1
|
Zhu J, Wang H, Liu S, Miao L, Dong H, Tong X, Jiang L. Complexes of soybean protein fibrils and chlorogenic acid: Interaction mechanism and antibacterial activity. Food Chem 2024; 452:139551. [PMID: 38723572 DOI: 10.1016/j.foodchem.2024.139551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study explored the mechanism of interaction between chlorogenic acid (CA) and protein fibrils (PF) as well as the effects of varying the CA/PF concentration ratio on antibacterial activity. Analysis of various parameters, such as ζ-potential, thioflavin T fluorescence intensity, surface hydrophobicity, and free sulfhydryl groups, revealed that the interaction between PF and CA altered the structure of PF. Fluorescence analysis revealed that hydrogen bonding and hydrophobic interactions were the primary interaction forces causing conformational rearrangement, resulting in a shorter, more flexible, and thicker fibril structure, as observed through transmission electron microscopy. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and X-ray diffraction analyses revealed that the characteristic fibril structure was destroyed when the CA/PF ratio exceeded 0.05. Notably, the CA-PF complexes inhibited the growth of Escherichia coli and Staphylococcus aureus and also exhibited antioxidant activity. Overall, this study expands the application prospects of CA and PF in the food industry.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liming Miao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongxia Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Wang C, Lu Y, Xia B, Li X, Huang X, Dong C. Complexation of bovine lactoferrin with selected phenolic acids via noncovalent interactions: Binding mechanism and altered functionality. J Dairy Sci 2024; 107:4189-4204. [PMID: 38369115 DOI: 10.3168/jds.2023-24088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Noncovalent interactions of 4 selected phenolic acids, including gallic acid (GA), caffeic acid (CA), chlorogenic acid (CGA), and rosmarinic acid (RA) with lactoferrin (LF) were investigated. Compound combined with LF in the binding constant of CA > GA > RA > CGA, driven by van der Waals and hydrogen bonding for GA, and hydrophobic forces for others. Conformation of LF was affected at secondary and ternary structure levels. Molecular docking indicated that GA and CA located in the same site near the iron of the C-lobe, whereas RA and CGA bound to the C2 and N-lobe, respectively. Significantly enhanced antioxidant activity of complexes was found compared with pure LF, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonate) (ABTS), and ferric reducing antioxidant power (FRAP) models. Caffeic acid, CGA, and RA significantly decreased the emulsifying stability index and improved foam ability of LF, and the effect of CA and RA was the most remarkable, respectively.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China.
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xiang Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Starkute V, Lukseviciute J, Klupsaite D, Mockus E, Klementaviciute J, Rocha JM, Özogul F, Ruzauskas M, Viskelis P, Bartkiene E. Characteristics of Unripened Cow Milk Curd Cheese Enriched with Raspberry ( Rubus idaeus), Blueberry ( Vaccinium myrtillus) and Elderberry ( Sambucus nigra) Industry By-Products. Foods 2023; 12:2860. [PMID: 37569128 PMCID: PMC10417324 DOI: 10.3390/foods12152860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to apply raspberry (Ras), blueberry (Blu) and elderberry (Eld) industry by-products (BIB) for unripened cow milk curd cheese (U-CC) enrichment. Firstly, antimicrobial properties of the BIBs were tested, and the effects of the immobilization in agar technology on BIB properties were evaluated. Further, non-immobilized (NI) and agar-immobilized (AI) BIBs were applied for U-CC enrichment, and their influence on U-CC parameters were analyzed. It was established that the tested BIBs possess desirable antimicrobial (raspberry BIB inhibited 7 out of 10 tested pathogens) and antioxidant activities (the highest total phenolic compounds (TPC) content was displayed by NI elderberry BIB 143.6 mg GAE/100 g). The addition of BIBs to U-CC increased TPC content and DPPH- (2,2-diphenyl-1-picrylhydrazyl)-radical scavenging activity of the U-CC (the highest TPC content was found in C-RaNI 184.5 mg/100 g, and strong positive correlation between TPC and DPPH- of the U-CC was found, r = 0.658). The predominant fatty acid group in U-CC was saturated fatty acids (SFA); however, the lowest content of SFA was unfolded in C-EldAI samples (in comparison with C, on average, by 1.6 times lower). The highest biogenic amine content was attained in C-EldAI (104.1 mg/kg). In total, 43 volatile compounds (VC) were identified in U-CC, and, in all cases, a broader spectrum of VCs was observed in U-CC enriched with BIBs. After 10 days of storage, the highest enterobacteria number was in C-BluNI (1.88 log10 CFU/g). All U-CC showed similar overall acceptability (on average, 8.34 points); however, the highest intensity of the emotion "happy" was expressed by testing C-EldNI. Finally, the BIBs are prospective ingredients for U-CC enrichment in a sustainable manner and improved nutritional traits.
