLA2 ), phospholipase C (PLC), phospholipase D (PLD) and lipoxygenase (LOX) were significantly inhibited after curcumin-mediated PDT (P < 0.05). Furthermore, 16 s rRNA analysis established that the relative abundances of Pseudoalteromonas and Psychrilyobacter were reduced by 51.58% and 43.82%, respectively, after curcumin-mediated PDT. CONCLUSION Curcumin-mediated PDT could delay oyster's lipid degradation by inhibiting the activities of lipase, PLA2 , PLC, PLD and LOX, as well as by changing the oyster's microbial composition, reducing the relative abundance of Pseudoalteromonas and Psychrilyobacter. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Na Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wanxiu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
29
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Hyun JE, Moon SK, Lee SY. Application of blue light-emitting diode in combination with antimicrobials or photosensitizers to inactivate Escherichia coli O157:H7 on fresh-cut apples and cherry tomatoes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
32
|
Akhtar F, Khan AU. Antimicrobial photodynamic therapy (aPDT) against vancomycin resistant Staphylococcus aureus (VRSA) biofilm disruption: A putative role of phagocytosis in infection control. Photodiagnosis Photodyn Ther 2021; 36:102552. [PMID: 34597830 DOI: 10.1016/j.pdpdt.2021.102552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Biofilm mediated infections have major clinical impact. Staphylococcus aureus is a pathogen that frequently causes biofilm forming infections, such as those associated with medical devices and persistent wounds. Microorganisms embedded in biofilm are impervious to antibiotics and other antimicrobial agents, thus they are difficult to eliminate. The upsurge of multi-drug resistant strains makes treating such illnesses even more difficult. Therefore, new strategies are required to combat such type of infections. In this work, we have proposed an alternative therapeutic option to eradicate preformed biofilm of vancomycin resistant Staphylococcus aureus (VRSA) and enhanced phagocytosis by neutrophils in fresh human blood using curcumin mediated antimicrobial photodynamic therapy (aPDT).At sub-MIC of curcumin, different anti-biofilm assays and microscopic examinations were performed, followed by 20 J/cm2 of blue laser light irradiation which corresponds to 52 s only. The result showed significant disruption of VRSA biofilm. Moreover, when curcumin-aPDT treated VRSA biofilm was exposed to whole blood from healthy donors, it was nearly completely eradicated. The present study suggests that curcumin-aPDT enhanced phagocytosis may be a useful strategy for inactivating VRSA biofilms adhering to medical implant surfaces.
Collapse
Affiliation(s)
- Farheen Akhtar
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
33
|
Wang D, Zhou F, Lai D, Zhang Y, Hu J, Lin S. Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2021; 78:105715. [PMID: 34391163 PMCID: PMC8374498 DOI: 10.1016/j.ultsonch.2021.105715] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/01/2023]
Abstract
Shrimp surimi is widely acknowledged as a value-added shrimp product due to its delicious taste, rich flavor, and nutrition. However, the refrigerated shrimp surimi is prone to deterioration due to rapid microbial growth during storage. The present study sought to assess the effects of curcumin-mediated sono/photodynamic treatment on bacterial spoilage and shrimp surimi quality stored at 4 °C. The total viable count (TVC), microbiota composition, and quality parameters, including the total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substance (TBARs), and pH were investigated. The results showed that the spoilage bacteria in shrimp surimi rapidly increased with a surge on day 2 during refrigeration storage. The Psychrobacter and Brochothrix were identified as the Specific Spoilage Organisms (SSOs), which were also positively correlated with TVB-N and TBARs. The results further elucidated that the sono/photodynamic treatment could significantly inhibit the growth of SSOs on the surface and interior of shrimp surimi and delay shrimp surimi quality deterioration. In conclusion, the sono/photodynamic treatment as a non-thermal sterilization method could be a reliable and potential method for inactivating spoilage microorganisms and preserving shrimp surimi quality.
Collapse
Affiliation(s)
- Dehua Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danning Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, Fujian, China.
| |
Collapse
|
34
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|
35
|
Effects of curcumin‐based photodynamic method on protein degradation of oysters. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Pierre MBR. Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors. Curr Drug Targets 2021; 22:1090-1107. [PMID: 33397257 DOI: 10.2174/1389450122999210101230743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.
