1
|
de Medeiros FGM, Xiong J, Grace M, Strauch R, Perkins-Veazie P, Moncada M, Lila MA, Hoskin R. Fermentation of American elderberry juice yields functional phytochemicals for spray dried protein-polyphenol ingredients. Food Res Int 2025; 201:115536. [PMID: 39849686 DOI: 10.1016/j.foodres.2024.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
American elderberry juice (EBJ) and fermented elderberry juice (EBF) were spray dried using two different carriers: S. cerevisiae yeast (SC), used for juice fermentation and as encapsulating agent, and pea protein, to produce protein-polyphenol ingredients. The spray drying (SD) performance (solids recovery, SR; phenolic retention, PR) and quality attributes (physicochemical and functional properties, phytochemical content and bioaccessibility after in vitro digestion) of eight treatments of spray dried elderberry particles were determined. The total phenolic content (TPC) of EBJ (4476 ± 169 mg GAE/L) increased by 27 % after fermentation (EBF: 5706 ± 199 mg GAE/L). The SD performance of EBF (SR > 50 %; PR 55.7-63.9 %) was significantly higher (p < 0.05) compared to EBJ (SR < 50 %; PR 28.6-42.8 %). Stable (aw < 0.3) protein-polyphenol particles, with pH-dependent solubility that increased as pH went from 4 to 10, were produced. The TPC of EBF-derived particles (26.2-28.7 mg GAE/g) was 22-31 % higher than EBJ-derived particles (20.4-21.9 mg GAE/g) and anthocyanins were the major phenolic group detected. An increase in nearly all phenolic metabolite concentrations was observed after fermentation, and an additional increment was observed after spray drying. Phenolic bioaccessibility improved (17-25 % higher) after S. cerevisiae fermentation and when using SC as the drying carrier compared to phenolics source (EBJ or EBF). Overall, here we show a sensible strategy to produce protein-polyphenol particles with better SD performance and enhanced phytochemical content and profile. Our fermentation and spray drying strategy provides practical and efficient means to produce functional fruit ingredients for the emerging clean-label, health-oriented market.
Collapse
Affiliation(s)
- Fábio Gonçalves Macêdo de Medeiros
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Jia Xiong
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Mary Grace
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Renee Strauch
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 9 28081, United States
| | - Marvin Moncada
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States
| | - Roberta Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States.
| |
Collapse
|
2
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Lin Y, Cheng N, Jiang Y, Grace MH, Lila MA, Hoskin RT, Zheng H. Colloidal and interfacial properties of spray dried pulse protein-blueberry polyphenol particles in model dispersion systems. Food Chem 2024; 457:140073. [PMID: 38909456 DOI: 10.1016/j.foodchem.2024.140073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The phytochemical composition and physicochemical attributes of polyphenol-enriched protein particle ingredients produced with pulse proteins (e.g. chickpea protein, pea protein, and a chickpea-pea protein blend) and polyphenols recovered from wild blueberry pomace were investigated for colloidal and interfacial properties. Anthocyanins were the major polyphenol fraction (27.74-36.47 mg C3G/g) of these polyphenol-rich particles (44.95-62.08 mg GAE/g). Dispersions of pea protein-polyphenol particles showed a superior phase stability before and after heat treatment compared to the chickpea pea protein-polyphenol system. This observation was independent of the added amount of NaCl in the dispersion. In general, at quasi equilibrium state, pulse protein-polyphenol particles and parental pulse protein ingredients showed similar oil-water interfacial tension. However, pea protein-polyphenol particles demonstrated a reduced diffusion-driven oil-water interfacial adsorption rate constant compared to the parental pea protein ingredient. Overall, the obtained results suggest application potential of pea protein-polyphenol particles as a functional food/beverage ingredient.
Collapse
Affiliation(s)
- Yufeng Lin
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Nicholas Cheng
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Yueyue Jiang
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Haotian Zheng
- Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Omar A, Barakat M, Alzaghari LF, Abdulrazzaq SB, Hasen E, Chellappan DK, Al-Najjar MAA. The effect of Jordanian essential oil from coriander seeds on antioxidant, anti-inflammatory, and immunostimulatory activities using RAW 246.7 murine macrophages. PLoS One 2024; 19:e0297250. [PMID: 39106253 DOI: 10.1371/journal.pone.0297250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.
Collapse
Affiliation(s)
- Amin Omar
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Sciences, Applied Science Private University, Amman, Jordan
| | - Muna Barakat
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lujain F Alzaghari
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Shaymaa B Abdulrazzaq
- Department of Chemical and Pharmaceutical Sciences and Biotechnology, Chemical Sciences Division, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino (Macerata), Italy
| | - Eliza Hasen
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mohammad A A Al-Najjar
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Sciences, Applied Science Private University, Amman, Jordan
| |
Collapse
|
5
|
Zhang K, Huang J, Wang D, Wan X, Wang Y. Covalent polyphenols-proteins interactions in food processing: formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr 2024; 11:1371401. [PMID: 38510712 PMCID: PMC10951110 DOI: 10.3389/fnut.2024.1371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.
Collapse
Affiliation(s)
- Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Ribeiro DN, Borges KC, Matsui KN, Hoskin RT. Spray dried acerola ( Malpighia emarginata DC) juice particles to produce phytochemical-rich starch-based edible films. J Microencapsul 2024; 41:112-126. [PMID: 38345078 DOI: 10.1080/02652048.2024.2313234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 μM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.