Collapse
Affiliation(s)
- Vytaute Starkute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Justina Lukseviciute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Ernestas Mockus
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Jolita Klementaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Turkey
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| |
Collapse
|
4
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
5
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Masoumi B, Tabibiazar M, Golchinfar Z, Mohammadifar M, Hamishehkar H. A review of protein-phenolic acid interaction: reaction mechanisms and applications. Crit Rev Food Sci Nutr 2022; 64:3539-3555. [PMID: 36222353 DOI: 10.1080/10408398.2022.2132376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenolic acids (PA) are types of phytochemicals with health benefits. The interaction between proteins and PAs can cause minor or extensive changes in the structure of proteins and subsequently affect various protein properties. This study investigates the protein/PA (PPA) interaction and its effects on the structural, physicochemical, and functional properties of the system. This work particularly focused on the ability of PAs as a subgroup of phenolic compounds (PC) on the modification of proteins. Different aspects including the influence of structure affinity relationship and molecular weight of PA on the protein interaction have been discussed in this review. The physicochemical properties of PPA change mainly due to the change of hydrophilic/hydrophobic parts and/or the formation of some covalent and non-covalent interactions. Furthermore, PPA interactions affecting functional properties were discussed in separate sections. Due to insufficient studies on the interaction of PPAs, understanding the mechanism and also the type of binding between protein and PA can help to develop a new generation of PPA. These systems seem to have good capabilities in the formulation of low-fat foods like high internal Phase Emulsions, drug delivery systems, hydrogel structures, multifunctional fibers or packaging films, and 3 D printing in the meat processing industry.
Collapse
Affiliation(s)
- Behzad Masoumi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Golchinfar
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadamin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhang S, Li X, Zheng L, Zheng X, Yang Y, Xiao D, Ai B, Sheng Z. Encapsulation of phenolics in β-lactoglobulin: Stability, antioxidant activity, and inhibition of advanced glycation end products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Huang L, Qu L, Jia S, Ding S, Zhao J, Li F. The interaction of allicin with bovine serum albumin and its influence on the structure of protein. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Synthesis and molecular interaction study of a diphenolic hidrazinyl-thiazole compound with strong antioxidant and antiradical activity with HSA. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Design and Synthesis of Novel Peptides to Protect Ferulic Acid against Ultraviolet Radiation Based on Domain Site IIA of Bovine Serum Albumin. Biomolecules 2021; 11:biom11091285. [PMID: 34572498 PMCID: PMC8472342 DOI: 10.3390/biom11091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Ferulic acid (FA) is known for its excellent antioxidant properties, which can provide many health benefits. One of its drawbacks is its instability under UVA light, which limits its potency. In this study, the new peptides LW2 (QNKRFYFRKNQ) and CW2 (a cyclic form of LW2) were designed based on bovine serum albumin site IIA conformation. A UVA irradiation experiment was performed to investigate the protective ability of these peptides towards FA against UVA damage. The percentages of FA remaining under UV irradiation due to the protection of CW2 and LW2 were 83% and 76%, respectively. The results showed the importance of the cationic residues and hydrophobic residues included in the peptide sequences. Moreover, the cyclic rigid structure showed greater protective ability as compared to its linear counterpart.
