1
|
Chitolina-Rodrigues G, Chandran D, R R, Silva-Neto HA. Recent advances in screen-printed carbon electrodes for food additive analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40270469 DOI: 10.1039/d5ay00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Screen-printed carbon electrodes (SPCEs) are regarded as the actual and future sensing option for additive analysis in food samples; nonetheless, the sample preparation, selectivity, and detectability are key challenges to overcome for its technological development and wide application. In the present review, we inform, discuss, and compare some pivotal aspects associated with the fabrication of SPCEs, the presence of additives in foods, sample preparation, and voltammetric measurements of additives in food samples. Also, the proposed study has indicated that it is possible to develop suitable options for electroanalytical methodologies by using bare or modified SPCEs, which present affordable results in terms of selectivity, linear concentration range, and limit of detection for different classes of additives. Lastly, the review introduces challenging points that can be carefully evaluated for the next generation of SPCEs dedicated to additive analysis.
Collapse
Affiliation(s)
| | - Devu Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Rejithamol R
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Habdias A Silva-Neto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
2
|
Mohamed MEB, Sebaei AS, Mahmoud NM, Mohammed NA, Hassan HA, Abdel-Aal RR. Electrochemical and chromatographic methods for the determination of some natural food preservatives - A review. Food Chem 2025; 468:142491. [PMID: 39706116 DOI: 10.1016/j.foodchem.2024.142491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Food preservatives are essential for maintaining the safety and quality of food products. Nisin and natamycin are natural food preservatives extensively used in the food industry to enhance various food products' shelf life and safety. Nisin, a polycyclic antibacterial peptide, is effective against a broad spectrum of Gram-positive bacteria, including foodborne pathogens and spoilage organisms. On the other hand, natamycin, a polyene macrolide antifungal agent, exhibits strong efficacy against molds and yeasts, without affecting bacteria, thus preserving the natural microbial balance in fermented foods and other products susceptible to fungal contamination. Furthermore, determining food preservatives precisely is essential to guaranteeing food safety and quality. Due to the low concentrations used from these preservatives and the possibility of interference from food matrices during analysis, sensitive and accurate analytical techniques are required for the analysis of nisin and natamycin. Both electrochemical and chromatographic techniques enable rapid, sensitive, and precise analysis. This review highlights the research results in the last twenty-four years and methodological advancements and compares the sensitivity, accuracy, and practical applicability of these techniques to provide insight into the usefulness and suitability of electrochemical and chromatographic techniques for monitoring nisin and natamycin levels for regulatory compliance and food quality control. Moreover, it suggests future research directions to improve the efficiency and reliability of these analytical techniques.
Collapse
Affiliation(s)
| | - Ahmed Salem Sebaei
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza 12311, Egypt
| | | | | | | | | |
Collapse
|
3
|
Uddin MN, Das S, Noyon MROK, Islam MSMM, Khaled ASM, Islam MA, Chakraborty D, Uddin M, Nabi MN, Chandra Bhattacharjee S. Multi-matrix HPLC investigation of preservatives employing a recent validated method: A Monte Carlo simulation approach to health risks in Bangladeshi processed foods and healthcare. Food Chem Toxicol 2025; 197:115282. [PMID: 39909300 DOI: 10.1016/j.fct.2025.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
To determine the amounts of benzoic acid, sorbic acid, methylparaben, and propylparaben in an assortment of products, this study provides a validated HPLC-PDA method. Linearity, recovery, accuracy, precision, sensitivity, specificity, system suitability, and robustness were all examined throughout validation in compliance with ICH criteria. The method of measurement showed high reliability, precision, and linear calibration curves (5-50 mg/L) with correlation values over 0.999, demonstrating that it is suitable for consistent analysis. Reliability across various matrices was validated by robustness testing. Goods such as fruit juices, ketchup, cakes, herbal goods, and pharmaceuticals were subjected to health risk assessments including CDI, THQ, and HI. Significant sorbate and high benzoate levels, in particular in herbal products (up to 6636 mg/kg), were found in processed meals, while methylparaben surpassed the recommended limit in some herbal and pharmaceutical products. Levels of propylparaben remain low. Risk evaluations revealed that consumption of herbal products was the main cause of significant worry, especially for children with lower body weights. THQ levels below the threshold were found in Monte Carlo simulations (5th, median, and 95th percentiles), indicating that food preservatives provide little non-carcinogenic risk to the majority of the population.
Collapse
Affiliation(s)
| | - Suman Das
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh.
| | | | - Md Samrat Mohay Menul Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | | | - Md Ashraful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Dipankar Chakraborty
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Monir Uddin
- Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Nurun Nabi
- School of Engineering and Technology, Central Queensland University, Melbourne, Victoria, Australia
| | | |
Collapse
|
4
|
Hu Y, Haq IU, Xu Y, Hua X. A high-performance anion-exchange chromatographic method for the fast analysis and precise determination of varied glucose-derived acids during biomass biorefinery. Food Chem 2024; 460:140626. [PMID: 39128363 DOI: 10.1016/j.foodchem.2024.140626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Glucose-derived acids for the further production of value-added medicine, food additives, and polymers, will promote lignocellulosic biomass biorefinery industry. In response to the diversity and complexity, a new method was established by employing high performance anion exchange chromatography (HPAEC) coupled with a CarboPac™ PA200 column, for the precise and fast determination of glucose, gluconic acid, glucuronic acid, 2-ketogluconic acid, 5-ketogluconic acid and glucaric acid. Based on the analysis of tiny varieties in retention behavior, a gradient elution mode was designed and optimized for the quantitative and qualitative analysis. The protocol displayed acceptable linearity (R2 ≥ 0.995), commendable average recovery rate (95.28% ∼ 99.89%), satisfactory precision (RSD% ≤ 1.5%), and sufficient resolution (R > 6). Additionally, this method was successfully applied to the high-value biorefining process, which confirmed the practicability and accuracy. The results demonstrated that HPAEC has good detection performance for glucose and its derivative acids, and provide key identification technical support for the high-value utilization of lignocellulose.
Collapse
Affiliation(s)
- YaTing Hu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China.
| | - Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, PR China.
| |
Collapse
|
5
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Olgun M, Sivrikaya Özak S, Dalmaz A. Spectrophotometric determination for green hydrophobic deep eutectic solvent-based microextraction of Brilliant Blue FCF (E133) from beverages. J Chromatogr A 2024; 1736:465374. [PMID: 39298926 DOI: 10.1016/j.chroma.2024.465374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In this study, a simple, sensitive, and rapid method called green hydrophobic deep eutectic solvent-based liquid-liquid microextraction was developed to extract Brilliant Blue FCF dye from beverages. This method utilizes hydrophobic DES obtained by forming tetrabutylammonium bromide and 1-octanol in a 1:5 ratio as green extraction solvent. The transition of Brilliant Blue FCF to the DES phase occurred on its own, without the need for any reagents such as added salt or tetrahydrofuran. Several crucial factors were tried to get the best extraction efficiency, including species, DES volume and molar ratio, solution pH, ultrasonication, and centrifugation time. Under optimum conditions, extraction recoveries were achieved in the range of 95.1-101.3 % with the method developed for Brilliant Blue FCF. The detection and determination limits were observed to be 4.1 μg l-1 and 12.1 μg l-1, respectively. In addition, the relative standard deviation values for the method's accuracy were found to be 2.23 % and 3.48 % within and between days, respectively. It has been established that the developed method is highly environmentally friendly thanks to the application of the Analytical GREENness (AGREE) and Green Analytical Procedure Index (GAPI) tools. This study shows that DES applications can be carried out without the use of emulsifiers and dispersants by prioritizing the use of hydrophobic DES compounds as environmentally friendly and green extraction solvents in food samples.
