1
|
Yuan B, Li Z, Li P, Zhang Q, Yang Q, Tang X. Genetically engineered integrated aflatoxin B 1 and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods. Biosens Bioelectron 2025; 273:117137. [PMID: 39808992 DOI: 10.1016/j.bios.2025.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B1 (AFB1) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins. In this study, using the nanobody gene sequences of the heavy chain recognition regions of anti-aflatoxin and deoxynivalenol monoclonal antibodies, recombinant plasmids were successfully constructed by one-step cloning, and low-temperature-induced bispecific nanobodies against AFB1-DON were obtained, which can be used as alternative antigens to reduce the pollution of the environment from mycotoxin detection. Enzyme-linked immunosorbent assay validated the bispecific nanobody, and the semi-inhibitory concentration (IC50) of the bispecific nanobody were 0.47 μg/L and 149 μg/L for AFB1 and DON, respectively. Finally, a time-resolved fluorescent dual-detection test strip was constructed by this bispecific nanobody as a surrogate antigen for AFB1 and DON, which was capable of detecting AFB1 and DON at the same time, and the limits of detection (LOD) for the two toxins were 0.0254 μg/L and 21.4 μg/L, respectively. This method has satisfactory sensitivity and does not require antigen, which reduces the toxicity of using antigen.
Collapse
Affiliation(s)
- Bei Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China; Food Safety Research Institute, HuBei University, Wuhan, China.
| |
Collapse
|
2
|
Swiatly-Blaszkiewicz A, Klupczynska-Gabryszak A, Matuszewska-Mach E, Matysiak J, Attard E, Kowalczyk D, Adamkiewicz A, Kupcewicz B, Matysiak J. Pesticides in Honeybee Products-Determination of Pesticides in Bee Pollen, Propolis, and Royal Jelly from Polish Apiary. Molecules 2025; 30:275. [PMID: 39860145 PMCID: PMC11767846 DOI: 10.3390/molecules30020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The bioaccumulation of pesticides in honeybee products (HBPs) should be studied for a number of reasons. The presence of pesticides in HBPs can provide new data on the risk related to the use of pesticides and their role in bee colony losses. Moreover, the degree of contamination of HBPs can lower their quality, weaken their beneficial properties, and, in consequence, may endanger human health. The aim of this study was to quantify a broad range of pesticide residues in three different HBPs-bee pollen, propolis, and royal jelly. Samples were collected in the years 2017-2019 from the apiary in west-central Poland. Bee products were analyzed for the presence of over 550 pesticides using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method. Twenty-nine of the contaminants were quantified at least in one of the samples. Nine of them exceeded the maximum residue levels for honey. It should be noted that any dose of pesticides can cause a health hazard due to toxicity, since these substances may act synergistically. This current study revealed the high need for the pesticide monitoring of HBPs and proved that there is a need to expand the European Union Pesticides Database to include more HBPs.
Collapse
Affiliation(s)
- Agata Swiatly-Blaszkiewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (E.M.-M.); (J.M.)
| | - Eliza Matuszewska-Mach
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (E.M.-M.); (J.M.)
| | - Joanna Matysiak
- Faculty of Health Sciences, University of Kalisz, 62-800 Kalisz, Poland; (J.M.); (D.K.); (A.A.)
| | - Everaldo Attard
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, MSD2080 Msida, Malta;
| | - Dariusz Kowalczyk
- Faculty of Health Sciences, University of Kalisz, 62-800 Kalisz, Poland; (J.M.); (D.K.); (A.A.)
| | - Aleksandra Adamkiewicz
- Faculty of Health Sciences, University of Kalisz, 62-800 Kalisz, Poland; (J.M.); (D.K.); (A.A.)
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.K.-G.); (E.M.-M.); (J.M.)
| |
Collapse
|
3
|
Yang H, Li W, Zi L, Xu N, Guo Z, Chen B, Hua Y, Guo L. Comprehensive analysis of the dynamic changes of volatile and non-volatile metabolites in boletus edulis during processing by HS-SPME-GC-MS and UPLC-MS/MS analysis. Food Chem X 2024; 22:101487. [PMID: 38855096 PMCID: PMC11157221 DOI: 10.1016/j.fochx.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024] Open
Abstract
In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.
Collapse
Affiliation(s)
- Hao Yang
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Weilan Li
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Luxi Zi
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Ningmeng Xu
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Zhengyin Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Bangjie Chen
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Hua
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lei Guo
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, 650224, China
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan, 650224, China
| |
Collapse
|
4
|
Rezayat MR, Jafari MT, Mohammadipour L. A configuration for cooling assisted organic solvent coated thin film microextraction after dispersive liquid-liquid microextraction method: A microextraction method for ultra-trace analyzing of volatile sample. Heliyon 2024; 10:e33230. [PMID: 39022067 PMCID: PMC11253257 DOI: 10.1016/j.heliyon.2024.e33230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
A combination of the dispersive liquid-liquid microextraction (DLLME) method based on the total vaporization procedure and cooling-assisted organic solvent-coated thin film microextraction (TFME) was applied for extracting chlorpyrifos (as the model compound). Based on the high thermal conductivity, a nickel foam thin film with the dimensions of 5.0 mm × 5.0 mm was used as a substrate for holding the organic solvent. Supporting thin film by organic solvent increases the thickness and contact area of the film relative to TFME or single drop microextraction (SDME) alone, resulting in a dramatic increase in the extraction efficiency. To protect the organic solvent and enhance the analyte distribution coefficient between the film and the vapor phase, a cooling system was applied. The proposed design was effective due to condensing the target analyte only on the uniform cooled thin film and not on the other regions in the extraction chamber. A corona discharge ionization source-ion mobility spectrometer was employed to identify the analyte. After optimizing the effective parameters, the limits of quantification (S/N = 10) and detection (S/N = 3) were calculated 0.1 and 0.03 μg L-1, respectively, and the dynamic range was measured between 0.1 and 7.0 μg L-1, with a determination coefficient of 0.9997. For three concentration levels of 0.1, 3.0, and 7.0 μg L-1, the relative standard deviations (n = 3) as the repeatability index were to be 6 %, 5 %, and 4 % for intra-day and 9 %, 6 %, and 5 % for inter-day, respectively. The enrichment factor was also calculated to be 3630 for the analyte concentration of 1.0 μg L-1. Well water, potato, and agricultural wastewater were analyzed as the real samples and the relative recovery values were measured between 92 % and 99 %. The accuracy of the proposed technique was validated by the European Standards EN 12393 method. In this approach, two steps of analyte extraction (DLLME and TFME) were used consecutively, resulting in better preconcentration and reduced matrix interference during cleaning-up.