Collapse
|
11
|
Synowiec A, Żyła K, Gniewosz M, Kieliszek M. An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. Open Life Sci 2021; 16:594-601. [PMID: 34183991 PMCID: PMC8218552 DOI: 10.1515/biol-2021-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
This study demonstrated the effect of positional isomerism of benzoic acid derivatives against E. coli ATCC 700728 with the serotype O157. The addition of hydroxyl and methoxyl substituents weakened the effect of acids against E. coli with respect to benzoic acid (except 2-hydroxybenzoic). The connection of the hydroxyl group at the second carbon atom in the benzoic ring reduced the time needed to kill bacterial cells. Phenolic acids with methoxyl substitutes limited the biofilm formation by E. coli to a greater extent than hydroxyl derivatives. The most significant influence on the antibacterial activity of phenolic acids has the type of substituent attached to the benzoic ring, their number, and finally the number of carbon atoms at which the functional group is located.
Collapse
Affiliation(s)
- Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Kinga Żyła
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Liu Q, Liu J, Hong D, Sun K, Li S, Latif A, Si X, Si Y. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125197. [PMID: 33540263 DOI: 10.1016/j.jhazmat.2021.125197] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Naturally-occurring phenolic acids (PAs) act as humic precursors that participate in the conversion behaviors and coupling pathways of steroidal estrogens (SEs) during laccase-triggered humification processes (L-THPs). Herein, the influences and mechanisms of PAs on Trametes versicolor laccase-evoked 17β-estradiol (E2) conversion kinetics and humification routes were explored. Fungal laccase was fleet in converting > 99% of E2, and the calculated pseudo-first-order velocity constant and half-time values were respectively 0.039 min-1 and 17.906 min. PAs containing an O-dihydroxy moiety such as gallic acid and caffeic acid evidently hampered E2 humification owning to the yielded highly reactive O-quinones reversed E2 radicals by hydrogen transfer mechanism, implying that the inhibition effect was enormously dependent upon the number and position of the phenolic -OH present in humic precursors. Oligomers and polymers with carbon-carbon/oxygen links were tentatively found as E2 main humified species resulting from laccase-evoked successive oxidative-coupling. Note that PAs participating in the humification also encountered oxydehydrogenation, self-polymerization, and cross-binding to E2. Interestingly, the -COOH and -OCH3 groups of PAs could be deprived in radical-caused self/co-polymerization. The generation of humified products not only circumvented the environmental risks of parent compounds but accelerated global carbon sequestration. To our knowledge, this is the first in-depth revelation of the humification pathways and related mechanisms of SEs with humic precursors in aquatic ecosystems by L-THPs.
Collapse
Affiliation(s)
- Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Jie Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Xiongyuan Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| |
Collapse
|
13
|
Meng D, Zhou H, Xu J, Zhang S. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Pereira JMG, Viell FLG, Lima PC, Silva E, Pilau EJ, Corrêa RCG, Bona E, Vieira AMS. Optimization of the extraction of antioxidants from Moringa leaves: A comparative study between ultrasound‐ and ultra‐homogenizer‐assisted extractions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juliana M. G. Pereira
- Postgraduate Program in Food Science Department of Food Science State University of Maringa (UEM) Maringa Brazil
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Franciele Leila G. Viell
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Patricia C. Lima
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Evandro Silva
- Department of Chemistry State University of Maringa (UEM) Maringa Brazil
| | - Eduardo J. Pilau
- Department of Chemistry State University of Maringa (UEM) Maringa Brazil
| | - Rúbia C. G. Corrêa
- Program of Master in Science, Technology and Food Safety Cesumar Institute of Science Technology and Innovation (ICETI) University Center of Maringa (UniCesumar) Maringa Brazil
| | - Evandro Bona
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Angélica M. S. Vieira
- Postgraduate Program in Food Science Department of Food Science State University of Maringa (UEM) Maringa Brazil
| |
Collapse
|
15
|
Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomater 2021; 119:57-74. [PMID: 33166714 DOI: 10.1016/j.actbio.2020.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The fabrication of functional tissue or organs substitutes has always been the pursuit of goals in the field of tissue engineering. But even biocompatible tissue-engineered scaffolds still suffer from immune rejection, subsequent long-term oxidative stress and inflammation, which can delay normal tissue repair and regeneration. As a well-known natural antioxidant, polyphenols have been widely used in tissue engineering in recent years. The introduced polyphenols not only reduce the damage of oxidative stress to normal tissues, but show specific affinity to functional molecules, such as receptors, enzyme, transcription and transduction factors, etc. Therefore, polyphenols can promote the recovery process of damaged tissues by both regulating tissue microenvironment and participating in cell events, which embody specifically in antioxidant, anti-inflammatory, antibacterial and growth-promoting properties. In addition, based on its hydrophilic and hydrophobic moieties, polyphenols have been widely used to improve the mechanical properties and anti-degradation properties of tissue engineering scaffolds. In this review, the research advances of tissue engineering scaffolds containing polyphenols is discussed systematically from the aspects of action mechanism, introduction method and regulation effect of polyphenols, in order to provide references for the rational design of polyphenol-related functional scaffolds.
