1
|
Moradinezhad F, Dorostkar M, Niazmand R, Doraki G. Evaluation of essential elements and heavy metals in dried seedless barberry fruits from the main production regions of South Khorasan, Iran. Food Chem 2025; 475:143393. [PMID: 39970569 DOI: 10.1016/j.foodchem.2025.143393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Four major regions (Birjand, Zirkoh, Darmian, and Qaen) of barberry cultivation in South Khorasan, Iran, were selected and investigated. According to the findings, the most abundant mineral elements in the barberry fruits were on average in the order of potassium > phosphorus > calcium > iron > magnesium. The greatest amounts of potassium and calcium were detected in the samples from the Zirkoh region, and the greatest amounts of phosphorus and iron were detected in the samples from the Qaen region. The amounts of zinc and copper in the Birjand, Zirkoh, and Darmian regions were recorded within the allowed range. Heavy elements arsenic and mercury were not present in the samples from all four regions. However, among the studied areas, the Birjand area had the lowest amount of lead and cadmium. According to food standards (FAO and WHO), lead concentration was to some extent greater than maximum level.
Collapse
Affiliation(s)
- Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Maryam Dorostkar
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Gholamreza Doraki
- Department of Agronomy, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
2
|
Nekvapil J, Vilišová K, Petřík Z, Yalçin E, Fišera M, Gál R, Salek RN, Mrázková M, Bučková M, Sumczynski D. The ICP-MS Study on the Release of Toxic Trace Elements from the Non-Cereal Flour Matrixes After In Vitro Digestion and Metal Pollution Index Evaluation. Foods 2025; 14:1350. [PMID: 40282753 PMCID: PMC12027269 DOI: 10.3390/foods14081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Detailed research analysis of the contents of eight toxic trace elements in non-cereal flours was conducted using inductively coupled plasma mass spectrometry, and the release of elements from the flour matrixes after in vitro digestion was investigated. It also examines dietary intake and evaluates the metal pollution index. The highest digestibility value was measured with banana flour (92.6%), while grape seed flour was the least digestible, only 44%. The most abundant element was Al, followed by Ni, which was present (except banana flour) at concentrations of more than twice that found in food generally. The flax and milk thistle seed flours showed two orders of magnitude higher amounts of Cd than those measured in other flours. When consuming a 100 g portion of non-cereal flours, a consumer weighing 60 kg is exposed to the highest dietary exposures to Al and Ni (in the order of µg/kg bw); the exposures for the intake of Cd, Sn, Hg, As, Ag, and Pb are of the order of ng/kg bw. Grape seed flour was assessed as a significant contributor to the provisional tolerable weekly intake (PTWI) value of Al (16%); in addition, significant contributions of banana, pumpkin, grape, and milk thistle flours to the PTWI value of Hg, ranging from 15 to 22%, were determined. Furthermore, the contributions of milk thistle and flax seed flours to the provisional tolerable monthly intake (PTMI) value of Cd were also recognized as significant (specifically, 26 and 49%, respectively). The contributions of milk thistle, flax seed, and pumpkin seed flour to tolerable daily intake for Ni were estimated between 19 and 57%. The margin of exposure values for developmental neurotoxicity, nephrotoxicity, and cardiovascular effects obtained for the intake of Pb were considered safe. During the digestion process, the toxic elements that were the most retained in the matrices of grape and pumpkin seed flour were easily released from the banana flour. The retention factor, which was above 50% for Hg in the grape seed flour, was examined as the highest. All toxic trace elements, which were found to still be part of the undigested portion of the flours, could theoretically pass into the large intestine. In the future, more research is needed to clarify the possible carcinogenesis effect of toxic trace elements in the colon.
Collapse
Affiliation(s)
- Jiří Nekvapil
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| | - Karolína Vilišová
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| | - Zdeněk Petřík
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic;
| | - Erkan Yalçin
- Department of Food Engineering, Bolu Abant Ízzet Baysal University, Gölköy Campus, 140 30 Bolu, Turkey;
| | - Miroslav Fišera
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (R.G.); (R.N.S.)
| | - Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (R.G.); (R.N.S.)
| | - Martina Mrázková
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| | - Martina Bučková
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic; (J.N.); (K.V.); (M.F.); (M.M.); (M.B.)
| |
Collapse
|
3
|
Kumari S, Kaur P, Mahajan M, Nayak SR, Khanna RR, Rehman MT, AlAjmi MF, Khan MIR. γ-aminobutyric acid (GABA) supplementation modulates phosphorus retention, production of carbon metabolites and defense metabolism under arsenic toxicity in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112504. [PMID: 40222391 DOI: 10.1016/j.plantsci.2025.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Arsenic (As) stress has been incessantly degrading crop productivity, and thereafter leading to the increasing grave conditions pertaining to the unsustainable food production. In plants, As stress has been considered as one of the serious phytotoxins persisting in the environment, endangering crop shelf life through competing with phosphorus availability. The withholding of As in the staple crop, wheat (Triticum aestivum), is the major concern. It has been advocated the significance of plant signaling molecules, γ-aminobutyric acid (GABA), in mediating plant health response to environmental stresses, but their impacts on As contamination in wheat plants from the perspective of growth and physiological tolerance still remain ambiguous at present. The present study investigated the significance of GABA supplementation in wheat plants on phosphorus and carbon metabolisms, adenosine triphosphatase (ATPase) activity, As accumulation, defense systems, and growth responses under As stress. In this study, GABA supplementation aided in the retention of phosphorus and carbon metabolites, sustained photosynthetic traits, and considerably modulated both chloroplastic and mitochondrial ATPase activity under As stress. Further, As-induced oxidative stress injuries were recovered through the activation of defense metabolites, and suppressed oxidative stress markers and As accumulation, which was found concomitant with the improved As tolerance index. Thus, this investigation offers insightful information that might be useful in future investigations to develop wheat tolerance to withstand under As-contaminated environments.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Pravneet Kaur
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | | | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India; Department of Plant Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
4
|
He Q, He C, Hou W, Mou H, Chen W, Zhou X. Quantitative study on reducing arsenic concentration in rice by sulfur fertilizer based on meta-analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:531. [PMID: 40205266 DOI: 10.1007/s10661-025-13937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Arsenic (As), a toxic metalloid, is absorbed by rice and subsequently enters the human body through the food chain. Sulfur (S) possesses the capacity to reduce As accumulation in rice tissues and has been widely researched for its contributions to enhancing soil quality. However, a clear quantitative consensus regarding the impact of S application on As bioaccumulation and bioavailability has yet to be established. To gain a more nuanced understanding of the interaction between S and As, a comprehensive analysis was conducted on 318 data sets extracted from 23 articles. Both meta-regression and subgroup analyses were employed to investigate the effect of diverse variables on As accumulation in rice. The results indicated that S had a significant dose-dependent effect on reducing As accumulation in rice. The exogenous S significantly reduced the As concentration in rice by 8.95% and the optimal S/As ratio for inhibiting As accumulation was 1-20. Apart from sulfate S, the incorporation of elemental S, persulfate, thiosulfate, and gypsum has been demonstrated to significantly reduce As accumulation in rice. The exogenous S resulted in a significant reduction in TFroot to shoot content in rice, indicating that S application may impede the physiological process of As transfer from soil to the shoot of rice. Consequently, the exogenous S can effectively mitigate the As accumulation in rice, thereby offering a novel approach to reduce the As content in rice and minimize its detrimental impact on human health.
Collapse
Affiliation(s)
- Qilu He
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Caiqing He
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wenjing Hou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-the Hong Kong Polytechnic University, Chengdu, 610065, China.
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
5
|
Hydarian M, Kazemi A, Ahmadi Z, Chavoshani A, Ghanbari E, Kazemi A, Mohammadpour A. Applying Monte Carlo simulation to assess health risks of potentially toxic elements in fruits and nuts grown in the capital of Iran. Food Chem Toxicol 2025; 201:115431. [PMID: 40204261 DOI: 10.1016/j.fct.2025.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
This study investigated harmful elements (PHEs) in three fruits (figs, oranges, persimmons) and two nuts (walnuts, hazelnuts) grown in Tehran, Iran, using inductively coupled plasma mass spectrometry (ICP-MS) to evaluate health risks. The results showed that chromium (Cr) exceeded the 0.1 mg/kg standard in walnuts (mean = 6.15 mg/kg) and figs (mean = 5.23 mg/kg). Copper (Cu) surpassed 2 mg/kg in all produce except figs. Arsenic (As) exceeded the standard in walnuts, persimmons, and oranges, while cadmium (Cd) surpassed the limit only in persimmons. Iron (Fe) levels were significantly high, peaking in persimmons (mean = 71.79 mg/kg). Lead (Pb), manganese (Mn), and mercury (Hg) exceeded safety limits in all samples, while barium (Ba) was the most abundant metal, especially in hazelnuts and oranges. The correlation and clustering analysis indicated that the sources of PHEs may be influenced by a combination of agricultural practices, atmospheric transport, traffic emissions, historical pollution, and natural background levels. Monte Carlo simulation results show Pb poses the highest non-carcinogenic risk for children (TTHQ50th: 12.56) and adults (TTHQ50th: 5.62). Ni presents the highest carcinogenic risk (TCR50th: 1.58E-03 for children, 3.50E-03 for adults. Hence, urgent monitoring of PHEs in local produce is essential.