Collapse
Affiliation(s)
- Mohammad R. Rezayat
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad T. Jafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Leila Mohammadipour
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
5
|
Liu Y, Wang X, Wei J, Fu K, Chen Y, Li L, Wang Z, Yang L. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury. J Chromatogr A 2024; 1721:464816. [PMID: 38537486 DOI: 10.1016/j.chroma.2024.464816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
The severe respiratory dysfunctions associated with acute lung injury (ALI) and its sequelae have a high morbidity and mortality rate, are multifactorial, and lack a viable treatment. Considering the critical function that amino acids and derivatives play in the genesis of illnesses and the regulation of metabolic processes, monitoring the levels of metabolites associated with amino acids in biological matrices is necessary and interesting to study their pathological mechanisms. Exploring the dynamics of amino acids and derivatives level and searching for biomarkers provides improved clinical ideas for the diagnosis and treatment of ALI. Therefore, we developed an ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS) method that can simultaneously determine the amino acid and derivatives metabolic levels to study amino acid profiles in different biological samples to facilitate clinical research of ALI. In this study, 48 amino acids and derivatives, including neurotransmitters, polyamines, purines, and other types, were quantified simultaneously in a fast, high-throughput, sensitive, and reliable manner within a 15-minute run time without derivatization. No relevant studies have been reported to quantify these 48 amino acid metabolites in three biological samples simultaneously. Satisfactory linearity (R > 0.995), inter-day and intra-day accuracy (85.17-112.67 % and 85.29-111.60 %, respectively), inter-day and intra-day precision (RSD < 13.80 % and RSD < 12.01 %, respectively), matrix effects (81.00 %-118.00 %), recovery (85.09 %-114.65 %) and stability (RSD < 14.72 %) were all demonstrated by the optimized method's successful validation for all analytes. In addition, the suggested method was effectively implemented in plasma, urine, and lung tissue from normal mice and mice with ALI, with the aim of finding potential biomarkers associated with ALI. Potential biomarkers were screened through multivariate statistical analysis and volcanic map analysis, and the changes of markers in ALI were again identified through heat map analysis and correlation analysis with biochemical indicators, which provided ideas and references for subsequent mechanism studies. Here, the technique created in this work offers a quick and dependable way to perform an integrated analysis of amino acids in a variety of biological materials, which can provide research ideas for understanding the physiopathological state of various diseases.
Collapse
Affiliation(s)
- Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaojiao Wei
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kangning Fu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Woo SY, Lee SY, Park SB, Chun HS. Simultaneous determination of 17 regulated and non-regulated Fusarium mycotoxins co-occurring in foodstuffs by UPLC-MS/MS with solid-phase extraction. Food Chem 2024; 438:137624. [PMID: 38011795 DOI: 10.1016/j.foodchem.2023.137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Fusarium species produce numerous mycotoxins known to co-occur in food. While some of these mycotoxins (e.g., deoxynivalenol, fumonisins) are regulated in several countries, others are non-regulated (e.g., nivalenol, beauvericin). In this study, UPLC-MS/MS with solid-phase extraction cleanup was used to determine 17 Fusarium mycotoxins (FTs) simultaneously. The method showed excellent performance in terms of linearity (R2 > 0.99), LOD (<1.2 μg/kg), LOQ (<3.6 μg/kg), accuracy (70.0-116.3 %), repeatability (<15.7 %), reproducibility (<25.3 %), and expanded uncertainty (<41.7 %). The validated method was successfully applied to 198 marketed food samples collected in South Korea. Of the tested samples, 79 % were contaminated with at least one FT. Job's tears showed the highest prevalence of 14 FTs, and sorghum had the highest total FTs level (3.03 mg/kg). The results suggest that this method can be used for the simultaneous analysis of 17 FTs in food samples, which would serve as crucial information for risk management.
Collapse
Affiliation(s)
- So Young Woo
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Yoo Lee
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su Been Park
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
7
|
Xu X, Lv J, Zhou J, Ji B, Yang L, Xu G, Hou Z, Li L, Bai Y. Improved matrix purification using a graphene oxide-coated melamine sponge for UPLC-MS/MS-based determination of 37 veterinary drugs in milks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:856-863. [PMID: 38240139 DOI: 10.1039/d3ay01797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A rapid and highly sensitive method was established for the analysis of 37 veterinary drug residues in milk using a modified QuEChERS method based on a reduced graphene oxide-coated melamine sponge (rGO@MeS) coupled with UPLC-MS/MS. Under optimal chromatographic and mass spectrometric conditions, the effects of different dehydrated salts (MgSO4 and Na2SO4) and metal chelating agents (Na2EDTA) on extraction efficiency were first investigated. Next, the influence of a dynamic and static purification mode was evaluated in terms of drug recoveries. Calibration curves of 37 veterinary drugs were constructed in the range 0.6-500 μg kg-1, and good linearities were obtained with all determination coefficients (R2) ≥0.992. The limits of detection (LODs) and quantitation (LOQs) were in the range 0.3-1.1 μg kg-1 and 0.6-3.5 μg kg-1, respectively. The recoveries of all compounds were in the range 61.3-118.2% at three spiked levels (20, 100, and 200 μg kg-1) with RSDs ≤15.4% for both intra- and inter-day precisions. Compared to pristine melamine sponges and commercial adsorbents (C18, PSA, and GCB), rGO@MeS demonstrated an equal or even better purification performance in terms of recoveries, matrix effects, and matrix removal efficiency. This method is rapid, simple, efficient, and appropriate for the qualitative and quantitative analyses of 37 veterinary drug residues in milk, providing a new detection strategy and technical support for the routine analysis of animal-derived food.
Collapse
Affiliation(s)
- Xu Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Jia Lv
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Jintian Zhou
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Baocheng Ji
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Lanrui Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Gaigai Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Zhuchen Hou
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Lulu Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Yanhong Bai
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| |
Collapse
|
8
|
Lin X, Ge R, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X. Magnetic-encoded fluorescent nanospheres-based competitive immunoassay for near-simultaneous detection of four mycotoxins in wheat. Food Chem 2024; 432:137267. [PMID: 37672888 DOI: 10.1016/j.foodchem.2023.137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Simultaneous detection of mycotoxins is important for food safety. In this study, a magnetic-encoded fluorescent nanosphere-based competitive immunosensor (cFMEIS) with 2×2 array was first developed for simultaneous detection of aflatoxin B1 (AFB1), ochratoxin (OTA), deoxynivalenol (DON), and zearalenone (ZEN) in wheat. Specifically, magnetic nanoparticles with strong and weak responses were conjugated with mycotoxin antigens as capture probes. Fluorescent nanoparticles doped with europium ion (Eu3+) and terbium ion (Tb3+) with red and green emission were coupled with mycotoxin antibodies as signal probes. Using a magnetic field, immune complexes were sequentially separated in a complex system and fluorescently detected. The detection limits of AFB1, DON, OTA, and ZEN were 0.032, 0.141, 0.097, and 0.376 μg/kg, respectively. The recoveries in the certified reference material of wheat flour ranged from 81.6 to 120.0 %. Owing to its high accuracy, selectivity, and sensitivity, the cFMEIS shows great promise as an efficient and sensitive multitarget sensor for mycotoxins.