Collapse
Affiliation(s)
- Mahmut Olgun
- Department of Chemistry, Graduate Education Institute, Düzce University, Düzce 81620, Turkey
| | - Sezen Sivrikaya Özak
- Department of Chemistry, Faculty of Art and Science, Düzce University, Düzce 81620, Turkey.
| | - Aslıhan Dalmaz
- Department of Chemistry, Faculty of Art and Science, Düzce University, Düzce 81620, Turkey
| |
Collapse
|
7
|
Paramasivam A, Murugan R, Jeraud M, Dakkumadugula A, Periyasamy R, Arjunan S. Additives in Processed Foods as a Potential Source of Endocrine-Disrupting Chemicals: A Review. J Xenobiot 2024; 14:1697-1710. [PMID: 39584955 PMCID: PMC11587131 DOI: 10.3390/jox14040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Processed foods, accounting for most consumable food categories today, contain considerable amounts of food additives. Food additives are substances added to food products to improve taste, consistency, appearance, or shelf life. Various food additives, such as phthalates, bisphenol A, tartrazine, erythrosine, artificial sweeteners, and parabens, have been identified as potential sources of endocrine-disrupting chemicals (EDCs) in processed foods. EDCs are substances that frequently interfere with the regular functioning of the endocrine system, creating an unusual environment in the biological system, which leads to adverse health effects such as the disruption of hormone synthesis, receptor binding, and signal transduction pathways, as well as energy metabolic homeostatic disorders which potentially increasing the risk of obesity, type-2 diabetes, cardiometabolic diseases and may also trigger allergic reactions. Consequently, they can also impact mammary gland development, and reproductive function, further leading to developmental abnormalities. This review aims to insights into the various food additives that act as potential endocrine-disrupting chemicals (EDCs) and to describe their applications in the food industry, as well as the failure of hormonal homeostatic mechanisms, which eventually result in hazardous health effects. It also outlines strategies to reduce the use of food additives and suggests alternative additives with minimal or no endocrine-disrupting properties, highlighting their importance for maintaining human health.
Collapse
Affiliation(s)
- Anand Paramasivam
- Department of Physiology, RVS Dental College and Hospital (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032, Tamil Nadu, India), Kumaran Kottam Campus, Kannampalayan, Coimbatore 641402, Tamil Nadu, India
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, M S Ramaiah University of Applied Sciences, Bangalore 560054, Karnataka, India
| | - Mathew Jeraud
- Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Angel Dakkumadugula
- Clinical Division, Indian Council of Medical Research-National Institute of Nutrition, Hyderabad 500007, Telangana, India;
| | - Ravisankar Periyasamy
- Department of Anatomy, SRM Dental College, SRM Institute of Science and Technology, Bharathi Salai, Ramapuram Campus, Chennai 600089, Tamil Nadu, India;
| | - Selvam Arjunan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| |
Collapse
|
8
|
Xiao Y, Huang Y, Qiu J, Cai H, Ni H. Smartphone-based pH titration for liquid food applications. CHEMICAL PAPERS 2024; 78:8849-8862. [DOI: 10.1007/s11696-024-03715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/24/2024] [Indexed: 01/05/2025]
|
9
|
Gonçalves-Filho D, De Souza D. Trends in pulse voltammetric techniques applied to foodstuffs analysis: The food additives detection. Food Chem 2024; 454:139710. [PMID: 38815328 DOI: 10.1016/j.foodchem.2024.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Food additives are chemical compounds intentionally added during foodstuff production to control technological functions, such as pH, viscosity, stability (color, flavor, taste, and odor), homogeneity, and loss of nutritional value. These compounds are fundamental in inhibition the degradation process and prolonging the shelf life of foodstuffs. However, their inadequate employment or overconsumption can adversely affect consumers' health with the development of allergies, hematological, autoimmune, and reproductive disorders, as well as the development of some types of cancer. Thus, the development and application of simple, fast, low-cost, sensitivity, and selectivity analytical methods for identifying and quantifying food additives from various chemical classes and in different foodstuffs are fundamental to quality control and ensuring food safety. This review presents trends in the detection of food additives in foodstuffs using differential pulse voltammetry and square wave voltammetry, the main pulse voltammetric techniques, indicating the advantages, drawbacks, and applicability in food analysis. Are discussed the importance of adequate choices of working electrode materials in the improvements of analytical results, allowing reliable, accurate, and inexpensive voltammetric methods for detecting these compounds in foodstuffs samples.
Collapse
Affiliation(s)
- Danielle Gonçalves-Filho
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
10
|
P S A, Thadathil DA, George L, Varghese A. Food Additives and Evolved Methods of Detection: A Review. Crit Rev Anal Chem 2024:1-20. [PMID: 39015954 DOI: 10.1080/10408347.2024.2372501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.
Collapse
Affiliation(s)
- Aiswarya P S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
11
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Wu M, Shi Z, Ming Y, Zhao Y, Gao G, Li G, Ma T. The production of ultrahigh molecular weight xanthan gum from a Sphingomonas chassis capable of co-utilising glucose and xylose from corn straw. Microb Biotechnol 2024; 17:e14394. [PMID: 38226955 PMCID: PMC10884872 DOI: 10.1111/1751-7915.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
13
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
14
|
Yan H, Neves MDG, Wise BM, Moraes IA, Barbin DF, Siesler HW. The Application of Handheld Near-Infrared Spectroscopy and Raman Spectroscopic Imaging for the Identification and Quality Control of Food Products. Molecules 2023; 28:7891. [PMID: 38067622 PMCID: PMC10708147 DOI: 10.3390/molecules28237891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The following investigations describe the potential of handheld NIR spectroscopy and Raman imaging measurements for the identification and authentication of food products. On the one hand, during the last decade, handheld NIR spectroscopy has made the greatest progress among vibrational spectroscopic methods in terms of miniaturization and price/performance ratio, and on the other hand, the Raman spectroscopic imaging method can achieve the best lateral resolution when examining the heterogeneous composition of samples. The utilization of both methods is further enhanced via the combination with chemometric evaluation methods with respect to the detection, identification, and discrimination of illegal counterfeiting of food products. To demonstrate the solution to practical problems with these two spectroscopic techniques, the results of our recent investigations obtained for various industrial processes and customer-relevant product examples have been discussed in this article. Specifically, the monitoring of food extraction processes (e.g., ethanol extraction of clove and water extraction of wolfberry) and the identification of food quality (e.g., differentiation of cocoa nibs and cocoa beans) via handheld NIR spectroscopy, and the detection and quantification of adulterations in powdered dairy products via Raman imaging were outlined in some detail. Although the present work only demonstrates exemplary product and process examples, the applications provide a balanced overview of materials with different physical properties and manufacturing processes in order to be able to derive modified applications for other products or production processes.