Collapse
Affiliation(s)
- Maria B R Pierre
- Universidade Federal do Rio de Janeiro (UFRJ)- Faculdade de Farmacia- Av, Brigadeiro Trompowsky, s/n. CEP Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
37
|
Sheng L, Zhu MJ. Practical in-storage interventions to control foodborne pathogens on fresh produce. Compr Rev Food Sci Food Saf 2021; 20:4584-4611. [PMID: 34190395 DOI: 10.1111/1541-4337.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Although tremendous efforts have been made to ensure fresh produce safety, various foodborne outbreaks and recalls occur annually. Most of the current intervention strategies are evaluated within a short timeframe (less than 1 h), leaving the behavior of the remaining pathogens unknown during subsequent storages. This review summarized outbreak and recall surveillance data from 2009 to 2018 obtained from government agencies in the United States to identify major safety concerns associated with fresh produce, discussed the postharvest handling of fresh produce and the limitations of current antimicrobial interventions, and reviewed the intervention strategies that have the potential to be applied in each storage stage at the commercial scale. One long-term (up to 12 months) prepacking storage (apples, pears, citrus among others) and three short-term (up to 3 months) postpacking storages were identified. During the prepacking storage, continuous application of gaseous ozone at low doses (≤1 ppm) is a feasible option. Proper concentration, adequate circulation, as well as excess gas destruction and ventilation systems are essential to commercial application. At the postpacking storage stages, continuous inhibition can be achieved through controlled release of gaseous chlorine dioxide in packaging, antimicrobial edible coatings, and biocontrol agents. During commercialization, factors that need to be taken into consideration include physicochemical properties of antimicrobials, impacts on fresh produce quality and sensory attributes, recontamination and cross-contamination, cost, and feasibility of large-scale production. To improve fresh produce safety and quality during storage, the collaboration between researchers and the fresh produce industry needs to be improved.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
38
|
Qiao L, Wang H, Shao J, Lu L, Tian J, Liu X. A novel mitigator of enzymatic browning—hawthorn leaf extract and its application in the preservation of fresh-cut potatoes. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives
The purpose of this study was to evaluate the antibrowning functions of hawthorn leaf extract on fresh-cut potato and its possible mechanism.
Materials and Methods
Fresh-cut potatoes were treated with different concentrations (0.01%, 0.05%, and 0.1%) of hawthorn leaf extract and preserved at 4 ℃ for 8 days. The appearance and colour of potato slices were evaluated, along with the content of the phenol, malondialdehyde (MDA), and hydrogen peroxide (H2O2) during cold storage. Meanwhile, the activities of polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), catalase (CAT), superoxide dismutase (SOD), and the antioxidant capacity were determined. Furthermore, the composition of hawthorn leaf extract was analyzed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS).
Results
The addition of hawthorn leaf extract effectively delayed the browning process. It not only enhanced the CAT activity and antioxidant capacity but also reduced the LOX activity and accumulation of MDA and H2O2. Meanwhile, the activities of PPO, POD, and PAL as well as the content of phenol were controlled. Additionally, 25 phenols, 34 flavonoids, and 5 proanthocyanidins were identified through high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), including caffeic acid, quercetin and catechol.
Conclusion
Hawthorn leaf extract significantly alleviated the browning of fresh-cut potato. It could serve as a natural antibrowning alternative by stabilizing the membrane and modulating reactive oxygen species and redox reactions.
Collapse
|
39
|
Dou Y, Chang C, Wang J, Cai Z, Zhang W, Du H, Gan Z, Wan C, Chen J, Zhu L. Hydrogen Sulfide Inhibits Enzymatic Browning of Fresh-Cut Chinese Water Chestnuts. Front Nutr 2021; 8:652984. [PMID: 34150826 PMCID: PMC8212951 DOI: 10.3389/fnut.2021.652984] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
This work investigates the role of hydrogen sulfide (H2S) in the browning and regulating the antioxidant defensive system in fresh-cut Chinese water chestnuts. The samples were fumigated with 0, 10, and 15 μl L-1 of H2S and stored at 10°C for 8 days. The results indicated that the H2S treatment significantly inhibited the browning of fresh-cut Chinese water chestnuts, reduced superoxide anion (O 2 · - ) production rate and H2O2 content accumulation, promoted the increase of total phenol content, and enhanced activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) (P < 0.05). On the other hand, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) activities remained at a low level in the H2S treatment (P < 0.05). This result suggested that H2S treatment might be a promising approach to inhibit browning and prolong the shelf life by enhancing oxidation resistance and inhibiting browning enzyme activity of fresh-cut Chinese water chestnuts during storage. Among them, the 15 μl L-1 H2S treatment had the best effect on fresh-cut Chinese water chestnuts.