Collapse
Affiliation(s)
- Dayene Nunes Ribeiro
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Cristina Borges
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Kátia Nicolau Matsui
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Roberta Targino Hoskin
- Chemical Engineering Graduate Program (PPGEQ), Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Department of Food, Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| |
Collapse
|
7
|
Chaisri W, Suebsakwong P, Pandith H, Panya A, Taynawa K, Pikulkaew S, Suriyasathaporn W, Okonogi S, Khonkarn R. Effects of Encapsulation of Caesalpinia sappan L. with Cyclodextrins for Bovine Mastitis. AAPS PharmSciTech 2023; 24:230. [PMID: 37964017 DOI: 10.1208/s12249-023-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The main components of Caesalpinia sappan L. (CS) are brazilin and brazilein, which show high potential in pharmacologic applications. However, these have been drastically limited by the poor water solubility and stability. The present study investigates the formation of inclusion complexes F1, F2, and F3 between CS and β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), and methyl-β-cyclodextrin (MβCD), respectively. These complexes were characterized by Fourier transform infrared spectroscopy (FT-IR). The results showed that the highest encapsulation efficiency and loading capacity of CS extract were 44.24% and 9.67%, respectively. The solubility and stability of CS extract were significantly increased through complexation in phase solubility and stability studies. The complexes F1-F3 showed mainly significant antibacterial activities on gram-positive bacteria pathogens causing mastitis. Moreover, the expression levels of COX-2 and iNOS were significantly decreased in LPS-induced inflammatory cells at concentrations of 50 and 100 µg/mL. In addition, treatment of complex F3 (CS/MβCD) in bovine endothelial cells remarkably increased the chemokine gene expression of CXCL3 and CXCL8, which were responsible for immune cell recruitment (9.92 to 11.17 and 8.23 to 9.51-fold relative to that of the LPS-treated group, respectively). This study provides a complete characterization of inclusion complexes between CS extract and βCD, HPβCD, and MβCD for the first time, highlighting the impact of complex formation on the pharmacologic activities of bovine mastitis.
Collapse
Affiliation(s)
- Wasana Chaisri
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parichat Suebsakwong
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kraisorn Taynawa
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Surachai Pikulkaew
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cambodia Campus, Asian Satellite Campuses Institute, Nagoya University, Nagoya, 464-8601, Japan
| | - Siriporn Okonogi
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ruttiros Khonkarn
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Azimian S, Torshabi M, Rezaei Esfahrood Z. Comparative effect of anthocyanin on proliferation and migration of human gingival fibroblasts in the absence or presence of nicotine. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:100-107. [PMID: 38357332 PMCID: PMC10862044 DOI: 10.34172/japid.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/24/2023] [Indexed: 02/16/2024]
Abstract
Background Oral fibroblast malfunction can result in periodontal diseases. Nicotine can prolong the healing process as an irritant of oral tissues. Anthocyanins have been demonstrated to have potential benefits in preventing or treating smoking-related periodontal diseases. Cyanidin chloride's (CC's) potential in oral wound healing and the viability, proliferation, and migration of human gingival fibroblasts (HGFs) were examined in the presence and absence of nicotine by an in vitro study. Methods The effects of different nicotine concentrations (1, 2, 3, 4, and 5 mM) on the viability and proliferation of HGF cells were evaluated in the presence and absence of different CC concentrations (5, 10, 25, and 50 μM) using the quantitative MTT assay. The scratch test was performed to evaluate the migration of CC-treated cells in the presence of 2.5-mM nicotine. Results No cytotoxicity was observed at 1‒100 μM CC concentrations after 24, 48, and 72 hours of exposure to HGF cells. However, a concentration of 200 μM significantly reduced cell viability by about 20% at all the three-time intervals (P<0.05). Also, 3‒5-mM concentrations of nicotine significantly reduced cell viability in a dose- and time-dependent manner. Moreover, the understudied CC concentrations decreased nicotine's adverse effects on cell migration to some extent. Conclusion Although the understudied CC concentrations could not significantly reduce the adverse effects of understudied nicotine concentrations on the viability and proliferation of HGF cells, they were able to reduce the detrimental effects of nicotine on cell migration significantly.
Collapse
Affiliation(s)
- Sarina Azimian
- Department of Periodontics, Shahid Beheshti Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
Affiliation(s)
| | | | | | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| | | | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| |
Collapse
|
10
|
Hoskin RT, Grace MH, Guiotto A, Pecorelli A, Valacchi G, Lila MA. Development of Spray Dried Spirulina Protein-Berry Pomace Polyphenol Particles to Attenuate Pollution-Induced Skin Damage: A Convergent Food-Beauty Approach. Antioxidants (Basel) 2023; 12:1431. [PMID: 37507969 PMCID: PMC10375960 DOI: 10.3390/antiox12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Spray drying (SD) microencapsulation of phytochemicals from berry pomaces with Spirulina protein (SP) was incorporated into a cosmeceutical topical formulation to mitigate pollution skin damage. Initially, microparticles produced with SP and polyphenols recovered from fruit pomaces (elderberry SP-EB and muscadine grape SP-MG) were characterized regarding physicochemical and phytochemical content (polyphenol load, carotenoid and phycocyanin contents and antioxidant activity). SP had low total phenolic content (7.43 ± 0.23 mg GAE/g DW), but complexation with elderberry or muscadine grape pomaces polyphenols led to a substantial increase (27.63 ± 1.15 SP-EB and 111.0 ± 2.6 mg GAE/g DW SP-MG). SP-MG particles had higher anthocyanin (26.87 ± 1.25 mg/g) and proanthocyanidin (9.02 ± 0.74 mg/g) contents compared to SP-EB particles. SP-MG were prioritized to prepare a topical gel to attenuate skin oxinflammatory markers and prevent skin barrier disruption using ex vivo human biopsies exposed to diesel engine exhaust (DEE). The immunofluorescence results showed increased oxidative protein damage and inflammation associated with impaired skin barrier function after DEE exposure while topical application of gel formulated with SP-MG mitigated these effects. Overall, this study demonstrated that protein-polyphenol complexation is a synergistic strategy to stabilize and deliver residual fruit/algae phytoactives into cosmeceutical products for skin health applications.