Collapse
Affiliation(s)
- Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Marina D. G. Neves
- Department of Physical Chemistry, University Duisburg-Essen, 45117 Essen, Germany;
| | | | - Ingrid A. Moraes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (I.A.M.); (D.F.B.)
| | - Douglas F. Barbin
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (I.A.M.); (D.F.B.)
| | - Heinz W. Siesler
- Department of Physical Chemistry, University Duisburg-Essen, 45117 Essen, Germany;
| |
Collapse
|
15
|
Mohanta T, Behuria HG, Sahu SK, Jena AK, Sahu S. Green synthesis of N,S-doped carbon dots for tartrazine detection and their antibacterial activities. Analyst 2023; 148:5597-5604. [PMID: 37846523 DOI: 10.1039/d3an01609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A simple, green and low-cost method was developed for the synthesis of highly fluorescent N,S-doped carbon dots (N,S-CDs) via the hydrothermal treatment of Gandha Prasarini (GP) leaves as a natural source of carbon, nitrogen and sulfur. The as-prepared N,S-CDs exhibited excitation-dependent green fluorescence emission (λex = 450 nm, λem = 525 nm) with excellent stability, and were used as a fluorescent probe for the selective detection of tartrazine with a limit of detection of 0.18 μM. The fluorescence quenching of N,S-CDs was due to the inner filter effect. The developed method has been employed for the determination of tartrazine in honey and soft drinks with satisfactory recovery ranging from 92 to 110.2%. In addition, the antibacterial activity of the N,S-CDs was explored against both Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive bacteria, Staphylococcus aureus (S. aureus). The antibacterial mechanism of the N,S-CDs was investigated. The results indicated that the antibacterial activity was due to the membrane damage of the bacteria by the N,S-CDs. Besides, the N,S-CDs showed negligible lytic effects on human erythrocytes. These findings will inspire further exploitation of CD-based nano-bactericides in biomedical applications.
Collapse
Affiliation(s)
- Tanmayee Mohanta
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada, Odisha-757 003, India.
| | - Himadri Gourav Behuria
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada-757 003, Odisha, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada-757 003, Odisha, India
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada, Odisha-757 003, India.
| | - Swagatika Sahu
- Department of Chemistry, Maharaja Purna Chandra (Autonomous) College, Baripada-757 003, Odisha, India.
- Department of Chemistry, Betnoti College, Betnoti, Odisha-757025
| |
Collapse
|
16
|
Bhardwaj SK, Deep A, Bhardwaj N, Wangoo N. Recent advancements in nanomaterial based optical detection of food additives: a review. Analyst 2023; 148:5322-5339. [PMID: 37750046 DOI: 10.1039/d3an01317k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Food additives have become a critical component in the food industry. They are employed as preservatives to decelerate the negative effects of environmental and microbial factors on food quality. Currently, food additives are used for a variety of purposes, including colorants, flavor enhancers, nutritional supplements, etc., owing to improvements in the food industry. Since the usage of food additives has increased dramatically, the efficient monitoring of their acceptable levels in food products is quite necessary to mitigate the problems associated with their inappropriate use. The traditional methods used for detecting food additives are generally based on standard spectroscopic and chromatographic techniques. However, these analytical techniques are limited by their high instrumentation cost and time-consuming procedures. The emerging field of nanotechnology has enabled the development of highly sensitive and specific sensors to analyze food additives in a rapid manner. The current article emphasizes the need to detect various food additives owing to their potential negative effects on humans, animals, and the environment. In this article, the role of nanomaterials in the optical sensing of food additives has been discussed owing to their high accuracy, ease-of-use, and excellent sensitivity. The applications of nanosensors for the detection of various food additives have been elaborated with examples. The current article will assist policymakers in developing new rules and regulations to mitigate the adverse effects of toxic food additives on humans and the environment. In addition, the prospects of nanosensors for the optical detection of food additives at a commercial scale have been discussed to combat their irrational use in the food industry.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Applied Sciences, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| | - Akash Deep
- Energy and Environment unit, Institute of Nanoscience and Technology, Mohali, India.
| | - Neha Bhardwaj
- Energy and Environment unit, Institute of Nanoscience and Technology, Mohali, India.
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
17
|
Sugiura J, Tsuchiyama T, Taniguchi M, Fukatsu K, Miyazaki H. Novel SPE purification approach using the direct adsorption of vaporised propionic acid in food for rapid HPLC determination. Food Chem 2023; 428:136799. [PMID: 37429237 DOI: 10.1016/j.foodchem.2023.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Solid phase extraction (SPE) is a technique widely used in food analysis for the isolation of analytes. Herein, we proposed a novel application of SPE to extract vaporised propionic acid, a common preservative, from a heated sample solution. A sample was heated under acidified conditions and the resulting steam was directly passed through an SPE column to extract the propionic acid, followed by elution and HPLC analysis. Here, the extraction on the SPE column ensures direct capture of propionic acid. The results demonstrated excellent linearity (R2 greater than 0.999) and recoveries of 89.9%-97.6% with intra- and inter-day precisions lower than 3.9%. To the best of our knowledge, no study has investigated the applicability of SPE to an analyte vaporised in the headspace of food products. The proposed method is promising in its application to various volatile compounds and in the routine analysis of propionic acid in food.
Collapse
Affiliation(s)
- Jun Sugiura
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan.
| | - Tomoyuki Tsuchiyama
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Masaru Taniguchi
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Kosuke Fukatsu
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Hitoshi Miyazaki
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| |
Collapse
|
18
|
Marins-Gonçalves L, Martins Ferreira M, Rocha Guidi L, De Souza D. Is chemical analysis suitable for detecting mycotoxins in agricultural commodities and foodstuffs? Talanta 2023; 265:124782. [PMID: 37339540 DOI: 10.1016/j.talanta.2023.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
The assessment of the risks of mycotoxins to humans through consuming contaminated foods resulted in specific legislation that evaluates the presence, quantities, and type of mycotoxins in agricultural commodities and foodstuffs. Thus, to ensure compliance with legislation, food safety and consumer health, the development of suitable analytical procedures for identifying and quantifying mycotoxins in the free or modified form, in low-concentration and in complex samples is necessary. This review reports the application of the modern chemical methods of analysis employed in mycotoxin detection in agricultural commodities and foodstuffs. It is reported extraction methods with reasonable accuracy and those present characteristics according to guidelines of Green Analytical Chemistry. Recent trends in mycotoxins detection using analytical techniques are presented and discussed, evaluating the robustness, precision, accuracy, sensitivity, and selectivity in the detection of different classes of mycotoxins. Sensitivity coming from modern chromatographic techniques allows the detection of very low concentrations of mycotoxins in complex samples. However, it is essential the development of more green, fast and more suitable accuracy extraction methods for mycotoxins, which agricultural commodities producers could use. Despite the high number of research reporting the use of chemically modified voltammetric sensors, mycotoxins detection still has limitations due to the low selectivity from similar chemical structures of mycotoxins. Furthermore, spectroscopic techniques are rarely employed due to the limited number of reference standards for calibration procedures.