Collapse
Affiliation(s)
- Xueqi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Rui Ge
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
9
|
Casado N, Berenguer CV, Câmara JS, Pereira JAM. What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches. Molecules 2024; 29:579. [PMID: 38338324 PMCID: PMC10856495 DOI: 10.3390/molecules29030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Consumers in developed and Western European countries are becoming more aware of the impact of food on their health, and they demand clear, transparent, and reliable information from the food industry about the products they consume. They recognise that food safety risks are often due to the unexpected presence of contaminants throughout the food supply chain. Among these, mycotoxins produced by food-infecting fungi, endogenous toxins from certain plants and organisms, pesticides, and other drugs used excessively during farming and food production, which lead to their contamination and accumulation in foodstuffs, are the main causes of concern. In this context, the goals of this review are to provide a comprehensive overview of the presence of toxic molecules reported in foodstuffs since 2020 through the Rapid Alert System for Food and Feed (RASFF) portal and use chromatography to address this challenge. Overall, natural toxins, environmental pollutants, and food-processing contaminants are the most frequently reported toxic molecules, and liquid chromatography and gas chromatography are the most reliable approaches for their control. However, faster, simpler, and more powerful analytical procedures are necessary to cope with the growing pressures on the food chain supply.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal; (C.V.B.); (J.S.C.)
| |
Collapse
|
10
|
Fan Z, Jia W. Long Short-Term Memory-Based Multiomics Reveal Lactobacillus casei-Derived Postbiotics Inhibiting Lipids Digestion via Mediating the Upregulation of α-Helices in Lipase. Mol Nutr Food Res 2023; 67:e2300336. [PMID: 37753826 DOI: 10.1002/mnfr.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/09/2023] [Indexed: 09/28/2023]
Abstract
SCOPE The antiobesity function of probiotics has been declared, while the application in high-risk patients and coding side effect has focused attention to postbiotics. This investigation profiles the mechanism of postbiotics affecting lipid digestion at molecular level, and establishes a momentous foundation for the clinical application of postbiotics in obesity suppression. METHODS AND RESULTS An operational framework for butter digestion is constructed to collect the digests in the intestine at 0, 40, 80, and 120 min with various postbiotics supplement. A total of 227 lipids and 414 metabolites are detected by pseudo-targeted lipidomics integrated with the long short-term memory-based metabolomics, and the triacylglycerol (TG, from 134.1 to 184.7 mg kg-1 ) and diacylglycerol (DG, from 4.2 to 8.4 mg kg-1 ) are identified as significantly different lipids with or without postbiotics supplement. A total of eight substances related to the inhibition of gastric lipase and pancreatic lipase are screened through the molecular simulation computation in silicon and enzymatic reaction kinetics, and thus curtailing the bioaccessibility of lipids. CONCLUSIONS Lactobacillus casei JCM1134-derived postbiotics propel the structure of lipase to aggregate by increasing the α-helix, and thus hampering the digestion of triglycerides through noncompetitive inhibition.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021, China
| |
Collapse
|
11
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
12
|
Fan Z, Jia W. Long short-term memory based quasi-targeted lipidomics reveals propane-1,2-diol expediting the digestion of lipids via mediating the α-helices to a random curl or β folding of lipase. Food Res Int 2023; 173:113411. [PMID: 37803749 DOI: 10.1016/j.foodres.2023.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Scandal of detecting 1,2-propanediol (PD) in milk brought a crisis to the trust of consumers in dairy industry, and investigations focused effect of PD on digestive behavior of milk were still restricted. Long short-term memory amalgamated to quasi-targeted lipidomics was applied to monitor dynamics changes of lipids during digestion and the pseudo-first-order kinetic model elucidated that PD elevated the digestibility of lipid with the degradation rate (S-1) ranged from 4440.31 to 5665.59 and mediated the transition of α-helices (26.46% to 19.07% of pancreatic lipase and 29.89% to 23.37% of gastric lipase) covering active center in lipase to random curl (48.25% to 51.17% of pancreatic lipase and 41.58% to 44.57% of gastric lipase) and β folding (9.14% to 4.67% of pancreatic lipase and 6.52% to 10.05% of gastric lipase), ultimately upregulating the lipase activity and further intervening lipid nutrients utilization in milk. This study provided a critical insight about the impact of PD contamination at trace concentrations on the nutritional value of milk fat during digestion.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Mao X, Chen W, Wu H, Shao Y, Zhu Y, Guo Q, Li Y, Xia L. Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds. Toxins (Basel) 2023; 15:495. [PMID: 37624252 PMCID: PMC10467096 DOI: 10.3390/toxins15080495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Alternaria mycotoxins are a class of important, agriculture-related hazardous materials, and their contamination in ruminant feeds and products might bring severe toxic effects to animals and even human beings. To control these hazardous compounds, a reliable and sensitive LC-MS/MS (liquid chromatography-tandem mass spectrometry) method was established for simultaneous determination of six target Alternaria mycotoxins in ruminant feeds, including ALT (Altenuene), AME (Alternariol Monomethyl Ether), AOH (Alternariol), ATX-Ι (Altertoxins I), TeA (Tenuazonic Acid), and TEN (Tentoxin). This developed analytical method was used for the determination of the presence of these substances in cattle and sheep feeds in Xinjiang Province, China. The results revealed that Alternaria mycotoxins are ubiquitously detected in feed samples. Especially, AME, AOH, TeA, and TEN are the most frequently found mycotoxins with a positive rate over 40% and a concentration range of 4~551 µg/kg. The proposed method could be applied for exposure investigation of Alternaria mycotoxins in ruminant feeds and for the reduction in the health risk to animals and even consumers.
