1
|
Cotacallapa-Sucapuca M, Berrios JDJ, Pan J, Arribas C, Pedrosa MM, Morales P, Cámara M. Winemaking by-products fortification of flour formulations based on corn and lentil. Int J Food Sci Nutr 2025; 76:290-303. [PMID: 39972560 DOI: 10.1080/09637486.2025.2466112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Formulations based on a mixture of corn: lentil flours (70:30) (93.75%), salt (1.25%), sugar (5%), 5 or 20% of Hylon® V, were fortified with 5 and 20% of fermented Cabernet Sauvignon grape skin or seed, and unfermented Chardonnay grape seed flours, and evaluated for their functional components. The incorporation of winemaking by-products increased the dietary fibre content. Soluble sugars and arabinoxylans content depended only on corn:lentil flours presence. The total starch content varied between 42 .55 g/100g to 58.41 g/100g and the highest concentrations of resistant starch were determined in formulations with 20% Hylon® V. Total phenols, total flavonoids, and anthocyanins, were higher in all formulations with 20% fermented Cabernet Sauvignon skin or unfermented Chardonnay seed flours, regardless the content of corn:lentil flours. Winemaking by-products represent potential functional and prebiotic novel ingredients for new functional food products.
Collapse
Affiliation(s)
- Mario Cotacallapa-Sucapuca
- Dpto. Nutrición y Ciencia de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua (UNAM), Moquegua, Perú
| | - José de J Berrios
- United States Department of Agriculture (USDA-ARS-WRRC), Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - James Pan
- United States Department of Agriculture (USDA-ARS-WRRC), Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - Claudia Arribas
- Departamento Tecnología de Alimentos, INIA-CSIC, Madrid, Spain
| | | | - Patricia Morales
- Dpto. Nutrición y Ciencia de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - Montaña Cámara
- Dpto. Nutrición y Ciencia de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Wang L, Wang Q, Dong C, Teng C, Wang L, Zhou Y, Yang B, Kuang H, Sun Y. Exploring Tetrastigma hemsleyanum polysaccharides: A recent advance in preparation, structural features, bioactivities, and potential application prospects. Int J Biol Macromol 2025; 310:143477. [PMID: 40288710 DOI: 10.1016/j.ijbiomac.2025.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is a traditional Chinese herb recognized as a 'plant antibiotic' due to its multiple beneficial effects on the human body. As a valuable plant, its wild resources are on the verge of extinction. Fortunately, advancements in artificial cultivation over the past two decades have led to an increase in high-quality plant resources. Consequently, research on this herb has been gaining popularity. Polysaccharides are an important component of T. hemsleyanum and have received extensive attention from scholars due to their various biological activities. Currently, various extraction and purification methods have been developed to isolate T. hemsleyanum polysaccharides (THPs). These polysaccharides have demonstrated significant effects in experiments, including antioxidant, anti-tumor, anti-inflammatory, immune regulation, metabolic-regulatory, and thermoregulatory effects. Furthermore, they possess broad application potential in fields such as food, medicine, and cosmetic industries. Unfortunately, a comprehensive review of the literature on THPs is currently lacking, which poses challenges for future research endeavors. This work aims to summarize the latest progress in the extraction, purification, structural characterization, biological activities, and applications of THPs across fields comprehensively from the past to the present, analyze the shortcomings of recent research, and discuss potential applications and future research directions.
Collapse
Affiliation(s)
- Lihao Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Qian Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Chenqing Dong
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Chi Teng
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Li Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuanyuan Zhou
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Yang M, Li X, Du X, Li F, Wang T, Gao Y, Liu J, Luo X, Guo X, Tang Z. Ultrasound-Assisted extraction and purification of polysaccharides from Boschniakia rossica: Structural Characterization and antioxidant potential. ULTRASONICS SONOCHEMISTRY 2025; 118:107364. [PMID: 40273583 DOI: 10.1016/j.ultsonch.2025.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Modern pharmacological investigations have shown that polysaccharides extracted from Boschniakia rossica showcase a range of biological effects. This study identified 260 primary metabolites, with carbohydrate compounds and their derivatives accounting for 80 types. We employed ultrasonic-assisted enzyme extraction (UAEE) to optimize extraction parameters, achieving a crude polysaccharide yield of 13.67%, which is 1.52 times and 1.17 times higher than ultrasonic extraction (UAE) and enzyme extraction (EAE). Additionally, we isolated four distinct purified polysaccharides (BRPS-0, BRPS-1, BRPS-2, BRPS-3), with relative molecular weights of 1569, 2815, and 4572, while BRPS-3 displayed structural complexity. The scanning electron microscope (SEM) revealed that BRPS-0 exhibited distinct crystalline particles, while BRPS-3 displayed an ordered crystal structure. Notably, BRPS-0 demonstrated relatively stable antioxidant activity due to its low molecular weight, high phenolic and sugar content, crystalline microstructure, and abundant α- and β-pyranose configurations, including galacturonic acid, glucose, galactose, and arabinose. This research provides a foundational theory for the comprehensive use of Boschniakia rossica resources and supports its implementation in modern medicine and functional foods.