Collapse
Affiliation(s)
- Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Mariana Martins Ferreira
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Letícia Rocha Guidi
- Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil; Postgraduate Program in Food Engineering, Chemistry Engineering, Uberlândia Federal University; Patos de Minas Campus, Major Jerônimo street, 566, Patos de Minas, MG, 38700-002, Brazil.
| |
Collapse
|
19
|
Mandal BK, Ling YC. Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods. Molecules 2023; 28:molecules28104012. [PMID: 37241753 DOI: 10.3390/molecules28104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Of the different quality parameters of any food commodity or beverage, color is the most important, attractive and choice-affecting sensory factor to consumers and customers. Nowadays, food industries are interested in making the appearance of their food products attractive and interesting in order to appeal to consumers/customers. Natural green colorants have been accepted universally due to their natural appeal as well as their nontoxic nature to consumers. In addition, several food safety issues mean that natural green colorants are preferable to synthetic food colorants, which are mostly unsafe to the consumers but are less costly, more stable, and create more attractive color hues in food processing. Natural colorants are prone to degradation into numerous fragments during food processing, and thereafter, in storage. Although different hyphenated techniques (especially high-performance liquid chromatography (HPLC), LC-MS/HRMS, and LC/MS-MS are extensively used to characterize all these degradants and fragments, some of them are not responsive to any of these techniques, and some substituents in the tetrapyrrole skeleton are insensitive to these characterization tools. Such circumstances warrant an alternative tool to characterize them accurately for risk assessment and legislation purposes. This review summarizes the different degradants of chlorophylls and chlorophyllins under different conditions, their separation and identification using various hyphenated techniques, national legislation regarding them, and the challenges involved in their analysis. Finally, this review proposes that a non-targeted analysis method that combines HPLC and HR-MS assisted by powerful software tools and a large database could be an effective tool to analyze all possible chlorophyll and chlorophyllin-based colorants and degradants in food products in the future.
Collapse
Affiliation(s)
- Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Wu Q, Oliveira MM, Achata EM, Kamruzzaman M. Reagent-free detection of multiple allergens in gluten-free flour using NIR spectroscopy and multivariate analysis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Wan H, Hu L, Liu X, Zhang Y, Chen G, Zhang N, Ma R. Advanced hematite nanomaterials for newly emerging applications. Chem Sci 2023; 14:2776-2798. [PMID: 36937591 PMCID: PMC10016337 DOI: 10.1039/d3sc00180f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Because of the combined merits of rich physicochemical properties, abundance, low toxicity, etc., hematite (α-Fe2O3), one of the most chemically stable compounds based on the transition metal element iron, is endowed with multifunctionalities and has steadily been a research hotspot for decades. Very recently, advanced α-Fe2O3 materials have also been developed for applications in some cutting-edge fields. To reflect this trend, the latest progress in developing α-Fe2O3 materials for newly emerging applications is reviewed with a particular focus on the relationship between composition/nanostructure-induced electronic structure modulation and practical performance. Moreover, perspectives on the critical challenges as well as opportunities for future development of diverse functionalities are also discussed. We believe that this timely review will not only stimulate further increasing interest in α-Fe2O3 materials but also provide a profound understanding and insight into the rational design of other materials based on transition metal elements for various applications.
Collapse
Affiliation(s)
- Hao Wan
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University Nanjing 211189 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
22
|
Masithoh RE, Reza Pahlawan MF, Surya Saputri DA, Rakhmat Abadi F. Visible-Near-Infrared Spectroscopy and Chemometrics for Authentication Detection of Organic Soybean Flour. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Organic and non-organic soybean flours, although visually indifferent, have a significant difference in price and nutrition content. Therefore, the accurate authentication detection of organic soybean flour is necessary. Visible-near-infrared (Vis-NIR) spectroscopy coupled with chemometric methods is a non-destructive technique applied to detect authentic or adulterated organic soybean flour. The spectra of organic, adulterated organic, and non-organic soybean flours were captured using a Vis-NIR spectrometer at 350–1000 nm. The spectra were analyzed using partial least squares (PLS), principal component analysis (PCA), and the combination of these two with discriminant analysis (DA). The results showed that PCA using PC1 and PC2 could differentiate organic and non-organic soybean flours, whereas PC1 and PC4 can detect pure and adulterated organic soybean flours. The PCA–linear DA models showed 98.5% accuracy (Acc) for predicting pure organic and adulterated soybean flours and 100% Acc for predicting organic and non-organic flours. Moreover, PLS regression models resulted in a high R² of >95% for predicting organic and non-organic flours and pure and adulterated soybean flours. In addition, the PLS-DA models can differentiate organic from non-organic soybean flour and distinguish pure and adulterated soybean flours with 100% Acc and reliability.
Collapse
|
23
|
Aski MAH, Ghobadi S, Sari AA, Ardeshir RA, Arabi MHG, Manouchehri H. Health risk assessment of heavy metals (Zn, Pb, Cd, and Hg) in water and muscle tissue of farmed carp species in North Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32464-32472. [PMID: 36462077 DOI: 10.1007/s11356-022-24043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
This cross-sectional study was conducted to determine and compare the concentrations of heavy metals (Zn, Pb, Cd, and Hg) in carp-farming water and muscle of various carp species including common carp (Cyprinus carpio), bighead carp (Hypophthalmichthys nobilis), silver carp (Hypophthalmichthys molitrix), and grass carp (Ctenopharyngodon idella) collected from three major warm-water fish farms in Mazandaran Province (Iran) during March 2018 to March 2019. In addition, bioaccumulation of heavy metals (BCFs) and carcinogenic and non-carcinogenic risk assessments of consumers exposed to heavy metals through fish consumption were estimated. The water concentration of all metals in this study was lower than permissible limits. The concentration of Zn in the water (10.21-17.11 μg L-1) was higher than that of other metals in all sites, followed by Pb > Cd > Hg. In fish muscle, Zn concentration in silver carp was the highest, and the lowest concentrations were related to Hg and Cd in common carp and grass carp, respectively. The target hazard quotients (THQ) indicated that the non-carcinogenic health risk to humans was relatively low by consuming four farmed carp species products. The carcinogenic risk of inorganic Pb was 1.24E-04 (common carp) to 2.11E-04 (grass carp) for adults, which is within the acceptable range. The values of BCFs for all metals demonstrated that farmed carp muscle could not be considered a bioaccumulative tissue for heavy metals. The results indicated that the concentrations of heavy metals in the farmed carp species in North Iran were relatively low and did not cause considerable human health risks.