Collapse
Affiliation(s)
- Roberta Targino Hoskin
- Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Mary H Grace
- Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Anna Guiotto
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mary Ann Lila
- Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
11
|
Wang W, Wang Y, Liu X, Yu Q. The Characteristics of Whey Protein and Blueberry Juice Mixed Fermentation Gels Formed by Lactic Acid Bacteria. Gels 2023; 9:565. [PMID: 37504444 PMCID: PMC10379976 DOI: 10.3390/gels9070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
The properties of blueberry juice and whey protein gels formed by the mixed fermentation of L. plantarum 67 and L. paracasei W125 were investigated. The state of the gels, including the colour and surface morphology of the microspheres, showed significant changes with different fermentation times. The polyphenolic, flavonoid, and protein release of whey protein or combined blueberry juice fermented gels under in vitro digestion were investigated. The whey protein and blueberry juice fermented gels had more small pores, with a honeycomb structure, compared to whey protein fermented gels. The hardness of the gels was increased after fermentation for 7 h for the whey protein gels and whey protein mixture blueberry juice gels. The storage modulus and water-holding capacity of the gels were increased between fermentation times of 6 h and 8 h. The swelling rates of the whey protein gels fermented for 7 h and whey protein mixed blueberry juice gels fermented for 8 h and kept in pepsin-free simulated gastric fluid for 1 h had higher values. The release of polyphenols, flavonoids, and protein for the fermented gels was higher at fermentation of 7 h in the in vitro digestion experiment. We found that the chewiness of the whey protein gels, or whey protein mixed fermentation gels, was higher at a fermentation time of 7.5 h and 8 h. However, the cohesiveness values were not significantly different. Therefore, whey protein fermented gels and whey protein mixed blueberry juice fermented gels should be fermented for more than 7 h. This facilitates the release of polyphenols, flavonoids, and protein in the gastric juices.
Collapse
Affiliation(s)
- Wenqiong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Weiwei Food & Beverage Co., Ltd., Xuzhou 221114, China
| | - Yuxian Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xian Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, China
| | - Qian Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
12
|
Ciont C, Difonzo G, Pasqualone A, Chis MS, Ranga F, Szabo K, Simon E, Naghiu A, Barbu-Tudoran L, Caponio F, Lelia Pop O, Cristian Vodnar D. Phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during in vitro gastrointestinal digestion. Food Chem 2023; 428:136778. [PMID: 37421669 DOI: 10.1016/j.foodchem.2023.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Olive leaf was characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives), presenting functional and health-related properties. The chemical instability of phenolics through technological processes and their degradation in the digestive system may negatively impact them, leading to lower absorption. This study evaluates the phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during the INFOGEST static in vitro digestion, aiming to enhance stability and sensorial properties. Ultrasound-assisted extraction and chromatography characterized the extract, while spray drying (maltodextrin-glucose) and nano-encapsulation (maltodextrin, whey protein isolate, and arabic gum) techniques were used with specific solutions. Encapsulated formulations underwent microscopy (TEM, SEM) and encapsulation efficiency analysis. Micro- and nano-encapsulation improved biscuit functionality by enhancing phenolic stability during digestion. However, the highest concentration adversely affected sensory and textural parameters. These findings contribute to developing functional food products enriched with bioactive compounds, providing improved health benefits while maintaining sensory attributes.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Maria Simona Chis
- Department Food Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Florica Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Katalin Szabo
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Elemer Simon
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zhou Z, Wang D, Xu X, Dai J, Lao G, Zhang S, Xu X, Dinnyés A, Xiong Y, Sun Q. Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model. Food Chem 2023; 409:135195. [PMID: 36571901 DOI: 10.1016/j.foodchem.2022.135195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that polyphenols could mitigate type 2 diabetes mellitus (T2DM). The glucose-regulatory effects of protein-bound polyphenols, however, have been rarely studied. In this study, macrogenomic and metabolomic analyses were applied to investigate the modulation of myofibrillar protein-chlorogenic acid (MP-CGA) complexes on T2DM rats from the gut microbiota perspective. Results showed that MP-CGA improved hyperglycemia and hyperlipidemia, decreased intestinal inflammation, and reduced intestinal barrier injury. MP-CGA reconstructed gut microbiota in T2DM rats, elevating the abundance of probiotics Bacteroides, Akkermansia, and Parabacteroides while suppressing opportunistic pathogens Enterococcus and Staphylococcus. MP-CGA significantly elevated the concentrations of intestinal metabolites like butyric acid that positively regulate T2DM and reduced the secondary bile acids contents. Therefore, MP-CGA modulated the gut microbiota and related metabolites to maintain stable blood glucose in T2DM rats, providing new insights into the application of protein-polyphenol complexes in foods.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Xinyi Xu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jin Dai
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Guangjie Lao
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Senlin Zhang
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xiaofang Xu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Youling Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
14
|
Xiong J, Grace MH, Kobayashi H, Lila MA. Evaluation of saffron extract bioactivities relevant to skin resilience. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Xiong J, Bonney S, Gonçalves RV, Esposito D. Brassinosteroids control the inflammation, oxidative stress and cell migration through the control of mitochondrial function on skin regeneration. Life Sci 2022; 307:120887. [PMID: 35985505 DOI: 10.1016/j.lfs.2022.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Brassinosteroids (BRs) are the class of phytohormones with great importance in agriculture and potential diverse effects on human welfare, including skin disease treatment. In this sense, BRs are a promising tool for promoting skin regeneration. AIMS Therefore, the objective of the present work was to analyze the effect of BRs in wound repair, mainly the inflammatory and proliferative phases, and their influence on migratory abilities in human dermal fibroblasts (HDFa), and consequently understand the mitochondrial metabolism. MAIN METHODS We measured nine natural and synthetic BRs for the inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We further evaluated the migration activity in HDFa modeling promotion of wound closure after BRs exposure. In addition, we evaluated the 84 gene profiles linked to wound healing response using RT2 Profiler PCR Array and examined cellular bioenergetics using an extracellular flux analyzer. KEY FINDINGS Results showed that LPS-induced cells had around 10 % lower reactive oxygen species and nitric oxide accumulation when treated with some BRs compounds. HDFa treated with homobrassinolide-based and homocastasterone-based compounds resulted in the greatest migratory activity and presents the best results for mitochondrial responses. SIGNIFICANCE Together, these results provided strong evidence for BRs' ability to promote skin health, particularly through contributions to both reducing excessive oxidative stress and controlling the inflammation process resulting in the best HDFa cell migration through the control of mitochondrial function.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA.