Collapse
Affiliation(s)
- Xin Mao
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Wanzhao Chen
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Huimin Wu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Ying Shao
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Ya’ning Zhu
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Lining Xia
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| |
Collapse
|
14
|
Fan Z, Jia W. Ambient 1,2-propanediol exposure accelerates the degradation of lipids and amino acids in milk via allosteric effects and affects the utilization of nutrients containing amide bond. Food Res Int 2023; 170:112965. [PMID: 37316053 DOI: 10.1016/j.foodres.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The scandal of detecting 1, 2-propanediol (PL) in milk brought a crisis to the trust of consumers in the dairy industry, and the potential toxicity of PL has aroused the public concern about dietary exposure. A total of 200 pasteurized milk samples were collected from 15 regions, and the quantity of PL ranged between 0 and 0.31 g kg-1. Pseudo-targeted quantitative metabolomics integrated with proteomics demonstrated that PL enhanced the reduction of κ-casein, β-casein, and 107 substances (41 amines and 66 amides) containing amide bonds. Pathway enrichment and topological analysis indicated that PL induced the metabolism of lipids, amino acids, oligosaccharide nucleotides, and alkaloids by accelerating the rate of nucleophilic reaction, and acetylcholinesterase, sarcosine oxidase, and prolyl 4-hydroxylase were determined as the vital enzymes related to the degradation of above nutrients. The results of molecular simulation calculation illustrated that the number of hydrogen bonds between acetylcholinesterase, sarcosine oxidase, and substrate increased to 2 and 3, respectively, while the position of hydrogen bonds between prolyl 4-hydroxylase and proline was shifted, indicating the change of conformation and the enhancement of hydrogen bond force were essential factors for the up-regulation of enzyme activity. This study first revealed the mechanism of deposition and transformation of PL in milk, which contributed to the knowledge of the quality control of milk and provided vital indicators to evaluate the adverse risks of PL in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
15
|
Wang X, Jia W. Bio-based material-edible rosemary induced biodegradation of aflatoxin B1 via altering endogenous protective enzymes signatures in animal-derived foods. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132021. [PMID: 37437484 DOI: 10.1016/j.jhazmat.2023.132021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous mycotoxin, posing risks to public health. Utilization of bio-based materials to biodegrade AFB1 is a green strategy to overcome this issue. The investigation aimed to screen for endogenous protective enzymes in bio-based material-edible rosemary based on ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS)-proteomics and ascertain their impacts on the biodegradation and biotransformation of AFB1, and the trade-offs of multilevel metabolism of the animal-derived foods through untargeted metabolomics. The proteomics results verified that bio-based material-edible rosemary (0.20%, w/w) significantly up-regulated glutathione S-transferase and stimulated the down-regulation of cytochrome P450 1A2 levels via activating AhR nuclear translocation in rosemary-pickled AFB1-contaminated goat meat. Metabolomics results demonstrated that edible rosemary substantially increased histidine and glutathione implicated in the antioxidant status of goat meat. More importantly, edible rosemary with high endogenous protective enzyme content could efficiently biodegrade AFB1 in goat meat. We first unveiled that rosemary could not only efficiently biodegrade AFB1 up to 90.20% (20.00-1.96 μg kg-1) but also elevate the bio-ingestion quality of goat meat. These findings suggest that the bio-based material-rosemary is an efficient and environmentally friendly approach for biodegrading AFB1 and elevating the bio-ingestion composition of goat meat.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
16
|
Zhou Q, Yu C, Meng L, Ji W, Liu S, Pan C, Lan T, Wang L, Qu B. Research progress of applications for nano-materials in improved QuEChERS method. Crit Rev Food Sci Nutr 2023; 64:10517-10536. [PMID: 37345873 DOI: 10.1080/10408398.2023.2225613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach is widely used in sample pretreatment in agricultural products, food, environment, etc. And nano-materials are widely used in QuEChERS method due to its small size and large specific surface area. In this review, we examine the typical applications of several commonly used nano-materials in improved QuEChERS method. These materials include multi-walled carbon nanotubes (MWCNTs) and their derivatives, magnetic nanoparticles (MNPs), metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), lipid and protein adsorbent (LPAS), cucurbituril (CBs), and carbon nano-cages (CNCs), and so on. The strengths and weaknesses of each nano-material are presented, as well as the challenging aspects that need to be addressed in future research. By comparing the applications and the current technology development, this review suggests utilizing artificial intelligence (AI) to screen suitable combinations of purification agents and performing virtual simulation experiments to verify the reliability of this methodology. By doing so, we aim to accelerate the development of new products and decrease the cost of innovation. It also recommends designing smarter pretreatment instruments to enhance the convenience and automation of the sample pretreatment process and reduce the margin for human error.
Collapse
Affiliation(s)
- Qi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, China
- China National Institute of Standardization, Beijing, PR China
| | - Congcong Yu
- China National Institute of Standardization, Beijing, PR China
| | - Lingling Meng
- China National Institute of Standardization, Beijing, PR China
| | - Wenhua Ji
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Songnan Liu
- Beijing Tea Quality Supervision and Inspection Station, Beijing, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing, China
| | - Tao Lan
- China National Institute of Standardization, Beijing, PR China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Bin Qu
- Beijing Knorth Co. Ltd, Beijing, China
| |
Collapse
|
17
|
Jia W, Wu X. Potential biomarkers analysis and protein internal mechanisms by cold plasma treatment: Is proteomics effective to elucidate protein-protein interaction network and biochemical pathway? Food Chem 2023; 426:136664. [PMID: 37352708 DOI: 10.1016/j.foodchem.2023.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
New market trends of meat flavor, tenderness, and color quality indicators have prompted the research on meat preservation as a crucial topic to received attention. Present research about the effects of irradiation, cold plasma technology on meat is incomplete. There are strongly recommended that proteomics techniques be jointly to enhance the coverage of internal meat molecules for meat research. By identifying meat proteins, detecting biological functions, and quantifying the protein segments of specific meat biomarkers, which can be provided for the information of diagnostic components in preservative technologies. The current review provides scientific findings on various control strategies: (i) combine the data-independent acquisition to provide a reference for the meat molecular mechanism and rapid identification; (ii) design molecular networks biological functions assessment model; (iii) molecular investigations of cold plasma techniques and underlying mechanisms; (iv) explore the X-rays and γ-rays treatment in meat preservation and myoglobin change mechanism more comprehensively.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Sheng W, Guo J, Liu C, Ma Y, Liu J, Zhang H. Quantitative determination of four mycotoxins in cereal by fluorescent microsphere based immunochromatographic assay. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4017-4024. [PMID: 36440754 DOI: 10.1002/jsfa.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mycotoxins are secondary metabolites produced by fungi, which have serious effects on humans and animals. In this study, we selected the monodispersed polystyrene fluorescent microspheres with good luminescence performance and strong stability as markers to conjugate with four mycotoxins antibodies for preparing fluorescent probes. We have developed a fluorescent microsphere based immunochromatographic assay (FMICA) to detect sensitively and quickly zearalenone (ZEN), aflatoxin B1 (AFB1 ), fumonisin B1 (FB1 ), and ochratoxin A (OTA) in cereal. RESULTS Under optimal experimental conditions, the procedure of this method can be completed within 10 min. The limit of detection (LOD) of FMICA for ZEN, AFB1 , FB1 , and OTA is 0.072, 0.093, 0.32, and 0.19 μg L-1 , respectively. And FMICA has good specificity and no cross-reactivity with other mycotoxins. Four mycotoxins in naturally contaminated cereal samples (corn, rice, and oat) are detected by this method, and the results are highly consistent with that of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). CONCLUSION The developed FMICA has good accuracy, high sensitivity, simplicity, convenience, rapidity, and low cost, and it could be employed for sensitive and quantitative detecting of mycotoxins in cereal on-site. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Chenchen Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yueru Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Junli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Haoyu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Guo X, Chen F, Zhang W. Analysis of 16 mycotoxins in genuine traditional Chinese medicine for five medicinal parts: Classification of analytical method based on PANI@CS extraction-UPLC-MS/MS. Heliyon 2023; 9:e17027. [PMID: 37342581 PMCID: PMC10277462 DOI: 10.1016/j.heliyon.2023.e17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
A novel PANI@CS solid-phase dispersive extractant combined with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed for the first time, which was used for high-throughput, multi-component, real-time online rapid pretreatment and quantitative classification of 16 mycotoxins from five different medicinal parts of 13 genuine traditional Chinese medicines (TCMs). Ultra performance liquid chromatography combined with triple quadrupole mass spectrometry was used for separation and ESI detection. An internal standard isotope matching calibration was used for quantification purposes to compensate for matrix effects. The limits of detection (LOD) of 16 mycotoxins ranged from 0.1 to 6.0 μg/kg. The linear coefficients (R2) were ≥0.996 in the linear range from 10.0 to 200 μg/L. The recoveries of the 16 mycotoxins ranged from 90.1% to 105.8%, and the relative standard deviations (RSDs) ranged from 1.3% to 4.1%. Thirteen TCMs from five representative medicinal parts were selected and tested under the best sample preparation procedure and chromatographic analysis conditions. The results showed that the method could improve the sensitivity and accuracy of the sample analysis, improve the selectivity and reproducibility of the decolorization and purification of TCMs, which is suitable for the practical application of mycotoxin in trace analysis. This method can also provide a new idea for accurate, efficient, rapid and multi-component online detection of mycotoxins for quality and safety control of TCMs.