Collapse
Affiliation(s)
| | - Shayan Ghobadi
- Department of Fisheries, Islamic Azad University, Babol Branch, Babol, Iran
| | | | - Rashid Alijani Ardeshir
- Marine Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Hamed Manouchehri
- Department of Fisheries, Islamic Azad University, Babol Branch, Babol, Iran
| |
Collapse
|
24
|
Li J, Zhang S, Kuang Y, Bi Y, Wang H. A review on losses and transformation mechanisms of common antioxidants. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Shuning Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yongyan Kuang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yanlan Bi
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Hongyan Wang
- College of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
25
|
Zhang X, Sun Z, Zeng Q, Jin H, Wang S, Jin Y, Hu Y, Cai Z. Utilization of ovalbumin-propylene glycol alginate complex system for superior foam: The effect of pH-driven phase behavior. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Loayza JJ, Kang S, Schooth L, Teh JJ, de Klerk A, Noon EK, Zhang J, Hu J, Hamilton AL, Wilson-O’Brien A, Trakman GL, Lin W, Ching J, Or L, Sung J, Yu J, Ng S, Kamm M, Morrison M. Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn's disease. The ENIGMA study. Gut Microbes 2023; 15:2172670. [PMID: 36852457 PMCID: PMC9980662 DOI: 10.1080/19490976.2023.2172670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Food additives have been linked to the pro-inflammatory microbial dysbiosis associated with Crohn's disease (CD) but the underlying ecological dynamics are unknown. Here, we examine how selection of food additives affects the growth of multiple strains of a key beneficial bacterium (Faecalibacterium prausnitzii), axenic clinical isolates of proinflammatory bacteria from CD patients (Proteus, Morganella, and Klebsiella spp.), and the consortia of mucosa-associated microbiota recovered from multiple Crohn's disease patients. Bacterial growth of the axenic isolates was evaluated using a habitat-simulating medium supplemented with either sodium sulfite, aluminum silicate, carrageenan, carboxymethylcellulose, polysorbate 80, saccharin, sucralose, or aspartame, intended to approximate concentrations found in food. The microbial consortia recovered from post-operative CD patient mucosal biopsy samples were challenged with either carboxymethylcellulose and/or polysorbate 80, and the bacterial communities compared to unchallenged consortia by 16S rRNA gene amplicon profiling. Growth of all F. prausnitzii strains was arrested when either sodium sulfite or polysorbate 80 was added to cultures at baseline or mid-exponential phase of growth, and the inhibitory effects on the Gram-negative bacteria by sodium sulfite were conditional on oxygen availability. The effects from polysorbate 80, saccharin, carrageenan, and/or carboxymethylcellulose on these bacteria were strain-specific. In addition to their direct effects on bacterial growth, polysorbate 80 and/or carboxymethylcellulose can drive profound changes in the CD mucosa-associated microbiota via niche expansion of Proteus and/or Veillonellaceae - both implicated in early Crohn's disease recurrence. These studies on the interaction of food additives with the enteric microbiota provide a basis for dietary management in Crohn's disease.
Collapse
Affiliation(s)
- J.J. Jimenez Loayza
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - S. Kang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - L. Schooth
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - J. J. Teh
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - A. de Klerk
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - E. K. Noon
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - J. Zhang
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - J. Hu
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - A. L. Hamilton
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - A. Wilson-O’Brien
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - G. L. Trakman
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - W. Lin
- Microbiota I-Center (Magic), Hong Kong, China
| | - J. Ching
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
| | - L. Or
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - J.J.Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - J. Yu
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - S.C. Ng
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (Magic), Hong Kong, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - M.A. Kamm
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
- Department of Medicine, the University of Melbourne, Melbourne, Australia
| | - M. Morrison
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Flórez-Méndez J, López J. Food Additives: Importance, Classification, and Adverse Reactions in Humans. NATURAL ADDITIVES IN FOODS 2023:1-31. [DOI: 10.1007/978-3-031-17346-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Zhou Y, Zhou Y, Wan J, Zhu Q, Liu L, Gu S, Li H. Effects of sorbitol-mediated curing on the physicochemical properties and bacterial community composition of loin ham during fermentation and ripening stages. Food Chem X 2022; 17:100543. [PMID: 36845517 PMCID: PMC9943751 DOI: 10.1016/j.fochx.2022.100543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the impacts of loin ham with sorbitol-mediated curing on its physicochemical properties and bacterial community composition during fermentation and ripening were investigated. The salt content, pH, and water activity (aw) were lower in the sorbitol group than in the control group throughout the fermentation and ripening stages (P < 0.05). In addition, the L* values were higher in the sorbitol group (P < 0.05). Additionally, microbial diversity diminished in all groups as the fermentation and ripening process proceeded, with Lactobacillus turning into the dominant genus in the control group and Staphylococcus and Lactobacillus becoming dominant in the sorbitol group. Pearson's correlation analysis confirmed that the physicochemical properties have been significantly correlated with the bacterial community. In conclusion, sorbitol-mediated curing not only facilitates salt reduction while prolonging the storage period of loin ham, but also improves the distribution of bacterial community in loin ham and enhances its quality.
Collapse
Affiliation(s)
- Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
29
|
Li T, Qin Z, Wang D, Xia X, Zhou X, Hu G. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid. World J Microbiol Biotechnol 2022; 39:36. [PMID: 36472665 DOI: 10.1007/s11274-022-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Phenyllactic acid (PLA), a natural antimicrobial substance, has many potential applications in the food, animal feed, pharmaceutical and cosmetic industries. However, its production is limited by the complex reaction steps involved in its chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, enzymatic or whole-cell catalysis was developed as an alternative method for PLA production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value PLA. Specially, the advantages and disadvantages of the using of the three kinds of substrates, which includes phenylpyruvate, phenylalanine and glucose as starting materials by natural or engineered microbes is summarized. Notably, the bio-conversion of PLA often requires the consumption of expensive coenzyme NADH. To overcome the issues of NADH regeneration, efficiently internal cofactor regeneration systems constructed by co-expressing different enzyme combinations composed of lactate dehydrogenase with others for enhancing the PLA production, as well as their possible improvements, are discussed. In particular, the construction of fusion proteins with different linkers can achieve higher PLA yield and more efficient cofactor regeneration than that of multi-enzyme co-expression. Overall, this review provides a comprehensive overview of PLA biosynthesis pathways and strategies for increasing PLA yield through biotechnology, providing future directions for the large-scale commercial production of PLA and the expansion of downstream applications.