Collapse
Affiliation(s)
- Minghui Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Falin Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tianqi Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yanyan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China
| | - Xiongfei Luo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Chioru A, Chirsanova A, Dabija A, Avrămia I, Boiştean A, Chetrariu A. Extraction Methods and Characterization of β-Glucans from Yeast Lees of Wines Produced Using Different Technologies. Foods 2024; 13:3982. [PMID: 39766925 PMCID: PMC11675898 DOI: 10.3390/foods13243982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Wine lees, the second most significant by-product of winemaking after grape pomace, have received relatively little attention regarding their potential for valorization. Despite their rich content in bioactive components such as β-glucans, industrial utilization faces challenges, particularly due to variability in their composition. This inconsistency impacts the reliability and standardization of final products, limiting broader adoption in industrial applications. β-Glucans are dietary fibers or polysaccharides renowned for their diverse bioactive properties, including immunomodulatory, antioxidant, anti-inflammatory, antitumor, and cholesterol- and glucose-lowering effects. They modulate the immune system by activating Dectin-1 and TLR receptors on immune cells, enhancing phagocytosis, cytokine production, and adaptive immune responses. Their antioxidant activity arises from neutralizing free radicals and reducing oxidative stress, thereby protecting cells and tissues. β-Glucans also exhibit antitumor effects by inhibiting cancer cell growth, inducing apoptosis, and preventing angiogenesis, the formation of new blood vessels essential for tumor development. Additionally, they lower cholesterol and glucose levels by forming a viscous gel in the intestine, which reduces lipid and carbohydrate absorption, improving metabolic health. The biological activity of β-glucans varies with their molecular weight and source, further highlighting their versatility and functional potential. This study investigates how grape variety, vinification technology and extraction methods affect the yield and properties of β-glucans extracted from wine lees. The physico-chemical and mineral composition of different wine lees were analyzed, and two extraction methods of β-glucans from wine lees were tested: acid-base extraction and autolysis. These two methods were also tested under ultrasound-assisted conditions at different frequencies, as well as without the use of ultrasound. The β-glucan yield and properties were evaluated under different conditions. FTIR spectroscopy was used to assess the functional groups and structural characteristics of the β-glucans extracted from the wine lees, helping to confirm their composition and quality. Rheological behavior of the extracted β-glucans was also assessed to understand the impact of extraction method and raw material origin. The findings highlight that vinification technology significantly affects the composition of wine lees, while both the extraction method and yeast origin influence the yield and type of β-glucans obtained. The autolysis method provided higher β-glucan yields (18.95 ± 0.49% to 39.36 ± 0.19%) compared to the acid-base method (3.47 ± 0.66% to 19.76 ± 0.58%). FTIR spectroscopy revealed that the β-glucan extracts contain a variety of glucan and polysaccharide types, with distinct β-glucans (β-1,4, β-1,3, and β-1,6) identified through specific absorption peaks. The rheological behavior of suspensions exhibited pseudoplastic or shear-thinning behavior, where viscosity decreased significantly as shear rate increased. This behavior, observed across all β-glucan extracts, is typical of polymer-containing suspensions. These insights are critical for optimizing β-glucan extraction processes, supporting sustainability efforts and waste valorization in the wine industry. Efficient extraction of β-glucans from natural sources like wine lees offers a promising path toward their industrial application as valuable functional compounds.