Collapse
Affiliation(s)
- Xinying Guo
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
| | - Feng Chen
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
| | - Weibing Zhang
- Nantong Center for Disease Control and Prevention, Nantong, PR China
- Nantong Key Laboratory of Food Hygiene, Nantong Food Safety Testing Center, Nantong, PR China
- Nantong Teaching and Research Practice Base of Public Health and Preventive Medicine of Lanzhou University,Nantong, PR China
| |
Collapse
|
20
|
Fan Z, Jia W. Extracellular proteolytic enzyme-mediated amino exposure and β-oxidation drive the raspberry aroma and creamy flavor formation. Food Chem 2023; 424:136442. [PMID: 37236078 DOI: 10.1016/j.foodchem.2023.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The fermentation-driving ability of Daqu has been widely reported, while the potential influence of substances in Daqu on Baijiu flavor formation has attracted increasing interest. Pseudo-targeted metabolomics integrated proteomics combined with sensory evaluation strategy was applied to investigate the correlation between flavor characteristics and metabolic profiling of Daqu, and the mechanism of flavor formation was also elucidated. The 4-hydroxy-2,5-dimethylfuran-3-one (3.5 mg kg-1) and 2,3-dihydro-1 h-inden-5-ol (894.3 μg kg-1) were identified as the unique substances in qingcha qu, which were vital for raspberry flavor formation and associated with the up-regulation of amino acid metabolism. The dec-9-enoic acid (37.4 mg kg-1) was screened out as the substance related to the formation of cream flavor in hongxin qu produced through the shortening of fatty acid carbon chains and unsaturated modification of long chain fatty and acceleration of carbon metabolism in hongxin qu mediated by filamentous Aspergillus spp. was related to the smoky aroma enhancement.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
21
|
Rodríguez-Cañás I, González-Jartín JM, Alvariño R, Alfonso A, Vieytes MR, Botana LM. Detection of mycotoxins in cheese using an optimized analytical method based on a QuEChERS extraction and UHPLC-MS/MS quantification. Food Chem 2023; 408:135182. [PMID: 36535186 DOI: 10.1016/j.foodchem.2022.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mycotoxins can produce toxic effects on humans; hence, it is of high importance to determine their presence in food products. This work presents a reliable method for the quantification of 32 mycotoxins in cheese. The analysis procedure was optimized based on a QuEChERS extraction process and the ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) detection. The analysis method was validated for four cheese varieties (emmental, blue, brie and camembert) in terms of linearity, sensitivity, matrix effect, accuracy and precision. Satisfactory precision and accuracy values were achieved, with recoveries above 70% for most mycotoxins. The developed method was applied to the analysis of 38 commercial cheese samples. A high occurrence of beauvericin and enniatins were found, ranging from 31% for enniatin A to 100% for enniatin B. The ochratoxin A was detected in three samples at concentrations that may pose a risk to human health.
Collapse
Affiliation(s)
- Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
22
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
23
|
Zhang YY, Zhao MJ, Liu CY, Ma K, Liu TY, Chen F, Wu LN, Hu DJ, Lv GP. Comparison of two commercial methods with a UHPLC-MS/MS method for the determination of multiple mycotoxins in cereals. Food Chem 2023; 406:135056. [PMID: 36455316 DOI: 10.1016/j.foodchem.2022.135056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Immunoassay-based techniques are important on-site screening tools for the detection of mycotoxins in cereals. This study aims to evaluate the trueness, precision, repeatability and cross-reactivity of commercially available test strips, ELISA kits and UHPLC-MS/MS on analyzing zearalenone, ochratoxin A, deoxynivalenol, T-2 toxin and fumonisin B1. The results showed that false negative rate (25.7 %-37.4 %) of all tested mycotoxins by test strips was higher than the false positive rate (0 %-31.0 %). The repeatability of ELISA kits at the declared LOD dispersed from -85.7 % to +98.4 %. ELISA kits were more accurate at 50 % of the maximum residue limit (MRL) of mycotoxins than 150 % and 200 %. All the tested deoxynivalenol/zearalenone derivatives had cross-reactivity with different level, and sample matrix could reinforce this overestimation of target mycotoxin. This study emphasized that higher-quality antibody screening and more analytical performance investigations are need to address for on-site detection of mycotoxins in the future.
Collapse
Affiliation(s)
- Ying-Yue Zhang
- School of Life Science, Nanjing Normal University, Nanjing 210023, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mei-Juan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chun-Yao Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Kai Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tian-Yu Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fei Chen
- School of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Li-Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - De-Jun Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Guang-Ping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
24
|
Li ZC, Li W, Wang R, Wang DX, Tang AN, Wang XP, Gao XP, Zhao GM, Kong DM. Lignin-based covalent organic polymers with improved crystallinity for non-targeted analysis of chemical hazards in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130821. [PMID: 36709736 DOI: 10.1016/j.jhazmat.2023.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lignin, the most abundant source of renewable aromatic compounds derived from natural lignocellulosic biomass, has great potential for various applications as green materials due to its abundant active groups. However, it is still challenging to quickly construct green polymers with a certain crystallinity by utilizing lignin as a building block. Herein, new green lignin-based covalent organic polymers (LIGOPD-COPs) were one-pot fabricated with water as the reaction solvent and natural lignin as the raw material. Furthermore, by using paraformaldehyde as a protector and modulator, the LIGOPD-COPs prepared under optimized conditions displayed better crystallinity than reported lignin-based polymers, demonstrating the feasibility of preparing lignin-based polymers with improved crystallinity. The improved crystallinity confers LIGOPD-COPs with enhanced application performance, which was demonstrated by their excellent performances in sample treatment of non-targeted food safety analysis. Under optimized conditions, phytochromes, the main interfering matrices, were almost completely removed from different phytochromes-rich vegetables by LIGOPD-COPs, accompanied by "full recovery" of 90 chemical hazards. Green, low-cost, and reusable properties, together with improved crystallinity, will accelerate the industrialization and marketization of lignin-based COPs, and promote their applications in many fields.