Collapse
Affiliation(s)
- Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China
| | - Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China.
| | - Xue Xia
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Xiaojie Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Ge Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
30
|
Colorimetric detection of acid-base in organic solvents, water, and food products using polydiacetylene/Zn2+/ZnO nanocomposites with tunable sensitivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
George A, Rose Cherian A, Benny L, Varghese A, Hegde G. Surface-Engineering of Carbon Fibre Paper Electrode Through Molecular Imprinting Technique Towards Electrochemical Sensing of Food additive in Shrimps. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Jiang L, Yuan L, Liu Z, Xiang Y, Song F, Meng L, Tu Y. Facile hydrothermal synthesis and purification of fluorescent carbon dots for food colorant tartrazine detection based on a dual-mode nanosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4127-4132. [PMID: 36222124 DOI: 10.1039/d2ay01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colorant tartrazine is widely used in the food industry, but its long-term and excessive consumption is harmful to human health. Therefore, it is necessary to establish a sensitive detection method for tartrazine. Blue fluorescent carbon dots with L-arginine and o-phenylenediamine as precursors, namely L-Arg/oPD-CDs, were prepared via the hydrothermal method. Then, L-Arg/oPD-CDs were further purified by dialysis, thin layer chromatography and column chromatography. A dual-mode nanosensor based on fluorescent and UV absorption was successfully developed. Excellent linear ranges of 0-5 μM and 10-50 μM were obtained with a low detection limit of 42.3 nM based on fluorescence. A good linear range of 0-50 μM was obtained with a low detection limit of 130.15 nM based on UV absorption. The quenching mechanism of tartrazine towards L-Arg/oPD-CDs fluorescence was the inner filter effect. In addition, a dual-mode nanosensor was used for tartrazine determination in millet, maize flour, carbonated drink, and sugar samples. This study provides new insight into the detection of tartrazine by applying a dual-mode nanosensor.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Lin Yuan
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Ze Liu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Yingying Xiang
- Department of Stomatology, Yańan Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Lifen Meng
- School of Chemical Engineering, Guizhou University of Engineering Science, Guizhou, 550025, China
| | - Yujiao Tu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| |
Collapse
|
33
|
Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207137. [PMID: 36296730 PMCID: PMC9611030 DOI: 10.3390/molecules27207137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Antioxidants are food additives largely employed to inhibit oxidative reactions in foodstuffs rich in oils and fat lipids, extending the shelf life of foodstuffs and inhibiting alterations in color, flavor, smell, and loss of nutritional value. However, various research has demonstrated that the inadequate use of synthetic antioxidants results in environmental and health problems due to the fact that some of these compounds present toxicity, and their presence in the human body, in high concentrations, is related to the development of some cancer types and other diseases. Therefore, the development of analytical methods for identifying and quantifying synthetic antioxidants in foodstuffs is fundamental to quality control and in ensuring consumer food safety. This review describes the recent chromatographic and electrochemical techniques used in the detection of synthetic phenolic antioxidants in foodstuffs, highlighting the main characteristics, advantages and disadvantages of these methods, and specific typical features, which include extraction methods for sample preparation and materials used in the working electrode construction, considering chromatographic and voltammetric methods, since these specific features influence the efficiency in the analysis.
Collapse
|
34
|
Ilie-Mihai RM, Ion BC, van Staden J(KF. Sodium Metabisulfite in Food and Biological Samples: A Rapid and Ultra-Sensitive Electrochemical Detection Method. MICROMACHINES 2022; 13:1707. [PMID: 36296060 PMCID: PMC9611616 DOI: 10.3390/mi13101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The primary benefit of using sulfites as a food additive is their antimicrobial and antioxidant properties, which stop fungi and bacteria from growing in a variety of foods. The application of analytical methods is necessary to ensure food quality control related to the presence of sulfites in a variety of foods. For the detection of sodium metabisulfite in food and urine samples, two sensors based on reduced graphene oxide doped with Pd paste and modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrin and 5,10,15,20-tetrakis (pentafluorophenyl chloride)-21H,23H-iron (III) porphyrin were proposed. The new sensors were evaluated and characterized using square wave voltammetry. The response characteristics showed that the detection limits for the sensors were 3.0 × 10-12 mol L-1 for TPP/rGO@Pd0 based sensors and 3.0 × 10-11 mol L-1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors while the quantification limits were 1.0 × 10-11 mol L-1 for TPP/rGO@Pd0 based sensors and 1.0 × 10-10 mol L-1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors. The sensors can be used to determine sodium metabisulfite in a concentration range between 1.0 × 10-11 and 1.0 × 10-7 mol L-1 for TPP/rGO@Pd0 based sensors and between 1.0 × 10-10 mol L-1 and 1.0 × 10-6 mol L-1 for Fe(TPFPP)Cl/rGO@Pd0 based sensors. A comparison between the proposed methods' results and other analytical applications is also presented.
Collapse
|
35
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
36
|
Wang H, Liu X, Tu M, Xu X, Yang S, Chen D. Current Sample Preparation Methods and Analytical Techniques for the Determination of Synthetic Antioxidants in Edible Oils. J Sep Sci 2022; 45:3874-3886. [PMID: 35984364 DOI: 10.1002/jssc.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Synthetic antioxidants play a critical role in the storage and process of edible oil due to that they can retard lipid oxidation, maintain the quality of oils, and prolong the shelf life. However, a series of studies have proved the potential risks of synthetic antioxidants for human health when consumed in excess, and many countries have established the permitted amounts of synthetic antioxidants in oils. Thus, the accurate quantification of synthetic antioxidants in edible oils is necessary, and there have developed various analytical methods involved in chromatographical, electrochemical, and spectroscopic methods. Owing to the complex matrix and the incompatibility between the oil sample and the detection instrument, sample preparation is usually adopted prior to the instrument detection to improve the detection effectiveness. The current review aims to provide a comprehensive overview of the recently developed sample preparation methods and analytical techniques applied to determine synthetic antioxidants in edible oils from 2010 to present, with emphasis on the sample preparation methods combined with separation-based analytical techniques such CE and LC with various detectors. The advantages and limitations of some typical analytical methods are discussed and some insights in the future perspectives are also provided in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Honglei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xueting Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menglin Tu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
37
|
Martins FCOL, Alcantara GMRN, Silva AFS, Melchert WR, Rocha FRP. The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem 2022; 395:133539. [PMID: 35779506 DOI: 10.1016/j.foodchem.2022.133539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/09/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
The thermal processing, storage, and transportation of foodstuffs (e.g., fruit juices, coffee, honey, and vinegar) generate 5-hydroxymethylfurfural (HMF). The food industry uses this compound as a quality marker, thus increasing the demand for fast and reliable analytical methods for its determination. This review focuses on the formation of HMF in food, its desirable and toxic effects, and recent advances in analytical methods for its determination in foodstuffs. The advantages and limitations of these analytical approaches are discussed relative to the main analytical features.