Collapse
Affiliation(s)
- Ana Chioru
- Faculty of Food Technology, Technical University of Moldova, MD-2004 Chișinău, Moldova; (A.C.); (A.B.)
| | - Aurica Chirsanova
- Faculty of Food Technology, Technical University of Moldova, MD-2004 Chișinău, Moldova; (A.C.); (A.B.)
| | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (I.A.)
| | - Ionuț Avrămia
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (I.A.)
| | - Alina Boiştean
- Faculty of Food Technology, Technical University of Moldova, MD-2004 Chișinău, Moldova; (A.C.); (A.B.)
| | - Ancuța Chetrariu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (I.A.)
| |
Collapse
|
5
|
de Almeida Sousa Cruz MA, de Barros Elias M, Calina D, Sharifi-Rad J, Teodoro AJ. Insights into grape-derived health benefits: a comprehensive overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:91. [DOI: 10.1186/s43014-024-00267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractGrapes, renowned for their diverse phytochemical composition, have long been recognized for their health-promoting properties. This narrative review aims to synthesize the current research on grapes, with a particular emphasis on their role in disease prevention and health enhancement through bioactive compounds.A comprehensive review of peer-reviewed studies, including in vitro, in vivo, and clinical investigations, was conducted to elucidate the relationship between grape consumption and health outcomes. The review highlights the positive association of grape intake with a decreased risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Notable bioactive components like resveratrol are emphasized for their neuroprotective and antioxidative capabilities. Additionally, the review explores emerging research on the impact of grapes on gut microbiota and its implications for metabolic health and immune function.This updated review underscores the importance of future research to fully leverage and understand the therapeutic potential of grape-derived compounds, aiming to refine dietary guidelines and functional food formulations. Further translational studies are expected to clarify the specific bioactive interactions and their impacts on health.
Graphical Abstract
Collapse
|
6
|
Karastergiou A, Gancel AL, Jourdes M, Teissedre PL. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants (Basel) 2024; 13:1131. [PMID: 39334790 PMCID: PMC11428247 DOI: 10.3390/antiox13091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Vitis vinifera L., commonly known as grapes, is one of the most widely cultivated crops worldwide, with over 80% used for wine production. However, the winemaking process generates substantial residues, including grape pomace (GP), wine lees, and wastewater, which can pose significant environmental and economic challenges. Among these, GP stands out not only as a waste product but also as a rich source of polyphenols-bioactive compounds with recognized antioxidant and anti-inflammatory properties. Recent advancements have expanded the application of GP-derived extracts, particularly in the health and food industries, due to their potent bioactive properties. This review provides a comprehensive overview of the valorization of GP, focusing on its phenolic composition and therapeutic potential. It evokes innovative, environmentally friendly extraction techniques and integrated methods for the chemical analysis of these valuable compounds. Additionally, the health benefits of GP polyphenols are explored, with recent experimental findings examining their metabolism and highlighting the key role of gut microbiota in these processes. These insights contribute to a deeper understanding of the biological activity of GP extracts and underscore their growing significance as a high-added-value product. By illustrating how winemaking by-products can be transformed into natural therapeutic agents, this review emphasizes the importance of sustainable development and eco-friendly waste management practices, significantly contributing to the advancement of a circular economy.
Collapse
Affiliation(s)
| | | | | | - Pierre-Louis Teissedre
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d’Ornon, France; (A.K.); (A.-L.G.); (M.J.)
| |
Collapse
|
7
|
Melo FDO, Ferreira VC, Barbero GF, Carrera C, Ferreira EDS, Umsza-Guez MA. Extraction of Bioactive Compounds from Wine Lees: A Systematic and Bibliometric Review. Foods 2024; 13:2060. [PMID: 38998566 PMCID: PMC11241285 DOI: 10.3390/foods13132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The extraction of bioactive compounds from wine lees involves a variety of methods, the selection of which is crucial to ensure optimal yields. This systematic review, following PRISMA guidelines and utilizing the Web of Science database, aimed to examine the current state of this field, providing insights for future investigations. The search employed strategies with truncation techniques and Boolean operators, followed by a three-step screening using well-defined eligibility criteria. A bibliometric analysis was conducted to identify authors, affiliations, countries/regions, and research trends. Thirty references were selected for analysis, with Spain standing out as the main source of research on the topic. The majority of studies (66%) focused on the extraction of bioactive compounds from alcoholic fermentation lees, while 33% were directed towards malolactic fermentation lees. Binary mixtures (ethanol-water) were the predominant solvents, with ultrasound being the most used extraction method (31.3%), providing the highest average yields (288.6%) for the various evaluated compounds, especially flavonoids. The potential of wine lees as a source of bioactive compounds is highlighted, along with the need for further research exploring alternative extraction technologies and the combination of methods. Additionally, the importance of "in vitro" and "in vivo" tests to assess the bioactive potential of lees, as well as the use of computational tools to optimize extraction and identify the molecules responsible for bioactive activity, is emphasized.