Collapse
Affiliation(s)
- Zhan-Chao Li
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiao-Peng Wang
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiao-Ping Gao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Gai-Ming Zhao
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
25
|
Bian Y, Zhang Y, Zhou Y, Wei B, Feng X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins (Basel) 2023; 15:toxins15030215. [PMID: 36977106 PMCID: PMC10053610 DOI: 10.3390/toxins15030215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins pollution is a global concern, and can pose a serious threat to human health. People and livestock eating contaminated food will encounter acute and chronic poisoning symptoms, such as carcinogenicity, acute hepatitis, and a weakened immune system. In order to prevent or reduce the exposure of human beings and livestock to mycotoxins, it is necessary to screen mycotoxins in different foods efficiently, sensitively, and selectively. Proper sample preparation is very important for the separation, purification, and enrichment of mycotoxins from complex matrices. This review provides a comprehensive summary of mycotoxins pretreatment methods since 2017, including traditionally used methods, solid-phase extraction (SPE)-based methods, liquid-liquid extraction (LLE)-based methods, matrix solid phase dispersion (MSPD), QuEChERS, and so on. The novel materials and cutting-edge technologies are systematically and comprehensively summarized. Moreover, we discuss and compare the pros and cons of different pretreatment methods and suggest a prospect.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| |
Collapse
|
26
|
Zhou Y, Ma L, Luo L, Xiang D, Wang Q, Luan Y, Huang J, Liu J, Yang X, Wang K. Portable detection of multiple mycotoxins based on a sonic toothbrush, microfluidic chip and smartphone. Chem Commun (Camb) 2023; 59:2907-2910. [PMID: 36806831 DOI: 10.1039/d2cc07047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A portable method for on-site detection of three mycotoxins was developed based on a sonic toothbrush, microfluidic chip and smartphone. Our method could complete all procedures, including sample pretreatment, signal conversion and processing, without any sophisticated instruments. The limits of detection for these mycotoxins were lower than the limit values in cereals in the standards of China and the European Union.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Longping Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Lei Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Dongliu Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Yanan Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
27
|
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins (Basel) 2023; 15:toxins15030201. [PMID: 36977092 PMCID: PMC10055482 DOI: 10.3390/toxins15030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this work, we proposed an acid hydrolysis-based analytical method for the detection of Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin (ALS). Validation under optimal sample preparation conditions showed that the method met the EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (−66.6–−20.5%), satisfying recovery (72.0–107.4%), acceptable precision (1.5–15.5%), and satisfactory sensitivity (0.05–2 µg/kg for limit of detection, 2–5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples were detected, ranging from 0.54–806 μg/kg. Though the occurrence ratio (2.72%) in solanaceous vegetables could be negligible, the pollution status in solanaceous vegetable products was much more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were 4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT), 42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).
Collapse
Affiliation(s)
- Hongxia Tang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Han
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shaoxiang Fei
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yubo Li
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiaqing Huang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-62203612; Fax: +86-21-62203612
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Wang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
28
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023; 160:116962. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Simultaneous Rapid Determination of Seven Alternaria Toxins in Tuberous Crops during Storage Using QuEChERS Coupled with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2023; 12:foods12040862. [PMID: 36832937 PMCID: PMC9957302 DOI: 10.3390/foods12040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Robust and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied for the detection of seven Alternaria toxins (ATs) in tuberous crops. The influence of tuber conditions (fresh, germinated, and moldy) during storage on the concentration of the seven ATs is also investigated. ATs were extracted with acetonitrile under acidic conditions and purified with a C18 adsorbent. ATs were scanned with electrospray ionization (positive/negative ion) dynamic switching and detected in MRM mode. Calibration curve analysis results reveal good linear relationships in all toxin concentration ranges (R2 > 0.99). The limit of detection and limit of quantification were 0.25-0.70 and 0.83-2.31 μg/kg, respectively. The average recoveries of the seven ATs were 83.2-104% with intra-/inter-day precision at 3.52-6.55% and 4.02-7.26%, respectively. The developed method provided adequate selectivity, sensitivity, and precision in detecting the seven ATs at trace levels, and dispensed with standard addition or matrix-matched calibration to compensate for matrix effects. ATs in the fresh, germinated, and moldy samples of tuberous crops in storage (taro, potato, sweet potato, yam, cassava) were analyzed with this method, and the concentrations were 2.01-14.51 μg/kg and significantly increased with storage duration. ALS was detected in most samples, whereas no quantities of ALT and ATX-I were detected. AME was often detected in combination with AOH in sweet potatoes. TeA and Ten were mostly detected in taro, potato, and yam. The established method could be used for the simultaneous detection and quantification of multicomponent toxins in elaborate matrices.
Collapse
|
30
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
31
|
Li W, Gu Y, Liu Z, Hua R, Wu X, Xue J. Development of a polyurethane-coated thin film solid phase microextraction device for multi-residue monitoring of pesticides in fruit and tea beverages. J Sep Sci 2023; 46:e2200661. [PMID: 36373185 DOI: 10.1002/jssc.202200661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 μg/L), wide linear ranges (1.0-500.0 μg/L, r2 > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.
Collapse
Affiliation(s)
- Wenhui Li
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Gu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Zikun Liu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| | - Jiaying Xue
- College of Resources and Environment, Key Laboratory of Agri-food Safety of Anhui Province, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
32
|
Zhang Y, Zhao J, Jin Z, Gao Y, Chen L. Quantitative determination of polychlorinated biphenyls in chicken based on QuEChERS extraction and GC-MS/MS detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
34
|
Hu J, Liang M, Xian Y, Chen R, Wang L, Hou X, Wu Y. Development and validation of a multianalyte method for quantification of aflatoxins and bongkrekic acid in rice and noodle products using PRiME-UHPLC-MS/MS method. Food Chem 2022; 395:133598. [DOI: 10.1016/j.foodchem.2022.133598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
|
35
|
Determination of four aflatoxins on dark tea infusions and aflatoxin transfers evaluation during tea brewing. Food Chem 2022; 405:134969. [DOI: 10.1016/j.foodchem.2022.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
36
|
Luo D, Guan J, Dong H, Chen J, Liang M, Zhou C, Xian Y, Xu X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front Nutr 2022; 9:1001671. [PMID: 36245528 PMCID: PMC9555343 DOI: 10.3389/fnut.2022.1001671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A solid phase extraction-high-performance liquid chromatography-tandem Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was established for the determination of 12 mycotoxins (ochratoxin A, ochratoxin B, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, HT-2 toxin, sterigmatocystin, diacetoxysciroenol, penicillic acid, mycophenolic acid, and citreoviridin) in edible oil, soy sauce, and bean sauce. Samples were extracted by 80:20 (v:v) acetonitrile-water solution, purified by PRiME HLB column, separated by aQ C18 column with mobile phase consisting of 0.5 mmol/L ammonium acetate-0.1% formic acid aqueous solution and methanol. The results showed that the limits of detection (LODs) and limits of quantification (LOQs) of 12 mycotoxins were 0.12–1.2 μg/L and 0.40–4.0 μg/L, respectively. The determination coefficients of 12 mycotoxins in the range of 0.20–100 μg/L were > 0.998. The average recoveries in soy sauce and bean sauce were 78.4–106.8%, and the relative standard deviations (RSDs) were 1.2–9.7% under three levels, including LOQ, 2× LOQ and 10 × LOQ. The average recoveries in edible oil were 78.3–115.6%, and the precision RSD (n = 6) was 0.9–8.6%. A total of 24 edible oils, soy sauce and bean sauce samples were analyzed by this method. AFB1, AFB2, sterigmatocystin and mycophenolic acid were detected in several samples at concentrations ranging from 1.0 to 22.1 μg/kg. The method is simple, sensitive, and rapid and can be used for screening and quantitative analysis of mycotoxin contamination in edible oil, soy sauce, and bean sauce.