Collapse
Affiliation(s)
- Maryam Hydarian
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, 38156879, Iran.
| | - Azadeh Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, 38156879, Iran.
| | - Zohreh Ahmadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsane Chavoshani
- Department of Environmental Health Engineering, School of Health and Paramedical Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| | - Elaheh Ghanbari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, 38156879, Iran.
| | - Amin Mohammadpour
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
6
|
Sahoo SA, Kulkarni J, Sounderajan S, Checker R, Sandur SK, Srivastava AK. Linear-no-threshold concept for evaluating arsenic toxicity in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137010. [PMID: 39808957 DOI: 10.1016/j.jhazmat.2024.137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g-1 DW), medium- (31-70 ng g-1 DW) or high- (>71 ng g-1 DW). The health risk assessment revealed that a significant proportion of samples under the mid-As category with As-level below WHO permissible limit of 100 ng g-1 DW, have hazard quotient > 1, indicating significant risk considering the dietary intake of 400 g rice/day. Further, a combination of parboiling and absorption-based traditional Indian cooking method was found effective in significantly reducing As-accumulation by ∼0.4-fold, in lieu of marginal dietary supplement of essential nutrients like iron and manganese. The extracts of Kolam rice significantly increased the levels of reactive-oxygen species (ROS) and reduced glutathione (GSH) in murine lymphocytes, compared those grown on As-free soil, indicating redox imbalance. Taken together, the findings supported that "linear-no-threshold" concept should be followed for evaluating toxicity of As-contaminated rice grains, to be safe or unsafe for human consumption.
Collapse
Affiliation(s)
- Sripati Abhiram Sahoo
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, CG 492012, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jayant Kulkarni
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Suvarna Sounderajan
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology and Heath Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Santosh Kumar Sandur
- Radiation Biology and Heath Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
7
|
Calvo-Baltanás V, Vilcinskas A, Brück T, Kloas W, Wilke T, Rufino M, Henkel M, Zorn H, Monje O, Asseng S. The future potential of controlled environment agriculture. PNAS NEXUS 2025; 4:pgaf078. [PMID: 40177662 PMCID: PMC11961353 DOI: 10.1093/pnasnexus/pgaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/08/2025] [Indexed: 04/05/2025]
Abstract
The production of high-quality food needs to increase to feed the growing global population. Controlled environment agriculture (CEA) systems in a vertical farm setting-in which several layers are stacked above each other, thus increasing the area for growth-can substantially boost productivity for crops, algae, mushrooms, fish, insects, and cultured meat. These systems are independent of climate, weather, and region, offering reduced environmental impact, although they come with high energy demands. An easy-to-understand, quantitative performance assessment of the theoretical potential for these 6 CEA systems is proposed here. It compares them against the world's main food production system: field production of maize, wheat, rice, and soybean. CEA could play a pivotal role in the global food supply if efficiencies in energy, control of growth environments, and waste stream utilization are vastly improved. Technological advancements, targeted policy support and public engagement strategies will be necessary to significantly reduce production costs and increase public acceptance.
Collapse
Affiliation(s)
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Thomas Brück
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
- TUM AlgaeTech Center, Department of Aerospace and Geodesy, School of Engineering and Design, Technical University of Munich, Lise-Meitner Str. 9, 85521 Ottobrunn, Germany
| | - Werner Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt University of Berlin, Invalidenstr. 42, 10099 Berlin, Germany
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Mariana Rufino
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Holger Zorn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Oscar Monje
- Aetos Systems Inc., Air Revitalization Lab, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Senthold Asseng
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
- Digital Agriculture, HEF World Agricultural Systems Center, Technical University of Munich, Liesel-Beckmann-Straße 2, D-85354 Freising, Germany
| |
Collapse
|
8
|
Ignacio S, Schlotthauer J, Sigrist M, Volpedo AV, Thompson GA. Arsenic Speciation, an Evaluation of Health Risk Due to the Consumption of Two Fishes from Coastal Marine Areas of the Southwestern Atlantic Ocean (SWAO). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:253-276. [PMID: 40097815 DOI: 10.1007/s00244-025-01123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Arsenic (As) is naturally occurring and is found in different forms, some of which are considered toxic to human health and frequently present in fishery resources. The aim of this work was to determine the contribution of toxic As species to the total As in muscle of two commercial fish species (Micropogonias furnieri and Urophycis brasiliensis) and to assess the toxicological risk associated with their consumption, considering different exposed groups. The total As concentrations found exceeded local guideline recommendations (> 1 mg kg-1 wet weight), but the concentrations of the toxic As species were below this threshold. The inorganic As levels do not exceed the international guideline recommendations (0.03-0.15 μg kg-1 bw per day of iAs). Both interspecific and intraspecific differences in As concentrations were found. Non-carcinogenic and carcinogenic risk values indicated that the exposed groups would not experience health risks through consumption of either fish species. However, due to the lack of an established safe consumption limit for iAs or As species worldwide, there are currently no legal tools to ensure that these fish species are safe for human consumption.
Collapse
Affiliation(s)
- Sabrina Ignacio
- Instituto de Investigaciones en Producción Animal (INPA), CONICET - Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina.
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Jonatan Schlotthauer
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Mirna Sigrist
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos -PRINARC- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Alejandra V Volpedo
- Instituto de Investigaciones en Producción Animal (INPA), CONICET - Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo A Thompson
- Instituto de Investigaciones en Producción Animal (INPA), CONICET - Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
| |
Collapse
|
9
|
Kumar V, Kumar S, Dwivedi S, Agnihotri R, Sharma P, Mishra SK, Naseem M, Chauhan PS, Chauhan RS. Integrated application of selenium and silica reduce arsenic accumulation and enhance the level of metabolites in rice grains. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:624-642. [PMID: 39600053 DOI: 10.1080/15226514.2024.2431096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this study, rice plants were co-exposed to selenium (Se) and silica (Si) under arsenic (As) stress to evaluate As accumulation in rice grains, associated cancer risk, and its impact on the types and numbers of grain metabolites. A total of 58 metabolites were identified, of which, 19 belong to sugars, and drastically altered during different treatments. Arsenic exposure significantly reduced monosaccharides, i.e., D-glucose (83%) >D-galactose (60%) >D-fructose (57%) >D-ribose (29%) but increased that monosaccharide units which have antioxidant properties (i.e. α-D-glucopyranoside and melibiose). However, the levels of D-galactose, fructose, and ribose were significantly increased during co-supplementation of selenite (SeIV) and Si under As stress. Other groups of rice grain metabolites, like sugar alcohols, organic acids, polyphenols, carboxylic acids, fatty acids, and phytosterols, were also significantly altered by As exposure and increased in grains of SeIV and Si supplemented rice compared to alone As exposure. In brief, rice growing in As-affected areas may have a low level of different metabolites. However, supplementation by selenite (SeIV) with Si not only increased metabolites and amylose/amylopectin ratio but also reduced ∼90% of As accumulation in grains. Thus, the use of SeIV with Si might be advantageous for the locals to provide a healthy diet of rice and limit As-induced cancer risk up to 10-fold.
Collapse
Affiliation(s)
- Vishnu Kumar
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Sarvesh Kumar
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Sanjay Dwivedi
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ruchi Agnihotri
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Pragya Sharma
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Shashank Kumar Mishra
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Mariya Naseem
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Puneet Singh Chauhan
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | | |
Collapse
|
10
|
Mir IA. Micronutrients and contaminants in the grazing and agricultural soils of Kashmir Valley, India. Sci Rep 2025; 15:10949. [PMID: 40159531 PMCID: PMC11955534 DOI: 10.1038/s41598-025-95797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Soil plays a critical role in determining the food nutrition at the base of the food chain, which makes it essential for food safety. This study demonstrates how micronutrient deficiencies and pollution from hazardous elements may affect crop productivity as well as human and animal health. In the Kashmir valley's Bandipora-Ganderbal region, 200 top soils were examined to ascertain the toxicity risks and trace element deficiencies. With mean values of 44,759 ± 6072, 120 ± 23, 114 ± 18, 89 ± 22, 44 ± 8, 33 ± 7, 23 ± 4, 19 ± 4, and 11 ± 5 respectively, the concentrations (mg kg-1) vary from Fe: 31,326 to 77,420, Cr: 59 to 228, V: 79 to 235, Zn: 30 to 174, Ni: 18 to 79, Cu: 10 to 59, Pb: 15 to 55, Co: 10 to 38 and As: 1 to 36. A portion of the study area has hazardous levels of As, Cr, Ni, and V and is deficient in Cu, Ni, and Zn for agricultural production. Micronutrient deficiencies are associated to carbonate rock topography, while pollution symptoms are linked to areas with human footprints. Weak correlations for As, Pb, and Zn and significant correlations for Fe, Co, Cr, Cu, Ni, and V indicate anthropogenic and geogenic origins, respectively. For Co, Cr, Cu, Ni, and V, the enrichment factor is minimum; for As, Pb, and Zn, it is moderate. The soil pollution indices for Cu, Pb, and Zn are low, while those for As, Co, Cr, Ni, and V are moderate. The integrated toxic risk index was evaluated in order to gain a better understanding of the toxicity in the research region. The values ranged from 3.80 to 10.64, with 5% of samples having no risk, 63.5% having low risk, and 31.5% having moderate risk. Compared to forest, grazing areas, and waste land sites, areas used for agriculture, habitation, and hydroelectric projects are more contaminated. The main causes of pollution are pesticides, fertilizers, construction, and vehicle emissions. The study's main conclusions about As, Cr, Ni, and V pollution and deficiencies in Cu, Ni, and Zn in soils may help policymakers improve soil health for higher crop yields and a healthier lifestyle.