| | - Sierra Bonney
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA
| | - Reggiani Vilela Gonçalves
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Biology, Federal University of Viçosa, Avenida Ph. Rolfs, 36.570-000, MG, Brazil.
| | - Debora Esposito
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
16
|
Duan Y, Tarafdar A, Chaurasia D, Singh A, Bhargava PC, Yang J, Li Z, Ni X, Tian Y, Li H, Awasthi MK. Blueberry fruit valorization and valuable constituents: A review. Int J Food Microbiol 2022; 381:109890. [DOI: 10.1016/j.ijfoodmicro.2022.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
17
|
Erinle TJ, Adewole DI. Fruit pomaces-their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:357-377. [PMID: 35600557 PMCID: PMC9110891 DOI: 10.1016/j.aninu.2021.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
The ever-growing human population, coupled with the exigent need to meet the increasing demand for poultry meat and egg, has put the onus on poultry nutritionists and farmers to identify alternative feed ingredients that could assure the least-cost feed formulation. In addition, the public desire for non-antibiotic-treated poultry products has also necessitated the ultimate search for potent antibiotic alternatives for use in poultry production. While some identified alternatives are promising, their cost implications and technical know-how requirements may discourage their ease of adoption in poultry. The use of plants and/or their by-products, like fruit pomaces, present a pocket-friendly advantage and as a result, are gaining much interest. This is traceable to their rich phytochemical profile, nutritional composition, ready availability, and relatively cheap cost. The fruit juice and wine pressing industries generate a plethora of fruit wastes annually. Interestingly, fruit pomaces contain appreciable dietary fibre, protein, and phenolic compounds, and thus, their adoption could serve the poultry industry in dual capacities including as substitutes to antibiotics and some conventional feedstuff. Thus, there is a possibility to reduce fruit wastes produced and feed-cost in poultry farming from environmental and economical standpoints, respectively. This review seeks to provide reinforcing evidence on the applicability and impact of fruit pomaces in poultry nutrition.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| |
Collapse
|
18
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
19
|
Bioactivity of Two Polyphenols Quercetin and Fisetin against Human Gastric Adenocarcinoma AGS Cells as Affected by Two Coexisting Proteins. Molecules 2022; 27:molecules27092877. [PMID: 35566228 PMCID: PMC9100528 DOI: 10.3390/molecules27092877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
It is recognized that minor dietary components polyphenols have anticancer effects on digestive tract, lung, leukemia, and other cancers, while polyphenols also can covalently or noncovalently interact with major dietary components proteins such as casein, soybean proteins, whey proteins, and bovine serum albumin. Thus, whether the noncovalent interaction between the molecules of two polyphenols (quercetin and fisetin) and two proteins (bovine serum albumin and casein) has positive or negative impact on anticancer activities of the polyphenols against human gastric adenocarcinoma AGS cells was assessed in this study. The two polyphenols had obvious anticancer activities to the cells, because dose levels as low as 20-160 mmol/L caused reduced cell viability of 30.0-69.4% (quercetin) and 24.6-63.1% (fisetin) (using a cell treatment time of 24 h), or 9.9-48.6% (quercetin) and 6.4-29.9% (fisetin) (using a cell treatment time of 48 h). However, the cell treatments by the polyphenols in the presence of the two proteins mostly caused lower polyphenol activity toward the cells, compared with those treatments by the polyphenols in the absence of the proteins. Specifically, the presence of the proteins led to reduced growth inhibition in the cells, because higher cell viability of 33.2-86.7% (quercetin) and 29.1-77.7% (fisetin) at 24 h, or 14.1-66.8% (quercetin) and 7.9-59.0% (fisetin) at 48 h, were measured in these treated cells. The two coexisting proteins also yielded the polyphenol-treated cells with less mitochondrial membrane potential loss, less formation of reactive oxygen species, and decreased cell apoptosis. Thus, it is highlighted that the noncovalent interaction between dietary polyphenols and proteins resulted in weakened anticancer ability for the polyphenols to the gastric cancer cells.