Collapse
Affiliation(s)
- Filipe de Oliveira Melo
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Gerardo Fernandez Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ederlan de Souza Ferreira
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Marcelo Andrés Umsza-Guez
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| |
Collapse
|
8
|
Ma J, Li P, Ma Y, Liang L, Jia F, Wang Y, Yu L, Huang W. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. Heliyon 2024; 10:e31518. [PMID: 38826714 PMCID: PMC11141385 DOI: 10.1016/j.heliyon.2024.e31518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Peng Li
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
- The Work of Forestry Administrative Station of Kirgiz Autonomous Prefecture, Artush, 845350, PR China
| | - Liya Liang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| |
Collapse
|
9
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
10
|
Chu Q, Xie S, Wei H, Tian X, Tang Z, Li D, Liu Y. Enzyme-assisted ultrasonic extraction of total flavonoids and extraction polysaccharides in residue from Abelmoschus manihot (L). ULTRASONICS SONOCHEMISTRY 2024; 104:106815. [PMID: 38484470 PMCID: PMC10955658 DOI: 10.1016/j.ultsonch.2024.106815] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Abelmoschus manihot (L) is a traditional chinese herb and the present study focused on its comprehensive development and utilization. Enzyme-assisted ultrasonic extraction (EUAE) was investigated for the extraction and qualitative and quantitative analysis of flavonoids from Abelmoschus manihot (L) using a combination of ultra-performance liquid chromatography-photodiode array (UPLC-PDA), polysaccharides was extracted from residues and compared with directly extracted from raw materials. The optimal yield of 3.46±0.012 % (w/w) was obtained when the weight ratio of cellulase to pectinase was 1:1, the enzyme concentration was 3 %, the pH was 6.0, the solvent was a mixture of 70 % ethanol (v/v) and 0.1 mol/L NaH2PO4 buffer solution, the ultrasonic power was 500 W, the extraction time was 40 min, and the temperature of the extraction was 50 °C. The individual concentrations of interested flavonoids (rutin, neochlorogenic acid, nochlorogenic acid, lsoquercitrin, quercitrin, gossypin, quercetin) were effectively increased with the using of EUAE, compared with ultrasonic extraction (UE) method. Polysaccharides were extracted from each residue, respectively, the Polysaccharides yield in residue from EUAE was higher than that from UE, and closed to the yield from direct extraction in raw materials. The above results shown that the experimental process had the potential to be environmentall, friendly, straightforward and efficient.
Collapse
Affiliation(s)
- Qiming Chu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Shengnan Xie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Hongling Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Xuchen Tian
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China
| | - Dewen Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China.
| | - Ying Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, Harbin 150040, China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, China.
| |
Collapse
|
11
|
Nguyen HC, Ngo KN, Tran HK, Barrow CJ. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Mar Drugs 2024; 22:42. [PMID: 38248667 PMCID: PMC10817698 DOI: 10.3390/md22010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Brown seaweed is a promising source of polysaccharides and phenolics with industrial utility. This work reports the development of a green enzyme-assisted extraction method for simultaneously extracting polysaccharides and phenolics from the brown seaweed Padina gymnospora. Different enzymes (Cellulast, Pectinex, and Alcalase), individually and in combination, were investigated, with Alcalase alone showing the highest efficiency for the simultaneous extraction of polysaccharides and phenolics. Yields from Alcalase-assisted aqueous extraction were higher than those obtained using either water alone or conventional ethanol extraction. Alcalase-assisted extraction was subsequently optimized using a response surface methodology to maximize compound recovery. Maximal polysaccharide and phenolic recovery was obtained under the following extraction conditions: a water-to-sample ratio of 61.31 mL/g, enzyme loading of 0.32%, temperature of 60.5 °C, and extraction time of 1.95 h. The extract was then fractionated to obtain alginate-, fucoidan-, and phenolic-rich fractions. Fractions exhibited potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity with IC50 values of 140.55 µg/mL, 126.21 µg/mL, and 48.17 µg/mL, respectively, which were higher than those obtained from conventional extraction methods. The current work shows that bioactive polysaccharides and phenolics can be obtained together in high yield through a single aqueous-only green and efficient Alcalase-assisted extraction.