Collapse
|
11
|
Cai Z, Zhang Y, He L, Cui M, Zhang W, E L, Yang H, Ling Q, Hoffmann PR, He J, Gou S, Liu F, Huang Z. Methylseleninic Acid Elevating the Nrf2-GPX4 Axis Relieves Endothelial Dysfunction and Ferroptosis Induced by Arsenic Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7445-7455. [PMID: 40071728 DOI: 10.1021/acs.jafc.4c12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Chronic exposure to arsenic (As), a ubiquitous contaminant, poses deleterious health risks to humans, including cardiovascular disease. Recent studies have implicated ferroptosis, in which the essential micronutrient selenium (Se) plays a crucial role, in several As-induced pathological processes. However, whether Se can counteract As-induced endothelial dysfunction through ferroptosis remains unclear. Herein, methylseleninic acid (MSA), a methylselenium metabolite, was used as a Se supplement to investigate the underlying effect and mechanism of Se in As-induced endothelial dysfunction involving ferroptosis in vivo and in vitro. As exposure induced endothelial dysfunction in mice, as indicated by increased aortic permeability, increased number of circulating endothelial cells, and endothelial mitochondria exhibiting ferroptosis-related alterations. Additionally, As induced ferroptosis-related cell death in mouse aortic endothelial cells, accompanied by impaired redox homeostasis, relatively low Se status, and decreased expressions of selenoproteome, including GPX4. Notably, these were attenuated by MSA via activation of Nrf2 and upregulation of three GPX4 isoforms, which were further abrogated by the Nrf2 antagonist ML385. Finally, MSA exhibited ameliorative effects on endothelial ferroptosis and dysfunction in the aortas of As-exposed mice. These results demonstrate that As causes endothelial ferroptosis and dysfunction by affecting the Se-Nrf2/GPX4 axis, which can be relieved by MSA. This study provides novel evidence implicating Se in As-induced endothelial dysfunction by mitigating ferroptosis.
Collapse
Affiliation(s)
- Zhihui Cai
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Yutian Zhang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Leting He
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Miao Cui
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Weijie Zhang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hui Yang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Qinjie Ling
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, United States
| | - Jingjun He
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Shan Gou
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Fei Liu
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
| | - Zhi Huang
- Department of Health Management of the Guangdong Second Provincial General Hospital & Postdoctoral Research Station of Basic Medicine of the School of Medicine; Department of Bioscience and Biotechnology of the College of Life Science and Technology, Jinan University, Guangzhou 510317, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
12
|
Kamila S, Dey KK, Chattopadhyay A. Arsenic and Chromium Induced Toxicity on Zebrafish Kidney: Mixture Effects on Oxidative Stress and Involvement of Nrf2-Keap1-ARE, DNA Repair, and Intrinsic Apoptotic Pathways. J Appl Toxicol 2025; 45:387-399. [PMID: 39402722 DOI: 10.1002/jat.4709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 02/11/2025]
Abstract
In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.
Collapse
Affiliation(s)
- Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
13
|
Zhang M, Li L, Li S. The Role of miR-150-5p/SOCS1 Pathway in Arsenic-Induced Pyroptosis of LX-2 Cells. Biol Trace Elem Res 2025; 203:822-834. [PMID: 38689138 DOI: 10.1007/s12011-024-04211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
This study aims to explore the mechanism of pyroptosis of human hepatocyte LX-2 cells induced by NaAsO2 through the miR-150-5p/SOCS1 pathway. LX-2 cells were transfected with different concentrations of NaAsO2, miR-150-5p inhibitor, and SOCS1 agonist. Cell activity, cell pyroptosis, and the expression of related genes and proteins were detected by scanning electron microscopy, CCK-8, qRT-PCR, western blot, and immunofluorescence. Compared with the control group, 10 µmol/L and 20 µmol/L NaAsO2 significantly elevated the protein expression levels of the pyroptosis-related proteins NLRP3, GSDMD, GSDMD-N, caspase1, and cleaved caspase1 as well as the mRNA levels of NLRP3, GSDMD, caspase1, IL-18, and IL-1β. The typical pyroptosis with swelling and rupture of the plasma membrane was observed through scanning electron microscopy. The expression of miR-150-5p of the NaAsO2 intervention group increased, while the expression of SOCS1 decreased; then the level of NF-κB p65 elevated. With co-treatment of miR-150-5p inhibitor, SOCS1 agonist, and NaAsO2, the cell pyroptosis was attenuated, and the expressions of NLRP3, caspase1, GSDMD, GSDMD-N, IL-18, IL-1β, p65 of the group of miR-150-5p inhibitor and NaAsO2 group, and of the group of SOCS1 agonist and NaAsO2 reduced compared with the NaAsO2 group. Arsenic exposure promotes miR-150-5p, inhibits the expression of SOCS1, and activates the NF-κB/NLRP3 pathway in LX-2 cell pyroptosis.
Collapse
Affiliation(s)
- Mengyao Zhang
- Department of Preventive Medicine, College of Medicine, Shihezi University, Shihezi, 832000, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, China
| | - Linzhi Li
- Department of Preventive Medicine, College of Medicine, Shihezi University, Shihezi, 832000, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, China
| | - Shugang Li
- School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Sadee BA, Zebari SMS, Galali Y, Saleem MF. A review on arsenic contamination in drinking water: sources, health impacts, and remediation approaches. RSC Adv 2025; 15:2684-2703. [PMID: 39871983 PMCID: PMC11770421 DOI: 10.1039/d4ra08867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue. Numerous studies on As speciation have been conducted, extending beyond the general knowledge on As to the toxicity and health issues caused by exposure to various As species in water. This article reviews various As species, their sources and health effects, and treatment methods for the removal of As from contaminated water. Additionally, various established and emerging technologies for the removal of As contaminants from the environment, including adsorption (using rocks, soils, minerals, industrial by-products, biosorbents, biochars, and microalgal and fungal biomass), ion exchange, phytoremediation, chemical precipitation, electrocoagulation, and membrane technologies, are discussed. Treating As-contaminated drinking water is considered the most effective approach to minimize the associated health risks. Finally, the advantages and disadvantages of various remediation and removal methods are outlined, along with their key advantages. Among these techniques, the simplicity, low cost, and ease of operation make adsorption techniques desirable, particularly with the use of novel functional materials like graphite oxides, metal-organic frameworks, carbon nanotubes, and other emerging functional materials, which are promising future alternatives for As removal.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
- Department of Animal Resource, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Mahmood Fadhil Saleem
- Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| |
Collapse
|
15
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
17
|
Wang T, Jing M, Hu S, Li X, He F, Tian G, Liu R. Differential response of catalase to As (III) and As (V): Potential molecular mechanism under valence effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175562. [PMID: 39153621 DOI: 10.1016/j.scitotenv.2024.175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Arsenic (As) is the most prolific contaminant in food, triggering arseniasis primarily via contaminated rice and drinking contaminated water. However, toxicological data for arsenite (As (III)) and arsenate (As (V)) on antioxidant enzyme catalase (CAT) at molecular level is shortage. The interaction mechanism of As (III) and As (V) with CAT was investigated using enzyme activity detection, multi-spectroscopic techniques, isothermal titration calorimetry and computational simulations. Results indicated As (III) and As (V) induced protein skeleton relaxation, secondary structure transformation, fluorescence sensitization and particle alteration of CAT, particularly As (III). Moreover, As (III)/As (V) bound to CAT through hydrogen bonding and hydrophobic. As (III) and As (V) contacted with core residues His 74, Asn 147 and His A74, Trp A357, respectively, thereby inhibiting CAT activity. Overall, As (III) is more aggressive against the structure and physiological function of CAT than As (V). Our findings enhance the understanding of health risk related to dietary As exposure.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 5, 250100, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
18
|
Pourzadi N, Gailer J. The emerging application of LC-based metallomics techniques to unravel the bioinorganic chemistry of toxic metal(loid)s. J Chromatogr A 2024; 1736:465409. [PMID: 39383623 DOI: 10.1016/j.chroma.2024.465409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
The on-going anthropogenic emission of toxic metal(loid) species into the environment contaminates the food supply and drinking water resources in various parts of the world. Given that inorganic pollutants cannot be degraded, their increased influx into the bloodstream of babies, children and pregnant women is inevitable. Since the ramifications of the ensuing environmental exposure on human health remain poorly defined, fundamentally new insight into their bioinorganic chemistry in organisms is urgently needed. Based on the flow of dietary constituents through organisms, the interaction of toxic metal(loid) species with biomolecules in the bloodstream deserve particular attention as they play an integral role in the mechanisms of their chronic toxicity. Gaining insight into these bioinorganic processes is hampered by the biological complexity of plasma/red blood cells and the low concentrations of the metal(loid) species of interest, but can be overcome by employing LC techniques hyphenated to atomic spectroscopic detectors (i.e. metallomics techniques). This perspective aims to highlight the potential of unconventional hyphenated separation modes to advance our understanding of the bioinorganic chemistry of toxic metal(loid) species in the bloodstream-organ system. Four examples are illustrated. The application of anion-exchange (AEX) and size-exclusion chromatography (SEC) provided new insight into the blood-based bioinorganic mechanisms that direct Cd2+ and MeHg+ to target organs. AEX chromatography also allowed to observe the formation of complexes between Hg2+ and MeHg+ with L-cysteine at pH 7.4, that are implicated in their organ uptake. Lastly, the application of reversed phase (RP) chromatography revealed a possible cytosolic mechanism by which N-acetyl-L-cysteine binds to MeHg+ in the presence of cytosolic glutathione (GSH). New insight into other bioinorganic processes may advance the regulatory framework to better protect public health.