Collapse
|
20
|
Hoskin RT, Plundrich N, Vargochik A, Lila MA. CONTINUOUS FLOW MICROWAVE-ASSISTED AQUEOUS EXTRACTION OF POMACE PHYTOACTIVES FOR PRODUCTION OF PROTEIN-POLYPHENOL PARTICLES AND A PROTEIN-ENRICHED READY-TO-DRINK BEVERAGE. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Pan T, Wu Y, He S, Wu Z, Jin R. Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Fathi F, N Ebrahimi S, Matos LC, P P Oliveira MB, Alves RC. Emerging drying techniques for food safety and quality: A review. Compr Rev Food Sci Food Saf 2022; 21:1125-1160. [PMID: 35080792 DOI: 10.1111/1541-4337.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The new trends in drying technology seek a promising alternative to synthetic preservatives to improve the shelf-life and storage stability of food products. On the other hand, the drying process can result in deformation and degradation of phytoconstituents due to their thermal sensitivity. The main purpose of this review is to give a general overview of common drying techniques with special attention to food industrial applications, focusing on recent advances to maintain the features of the active phytoconstituents and nutrients, and improve their release and storage stability. Furthermore, a drying technique that extends the shelf-life of food products by reducing trapped water, will negatively affect the spoilage of microorganisms and enzymes that are responsible for undesired chemical composition changes, but can protect beneficial microorganisms like probiotics. This paper also explores recent efficient improvements in drying technologies that produce high-quality and low-cost final products compared to conventional methods. However, despite the recent advances in drying technologies, hybrid drying (a combination of different drying techniques) and spray drying (drying with the help of encapsulation methods) are still promising techniques in food industries. In conclusion, spray drying encapsulation can improve the morphology and texture of dry materials, preserve natural components for a long time, and increase storage times (shelf-life). Optimizing a drying technique and using a suitable drying agent should also be a promising solution to preserve probiotic bacteria and antimicrobial compounds.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Thi Anh Dao D, Van Thanh H, Viet Ha D, Duc Nguyen V. Optimization of spray-drying process to manufacture green tea powder and its characters. Food Sci Nutr 2021; 9:6566-6574. [PMID: 34925786 PMCID: PMC8645703 DOI: 10.1002/fsn3.2597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022] Open
Abstract
Tea leaves (Camellia sinensis) have many health benefits due to their abundance of polyphenols with antioxidant activity, most notably epigallocatechin-3-gallate (EGCG). To protect those bioactive compounds, the spray-drying technique of green tea-extracted solution is conducted because of encapsulating. This study aimed to optimize the spray-drying condition using the response surface methodology (RSM) with respect to the maximal polyphenol content of the product. Furthermore, the characterizations of resulting powder were determined. The results showed that optimal spray-drying temperature, input flow rate, and whey protein isolate (WPI) content were evaluated at 136℃, 6.8 rpm, and 10.3% of dry basis, respectively. The obtained green tea powder products, which got from optimal spray-drying process, achieved total polyphenol content (TPC), EGCG, and caffeine content of 322.06 mg GAE/g, 11.4%, and 2.8% of dry basis, respectively. This result revealed the feasibility of green tea leaves to produce tea powder rich in EGCG and polyphenols by spray-drying technique, potentially contributing to the diversification of tea products.
Collapse
Affiliation(s)
- Dong Thi Anh Dao
- Department of Food TechnologyFaculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Hoang Van Thanh
- Center of Experimental PracticeHo Chi Minh City University of Food IndustryHo Chi Minh CityVietnam
| | - Do Viet Ha
- Management Board of Agricultural Hi‐Tech ParkThe People’s Committee of Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Vuong Duc Nguyen
- Institute of Biotechnology and Food TechnologyIndustrial University of Ho Chi Minh City12 Nguyen Van Bao, Ward 4, Go Vap DistrictHo Chi Minh CityVietnam
| |
Collapse
|
24
|
Wu P, Xu X, Yu T. Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. FISH & SHELLFISH IMMUNOLOGY 2021; 118:421-425. [PMID: 34534653 DOI: 10.1016/j.fsi.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance.
Collapse
Affiliation(s)
- Pan Wu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China
| | - Xiaohan Xu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| | - Ting Yu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| |
Collapse
|
25
|
Immune Responses Are Differentially Regulated by Root, Stem, Leaf, and Flower Extracts of Female and Male CBD Hemp (Cannabis sativa L.) Plants. IMMUNO 2021. [DOI: 10.3390/immuno1040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Industrial hemp (Cannabis sativa L.) has many applications, including the production of textiles, agricultural extracts, nutritional products, and botanicals enriched with cannabinoids and full-spectrum terpenes naturally present in the plant. In this study, the dynamics of distribution and accumulation of 10 main cannabinoids in hemp were quantified. Hemp bioactive compounds were evaluated for anti-inflammatory activity in lipopolysaccharide-induced RAW 264.7 macrophage cells. While all tissues of hemp showed moderate anti-inflammatory properties, female flowers demonstrated the highest activity. CBD showed the strongest anti-inflammatory activity with suppression of nitric oxide production at 2 μg/mL and the reduced expressions of the pro-inflammatory genes COX-2, IL-6, and TNF-α at as low as 2 ng/mL. The topical hemp inflorescences (1–50 μg/mL) and CBD alone (20–200 ng/mL) also improved mitochondrial respiration. These data contribute to the future development of agricultural and plant management techniques to produce hemp with specific metabolite profiles to selectively support immune health.