Collapse
Affiliation(s)
- Yuan Dou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chunmei Chang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
40
|
Yan Y, Tan L, Li H, Chen B, Huang J, Zhao Y, Wang J, Ou J. Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce. Photochem Photobiol Sci 2021; 20:761-771. [PMID: 34048001 DOI: 10.1007/s43630-021-00057-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Photodynamic inactivation (PDI) is a fast and effective non-heat sterilization technology. This study established an efficient blue light-emitting diode (LED) PDI with the photosensitizer sodium magnesium chlorophyllin (SMC) to eradicate Staphylococcus aureus in food. The antibacterial mechanisms were determined by evaluating DNA integrity, protein changes, morphological alteration, and the potency of PDI to eradicate S. aureus on lettuce was evaluated. Results showed that planktonic S. aureus could not be clearly observed on the medium after treatment with 5.0 μmol/L SMC for 10 min (1.14 J/cm2). Bacterial cell DNA and protein were susceptible to SMC-mediated PDI, and cell membranes were found to be disrupted. Moreover, SMC-mediated PDI effectively reduced 8.31 log CFU/mL of S. aureus on lettuce under 6.84 J/cm2 radiant exposure (30 min) with 100 μmol/L SMC, and PDI displayed a potent ability to restrain the weight loss as well as retard the changes of color difference of the lettuce during 7 day storage. The study will enrich our understanding of the inactivation of S. aureus by PDI, allowing for the development of improved strategies to eliminate bacteria in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lijun Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huihui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Bowen Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiaming Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Food Science, Foshan University, Foshan, 528000, China.
| | - Jie Ou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.
| |
Collapse
|
41
|
Yu J, Zhang F, Zhang J, Han Q, Song L, Meng X. Effect of photodynamic treatments on quality and antioxidant properties of fresh-cut potatoes. Food Chem 2021; 362:130224. [PMID: 34098439 DOI: 10.1016/j.foodchem.2021.130224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
This study evaluated the feasibility of curcumin based photodynamic sterilization technology (PDT) applied to fresh-cut potato slices. Potato samples with 30 μmol L-1 curcumin solution were exposed to 420 nm light emitting diodes (LED) at a total dose of 0.7 kJ cm-2. Results showed that PDT inactivated 2.43 log CFU mL-1 of Escherichia coli (BL 21) and 3.18 log CFU mL-1 of Staphylococcus aureus and maintained the color, texture, weight as well as total solid content of treated potatoes. Additionally, loss of phenols and flavonoids was significantly prevented, increasing the total antioxidant capacity. This was attributed to changes in enzyme activity that PDT decreased the activity of polyphenol oxidase (PPO) and peroxidase (POD) by 59.7% and 47.8% and increased the activity of phenylalanine ammonia-lyase (PAL). Therefore, curcumin-based PDT has the potential to maintain the commercial quality of producing and achieving microbiological safety.
Collapse
Affiliation(s)
- Jinshen Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qiming Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lili Song
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
42
|
Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, Lin S, Hu J. Preparation and photodynamic bactericidal effects of curcumin-β-cyclodextrin complex. Food Chem 2021; 361:130117. [PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
Collapse
Affiliation(s)
- Danning Lai
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Arong Zhou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Bee K Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Yibin Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Siti Sarah Hamzah
- Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Polat E, Kang K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021; 9:584. [PMID: 34063973 PMCID: PMC8224061 DOI: 10.3390/biomedicines9060584] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Health problems and reduced treatment effectiveness due to antimicrobial resistance have become important global problems and are important factors that negatively affect life expectancy. Antimicrobial photodynamic therapy (APDT) is constantly evolving and can minimize this antimicrobial resistance problem. Reactive oxygen species produced when nontoxic photosensitizers are exposed to light are the main functional components of APDT responsible for microbial destruction; therefore, APDT has a broad spectrum of target pathogens, such as bacteria, fungi, and viruses. Various photosensitizers, including natural extracts, compounds, and their synthetic derivatives, are being investigated. The main limitations, such as weak antimicrobial activity against Gram-negative bacteria, solubility, specificity, and cost, encourage the exploration of new photosensitizer candidates. Many additional methods, such as cell surface engineering, cotreatment with membrane-damaging agents, nanotechnology, computational simulation, and sonodynamic therapy, are also being investigated to develop novel APDT methods with improved properties. In this review, we summarize APDT research, focusing on natural photosensitizers used in in vitro and in vivo experimental models. In addition, we describe the limitations observed for natural photosensitizers and the methods developed to counter those limitations with emerging technologies.