Collapse
Affiliation(s)
- Negar Pourzadi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
19
|
Zhang T, Niu J, Ren T, Lin H, He M, Sheng Z, Tong Y, Jin B, Wu Y, Pan J, Xiao Z, Guo B, Wang Z, Chen T, Pan W. METTL3 prevents granulosa cells mitophagy by regulating YTHDF2-mediated BNIP3 mRNA degradation due to arsenic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117233. [PMID: 39490100 DOI: 10.1016/j.ecoenv.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The ovary is an important reproductive and endocrine organ for the continuation of the species and the homeostasis of the body's internal environment. Arsenic exposure is a global public health problem. However, the damage to the ovaries caused by exposure to arsenic-contaminated drinking water from neonatal mice period remains unclear. Here, we showed that arsenic exposure resulted in reduced granulosa cell proliferation, diminished ovarian reserve, decreased oogenesis, and endocrine disruption in mice. Mechanistically, arsenic exposure decreased the protein level of METTL3 in granulosa cells. The m6A modification levels of mitophagy regulated gene BNIP3 in 3'UTR region was decreased in arsenic exposed granulosa cells. Meanwhile, YTHDF2, which decays mRNA, bound to the 3'UTR region of BNIP3 was also decreased in arsenic exposed ovarian granulosa cells. Thus, BNIP3 mRNA becames more stable, and mitophagy was increased. The excessive mitophagy in granulosa cells led to endocrine disruption, follicular atresia and diminished ovarian reserve. In summary, our study reveals that METTL3-dependent m6A modification regulates granulosa cell mitophagy and follicular atresia by targeting BNIP3 which are induced by arsenic exposure.
Collapse
Affiliation(s)
- Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China; Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Jin Niu
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tianhe Ren
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Huan Lin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Zhiyi Sheng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Bangming Jin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yingmin Wu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Zhengrong Wang
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China.
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
20
|
Srivastava R, Singh Y, White JC, Dhankher OP. Mitigating toxic metals contamination in foods: Bridging knowledge gaps for addressing food safety. Trends Food Sci Technol 2024; 153:104725. [PMID: 39665028 PMCID: PMC11634057 DOI: 10.1016/j.tifs.2024.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background Reducing exposure to harmful substances in food is highly desired, especially for infants, young children, and pregnant women. A workshop focused on understanding and reducing toxic metal contamination in food was conducted involving leading scientists, educators, practitioners, and key stakeholders in conjunction with the USDA National Institute of Food and Agriculture. Scope and approach The goal of this review and the workshop was to advance the current knowledge of major toxic metals concerning food safety, viz. arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr), preventive measures, identify critical knowledge gaps, and the need for research, extension, and education. Being a part of the "Closer to Zero (C2Z)" initiative of the USDA, FDA, and other federal agencies, the workshop adopted a "One Health" approach to mitigate dietary exposure and environmental pollution of hazardous elements. Key findings and conclusions The experts discussed the accumulation of toxic metals in food crops and drinking water in relation to soil biogeochemistry, plant uptake, and multidisciplinary factors such as food processing, detection, regulatory standards, etc. To forward food safety, this workshop critically examined toxic metals contamination, exposure and toxicity along the farm-to-fork-to-human continuum, research gaps, prevailing regulations, and sustainable remediation approaches, and offered significant recommendations. This review paper provides perspective on key findings of the workshop relative to addressing this important aspect of food safety, emphasizing interdisciplinary research that can effectively investigate and understand the complex and dynamic relationships between soil biogeochemistry, the microbiome, plant tolerance and accumulation strategies, uniform standards for acceptable and safe toxic element levels in food and water, and raising public awareness. This article also provides a foundation for decision-making regarding toxic metal fate and effects, including risk management strategies, in the face of modern industrialization and a changing climate.
Collapse
Affiliation(s)
- Richa Srivastava
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason C. White
- The Connecticut Agricultural Experimental Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Wu Y, Deng S, Hao P, Tang H, Xu Y, Zhang Y, Zhao Q, Jiang J, Li Y. Roxarsone reduces earthworm-mediated nutrient cycling by suppressing aggregate formation and enzymic activity in soil with manure application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124777. [PMID: 39173866 DOI: 10.1016/j.envpol.2024.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The application of manure and earthworms are frequently used in fertilization practices to improve C, N, and P cycling in soil, which may be adversely affected by roxarsone (ROX), as an organoarsenical pollutant. To effectively address this issue, in this work, the interactive impacts of ROX and earthworm Eisenia foetida on the aggregate formation, input of organic carbon (OC), and changes in the available N and P following 56-day cultivation were systematically investigated. Compared to the control, earthworms increased the mean weight diameter (MWD) of the soil aggregates from 0.6 to 1.1 mm. Thereby, they activated soil enzymes including catalase (CAT), sucrase (SC), urease (UE), and neutral phosphatase (NP), with the soil's pH decreased to 7.1. Consequently, the values of OC, soluble nitrite (NO3-N), and Olsen-P content were respectively increased by 0.78-, 1.69-, and 0.87- folds in the E treatment (14.3 vs. 25.5 g/kg, 12.8 vs. 33.3 mg/kg, and 7.8 vs. 14.6 mg/kg). Although the changes in the R treatment were slight, ROX reduced the earthworm-mediated improvements of soil fertility during the application of the RE treatment compared to the E treatment, i.e., the values of MWD, OC, NO3-N, and Olsen-P were reduced to 0.9 mm, 20.4 g/kg, 25.4 mg/kg, and 11.6 mg/kg, respectively. From the well-fitted structural equation models, it was demonstrated that earthworms enhanced the aggregate formation and nutrient cycling of OC, NO3-N, and Olsen-P, which were inhibited by ROX. Overall, these adverse effects can be offset by earthworm addition, which can play the dual role of monitor and driver for the soil properties. Our work provides insightful strategies for ROX-bearing manure management.
Collapse
Affiliation(s)
- Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Songge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Puguo Hao
- Department of Biotechnology, Ordos Vocational College of Eco-environment, Ordos, 017010, China
| | - Hao Tang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yunxiang Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, 200240, China.
| |
Collapse
|
22
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Rajkowska-Myśliwiec M, Ciemniak A, Karp G. Arsenic in Rice and Rice-Based Products with Regard to Consumer Health. Foods 2024; 13:3153. [PMID: 39410188 PMCID: PMC11475265 DOI: 10.3390/foods13193153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Most articles on the exposure to arsenic (As) associated with rice and rice products come from Asia where these products are consumed in the largest quantities; relatively few of the articles have focused on European consumers. Since rice products can represent a significant contribution to overall arsenic exposure, the aim of the study was to determine the total arsenic content (tAs) in rice and the most commonly-consumed rice products available on the Polish market. The tAs determination was performed by hydride generation coupled to inductively-coupled plasma optical emission spectrometry (HG-ICP-OES). Because an inorganic form of As (iAs) is mutagenic and carcinogenic and about 100-fold more toxic than the organic form, an additional aim of the study was to assess the risk of its ingestion, assuming that it constitutes 67.7%, 72.7%, or 90% of tAs. In all products tested, the calculated iAs content was below the maximum permissible levels, and no threat was found for any of the analyzed Polish consumers, based on the mean rice consumption in Poland and the mean calculated iAs content. However, a potential health risk was noted among infants and young children, assuming maximum iAs levels and threefold higher consumption (16.2 g d-1). To avoid a risk of developing cancer, infants up to one year of age should consume no more than 32.2 g of the studied products per week, children under three years of age up to 68.7 g, and adults 243 g. Consumers should strive to include a variety of cereals in their daily diet and choose products shown to have low arsenic contamination levels based on testing and inspection rankings.
Collapse
Affiliation(s)
- Monika Rajkowska-Myśliwiec
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland; (A.C.); (G.K.)
| | | | | |
Collapse
|
24
|
Khute M, Sharma S, Patel KS, Pandey PK, Allen J, Corns W, Georgieva N, Bozhanina E, Blazhev B, Huber M, Varol S, Martín-Ramos P, Zhu Y. Contamination, speciation, and health risk assessment of arsenic in leafy vegetables in Ambagarh Chowki (India). ANAL SCI 2024; 40:1553-1560. [PMID: 38847963 DOI: 10.1007/s44211-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 07/26/2024]
Abstract
Green leafy vegetables are essential for a balanced diet, providing vital nutrients for overall well-being. However, concerns arise due to contamination with toxic substances, such as arsenic, posing risks to food safety and human health. This study analyzes inorganic (iAs), monomethyl (MMA), and dimethyl arsenic (DMA) in specific leafy vegetables (Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L.) grown in the heavily polluted Ambagarh Chouki region, Chhattisgarh, India. Concentrations of DMA, MMA, and iAs ranged from 0 to 155, 0 to 7, and 131 to 3579 mg·kg-1, respectively. The health quotient (HQ) for iAs ranged between 0.37 and 3.78, with an average value of 2.58 ± 1.08.