Collapse
|
26
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
27
|
Whey and soy proteins as wall materials for spray drying rosemary: Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Li G, Li T, He F, Chen C, Xu X, Tian W, Yang Y, He X, Li H, Chen K, Hao N, Ouyang P. Microencapsulation of nattokinase from fermentation by spray drying: Optimization, comprehensive score, and stability. Food Sci Nutr 2021; 9:3906-3916. [PMID: 34262747 PMCID: PMC8269611 DOI: 10.1002/fsn3.2378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nattokinase from fermentation has recently gained more attention due to its beneficial effects on cardiovascular system. However, the instability of free nattokinase limits its application. The aim of the study was to develop a spray-drying microencapsulation process to obtain the nattokinase powder with high activity, high quality, and strong storage stability. Hence, the microencapsulation process of nattokinase from fermentation by spray drying was optimized. Experiments of single-factor and response surface methodology were used to assess the comprehensive scores and nattokinase activities. According to single-factor and response surface methodology results, optimum parameters of microencapsulation process of the nattokinase power by spray drying were 30% of mass ratio of wall materials, 139°C of air inlet temperature, 8 L/h of feed rate, and 80°C of outlet temperature. The final optimized result encompassed a comprehensive score of 96, nattokinase activity of 1,340 IU/ml, and moisture content of 4.1 ± 0.1%. In addition, the microencapsulated nattokinase power showed strong storage stability in the conditions of different temperatures and pH. After 30 days of storage, the nattokinase powder was still white or light yellow, with a special smell, no peculiar smell and paste taste, and no impurity. These results build the basis of further industrialization of the nattokinase powder from fermentation broth by spray drying.
Collapse
Affiliation(s)
- Ganlu Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Tao Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Feng He
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Cheng Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xu Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Weilong Tian
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Yue Yang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xun He
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Hui Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Ning Hao
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| |
Collapse
|
29
|
Hoskin R, Pambianchi E, Pecorelli A, Grace M, Therrien JP, Valacchi G, Lila MA. Novel Spray Dried Algae-Rosemary Particles Attenuate Pollution-Induced Skin Damage. Molecules 2021; 26:3781. [PMID: 34206295 PMCID: PMC8270324 DOI: 10.3390/molecules26133781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The present study investigated the effect of spray-dried algae-rosemary particles against pollution-induced damage using ex-vivo human biopsies exposed to diesel engine exhaust (DEE). For this, the complexation of hydroalcoholic rosemary extract with Chlorella (RCH) and Spirulina (RSP) protein powders was conducted. The process efficiency and concentration of rosmarinic acid (RA), carnosic acid (CA), and carnosol (CR) phenolic compounds of both products were compared. The RSP spray-dried production was more efficient, and RSP particles presented higher CR and CA and similar RA concentrations. Therefore, spray-dried RSP particles were prioritized for the preparation of a gel formulation that was investigated for its ability to mitigate pollution-induced skin oxinflammatory responses. Taken altogether, our ex-vivo data clearly demonstrated the ability of RSP gel to prevent an oxinflammatory phenomenon in cutaneous tissue by decreasing the levels of 4-hydroxynonenal protein adducts (4HNE-PA) and active matrix metalloproteinase-9 (MMP-9) as well as by limiting the loss of filaggrin induced by DEE exposure. Our results suggest that the topical application of spirulina-rosemary gel is a good approach to prevent pollution-induced skin aging/damage.
Collapse
Affiliation(s)
- Roberta Hoskin
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Alessandra Pecorelli
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Mary Grace
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | | | - Giuseppe Valacchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Mary Ann Lila
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| |
Collapse
|
30
|
YILDIZ E, GULDAS M, ELLERGEZEN P, ACAR AG, GURBUZ O. Obesity-associated Pathways of Anthocyanins. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Xiong J, Matta FV, Grace M, Lila MA, Ward NI, Felipe-Sotelo M, Esposito D. Phenolic content, anti-inflammatory properties, and dermal wound repair properties of industrially processed and non-processed acai from the Brazilian Amazon. Food Funct 2021; 11:4903-4914. [PMID: 32495808 DOI: 10.1039/c9fo03109j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acai fruit is recognized for its health promoting properties. However, there is still a need to address the effects of industrial processing on this fruit. In this study, phenolic content, anti-inflammatory properties and dermal wound repair properties of 20 acai samples, before and after industrial processing, from various Amazon regions were investigated. Acai pulp was rich in total phenolics (18.9-58.8 mg g-1) and proanthocyanins (9.8-43.1 mg g-1), but contained trace anthocyanins (up to 0.1 mg g-1). Industrially processed samples lost substantial amounts of proanthocyanidins (up to 83.2%), while the anthocyanins inherently present were greatly enriched after processing (20-fold higher). Non-processed acai pulp extracts protected against early inflammation response which was correlated with proanthocyanidins, by significantly inhibiting nitric oxide production and suppressing pro-inflammatory gene expression including interleukin-1β, cyclooxygenase-2, nitric oxide synthase, and interleukin-6. The promotion of dermal wound repair of acai seed and pulp extracts was mainly contributed by anthocyanins and other bioactive compounds. The anti-inflammatory effect was diminished but wound healing effect was retained after pulp processing, suggesting the processing technology needs to be improved to maintain biological properties of acai fruit.