Collapse
Affiliation(s)
- Hoang Chinh Nguyen
- Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| | - Kim Ngan Ngo
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (K.N.N.); (H.K.T.)
| | - Hoai Khang Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (K.N.N.); (H.K.T.)
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
12
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
13
|
Mashhadi Abolghasem F, Kim RH, Park SY, Lim T, Lee H, Hwang KT, Kim J. Effects of roasting and ultrasound-assisted enzymatic treatment of Nigella sativa L. seeds on thymoquinone in the oil and antioxidant activity of defatted seed meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6208-6218. [PMID: 37148152 DOI: 10.1002/jsfa.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Black cumin seeds (black seed; BS) contain various bioactive compounds, such as thymoquinone (TQ). Roasting and ultrasound-assisted enzymatic treatment (UAET) as pre-treatments can increase the phytochemical content in the BS oil. This study aimed to investigate the effects of pre-treatments on the TQ content and the yield of the BS oil and to profile the composition of defatted BS meal (DBSM), followed by evaluating antioxidant properties of the DBSM. RESULTS The extraction yield of crude oil from BS was not affected by the roasting time. The highest extraction yield (47.8 ± 0.4%) was obtained with UAET cellulase-pH 5 (enzyme concentration of 100%). Roasting decreased the TQ content of the oil, while the UAET cellulase-pH 5 treatment with an enzyme concentration of 100% yielded the highest TQ (125.1 ± 2.7 μg mL-1 ). Additionally, the UAET cellulase-pH 5 treatment increased total phenolics and flavonoids of DBSM by approximately two-fold, compared to roasting or ultrasound treatment (UT) alone. Principal component analysis revealed that the UAET method might be more suitable for extracting BS oil with higher TQ content than roasting and UT. CONCLUSION Compared to roasting or UT, using ultrasound along with cellulase could improve the oil yield and TQ in the oil from BS and obtain the DBSM with higher phenolics, flavonoids, and antioxidant activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Mashhadi Abolghasem
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
- BK21 FOUR Education and Research Team for Sustainable Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Sun Young Park
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Taehwan Lim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Haeseong Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
- BK21 FOUR Education and Research Team for Sustainable Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
15
|
Lee SH, Lim JM, Lee SW, Jang TH, Park JH, Seo YS, Lee JH, Seralathan KK, Oh BT. Effect of fermentation on antioxidant, antimicrobial, anti-inflammatory, and anti- Helicobacter pylori adhesion activity of Ulmus davidiana var. japonica root bark. Food Sci Biotechnol 2023; 32:1257-1268. [PMID: 37362805 PMCID: PMC10290026 DOI: 10.1007/s10068-023-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
The limited yield of Ulmus davidiana var. japonica root bark (URB) extract is considered an economic loss to the food industry. Improving extraction yield and bioactivity through fermentation increase the industrial usage of URB. The study aims to optimize the fermentation with cellulolytic and pectinolytic bacteria and evaluate the bioactivity and anti-Helicobacter pylori activity of the fermented URB extract. URB fermentation with the Bacillus licheniformis FLa3, isolated from salted seafood (Sardinella zunasi), under optimal conditions (37 °C, pH 6, 10% inoculum dose, and 36 h) improved the extraction yield by 36% compared to the control. The antioxidant and antimicrobial activity of the fermented extract were significantly higher than non-fermented extract. High-performance liquid chromatography results confirmed that the fermentation increased the proportion of bioactive components such as catechin (171.7%), epicatechin (144.3%), quercetin (27.3%), and kaempferol (16.7%). The results confirmed that the fermentation increased both the extraction yield and bioactivity.