Collapse
Affiliation(s)
- Madhuri Khute
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur, Chhattisgarh, 492010, India
| | - Saroj Sharma
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, G. E. Road, Raipur, Chhattisgarh, 492010, India
| | - Khageshwar Singh Patel
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India.
| | - Piyush Kant Pandey
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India
| | - Jasmina Allen
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, Chhattisgarh, 493225, India
| | - Warren Corns
- PS Analytical Ltd, Arthur House, Main Road, Orpington, Kent, BR5 3HP, UK
| | - Nelina Georgieva
- PS Analytical Ltd, Arthur House, Main Road, Orpington, Kent, BR5 3HP, UK
| | - Elena Bozhanina
- Central Laboratory for Chemical Testing and Control /CLCTC/, Bulgarian Food Safety Agency /BFSA/Nikola Mushanov, Blvd. 120, 1330, Sofia, Bulgaria
| | - Borislav Blazhev
- Central Laboratory for Chemical Testing and Control /CLCTC/, Bulgarian Food Safety Agency /BFSA/Nikola Mushanov, Blvd. 120, 1330, Sofia, Bulgaria
| | - Milosz Huber
- Katedra Geologii, Gleboznawstwa I Geoinformacji, Maria Curie -Skłodowska University (UMSC), al. Krasnickie 2d/107, 108, 20-718, Lublin, Poland
| | - Simge Varol
- Department of Geology, Faculty of Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Pablo Martín-Ramos
- ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Yanbei Zhu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
25
|
Chiudioni F, Marcheggiani S, Puccinelli C, Trabace T, Mancini L. Heavy metals in tributaries of Tiber River in the urban area of Rome (Italy). Heliyon 2024; 10:e33964. [PMID: 39071676 PMCID: PMC11283157 DOI: 10.1016/j.heliyon.2024.e33964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Both natural and anthropogenic activities are responsible for heavy metal abundance in the environment. Due to the high persistence, heavy metals can accumulate and remain in the sediment for very long periods, becoming a source of contaminants for aquatic biota. Within small urbanized watercourse catchments, the accumulation of heavy metals in bottom sediments takes place and sediments can be adopted as an efficient indicator for monitoring heavy metal pollution levels and pollution sources in aquatic environments. Tiber River, the most polluted river among the 20 longest Italian rivers, has different tributaries distributed from north to south of Rome city. The aim of the study was to evaluate the heavy metal pollution in water and sediment of six Tiber River small tributaries through the use of land cover, water physico-chemical parameters and geochemical multi-index (Concentration factor, Pollution Load index, Enrichment factor and Geoaccumulation index). The results indicate that in general the contamination of water and sediments is moderate as the threshold values are exceeded only by some metals and in some sites. As regards the indices that evaluate the enrichment factors, it has been seen that some sampling sites have high values of specific metal enrichment (As, Hg, Pb). A more compromised situation is highlighted by the Concentration Factor and the Pollution Load index where more than half of the sampling sites are found at levels of significant heavy metal pollution suggesting that point sources of heavy metals in the water and sediments should be closely monitored by the use of combined analysis.
Collapse
Affiliation(s)
- F. Chiudioni
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - S. Marcheggiani
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - C. Puccinelli
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - T. Trabace
- Centro di Ricerche di Metaponto ARPAB, Metaponto, Italy
| | - L. Mancini
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| |
Collapse
|
26
|
Nayek U, Shenoy TN, Abdul Salam AA. Data mining of arsenic-based small molecules geometrics present in Cambridge structural database. CHEMOSPHERE 2024; 360:142349. [PMID: 38763400 DOI: 10.1016/j.chemosphere.2024.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic, ubiquitous in various industrial processes and consumer products, presents both essential functions and considerable toxicity risks, driving extensive research into safer applications. Our investigation, drawing from 7182 arsenic-containing molecules in the Cambridge Structural Database (CSD), outlines their diverse bonding patterns. Notably, 51% of these molecules exhibit cyclic connections, while 49% display acyclic ones. Arsenic forms eight distinct bonding types with other elements, with significant interactions observed, particularly with phenyl rings, O3 and F6 moieties. Top interactions involve carbon, nitrogen, oxygen, fluorine, sulfur, and arsenic itself. We meticulously evaluated average bond lengths under three conditions: without an R-factor cut-off, with R-factor ≤0.075, and with R-factor ≤0.05, supporting the credibility of our results. Comparative analysis with existing literature data enriches our understanding of arsenic's bonding behaviour. Our findings illuminate the structural attributes, molecular coordination, geometry, and bond lengths of arsenic with 68 diverse atoms, enriching our comprehension of arsenic chemistry. These revelations not only offer a pathway for crafting innovative and safer arsenic-based compounds but also foster the evolution of arsenic detoxification mechanisms, tackling pivotal health and environmental challenges linked to arsenic exposure across different contexts.
Collapse
Affiliation(s)
- Upendra Nayek
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India.
| |
Collapse
|
27
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. A review on arsenic pollution, toxicity, health risks, and management strategies using nanoremediation approaches. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:269-289. [PMID: 36563406 DOI: 10.1515/reveh-2022-0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Over 50 countries are affected by arsenic contamination. The problem is becoming worse as the number of affected people increases and new sites are reported globally. CONTENT Various human activities have increased arsenic pollution, notably in both terrestrial and aquatic environments. Contamination of our water and soil by arsenic poses a threat to our environment and natural resources. Arsenic poisoning harms several physiological systems and may cause cancer and death. Excessive exposure may cause toxic build-up in human and animal tissues. Arsenic-exposed people had different skin lesion shapes and were vulnerable to extra arsenic-induced illness risks. So far, research shows that varying susceptibility plays a role in arsenic-induced diseases. Several studies have revealed that arsenic is a toxin that reduces metabolic activities. Diverse remediation approaches are being developed to control arsenic in surrounding environments. SUMMARY AND OUTLOOK A sustainable clean-up technique (nanoremediation) is required to restore natural equilibrium. More research is therefore required to better understand the biogeochemical processes involved in removing arsenic from soils and waters.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
28
|
Li X, Wang X, Ma X, Sun W, Chen K, Dou F. Effectiveness of nanomaterials and their counterparts in improving rice growth and yield under arsenic contamination. FRONTIERS IN PLANT SCIENCE 2024; 15:1338530. [PMID: 38863546 PMCID: PMC11165625 DOI: 10.3389/fpls.2024.1338530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Arsenic (As) pollution in rice (Oryza sativa L.), a staple food for over 3.5 billion people, is a global problem. Mixed effects of Zn, Cu, and Si amendments on plant growth and yield, including in the presence of As pollution have been reported in previous studies. To better investigate the effectiveness of these amendments on rice growth, yield, and As accumulation, we conducted a rice greenhouse experiment with 11 treatments, including control pots with and without As contamination and pots with amendments of ZnO, CuO, and SiO2 nanoparticles (ZnO NPs, CuO NPs, and SiO2 NPs), their ionic counterparts (ZnSO4, CuSO4, and Na2SiO3), and bulk particles (ZnO BPs, CuO BPs, and SiO2 BPs). Compared with the background soil, the treatment of adding As decreased rice plant height, panicle number, and grain yield by 16.5%, 50%, and 85.7%, respectively, but significantly increased the As accumulation in milled rice grains by 3.2 times. Under As contamination, the application of Zn amendments increased rice grain yield by 4.6-7.3 times; among the three Zn amendments, ZnSO4 performed best by fully recovering grain yield to the background level and significantly reducing grain AsIII/total As ratio by 46.9%. Under As contamination, the application of Cu amendments increased grain yield by 3.8-5.6 times; all three Cu amendments significantly reduced grain AsIII/total As ratio by 20.2-65.6%. The results reveal that Zn and Cu amendments could promote rice yield and prevent As accumulation in rice grains under As contamination. Despite the observed reduction in As toxicity by the tested NPs, they do not offer more advantages over their ionic counterparts and bulk particles in promoting rice growth under As contamination. Future field research using a broader range of rice varieties, investigating various As concentrations, and encompassing diverse climate conditions will be necessary to validate our findings in achieving more extensive understanding of effective management of arsenic contaminated rice field.
Collapse
Affiliation(s)
- Xiufen Li
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Texas A&M AgriLife Research and Extension Center at Beaumont, Texas A&M University System, Beaumont, TX, United States
| | - Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Sciences, St. Cloud State University, St. Cloud, MN, United States
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Fugen Dou
- Texas A&M AgriLife Research and Extension Center at Beaumont, Texas A&M University System, Beaumont, TX, United States
| |
Collapse
|
29
|
Chen X, Yu T, Xiao L, Zeng XC. Can Sb(III)-oxidizing prokaryote also oxidize As(III) under aerobic and anaerobic conditions, and vice versa? JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134135. [PMID: 38574656 DOI: 10.1016/j.jhazmat.2024.134135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Linhai Xiao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
30
|
Karle SB, Negi Y, Srivastava S, Suprasanna P, Kumar K. Overexpression of OsTIP1;2 confers arsenite tolerance in rice and reduces root-to-shoot translocation of arsenic. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108608. [PMID: 38615445 DOI: 10.1016/j.plaphy.2024.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.