Collapse
Affiliation(s)
- Fernanda C O L Martins
- Center for Nuclear Energy in Agriculture, University of São Paulo, P.O. Box 96, Piracicaba, SP, 13416-000, Brazil; College of Agriculture "Luiz de Queiroz", University of São Paulo, P.O. Box 9, Piracicaba, SP, 13418-970, Brazil
| | - Gabriela M R N Alcantara
- Center for Nuclear Energy in Agriculture, University of São Paulo, P.O. Box 96, Piracicaba, SP, 13416-000, Brazil; College of Agriculture "Luiz de Queiroz", University of São Paulo, P.O. Box 9, Piracicaba, SP, 13418-970, Brazil
| | - Anna Flavia S Silva
- Center for Nuclear Energy in Agriculture, University of São Paulo, P.O. Box 96, Piracicaba, SP, 13416-000, Brazil
| | - Wanessa R Melchert
- College of Agriculture "Luiz de Queiroz", University of São Paulo, P.O. Box 9, Piracicaba, SP, 13418-970, Brazil.
| | - Fábio R P Rocha
- Center for Nuclear Energy in Agriculture, University of São Paulo, P.O. Box 96, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
38
|
Apple Fibers as Carriers of Blackberry Juice Polyphenols: Development of Natural Functional Food Additives. Molecules 2022; 27:molecules27093029. [PMID: 35566379 PMCID: PMC9101031 DOI: 10.3390/molecules27093029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/11/2022] Open
Abstract
Blackberry polyphenols possess various health-promoting properties. Since they are very sensitive to environmental conditions such as the presence of light, oxygen and high temperatures, the application of such compounds is restricted. Fibers are recognized as efficient carriers of polyphenols and are often used in polyphenols encapsulation. In the present study, the ability of apple fiber to adsorb blackberry juice polyphenols was examined. Freeze-dried apple fiber/blackberry juice complexes were prepared with different amounts of fibers (1%, 2%, 4%, 6%, 8% and 10%) and a constant amount of blackberry juice. Polyphenol profile, antioxidant activity, inhibition of the α-amylase, color parameters, as well as the IR spectra, of the obtained complexes were assessed. The results showed a negative effect of higher amounts of fiber (more than 2%) on the adsorption of polyphenols and the antioxidant activity of complexes. With the proper formulation, apple fibers can serve as polyphenol carriers, and thus the application as novel food additives can be considered.
Collapse
|
39
|
Tirado-Kulieva VA, Hernández-Martínez E, Suomela JP. Non-destructive assessment of vitamin C in foods: a review of the main findings and limitations of vibrational spectroscopic techniques. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04023-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe constant increase in the demand for safe and high-quality food has generated the need to develop efficient methods to evaluate food composition, vitamin C being one of the main quality indicators. However, its heterogeneity and susceptibility to degradation makes the analysis of vitamin C difficult by conventional techniques, but as a result of technological advances, vibrational spectroscopy techniques have been developed that are more efficient, economical, fast, and non-destructive. This review focuses on main findings on the evaluation of vitamin C in foods by using vibrational spectroscopic techniques. First, the fundamentals of ultraviolet–visible, infrared and Raman spectroscopy are detailed. Also, chemometric methods, whose use is essential for a correct processing and evaluation of the spectral information, are described. The use and importance of vibrational spectroscopy in the evaluation of vitamin C through qualitative characterization and quantitative analysis is reported. Finally, some limitations of the techniques and potential solutions are described, as well as future trends related to the utilization of vibrational spectroscopic techniques.
Collapse
|
40
|
Zangara MT, Ponti AK, Miller ND, Engelhart MJ, Ahern PP, Sangwan N, McDonald C. Maltodextrin Consumption Impairs the Intestinal Mucus Barrier and Accelerates Colitis Through Direct Actions on the Epithelium. Front Immunol 2022; 13:841188. [PMID: 35359925 PMCID: PMC8963984 DOI: 10.3389/fimmu.2022.841188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Food additives are common components of processed foods consumed in a Western diet. In inflammatory bowel disease patients, some diets that exclude food additives improved clinical disease parameters, suggesting a link between food additives and disease pathogenesis. Food additives also enhanced disease severity in mouse colitis models through incompletely described mechanisms. This study examined the mechanisms by which the food additive maltodextrin (MDX) alters the development of colitis in a murine model. Interleukin-10 knockout (IL10KO) mice were fed diets supplemented with MDX or carboxymethyl cellulose (CMC) to determine their impact on colitis onset and severity; microbiome composition, function, and location; colonic immune cell infiltrates; and mucus layer integrity. Primary IL10KO colonic epithelial monolayers were used to dissect the impact of MDX directly on epithelial differentiation and mucus production. MDX or CMC consumption increased the incidence and severity of colitis, as well as decreased microbiome diversity, altered microbial composition, and decreased fecal acetic acid levels. The number of mucus producing cells were decreased in food additive fed mice and resulted in increased microbial proximity to the intestinal epithelium. Additionally, MDX supplementation resulted in crypt hyperplasia and expansion of the HopX+ injury renewal stem cell niche. In primary intestinal epithelial-derived monolayers devoid of microbes and immune cells, MDX exposure decreased goblet cell number and mucus production in association with downregulated expression of the transcription factor Klf4, a marker of terminally differentiated goblet cells. These results suggest MDX disrupts the balance of epithelial cell differentiation and proliferation to contribute to disease pathogenesis through direct and indirect actions on the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - András K. Ponti
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Noah D. Miller
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biology, John Carroll University, University Heights, OH, United States
| | - Morgan J. Engelhart
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Philip P. Ahern
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Microbiome Composition and Analytics Cores, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christine McDonald
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
41
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
42
|
Sen M. Food Chemistry: Role of Additives, Preservatives, and Adulteration. Food Chem 2021. [DOI: 10.1002/9781119792130.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Shikha P, Arvind K, Gupta A. Technological Advancement in Food Additives and Preservatives. Food Chem 2021. [DOI: 10.1002/9781119792130.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Ghnimi H, Ennouri M, Chèné C, Karoui R. A review combining emerging techniques with classical ones for the determination of biscuit quality: advantages and drawbacks. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34875937 DOI: 10.1080/10408398.2021.2012124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The production of biscuit and biscuit-like products has faced many challenges due to changes in consumer behavior and eating habits. Today's consumer is looking for safe products not only with fresh-like and pleasant taste, but also with long shelf life and health benefits. Therefore, the potentiality of the use of healthier fat and the incorporation of natural antioxidant in the formulation of biscuit has interested, recently, the attention of researchers. The determination of the biscuit quality could be performed by several techniques (e.g., physical, chemical, sensory, calorimetry and chromatography). These classical analyses are unfortunately destructive, expensive, polluting and above all very heavy, to implement when many samples must be prepared to be analyzed. Therefore, there is a need to find fast analytical techniques for the determination of the quality of cereal products like biscuits. Emerging techniques such as near infrared (NIR), mid infrared (MIR) and front face fluorescence spectroscopy (FFFS), coupled with chemometric tools have many potential advantages and are introduced, recently, as promising techniques for the assessment of the biscuit quality.