Collapse
|
16
|
Arooj M, Shehadi I, Nassab CN, Mohamed AA. Physicochemical stability study of protein–benzoic acid complexes using molecular dynamics simulations. Amino Acids 2020; 52:1353-1362. [DOI: 10.1007/s00726-020-02897-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
|
17
|
Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105761] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Binding Constants of Substituted Benzoic Acids with Bovine Serum Albumin. Pharmaceuticals (Basel) 2020; 13:ph13020030. [PMID: 32093316 PMCID: PMC7169394 DOI: 10.3390/ph13020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental data on the affinity of various substances to albumin are essential for the development of empirical models to predict plasma binding of drug candidates. Binding of 24 substituted benzoic acid anions to bovine serum albumin was studied using spectrofluorimetric titration. The equilibrium constants of binding at 298 K were determined according to 1:1 complex formation model. The relationships between the ligand structure and albumin affinity are analyzed. The binding constant values for m- and p-monosubstituted acids show a good correlation with the Hammett constants of substituents. Two- and three-parameter quantitative structure–activity relationship (QSAR) models with theoretical molecular descriptors are able to satisfactorily describe the obtained values for the whole set of acids. It is shown that the electron-density distribution in the aromatic ring exerts crucial influence on the albumin affinity.
Collapse
|
19
|
Li T, Li X, Dai T, Hu P, Niu X, Liu C, Chen J. Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Res Int 2019; 129:108802. [PMID: 32036926 DOI: 10.1016/j.foodres.2019.108802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Phenolic acids are added to some dairy products as functional ingredients. The molecular interactions between the phenolic acids and milk proteins impacts their functional performance and product quality. In this study, the interactions between a milk protein (β-casein) and a number of phenolic acids was investigated: 3,4-dihydroxybenzoic acid (DA); gallic acid (GA); syringic acid (SA); caffeic acid (CaA); ferulic acid (FA); and, chlorogenic acid (ChA). The structural characteristics of the phenolic acids, such as type, hydroxylation, methylation, and steric hindrance, affected their binding affinity to β-casein. The strength of the binding constant decreased in the following order: CaA > ChA > FA > SA > GA > DA. Cinnamic acid derivatives (CaA, FA, and ChA) exhibited a stronger binding affinity with β-casein than benzoic acid derivatives (DA, GA, and SA). Hydrophobic forces and electrostatic interactions dominated the interactions of β-casein with benzoic acid and cinnamic acid derivatives, respectively. The number of hydroxyl groups on the phenolic acids enhanced their binding ability, while steric hindrance effects reduced their binding ability. The influence of methylation depended on phenolic acid type. After binding with phenolic acids, the conformation of the β-casein changed, with a loss of random coil structure, an increase in α-helix structure, and a decrease in surface hydrophobicity. Furthermore, the presence of β-casein decreased the in vitro antioxidant capacities of the phenolic acids, especially for gallic acid. These findings provide some useful insights into the structure-activity relationships of the interaction between β-casein and phenolic acids.
Collapse
Affiliation(s)
- Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Peng Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoqin Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|