Collapse
Affiliation(s)
- Suhas Balasaheb Karle
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Yogesh Negi
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Penna Suprasanna
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, 410206, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
31
|
Zhang J, Bai Y, Chen X, Li S, Meng X, Jia A, Yang X, Huang F, Zhang X, Zhang Q. Association between urinary arsenic species and vitamin D deficiency: a cross-sectional study in Chinese pregnant women. Front Public Health 2024; 12:1371920. [PMID: 38694994 PMCID: PMC11062242 DOI: 10.3389/fpubh.2024.1371920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Background An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.
Collapse
Affiliation(s)
- Jingran Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Yuxuan Bai
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Xiangmin Meng
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Aifeng Jia
- Department of Gynecology and Obstetrics, Tianjin Xiqing Hospital, Tianjin, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Fenglei Huang
- Department of Reproductive Health, Maternal and Child Health Center of Dongchangfu District, Liaocheng, China
| | - Xumei Zhang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Rijia A, Krishnamoorthi R, Rasmi M, Mahalingam PU, Kim KS. Comprehensive Analysis of Bioactive Compounds in Wild Ganoderma applanatum Mushroom from Kerala, South India: Insights into Dietary Nutritional, Mineral, Antimicrobial, and Antioxidant Activities. Pharmaceuticals (Basel) 2024; 17:509. [PMID: 38675473 PMCID: PMC11054536 DOI: 10.3390/ph17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for their nutritional and medicinal properties. The methanolic extracts of G. applanatum were used to examine secondary metabolites and proximate profiles, revealing the presence of various phytochemicals such as terpenoids, phenolics, glycosides, alkaloids, flavonoids, and saponins. Further analysis revealed the presence of significant amounts of calcium, sodium, phosphorus, and manganese. The compounds were characterized using chromatographic analysis, FTIR, and GC-MS, which revealed potential therapeutic compounds with C-H and C-O bonds in the amide group, β-glycosides, and C-C/C-O vibrations of phenolic substances. Mushroom extract at a concentration of 100 µg mL-1 exhibited potent antimicrobial activity against various pathogens. This study suggests that G. applanatum has a rich biochemical composition and pharmacological potential, making it a promising candidate for drug development and traditional medicine, and contributes valuable insights into its diverse therapeutic applications.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan;
| | - Madhusoodhanan Rasmi
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
Lateef AA, Azeez AA, Ren W, Hamisu HS, Oke OA, Asiegbu FO. Bacterial biota associated with the invasive insect pest Tuta absoluta (Meyrick). Sci Rep 2024; 14:8268. [PMID: 38594362 PMCID: PMC11003966 DOI: 10.1038/s41598-024-58753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an alternative control method, the associated microbiome of this insect was studied. In this study, we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared between the adults and larval samples while 264 and 139 genera were unique to the larvae and adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the larvae. The diversity indices showed that the bacterial communities were not different between the insect samples collected from different geographical regions. However, the bacterial communities significantly differed based on the sample type between larvae and adults. A co-occurrence network of significantly correlated taxa revealed a strong interaction between the microbial communities. The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for this invasive insect pest as well as the ecological significance of some of the identified microbiota is discussed.
Collapse
Affiliation(s)
- A A Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Department of Plant Biology, University of Ilorin, Kwara State, Ilorin, Nigeria.
| | - A A Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Nigeria
| | - W Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - H S Hamisu
- National Horticultural Research Institute, Ibadan, Nigeria
| | - O A Oke
- National Horticultural Research Institute, Ibadan, Nigeria
| | - F O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Xu S, Guo Y, Liang X, Lu H. Intelligent Rapid Detection Techniques for Low-Content Components in Fruits and Vegetables: A Comprehensive Review. Foods 2024; 13:1116. [PMID: 38611420 PMCID: PMC11012010 DOI: 10.3390/foods13071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Fruits and vegetables are an important part of our daily diet and contain low-content components that are crucial for our health. Detecting these components accurately is of paramount significance. However, traditional detection methods face challenges such as complex sample processing, slow detection speed, and the need for highly skilled operators. These limitations fail to meet the growing demand for intelligent and rapid detection of low-content components in fruits and vegetables. In recent years, significant progress has been made in intelligent rapid detection technology, particularly in detecting high-content components in fruits and vegetables. However, the accurate detection of low-content components remains a challenge and has gained considerable attention in current research. This review paper aims to explore and analyze several intelligent rapid detection techniques that have been extensively studied for this purpose. These techniques include near-infrared spectroscopy, Raman spectroscopy, laser-induced breakdown spectroscopy, and terahertz spectroscopy, among others. This paper provides detailed reports and analyses of the application of these methods in detecting low-content components. Furthermore, it offers a prospective exploration of their future development in this field. The goal is to contribute to the enhancement and widespread adoption of technology for detecting low-content components in fruits and vegetables. It is expected that this review will serve as a valuable reference for researchers and practitioners in this area.
Collapse
Affiliation(s)
- Sai Xu
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yinghua Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
| | - Xin Liang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
| | - Huazhong Lu
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
35
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
36
|
Li W, Chen X, Yao M, Sun B, Zhu K, Wang W, Zhang A. LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116183. [PMID: 38471343 DOI: 10.1016/j.ecoenv.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Baofei Sun
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Kai Zhu
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
37
|
Karle SB, Kumar K. Rice tonoplast intrinsic protein member OsTIP1;2 confers tolerance to arsenite stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133078. [PMID: 38056278 DOI: 10.1016/j.jhazmat.2023.133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The International Agency for Research on Cancer categorizes arsenic (As) as a group I carcinogen. Arsenic exposure significantly reduces growth, development, metabolism, and crop yield. Tonoplast intrinsic proteins (TIPs) belong to the major intrinsic protein (MIP) superfamily and transport various substrates, including metals/metalloids. Our study aimed to characterize rice OsTIP1;2 in As[III] stress response. The gene expression analysis showed that the OsTIP1;2 expression was enhanced in roots on exposure to As[III] treatment. The heterologous expression of OsTIP1;2 in S. cerevisiae mutant lacking YCF1 (ycf1∆) complemented the As[III] transport function of the YCF1 transporter but not for boron (B) and arsenate As[V], indicating its substrate selective nature. The ycf1∆ mutant expressing OsTIP1;2 accumulated more As than the wild type (W303-1A) and ycf1∆ mutant strain carrying the pYES2.1 vector. OsTIP1;2 activity was partially inhibited in the presence of the aquaporin (AQP) inhibitors. The subcellular localization studies confirmed that OsTIP1;2 is localized to the tonoplast. The transient overexpression of OsTIP1;2 in Nicotiana benthamiana leaves resulted in increased activities of enzymatic and non-enzymatic antioxidants, suggesting a potential role in mitigating oxidative stress induced by As[III]. The transgenic N. tabacum overexpressing OsTIP1;2 displayed an As[III]-tolerant phenotype, with increased fresh weight and root length than the wild-type (WT) and empty vector (EV line). The As translocation factor (TF) for WT and EV was around 0.8, while that of OE lines was around 0.4. Moreover, the OE line bioconcentration factor (BCF) was more than 1. Notably, the reduced TF and increased BCF in the OE line imply the potential of OsTIP1;2 for phytostabilization.
Collapse
Affiliation(s)
- Suhas Balasaheb Karle
- Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403726, India
| | - Kundan Kumar
- Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403726, India.
| |
Collapse
|
38
|
Gebremedhin KH, Kahsay MH, Wegahita NK, Teklu T, Berhe BA, Gebru AG, Tesfay AH, Asgedom AG. Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. DISCOVER NANO 2024; 19:38. [PMID: 38421536 PMCID: PMC10904709 DOI: 10.1186/s11671-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As+3) and arsenate (As+5) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Mebrahtu Hagos Kahsay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Nigus Kebede Wegahita
- Department of Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tesfamariam Teklu
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Berihu Abadi Berhe
- School of Earth Science, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Asfaw Gebretsadik Gebru
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Amanuel Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Abraha Geberekidan Asgedom
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
39
|
Saldaña-Robles N, Ozuna C, Perea-Grimaldo D, Chávez-Gutiérrez A, Saldaña-Robles A. The behavior of arsenic accumulation in onion (Allium cepa) structures by irrigation water: effect of phosphates and arsenic on the total bioactive compounds and antioxidant capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15809-15820. [PMID: 38305967 DOI: 10.1007/s11356-024-32052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
The presence of arsenic (As) in irrigation water is a threat to agricultural crops as well as human health. The presence of arsenic and phosphorous in irrigation water influences the behavior of bioaccumulation, biotransfer, and total bioactive compounds in the distinct parts of the onion structure. The present work evaluates the behavior of the bioaccumulation and biotransfer of As in the structures of onion (Allium cepa) through a composite central design and response surface method. The factors employed include the concentration of arsenic (V) and phosphate (V) in the nutritive solution. Additionally, this study analyzes the behavior of the effect that the induced stress has on the total bioactive compounds (phenols and flavonoids) and antioxidant capacity (ABTS and DPPH) in the onion roots. The results showed that the physiological properties, bioaccumulation factors, As transference, and the total bioactive compounds in the onion structure are affected by the competition of As and phosphates (P(V)) in the irrigation water. For concentrations of As and phosphorous of 450 μg L-1 and 0.30 mg L-1 respectively in irrigation water, there are negative effects on the equatorial diameter of the bulb (DE), length, weight of the leaf, and weight of the bulb. Besides, the transference and bioaccumulation factors range from 0.02 to 0.22 and from 2.15 to 7.81, respectively, suggesting that the plant has the ability to accumulate As but exhibits a low translocation ability of As from the root to aerial organs. Besides, it is found for central concentrations of As and phosphorous (450 μg L-1 and 0.30 mg L-1, respectively) in irrigation water, a greater production occurs in total phenolic compounds and antioxidant capacity (ABTS and DPPH) as a response to the stress generated by As.