Collapse
Affiliation(s)
- Hayet Ghnimi
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France.,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.,National Engineering School of Sfax, University of Sfax, LR11ES45, Sfax, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, LR16IO01, Sfax, Tunisia
| | - Christine Chèné
- Tilloy Les Mofflaines, Adrianor, Tilloy-lès-Mofflaines, France
| | - Romdhane Karoui
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France
| |
Collapse
|
45
|
Soyseven M, Arli G. Method Validation and Rapid Determination of Monosodium Glutamate in Various Food Products by HPLC-Fluorescence Detection and Method Optimization of HPLC-Evaporative Light Scattering Detection Approach without Derivatization. J Chromatogr Sci 2021; 60:760-769. [PMID: 34599321 DOI: 10.1093/chromsci/bmab122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 11/14/2022]
Abstract
In this study, an effective, simple and rapid high-performance liquid chromatography (HPLC) using fluorescence (FLD) method was developed and validated for the determination of monosodium glutamate (MSG) in 57 various food samples. Besides, HPLC-Evaporate Light Scattering Detection (ELSD) method was carried out for determination of MSG without derivatization. MSG analysis was performed by derivatization with dansyl chloride at excitation 328, emission 530nm with fluorescence detector. HPLC-FLD method was carried out by using C18 (150 mm, 4.6 mm, 2.7 μm) column with the mobile phase consisting of (Water: Methanol:Glacial Acetic Acid)/(54:45:1,v/v/v). The column temperature was set at 25°C and the flow rate was set at 0.5 mL min-1 with an injection volume 20 μL. The results were linear (R2 = 0.9999) with very low quantification limits. The applied method was optimized and the validated parameters such as LOD, LOQ, accuracy, precision, linearity and robustness were calculated. The obtained results were statistically compared with each other. The validated HPLC-FLD method was successfully applied for the analysis of MSG in all of the food samples. Moreover, HPLC-ELSD method was optimized and successfully demonstrated for detect the MSG without derivatization.
Collapse
Affiliation(s)
- Murat Soyseven
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, 26470 Eskişehir, Turkey
| | - Göksel Arli
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, 26470 Eskişehir, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
46
|
|
47
|
Zhang K, An X, Bai Y, Shen C, Jiang Y, Hu Y. Exploration of food preservatives as draw solutes in the forward osmosis process for juice concentration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Phan K, Truong T, Wang Y, Bhandari B. Effect of CO
2
nanobubbles incorporation on the viscosity reduction of fruit juice concentrate and vegetable oil. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khanh Phan
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Tuyen Truong
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
- School of Science RMIT University Melbourne Victoria 3083 Australia
| | - Yong Wang
- School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
49
|
Rational design of ultrahigh sensitive sunset yellow sensor based on 3D hierarchical porous graphitic carbon with sub-nanopores. Food Chem 2021; 365:130631. [PMID: 34325348 DOI: 10.1016/j.foodchem.2021.130631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
The content of sunset yellow (SY) in food must be strictly controlled, because its excessive intake may cause many adverse health effects. Herein, we proposed an ultrasensitive SY sensor by using hierarchical porous graphitic (HPG) carbon derived from polyaniline hydrogel. After a first step of polymerization, the HPG carbon was prepared through carbonization and further chemical activation. In particular, the activation process endowed the HPG carbon with a high content of optimized porous architecture (sub-nanoporous surface area accounts for more than 90% of microporous surface area), and thus providing a structural basis for high efficiency of SY pre-concentration on HPG carbon surface. Therefore, the proposed sensor showed record-high sensitivity (5285.7 A M-1 cm-2) and ultra-low detection limit (0.15 nM), which represents a performance improvement in SY sensing. Furthermore, the sensor displays excellent selectivity, reproducibility and stability, exhibiting a great perspective in ultrasensitive monitoring of SY in commercial products.
Collapse
|
50
|
Pavlovic R, Di Cesare F, Longo F, Abballe F, Panseri S, Bonanni RC, Baccelliere R, Neri B, Chiesa LM. Undeclared (Poly)phosphates Detection in Food of Animal Origin as a Potential Tool toward Fraud Prevention. Foods 2021; 10:foods10071547. [PMID: 34359417 PMCID: PMC8304278 DOI: 10.3390/foods10071547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
(Poly)phosphates are approved as water-preserving and emulsifying agents that improve the appearance and consistency of many food products. The labelling of added (poly)phosphates is essential for protecting vulnerable population groups and to prevent unfair trade practices resulting in economic fraud. The problems with (poly)phosphates' utilisation concerns both analytical and legislative issues, such as: (1) their straightforward detection; (2) excessive addition altering freshness perception and misleading consumers; (3) uncontrolled usage increasing foodstuff weight; (4) application in products where they are not permitted; and (5) no indication on the label. Bearing all these issues in mind, the main purpose of this study was the quantification and screening of the (poly)phosphates profile in meat, marine and dairy products (160 samples), of which 43 were without declared (poly)phosphate treatment. Analysis was completed by high-performance ion-exchange chromatography either with conductometric detection or coupled to Q-Exactive Orbitrap high-resolution mass spectrometry. Although the (poly)phosphates profiles varied greatly according to species and processing type, the following criteria for detection of illicit treatment were established: high orthophosphate level, quantified short-chain (poly)phosphate anions and the presence of long-chain forms. In conclusion, the instrumental platforms used in this study can be recommended to inspection bodies as reliable methods for the detection of food adulteration with (poly)phosphates.
Collapse
Affiliation(s)
- Radmila Pavlovic
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy; (R.P.); (F.D.C.); (L.M.C.)
| | - Federica Di Cesare
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy; (R.P.); (F.D.C.); (L.M.C.)
| | - Francesca Longo
- Laboratorio Chimica degli Alimenti, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (F.L.); (R.C.B.); (R.B.); (B.N.)
| | - Franco Abballe
- Thermo Fisher Scientific, Strada Rivoltana, 20090 Rodano, Italy;
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy; (R.P.); (F.D.C.); (L.M.C.)
- Correspondence:
| | - Rossana Claudia Bonanni
- Laboratorio Chimica degli Alimenti, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (F.L.); (R.C.B.); (R.B.); (B.N.)
| | - Rocco Baccelliere
- Laboratorio Chimica degli Alimenti, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (F.L.); (R.C.B.); (R.B.); (B.N.)
| | - Bruno Neri
- Laboratorio Chimica degli Alimenti, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (F.L.); (R.C.B.); (R.B.); (B.N.)
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy; (R.P.); (F.D.C.); (L.M.C.)
| |
Collapse
|