Collapse
Affiliation(s)
- Seong-Hyeon Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Young-Seok Seo
- R&D Center, Sanigen CO., Ltd., Iksan, Jeonbuk 54576 South Korea
| | - Jeong-Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang, Jeonbuk 56015 South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596 South Korea
| |
Collapse
|
16
|
Gerardi C, D'Amico L, Durante M, Tufariello M, Giovinazzo G. Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential. Foods 2023; 12:2593. [PMID: 37444331 DOI: 10.3390/foods12132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, grape pomace is used as an ingredient to fortify pasta. The grape pomace phenolic component is highly accessible and available for metabolization in the human gut. Hence, grape pomace can be exploited as a source of polyphenols and fiber for sustainable and dietary beneficial food production. Analyses of soluble and bound phenols and volatile compounds in raw and cooked pasta were performed. In the uncooked pasta fortified with pomace, the content of soluble and bound phenolic molecules increased significantly. During the cooking process, the bound phenols were lost, while the soluble phenols doubled. The whole grape pomace flour as a pasta ingredient increased the fiber component by at least double, increased the soluble polyphenol component by at least 10 times, and doubled the isoprenoids (toco-chromanols and carotenoids) while maintaining the unaltered fatty acid content after cooking. In accordance with the polyphenol content, antioxidant activity resulted higher than that of the control pasta. Analysis of volatile compounds in fortified pasta, both uncooked and cooked, indicated an improvement in aromatic profile when compared to the control pasta. Our results show that durum wheat pasta fortified with whole pomace flour has bioactive potential for the reuse of food industry byproducts.
Collapse
Affiliation(s)
- Carmela Gerardi
- Institute of Sciences of Food Production, National Research Council of Italy, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Leone D'Amico
- Institute of Sciences of Food Production, National Research Council of Italy, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production, National Research Council of Italy, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Maria Tufariello
- Institute of Sciences of Food Production, National Research Council of Italy, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Giovanna Giovinazzo
- Institute of Sciences of Food Production, National Research Council of Italy, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
17
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
18
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
19
|
He Z, Yang C, Yuan Y, He W, Wang H, Li H. Basic constituents, bioactive compounds and health-promoting benefits of wine skin pomace: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:8073-8090. [PMID: 36995277 DOI: 10.1080/10408398.2023.2195495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Wine pomace (WP) is a major byproduct generated during winemaking, and skin pomace (SKP) comprises one of the most valuable components of WP. Since SKP differs in composition and properties from seed pomace (SDP), precise knowledge of SKP will aid the wine industry in the development of novel, high-value products. The current review summarizes recent advances in research relating to SKP presents a comprehensive description of the generation, composition, and bioactive components, primarily focusing on the biological activities of SKP, including antioxidant, gastrointestinal health promotion, antibacterial, anti-inflammatory, anticancer, and metabolic disease alleviation properties. Currently, the separation and recovery of skins and seeds is an important trend in the wine industry for the disposal of winemaking byproducts. In comparison to SDP, SKP is rich in polyphenols including anthocyanins, flavonols, phenolic acids, stilbenes, and some proanthocyanidins, as well as dietary fiber (DF). These distinctive benefits afford SKP the opportunity for further development and application. Accordingly, the health-promoting mechanism and appropriate application of SKP will be further elucidated in terms of physiological activity, with the progress of biochemical technology and the deepening of related research.
Collapse
Affiliation(s)
- Zhouyang He
- College of Enology, Northwest A&F University, Yangling, China
| | - Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuxin Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Wanzhou He
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
20
|
Phytochemicals Recovery from Grape Pomace: Extraction Improvement and Chemometric Study. Foods 2023; 12:foods12050959. [PMID: 36900476 PMCID: PMC10001001 DOI: 10.3390/foods12050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
In the last 20 years, an increased interest has been shown in the application of different types and combinations of enzymes to obtain phenolic extracts from grape pomace in order to maximize its valorization. Within this framework, the present study aims at improving the recovery of phenolic compounds from Merlot and Garganega pomace and at contributing to the scientific background of enzyme-assisted extraction. Five commercial cellulolytic enzymes were tested in different conditions. Phenolic compound extraction yields were analyzed via a Design of Experiments (DoE) methodology and a second extraction step with acetone was sequentially added. According to DoE, 2% w/w enzyme/substrate ratio was more effective than 1%, allowing a higher total phenol recovery, while the effect of incubation time (2 or 4 h) variation was more enzyme-dependent. Extracts were characterized via spectrophotometric and HPLC-DAD analyses. The results proved that enzymatic and acetone Merlot and Garganega pomace extracts were complex mixtures of compounds. The use of different cellulolytic enzymes led to different extract compositions, as demonstrated using PCA models. The enzyme effects were observed both in water enzymatic and in the subsequent acetone extracts, probably due to their specific grape cell wall degradation and leading to the recovery of different molecule arrays.