Collapse
Affiliation(s)
- Noe Saldaña-Robles
- Agricultural Engineering Department, Guanajuato University, Irapuato-Silao km 9, 36500, Irapuato, Guanajuato, Mexico
| | - Cesar Ozuna
- Food Department, Guanajuato University, Irapuato-Silao km 9, 36500, Irapuato, Guanajuato, Mexico
| | - Diana Perea-Grimaldo
- Veterinary and Zootechnics Department, Guanajuato University, Irapuato-Silao km 9, 36500, Irapuato, Guanajuato, Mexico
| | - Abner Chávez-Gutiérrez
- Environmental Engeenering Laboratory, Instituto Mexicano de Tecnología del Agua, Jiutepec, Morelos, 62550, Jiutepec, Morelos, Mexico
| | - Adriana Saldaña-Robles
- Agricultural Engineering Department, Guanajuato University, Irapuato-Silao km 9, 36500, Irapuato, Guanajuato, Mexico.
- Mechanical Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
40
|
Singh G, Le H, Ablordeppey K, Long S, Minocha R, Dhankher OP. Overexpression of gamma-glutamyl cyclotransferase 2;1 (CsGGCT2;1) reduces arsenic toxicity and accumulation in Camelina sativa (L.). PLANT CELL REPORTS 2023; 43:14. [PMID: 38135793 PMCID: PMC11654775 DOI: 10.1007/s00299-023-03091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE Overexpressing CsGGCT2;1 in Camelina enhances arsenic tolerance, reducing arsenic accumulation by 40-60%. Genetically modified Camelina can potentially thrive on contaminated lands and help safeguard food quality and sustainable food and biofuel production. Environmental arsenic contamination is a serious global issue that adversely affects human health and diminishes the quality of harvested produce. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. A steady level of GSH is maintained within cells via the γ-glutamyl cycle. The γ-glutamyl cyclotransferases (GGCTs) have previously been shown to be involved in GSH degradation and increased tolerance to toxic metals in plants. In this study, we characterized the GGCT2;1 homolog from Camelina sativa for its role in arsenic tolerance and accumulation. Overexpression of CsGGCT2;1 in Camelina under CaMV35S constitutive promoter resulted in strong tolerance to arsenite (AsIII). The overexpression (OE) lines had 2.6-3.5-fold higher shoots and sevenfold to tenfold enhanced root biomass on media supplemented with AsIII, relative to wild-type plants. The CsGGCT2;1 OE lines accumulated 40-60% less arsenic in root and shoot tissues compared to wild-type plants. Further, the OE lines had ~ twofold higher chlorophyll content and 35% lesser levels of malondialdehyde (MDA), an indicator of membrane damage via lipid peroxidation. There was a slight but non-significant increase in 5-oxoproline (5-OP), a product of GSH degradation, in OE lines. However, the transcript levels of Oxoprolinase 1 (OXP1) were upregulated, indicating the accelerated conversion of 5-OP to glutamate, which is further utilized for the resynthesis of GSH to maintain GSH homeostasis. Overall, this research suggests that genetically modified Camelina may have the potential for cultivation on contaminated marginal lands to reduce As accumulation; thereby could help in addressing food safety issues as well as future food and biofuel needs.
Collapse
Affiliation(s)
- Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Helen Le
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Kenny Ablordeppey
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
41
|
Etesami H, Jeong BR, Maathuis FJM, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166870. [PMID: 37690757 DOI: 10.1016/j.scitotenv.2023.166870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.
Collapse
Affiliation(s)
| | - Byoung Ryong Jeong
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Republic of Korea 52828
| | | | - Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
42
|
Numpilai T, Seubsai A, Chareonpanich M, Witoon T. Unraveling the roles of microporous and micro-mesoporous structures of carbon supports on iron oxide properties and As (V) removal performance in contaminated water. ENVIRONMENTAL RESEARCH 2023; 236:116742. [PMID: 37507043 DOI: 10.1016/j.envres.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigates the impact of microporous (SP-C) and micro-mesoporous carbon (DP-C) supports on the dispersion and phase transformation of iron oxides and their arsenic (V) removal efficiency. The research demonstrates that carbon-supported iron oxide sorbents exhibit superior As(V) uptake capacity compared to unsupported Fe2O3, attributed to reduced iron oxide crystallite sizes and As(V) adsorption on carbon supports. Maximum As(V) uptake capacities of 23.8 mg/g and 18.9 mg/g were achieved for Fe/SP-C and Fe/DP-C at 30 wt% and 50 wt% iron loading, respectively. The study reveals a nonlinear relationship between As(V) sorption capacity and iron oxide crystallite size after excluding As(V) adsorption capacity on carbon supports, suggesting the iron oxide phase (Fe3O4) plays a role in determining adsorption capacity. Iron oxide-loaded DP-C sorbents exhibit faster adsorption rates at low As(V) concentrations (5 mg/L) than SP-C sorbents due to their bimodal pore structure. Adsorption behavior varies at higher As(V) concentrations (45 mg/L), with Fe/DP-C reaching maximum capacity more slowly due to limited available adsorptive sites. All adsorbents maintained near-complete As(V) removal efficiency over five cycles. The findings provide insights for designing more efficient adsorbents for As(V) removal from contaminated water sources.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Department of Environmental Science, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Anusorn Seubsai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
43
|
Liu YF, Tang MM, Sun J, Li JF, Jiang YL, Zhao H, Fu L. Arsenic exposure and lung function decline in chronic obstructive pulmonary disease patients: The mediating influence of systematic inflammation and oxidative stress. Food Chem Toxicol 2023; 181:114044. [PMID: 37777081 DOI: 10.1016/j.fct.2023.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Lung tissue is one of the target sites of arsenic (As). The goal of this investigation was to assess the associations of blood As concentration with pulmonary function indicators in patients with chronic obstructive pulmonary disease (COPD), as well as the roles of systemic inflammation and oxidative stress in this relationship. All 791 COPD patients were selected. Blood As concentration, and tumour necrosis factor-α (TNF-α) and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were detected in the serum of COPD cases. Blood As was robustly related to pulmonary function parameters in an inverse dose-dependent manner. Multivariate linear regression analyses verified that a 1-unit increase of blood As was linked to declines of 0.263 L in FVC, 0.288 L in FEV1, 3.454 in FEV1/FVC%, and 0.538 in predicted FEV1%, respectively. The potential for pulmonary function decline gradually increased across the elevated tertiles of blood As. Nonsmokers were susceptible to As-induced pulmonary function reduction. Blood As was positively linked to the levels of TNF-α and 8-iso-PGF2α. Increased TNF-α and 8-iso-PGF2α partially mediated As-induced the reductions in FEV1 and FVC among COPD patients. As exposure is intensely linked to pulmonary function reduction. Systematic inflammation and oxidative stress partially mediate such associations in COPD patients.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jia-Fei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239001, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui, 236800, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
44
|
Saini H, Panthri M, Rout B, Pandey A, Gupta M. Iono-metabolomic guided elucidation of arsenic induced physiological and metabolic dynamics in wheat genotypes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122040. [PMID: 37328127 DOI: 10.1016/j.envpol.2023.122040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Despite the growing concerns about arsenic (As) toxicity, information on wheat adaptability in such an aggravating environment is limited. Thus, the present investigation based on an iono-metabolomic approach is aimed to decipher the response of wheat genotypes towards As toxicity. Wheat genotypes procured from natural conditions were characterized as high As-contaminated (Shri ram-303 and HD-2967) and low As-contaminated (Malviya-234 and DBW-17) based on ICP-MS As accumulation analysis. Reduced chlorophyll fluorescence attributes, grain yield and quality traits, and low grain nutrient status were accompanied by remarkable grain As accumulation in high As-contaminated genotypes, thus imposing a higher potential cancer risk and hazard quotient. Contrarily, in low As-contaminated genotypes, the richness of Zn, N, Fe, Mn, Na, K, Mg, and Ca could probably have supported less grain As accumulation, imparting better agronomic and grain quality traits. Additionally, from metabolomic analysis (LC-MS/MS and UHPLC), abundances of alanine, aspartate, glutamate, quercetin, isoliquiritigenin, trans-ferrulic, cinnamic, caffeic, and syringic bestow Malviya-234 as the best edible wheat genotype. Further, the multivariate statistical analysis (HCA, PCA, and PLS-DA) revealed certain other key metabolites (rutin, nobletin, myricetin, catechin, and naringenin) based genotypic discrimination that imparts strength to genotypes for better adaptation in harsh conditions. Out of the 5 metabolic pathways ascertained through topological analysis, the two main pathways vital for plant's metabolic adjustments in an As-induced environment were: 1. The alanine, aspartate and glutamate metabolism pathway, and 2. The flavonoid biosynthesis pathway. This is also evident from network analysis, which stipulates amino acid metabolism as a prominent As regulatory factor closely associated with flavonoids and phenolics. Therefore, the present findings are useful for wheat breeding programs to develop As adaptive genotypes that are beneficial for crop improvement and human health.