Collapse
Affiliation(s)
- Jia Xiong
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA. and Department of Animal Science, North Carolina State University, Raleigh, NC, USA and Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Fernanda V Matta
- Department of Chemistry, University of Surrey, Guildford, Surrey GU27XH, UK
| | - Mary Grace
- Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Neil I Ward
- Department of Chemistry, University of Surrey, Guildford, Surrey GU27XH, UK
| | | | - Debora Esposito
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA. and Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Tsai YH, Mengesha NM, Liu PF. Identify the interactions between phytochemicals and proteins in the complicated food matrix. Food Chem 2021; 356:129641. [PMID: 33819786 DOI: 10.1016/j.foodchem.2021.129641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Phytochemicals usually mix with food proteins in our regular diet. Unexpected interactions may lead to changes in bioaccessibility, bioactivity, and bioavailability of phytochemicals. However, our understanding of these interactions between phytochemical and food proteins is limited because of the experimental restrictions. Here, we used pulse-proteolysis to conduct the unfolding equilibrium and dose-dependent experiments on the food proteins for the first time. The interaction between epigallocatechin gallate (EGCG) and caseins was identified in the complicated food matrix, whole milk. Another food proteome, soymilk, was also optimized for identifying the binding targets of EGCG and caffeine. Among the identified interactions, the mixing of milk with coffee generates the most prominent masking effect of 46.61 ± 3.86% relative to the calculated antioxidant capacity. Our results demonstrated that pulse proteolysis is applicable for identifying the interactions between phytochemicals and proteins in the complicated food matrix.
Collapse
Affiliation(s)
- Ying-Hsuan Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Nakachew Minuye Mengesha
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
| |
Collapse
|
34
|
Wu G, Hui X, Mu J, Brennan MA, Brennan CS. Functionalization of whey protein isolate fortified with blackcurrant concentrate by spray-drying and freeze-drying strategies. Food Res Int 2021; 141:110025. [PMID: 33641954 DOI: 10.1016/j.foodres.2020.110025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
A solution of whey protein isolate was combined with blackcurrant concentrate via spray-drying and freeze-drying techniques separately to develop novel protein ingredients, (SWB and FWB). Chemical compositions, colour profiles, total anthocyanin content and encapsulation efficacy of the protein ingredients were evaluated. An in vitro digestion process was employed to observe the changes in total phenolic content, antioxidant activity, and predictive in vitro glycaemic response of the protein ingredients. The half maximal inhibitory concentration (IC50) towards α-Amylase, and a molecular docking study on the interactions of α-Amylase with anthocyanins, were both performed to investigate the potential mechanisms of hypoglycaemic properties of these protein ingredients. The protein contents of SWB and FWB were 67.94 ± 0.47% and 68.16 ± 0.77%, respectively. Blackcurrant concentrate significantly (p < 0.001) changed the colour profiles of whey protein isolate. SWB obtained a higher total phenol content (3711.28 ± 4.36 μg/g), total anthocyanin content (85390.80 ± 162.81 μg/100 g), and greater encapsulation efficacy (99.64 ± 0.16%) than those of FWB (3413.03 ± 20.60 μg/g, 64230.24 ± 441.08 μg/100 g, and 95.43 ± 0.14%, respectively). Total phenolic content and antioxidant activities of SWB and FWB decreased after the in vitro digestion. The reducing sugar released during the in vitro digestion from SWB and FWB decreased compared with their corresponding controls (SWC and FWC). FWB (IC50 = 73.46 μg/mL) exhibited stronger α-Amylase inhibitory activity than SWB (IC50 = 81.46 μg/mL). Different anthocyanins differed from binding affinities to bind with the active sites of α-Amylase via formation of hydrogen bonds. This study suggested whey protein encapsulated-blackcurrant concentrate might be an innovative food product with improved nutritional profiles. Both spray- and freeze-drying are potential options to this encapsulation.
Collapse
Affiliation(s)
- Gang Wu
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Margaret A Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
35
|
A novel combination of LF-NMR and NIR to intelligent control in pulse-spouted microwave freeze drying of blueberry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
|
37
|
Protein-phenolic aggregates with anti-inflammatory activity recovered from maize nixtamalization wastewaters (nejayote). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Szczepaniak O, Cielecka-Piontek J, Kobus-Cisowska J. Hypoglycaemic, antioxidative and phytochemical evaluation of Cornus mas varieties. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03616-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractCornelian cherry (Cornus mas L.) is a plant growing in Central and Eastern Europe. Its fruits are a rich source of anthocyanins, flavonoids and iridoids. Among the iridoids, loganic acid is the most prevalent. The study aimed to examine the relation between loganic acid content, antioxidant capacity and hypoglycaemic effect in vivo for three Polish cultivars of C. mas. All tested cultivars strongly inhibited α-glucosidase and had similar amounts of highly bioabsorbable loganic acid. The loganic acid content was similar for each cultivar tested, while the cultivars differed in content of flavonoids and anthocyanins. The highest antioxidant potential was observed in the fruits of cv. Szafer, and the highest α-glucosidase inhibitor was cv. P5. A statistical analysis has shown that hypoglycaemic properties are prevalently driven by anthocyanin content and the antioxidant capacity, especially ferric-reducing ability partially based on loganic acid.
Collapse
|
39
|
Yuan R, Liu Z, Zhao J, Wang QQ, Zuo A, Huang L, Gao H, Xu Q, Khan IA, Yang S. Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities. J FOOD QUALITY 2020. [DOI: 10.1155/2020/9474158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.