Collapse
Affiliation(s)
- Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Hao Dong
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Sciences, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Hao Dong
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Chunxia Zhou
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
- Xiaofei Xu
| |
Collapse
|
37
|
Tamandani M, Hashemi SH. Spectrophotometric determination of chlorpyrifos in foodstuff after pipette-tip micro solid extraction by modified carbon nanotube. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Preparation of metal-organic framework @molecularly imprinted polymers for extracting strobilurin fungicides from agricultural products. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123427. [PMID: 35994993 DOI: 10.1016/j.jchromb.2022.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
Abstract
The core-shell metal-organic framework coated with molecularly imprinted polymers (ZIF-8@MIPs) were successfully synthesized by surface imprinting technique, and applied as adsorbents for solid-phase extraction of strobilurin fungicides. The obtained hybrid complex was characterized in detail, and their adsorbing and recognition performance were evaluated. The results showed that ZIF-8@MIPs presented typically core-shell structure with MIP shell (about 20 nm), and exhibited larger adsorption capacity (102.5 mg g-1) and fast adsorption ability (only 5 min). Under the optimized conditions, a sensitive, efficient and reliable method for determining six strobilurin fungicides in different agricultural products based on ZIF-8@MIPs coupling with high performance liquid chromatography-tandem mass spectrometry was established. This method showed good linearity with correlation coefficients higher than 0.9990. With spiked at three different concentration levels in agricultural products (apple, pear, banana, Chinese cabbage, cabbage, cucumber), the good recoveries (83.5-129.0%) with relative standard deviations from 0.5 to 10.2% were obtained. The limit of detections and the limit of quantifications were 0.01-1.12 ng g-1 and 0.03-3.73 ng g-1, respectively. Those results demonstrated good potential application of ZIF-8@MIPs for enriching and separating trace strobilurin fungicides in agricultural samples.
Collapse
|
39
|
Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chem 2022; 383:132427. [PMID: 35248864 DOI: 10.1016/j.foodchem.2022.132427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
We present an easy-to-use lateral flow immunoassay for rapid, precise and sensitive quantification of one of the most hazardous mycotoxins - ochratoxin A (OTA), which is widely present in food and agricultural commodities. The achieved limit of detection during the 20-min OTA registration is 11 pg/mL. The assay provides accurate results in both low- and high-concentration ranges. That is due to the extraordinary steepness of the linear calibration plot: 5-order dynamic range of concentrations causes almost a 1000-fold change in the signal obtained by electronic detection of magnetic biolabels using their non-linear magnetization. High specificity, repeatability, and reproducibility of the assay have been verified, including measuring OTA in real samples of contaminated corn flour. The developed assay is a promising analytical tool for food and feed safety control; it may become an express, convenient and high-precision alternative to the traditional sophisticated laboratory techniques based on liquid chromatography.
Collapse
|
40
|
Applications of molecularly imprinted polymers and perspectives for their use as food quality trackers. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Wu Y, Liang M, Xian Y, Wang B, Chen R, Wang L, Hu J, Hou X, Dong H. Fragmentation pathway of hypophosphite (H 2PO 2-) in mass spectrometry and its determination in flour and flour products by LC-MS/MS. Food Chem 2022; 377:132060. [PMID: 35026474 DOI: 10.1016/j.foodchem.2022.132060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
The fragmentation pathway of H2PO2- in MS was obtained by Orbitrap HRMS and the reverse confirmation was carried out by the neutral loss detection experiment. The results showed that H2PO2- with even electron ion would produce the neutral loss of 2H and form a new even electron ion with a pair of lone-pair electrons. Based on this, a LC-MS/MS method was developed for the determination of H2PO2- in flour and flour products. The H2PO2- was separated on an Acclaim Trinity P1 composite ion exchange column, and then detected by MS/MS under MRM mode. Finally, the developed method was validated in terms of the linearity, selectivity, accuracy, precision and matrix effect. The method showed a good linearity (R2>0.999) in the concentration range of 50 ∼ 1500 μg/L. The LOD and LOQ for H2PO2- were 10.0 mg/kg and 30.0 mg/kg, respectively. The average recoveries and RSDs (n = 6) were 93.0%∼102.9% and 2.6 ∼ 5.6%, respectively.
Collapse
Affiliation(s)
- Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China.
| | - Bin Wang
- Guangzhou Hexin Instrument Co. Ltd, Guangzhou 510700, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
42
|
Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins (Basel) 2022; 14:toxins14050328. [PMID: 35622576 PMCID: PMC9143482 DOI: 10.3390/toxins14050328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Natural toxins include a wide range of toxic metabolites also occurring in food and products, thus representing a risk for consumer health. In the last few decades, several robust and sensitive analytical methods able to determine their occurrence in food have been developed. Liquid chromatography mass spectrometry is the most powerful tool for the simultaneous detection of these toxins due to its advantages in terms of sensitivity and selectivity. A comprehensive review on the most relevant papers on methods based on liquid chromatography mass spectrometry for the analysis of mycotoxins, alkaloids, marine toxins, glycoalkaloids, cyanogenic glycosides and furocoumarins in food is reported herein. Specifically, a literature search from 2011 to 2021 was carried out, selecting a total of 96 papers. Different approaches to sample preparation, chromatographic separation and detection mode are discussed. Particular attention is given to the analytical performance characteristics obtained in the validation process and the relevant application to real samples.
Collapse
|
43
|
Wang X, Liu J, Zhang K, Yao X, Zhang S. Analysis of mycotoxins in grain samples using 3D covalent organic frameworks and stable isotope labeling technique. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2066689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xueting Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Juping Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Kaiyue Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xin Yao
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
44
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Gab-Allah MA, Tahoun IF, Yamani RN, Rend EA, Shehata AB. Eco-friendly and sensitive analytical method for determination of T-2 toxin and HT-2 toxin in cereal products using UPLC-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Zhao X, Liu D, Yang X, Zhang L, Yang M. Detection of seven Alternaria toxins in edible and medicinal herbs using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem X 2022; 13:100186. [PMID: 35499006 PMCID: PMC9039941 DOI: 10.1016/j.fochx.2021.100186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
A modified QuEChERS-UPLC-MS/MS method was established to investigate alternaria mycotoxins. The method was applied to 260 edible and medicinal herb samples. 28.46% of samples were contaminated by at least one toxin. AME with a high occurrence in analyzed herbs.