Collapse
Affiliation(s)
- Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Biswaranjan Rout
- Plant Metabolic Engineering Lab, National Institute of Plant Genome Research, New Delhi, 67, India
| | - Ashutosh Pandey
- Plant Metabolic Engineering Lab, National Institute of Plant Genome Research, New Delhi, 67, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
45
|
Zheng X, Hong J, Zhang J, Gao Y, Li P, Yuan J, Li G, Xing C. Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium. Foods 2023; 12:2712. [PMID: 37509804 PMCID: PMC10378981 DOI: 10.3390/foods12142712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Rice can accumulate more organic and inorganic arsenic (iAs) than other crop plants. In this study, the localization of As in rice grains was investigated using High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) based on 26 rice varieties collected from two provinces. In all the samples, the total As contents in polished rice were 0.03-0.37 mg/kg, with average values of 0.28 and 0.21 mg/kg for two sample sets. The results of the determination of arsenic speciation in different components of rice grain showed that in the polished and brown rice the mean value of arsenite (As(III)) was nearly twice than that of arsenate (As(V)). The regional difference was observed in both total As contents and As speciation. The reason may be that As(III) is more mobile than As(V) in a dissociated form and because of soil properties, rice varieties, and the growing environment. The proportion of iAs and the total As in rice bran was higher than that in polished rice, and this is because As tends accumulate between the husk and the endosperm. In our study, selenium could alleviate the risk of arsenic toxicity at the primary stage of rice growth. Co-exposure to As and Se in germinated rice indicated that the reduction in As accumulation in polished rice reached 73.8%, 76.8%, and 78.3% for total As, As(III), and As(V) when compared with rice treated with As alone. The addition of Se (0.3 mg/kg) along with As significantly reduced the As amount in different parts of germinated rice. Our results indicated that Se biofortification could alleviate the As accumulation and toxicity in rice crops.
Collapse
Affiliation(s)
- Xin Zheng
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jing Hong
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingyi Zhang
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yulong Gao
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Changrui Xing
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
46
|
Popov M, Kubeš J, Vachová P, Hnilička F, Zemanová V, Česká J, Praus L, Lhotská M, Kudrna J, Tunklová B, Štengl K, Krucký J, Turnovec T. Effect of Arsenic Soil Contamination on Stress Response Metabolites, 5-Methylcytosine Level and CDC25 Expression in Spinach. TOXICS 2023; 11:568. [PMID: 37505533 PMCID: PMC10383220 DOI: 10.3390/toxics11070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Experimental spinach plants grown in soil with (5, 10 and 20 ppm) arsenic (As) contamination were sampled in 21 days after As(V) contamination. Levels of As in spinach samples (from 0.31 ± 0.06 µg g-1 to 302.69 ± 11.83 µg g-1) were higher in roots and lower in leaves, which indicates a low ability of spinach to translocate As into leaves. Species of arsenic, As(III) and As(V), were represented in favor of the As (III) specie in contaminated variants, suggesting enzymatic arsenate reduction. In relation to predominant As accumulation in roots, changes in malondialdehyde levels were observed mainly in roots, where they decreased significantly with growing As contamination (from 11.97 ± 0.54 µg g-1 in control to 2.35 ± 0.43 µg g-1 in 20 ppm As). Higher values in roots than in leaves were observed in the case of 5-methylcytosine (5-mC). Despite that, a change in 5-mC by As contamination was further deepened in leaves (from 0.20 to 14.10%). In roots of spinach, expression of the CDC25 gene increased by the highest As contamination compared to the control. In the case of total phenolic content, total flavonoid content, total phenolic acids content and total antioxidant capacity were higher levels in leaves in all values, unlike the roots.
Collapse
Affiliation(s)
- Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Pavla Vachová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jana Česká
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Lukáš Praus
- Laboratory of Environmental Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jiří Kudrna
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Barbora Tunklová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Karel Štengl
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Jiří Krucký
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| | - Tomáš Turnovec
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic
| |
Collapse
|
47
|
Manwani S, Devi P, Singh T, Yadav CS, Awasthi KK, Bhoot N, Awasthi G. Heavy metals in vegetables: a review of status, human health concerns, and management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71940-71956. [PMID: 35921005 DOI: 10.1007/s11356-022-22210-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
For sustainable global growth, food security is a prime concern issue, both quantitatively and qualitatively. Adverse effects on crop quality from contaminants like heavy metals have affected food security and human health. Vegetables comprise the essential and nutritious part of the human diet as they contain a lot of health-promoting minerals and vitamins. However, the inadvertent excess accumulation of heavy metals (As, Cd, Hg, and Pb) in vegetables and their subsequent intake by humans may affect their physiology and metabolomics and has been associated with diseases like cancer, mental retardation, and immunosuppression. Many known sources of hazardous metals are volcano eruptions, soil erosion, use of chemical fertilizers in agriculture, the use of pesticides and herbicides, and irrigation with wastewater, industrial effluents, etc. that contaminate the vegetables through the soil, air and water. In this review, the problem of heavy metal contamination in vegetables is discussed along with the prospective management strategies like soil amendments, application of bioadsorbents, membrane filtration, bioremediation, and nanoremediation.
Collapse
Affiliation(s)
- Seema Manwani
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Devi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Tanvi Singh
- Department of Zoology, Delhi University, Delhi, 110007, India
| | - Chandra Shekhar Yadav
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
- School of Forensic Science, National Forensic Science University, Gandhinagar, 382007, India
| | - Kumud Kant Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Narain Bhoot
- Central Laboratory, Rajasthan State Pollution Control Board, Jaipur, Rajasthan, 302004, India
| | - Garima Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| |
Collapse
|
48
|
Ersoy Omeroglu E, Bayer A, Sudagidan M, Ozalp VC, Yasa I. The Effects of Paddy Cultivation and Microbiota Members on Arsenic Accumulation in Rice Grain. Foods 2023; 12:foods12112155. [PMID: 37297400 DOI: 10.3390/foods12112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Access to safe food is one of the most important issues. In this context, rice plays a prominent role. Because high levels of arsenic in rice grain are a potential concern for human health, in this study, we determined the amounts of arsenic in water and soil used in the rice development stage, changes in the arsC and mcrA genes using qRT-PCR, and the abundance and diversity (with metabarcoding) of the dominant microbiota. When the rice grain and husk samples were evaluated in terms of arsenic accumulation, the highest values (1.62 ppm) were obtained from areas where groundwater was used as irrigation water, whereas the lowest values (0.21 ppm) occurred in samples from the stream. It was observed that the abundance of the Comamonadaceae family and Limnohabitans genus members was at the highest level in groundwater during grain formation. As rice development progressed, arsenic accumulated in the roots, shoots, and rice grain. Although the highest arsC values were reached in the field where groundwater was used, methane production increased in areas where surface water sources were used. In order to provide arsenic-free rice consumption, the preferred soil, water source, microbiota members, rice type, and anthropogenic inputs for use on agricultural land should be evaluated rigorously.
Collapse
Affiliation(s)
- Esra Ersoy Omeroglu
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Asli Bayer
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Mert Sudagidan
- Department of Medical Biology, Medical School, Atilim University, 06830 Ankara, Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Medical School, Atilim University, 06830 Ankara, Türkiye
| | - Ihsan Yasa
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
49
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: bio-accumulation, remediation, and disposal. RSC Adv 2023; 13:14914-14929. [PMID: 37200696 PMCID: PMC10186335 DOI: 10.1039/d3ra02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Arsenic is a widespread serious environmental pollutant as a food chain contaminant and non-threshold carcinogen. Arsenic transfer through the crops-soil-water system and animals is one of the most important pathways of human exposure and a measure of phytoremediation. Exposure occurs primarily from the consumption of contaminated water and foods. Various chemical technologies are utilized for As removal from contaminated water and soil, but they are very costly and difficult for large-scale cleaning of water and soil. In contrast, phytoremediation utilizes green plants to remove As from a contaminated environment. A large number of terrestrial and aquatic weed flora have been identified so far for their hyper metal removal capacity. In the panorama presented herein, the latest state of the art on methods of bioaccumulation, transfer mechanism of As through plants and animals, and remediation that encompass the use of physicochemical and biological processes, i.e., microbes, mosses, lichens, ferns, algae, and macrophytes have been assessed. Since these bioremediation approaches for the clean-up of this contaminant are still at the initial experimental stages, some have not been recognized at full scale. Nonetheless, extensive research on these primitive plants as bio-accumulators can be instrumental in controlling arsenic exposure and rehabilitation and may result in major progress to solve the problem on a worldwide scale.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd Arthur House, Unit 11 Crayfields Industrial Estate, Orpington Kent BR5 3HP UK
| | - Simge Varol
- Suleyman Demirel University, Faculty, Geological Engineering Department Çünür Isparta- 32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
50
|
Ivy N, Mukherjee T, Bhattacharya S, Ghosh A, Sharma P. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1261-1287. [PMID: 35841495 DOI: 10.1007/s10653-022-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | | | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India.
| |
Collapse
|