Collapse
|
41
|
Antioxidant, quenching, electrophoretic, antifungal and structural properties of proteins and their abilities to control the quality of Amaranthus industrial products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
43
|
Optimising anthocyanin extraction from strawberry fruits using response surface methodology and application in yoghurt as natural colorants and antioxidants. Journal of Food Science and Technology 2020; 58:1987-1995. [PMID: 33897035 DOI: 10.1007/s13197-020-04710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to optimise the extraction conditions of anthocyanins from strawberry fruits and incorporate them in yoghurt to achieve a natural coloration as well as enrich the product with antioxidants. The response surface methodology (RSM) based on Box-Behnken design was studied to assess the influence of the three factors being agitation speed (400-800 rpm), sample to solvent ratio (0.5-2 g/40 mL), and extraction time (1-15 min) on total anthocyanin content and antioxidant activity of strawberries. According to the results, the linear, quadratic and interaction effects of the studied factors on total anthocyanin content and antioxidant activity were determined by the response surface methodology, and the optimal conditions for anthocyanin extraction were 586 rpm for agitation speed, 1.26 g/40 mL for sample to solvent ratio, and 9.36 min for extraction time. Under these extraction conditions, the total anthocyanin content and antioxidant activity recorded by the two validated models were 38.04 mg C3GE/100 g FW and 21.38 mg AAE/100 g FW, respectively. The enriched natural yoghurt contains anthocyanins with a content of 36.50 µg C3GE/100 g and an antioxidant activity of 21.22 µg AAE/100 g. The anthocyanin enriched yoghurt developed in this study may be considered as a functional food with an interesting source of natural antioxidants, and these anthocyanins can substitute synthetic (industrial) colorants.
Collapse
|
44
|
Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD, Rippo MR, Olivieri F, Sabbatinelli J. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res Rev 2020; 61:101074. [PMID: 32335301 DOI: 10.1016/j.arr.2020.101074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Epidemiological evidence from observational studies suggests that dietary polyphenols (PPs) - phytochemicals found in a variety of plant-based foods - can reduce the risk of developing type 2 diabetes mellitus (T2DM). Clinical trials have also indicated that PPs may help manage the two key features of T2DM, hyperglycemia and dyslipidemia. Since the incidence of T2DM is dramatically increasing worldwide, identifying food-based approaches that can reduce the risk of developing it and help manage its main risk factors in early-stage disease has clinical and socioeconomic relevance. After a brief overview of current epidemiological data on the incidence of T2DM in individuals consuming PP-rich diets, we review the evidence from clinical trials investigating PP-enriched foods and/or PP-based nutraceutical compounds, report their main results, and highlight the knowledge gaps that should be bridged to enhance our understanding of the role of PPs in T2DM development and management.
Collapse
|
45
|
Xiong J, Chan YH, Rathinasabapathy T, Grace MH, Komarnytsky S, Lila MA. Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chem 2020; 331:127279. [PMID: 32563800 DOI: 10.1016/j.foodchem.2020.127279] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Stability of protein-polyphenol aggregate particles, created by complexing polyphenols from blueberry and muscadine grape pomaces with a rice-pea protein isolate blend, was evaluated in an in vitro gastrointestinal model. Recovery index (RI; % total phenolics present post-digestion) was 69% and 62% from blueberry and muscadine grape protein-polyphenol particles, compared to 23% and 31% for the respective pomace extracts. Anthocyanins RI was 52% and 42% from particles (6% and 13% from pomace extracts), and proanthocyanidins RI was 77% and 73% from particles (25% and 14% from pomace extracts), from blueberry and grape, respectively. Protein-polyphenol particle digests retained 1.5 to 2-fold higher antioxidant capacity and suppressed the expression of pro-inflammatory cytokines, iNOS, IL6, and IL1β, compared to unmodified extract digests, which only suppressed IL6. Protein-polyphenol particles as a delivery vehicle in foods may confer better stability during gastrointestinal transit, allow protected polyphenols to reach the gut microbiota, and preserve polyphenol bioactivity.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Yu Hsuan Chan
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA; School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Slavko Komarnytsky
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
46
|
Abstract
Nowadays, technological advancement is in continuous development in all areas, including food packaging, which tries to find a balance between consumer preferences, environmental safety, and issues related to food quality and control. The present paper concretely details the concepts of smart, active, and intelligent packaging and identifies commercially available examples used in the food packaging market place. Along with this purpose, several bioactive compounds are identified and described, which are compounds that can be recovered from the by-products of the food industry and can be integrated into smart food packaging supporting the “zero waste” activities. The biopolymers obtained from crustacean processing or compounds with good antioxidant or antimicrobial properties such as carotenoids extracted from agro-industrial processing are underexploited and inexpensive resources for this purpose. Along with the main agro-industrial by-products, more concrete examples of resources are presented, such as grape marc, banana peels, or mango seeds. The commercial and technological potential of smart packaging in the food industry is undeniable and most importantly, this paper highlights the possibility of integrating the by-products derived compounds to intelligent packaging elements (sensors, indicators, radio frequency identification).
Collapse
|
47
|
Aboonabi A, Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020; 150:30-39. [PMID: 32061902 DOI: 10.1016/j.freeradbiomed.2020.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia.
| | - Arta Aboonabi
- West Center of Tehran, Payam Noor University, Shahid Bagheri Town, Tehran, Iran.
| |
Collapse
|
48
|
Granato D, Mocan A, Câmara JS. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Wu P, Gu Y, Zhao R, Liu Y, Wang Y, Lv G, Li Z, Bao Y. RETRACTED: Residual pomegranate affecting the nonspecific immunity of juvenile Darkbarbel catfish. FISH & SHELLFISH IMMUNOLOGY 2019; 95:190-194. [PMID: 31626920 DOI: 10.1016/j.fsi.2019.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The first author informed the journal that the article was published without the knowledge of the co-authors.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yonghe Gu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Rou Zhao
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yaxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Guozhong Lv
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhenghai Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yajing Bao
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Bansode RR, Randolph PD, Plundrich NJ, Lila MA, Williams LL. Peanut protein-polyphenol aggregate complexation suppresses allergic sensitization to peanut by reducing peanut-specific IgE in C3H/HeJ mice. Food Chem 2019; 299:125025. [DOI: 10.1016/j.foodchem.2019.125025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 02/01/2023]
|