Alternaria mycotoxins are ubiquitous mycotoxins that contaminate food and animal feed. Here, an UPLC-MS/MS was developed and used for the detection of seven Alternaria mycotoxins in 19 different edible and medicinal herbs. Extensive optimization resulted in a simple and convenient sample preparation procedure with satisfactory extraction and a lower matrix effect. LOQs ranged from 0.01 to 2.0 ng/mL. Recoveries varied between 71.44% and 112.65%, with RSD less than 12%. The method was successfully applied for use in the mycotoxin analysis of 260 samples. A high percentage (28.46%) of samples were contaminated by 1–5 mycotoxins. Alternariol mono methylether was the predominant mycotoxin with high percentage of positive samples (37.5%), followed by alternariol (22.5%), alternariol (17.5%), tentoxin (10.83%), altertoxin Ⅰ (7.5%), and altenusin (4.17%). Collectively, the natural incidence data obtained from this study will help with better, validated risk assessments and efforts towards more comprehensive, future regulation.
Collapse
Key Words
- AA, acetic acid
- ACN, acetonitrile
- Alternaria
- Alternaria toxins:alternariol, AOH, alternariol mono methylether, AME, altenuene, ALT, altenusin, ALS, altertoxin Ⅰ, ATX-Ⅰ, tenuazonic acid, TeA, tentoxin, TEN
- C18, octadecyl
- CEs, collision energies
- EFSA, European Food Safety Authority
- ESI, electrospray ionization
- FA, formic acid
- GCB, graphitized carbon black
- Herbs
- LOD, limit of detection
- LOQ, limit of quantification
- MCX, Mixed-mode cationic exchange
- ME, Matrix effect
- MRM, multiple reaction monitoring (MRM)
- MeOH, methanol
- Mycotoxin
- Occurrence
- PSA, primary secondary amines
- QuEChERS
- QuEChERS, quick, easy, cheap, effective, rugged, safe
- SPE, solid phase extraction
- TCMs, traditional Chinese medicines
- UPLC-MS/MS
- UPLC-MS/MS, ultra-high performance liquid chromatography-triple quadrupole mass spectrometry
- relative standard deviation, RSD
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Dan Liu
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Xinquan Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Lei Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meihua Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
47
|
Li M, Di X, Jiang Z. Enantioselective separation, analysis and stereoselective dissipation of the chiral pesticide cloquintocet-mexyl using a modified QuEChERS method by high-performance liquid chromatography tandem mass spectrometry. CHEMOSPHERE 2022; 291:133084. [PMID: 34848224 DOI: 10.1016/j.chemosphere.2021.133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
An efficient and novel enantioseparation method was successfully developed and validated to quantify the enantiomers of cloquintocet-mexyl in soil, millet, enoki mushroom, oilseed rape, and watermelon using a modified QuEChERS technique combined with HPLC-MS/MS. This method showed reliable performances for determining both enantiomers of cloquintocet-mexyl in all five matrices. The limits of detection and limits of quantification were in the range of 0.06-0.15 μg kg-1 and 0.2-0.5 μg kg-1, respectively. Good linearities were obtained with correlation coefficients ≥0.9954. The mean recoveries were between 84.1% and 111.5%, with relative standard deviations ranging from 1.2% to 9.8% at three spiked levels. Additionally, the study of stereoselective dissipation of cloquintocet-mexyl in soil indicated that (R)-cloquintocet-mexyl was preferentially degraded. This work is the first to describe a chiral analytical method and enantioselective behavior of cloquintocet-mexyl and provide basic data for the risk evaluation of cloquintocet-mexyl in food and environmental safety.
Collapse
Affiliation(s)
- Meng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China.
| | - Zhen Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
48
|
Lattanzio VMT, Verdini E, Sdogati S, Bibi R, Ciasca B, Pecorelli I. Monitoring Alternaria toxins in Italian food to support upcoming regulation. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:42-51. [PMID: 34895088 DOI: 10.1080/19393210.2021.2000505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The collection of occurrence data on Alternaria toxins in food and feed across the European countries is required since 2012 by the European Commission, endorsing the relevant scientific opinion by the EFSA CONTAM Panel. Within this framework, occurrence data for Alternaria toxins (Alternariol, Alternariol monomethyl ether, Tenuazonic acid, Tentoxin, and Altenuene) in 97 samples of cereal foods, tomato products, and sunflower seeds have been provided as requested by the Italian national monitoring programme (years 2017-2020). To this purpose, an LC-MS/MS method was set up and validated, obtaining fit for purpose sensitivity, recoveries (70-120%), repeatability (≤20%) and within laboratory reproducibility (≤26%). Occurrence data showed that oilseeds were the most contaminated food group with levels of Tenuazonic acid up to 16752 µg/kg and Tentoxin up to 570 µg/kg, whereas for the other mycotoxin/commodities combinations, the percentage of left censored data (below the limit of quantification) ranged from 74 to 100%.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Emanuela Verdini
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Sdogati
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Rita Bibi
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Biancamaria Ciasca
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Ivan Pecorelli
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
49
|
Lijalem YG, Gab-Allah MA, Choi K, Kim B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem 2022; 384:132483. [PMID: 35202990 DOI: 10.1016/j.foodchem.2022.132483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022]
Abstract
A method using isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) was developed for the accurate determination of zearalenone (ZEN) and its five major metabolites in corn. 13C- or 2H-labeled analogues of the target mycotoxins were used as internal standards. As the immunoaffinity columns used demonstrated selectivity to a specific chiral isomer of a racemic mixture of zearalanone-d6, a clean-up cartridge without stereoselectivity (Mycosep 226 column) was selected for the same recovery of the analyte and its internal standard with adequate elimination of matrix interferences. The method demonstrated sufficient selectivity, sensitivity, accuracy and precision over a concentration range of 20-400 µg/kg. The limit of detections and limit of quantifications were 0.14-0.33 µg/kg and 0.45-1.11 µg/kg, respectively. The accuracy values were 96.7%-103.6%, with intra and inter-day precisions of less than 3% and 4%, respectively. The expanded measurement uncertainty was less than 7% (with a 95% confidence level).
Collapse
Affiliation(s)
- Yared Getachew Lijalem
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; National Metrology Institute of Ethiopia, Addis Ababa P. O. Box: 5722, Ethiopia
| | - Mohamed A Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Reference Materials Lab, National Institute of Standards, Tersa St, Haram, P. O. Box: 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
50
|
Xing K, Peng J, Chen W, Fang B, Liu D, Shan S, Zhang G, Huang Y, Lai W. Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chem 2022; 370:131365. [PMID: 34662795 DOI: 10.1016/j.foodchem.2021.131365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Mycotoxin contamination of corn has been considered a serious problem because it can accumulate in different organs or tissues via ingestion or skin contact and cause several health problems in humans. We have constructed a label-free, colorimetric, and fluorescence dual-channel sensing platform for the detection of zearalenone. Here, we demonstrate that plasmonic gold nanoparticles aggregates could be rapidly formed on the basis of charge neutralization by positively charged SYBR Green I. The sensing platform allowed quantitative detection as low as 0.89 μg kg-1 and visual detection as low as 2.5 μg kg-1. The charge neutralization strategy eliminates a major source of instability in conventional gold nanoparticles colorimetric measurements and paves the way for accurate, label-free bioanalysis.
Collapse
Affiliation(s)
- Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Shan Shan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330012, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yina Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|