Collapse
Affiliation(s)
- Ece Polat
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
- Division of Bio-Medical Science Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| |
Collapse
|
44
|
Antibacterial mechanism and preservation effect of curcumin-based photodynamic extends the shelf life of fresh-cut pears. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Wei C, Zhang F, Song L, Chen X, Meng X. Photosensitization effect of curcumin for controlling plant pathogen Botrytis cinerea in postharvest apple. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
47
|
Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
The Inactivation by Curcumin-Mediated Photosensitization of Botrytis cinerea Spores Isolated from Strawberry Fruits. Toxins (Basel) 2021; 13:toxins13030196. [PMID: 33803254 PMCID: PMC8002169 DOI: 10.3390/toxins13030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Photosensitization is a novel environmentally friendly technology with promising applications in the food industry to extend food shelf life. In this study, the natural food dye curcumin, when combined with visible light (430 nm), was shown to be an effective photosensitizer against the common phytopathogenic fungi Botrytis cinerea (the cause of grey mould). Production of the associated phytotoxic metabolites botrydial and dihydrobotrydial was measured by our newly developed and validated HRAM UPLC-MS/MS method, and was also shown to be reduced by this treatment. With a light dose of 120 J/cm2, the reduction in spore viability was directly proportional to curcumin concentrations, and the overall concentration of both botrydial and dihydrobotrydial also decreased with increasing curcumin concentration above 200 µM. With curcumin concentrations above 600 µM, the percentage reduction in fungal spores was close to 100%. When the dye concentration was increased to 800 µM, the spores were completely inactive and neither botrydial nor dihydrobotrydial could be detected. These results suggest that curcumin-mediated photosensitization is a potentially effective method to control B. cinerea spoilage, and also to reduce the formation of these phytotoxic botryane secondary metabolites.
Collapse
|
49
|
Yu L, Shi H. Effect of two mulberry (Morus alba L.) leaf polyphenols on improving the quality of fresh-cut cantaloupe during storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Akhtar F, Khan AU, Misba L, Akhtar K, Ali A. Antimicrobial and antibiofilm photodynamic therapy against vancomycin resistant Staphylococcus aureus (VRSA) induced infection in vitro and in vivo. Eur J Pharm Biopharm 2021; 160:65-76. [PMID: 33508436 DOI: 10.1016/j.ejpb.2021.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Biofilm mediated infection caused by multi-drug resistant bacteria are difficult to treat since it protects the microorganisms by host defense system, making them resistant to antibiotics and other antimicrobial agents. Combating such type of nosocomial infection, especially in immunocompromised patients, is an urgent need and foremost challenge faced by clinicians. Therefore, antimicrobial photodynamic therapy (aPDT) has been intensely pursued as an alternative therapy for bacterial infections. aPDT leads to the generation of reactive oxygen species (ROS) that destroy bacterial cells in the presence of a photosensitizer, visible light and oxygen. Here, we elucidated a possibility of its clinical application by reducing the treatment time and exposing curcumin to 20 J/cm2 of blue laser light, which corresponds to only 52 s to counteract vancomycin resistant Staphylococcus aureus (VRSA) both in vitro and in vivo. To understand the mechanism of action, the generation of total reactive oxygen species (ROS) was quantified by 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and the type of phototoxicity was confirmed by fluorescence spectroscopic analysis. The data showed more production of singlet oxygen, indicating type-II phototoxicity. Different anti-biofilm assays (crystal violet and congo red assays) and microscopic studies were performed at sub-MIC concentration of curcumin followed by treatment with laser light against preformed biofilm of VRSA. The result showed significant reduction in the preformed biofilm formation. Finally, its therapeutic potential was validated in skin abrasion wistar rat model. The result showed significant inhibition of bacterial growth. Furthermore, immunomodulatory analysis with rat serum was performed. A significant reduction in expression of proinflammatory cytokines TNF-α and IL-6 were observed. Hence, we conclude that curcumin mediated aPDT with 20 J/cm2 of blue laser treatment (for 52 s) could be used against multi-drug resistant bacterial infections and preformed biofilm formation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Farheen Akhtar
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| | - Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, A.M.U., Aligarh, India
| | - Asif Ali
- Department of Biochemistry, F/o Medicine, JNMC A.M.U., Aligarh, India
| |
Collapse
|