Collapse
|
21
|
Piazza DM, Romanini D, Meini MR. High-efficiency novel extraction process of target polyphenols using enzymes in hydroalcoholic media. Appl Microbiol Biotechnol 2023; 107:1205-1216. [PMID: 36680585 DOI: 10.1007/s00253-023-12386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L-1 h-1); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L-1 h-1), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L-1 h-1). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: • Enzymes can be used up to ethanol 30% v/v. • The specific enzymes' action determines the polyphenolic profile of the extracts. • The yields obtained of target polyphenols are competitive.
Collapse
Affiliation(s)
- Dana M Piazza
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Diana Romanini
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina.,Facultad de Ciencias Bioquímicas Y Farmacéuticas, Departamento de Tecnología, UNR, Rosario, Argentina
| | - María-Rocío Meini
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas Y Farmacéuticas, UNR, Rosario, Argentina. .,IPROBYQ-CONICET, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Mitre 1998 - S2000FWF, Rosario, Santa Fe, Argentina.
| |
Collapse
|
22
|
Quispe-Fuentes I, Uribe U. E, Vega-Gálvez A, Poblete G. J, Olmos C. A, Pasten C. A. Solar drying of flame seedless (Vitis vinifera l.) grape after different pretreatments: characterization of raisin’s physicochemical and functional properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2022; 12:foods12010159. [PMID: 36613377 PMCID: PMC9818228 DOI: 10.3390/foods12010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Agroindustrial activities generate various residues or byproducts which are inefficiently utilized, impacting the environment and increasing production costs. These byproducts contain significant amounts of bioactive compounds, including dietary fiber with associated phenolic compounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber and associated phenolic compounds. This work describes ADF, the main byproducts considered sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined for human consumption. ADF responds to the demand for low-cost, functional ingredients with great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid retention-excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different applications in agroindustry; its use can improve the technofunctional and nutritional properties of food, helping to close the cycle following the premise of the circular economy.
Collapse
|
24
|
Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
26
|
Lajoie L, Fabiano-Tixier AS, Chemat F. Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products-Past, Present and Future Solutions. Pharmaceuticals (Basel) 2022; 15:ph15121507. [PMID: 36558959 PMCID: PMC9788067 DOI: 10.3390/ph15121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Water is considered the greenest solvent. Nonetheless, the water solubility of natural products is still an incredibly challenging issue. Indeed, it is nearly impossible to solubilize or to extract many natural products properly using solely water due to their low solubility in this solvent. To address this issue, researchers have tried for decades to tune water properties to enhance its solvent potential in order to be able to solubilise or extract low-water solubility compounds. A few methods involving the use of solubilisers were described in the early 2000s. Since then, and particularly in recent years, additional methods have been described as useful to ensure the effective green extraction but also solubilisation of natural products using water as a solvent. Notably, combinations of these green methods unlock even higher extraction performances. This review aims to present, compare and analyse all promising methods and their relevant combinations to extract natural products from bioresources with water as solvent enhanced by green solubilisers and/or processes.
Collapse
|
27
|
Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Santos YJS, Malegori C, Colnago LA, Vanin FM. Application on infrared spectroscopy for the analysis of total phenolic compounds in fruits. Crit Rev Food Sci Nutr 2022; 64:2906-2916. [PMID: 36178354 DOI: 10.1080/10408398.2022.2128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have demonstrated the metabolic benefits of phenolic compounds on human health. However, traditional analytical methods used for quantification of total phenolic compounds are time-consuming, laborious, require a high volume of reagents, mostly toxic substances, and involve several steps that can result in systematic and instrumental errors. Spectroscopic techniques have been used as alternatives to these methods for the determination of bioactive compounds directly in the food matrix by minimal sample preparation, without using toxic reagents. Therefore, this overview presents the advantages of nondestructive methods focusing on infrared spectroscopy (IR), for the quantification of total phenolic compounds in fruits. In addition, the main difficulties in applying these spectroscopic techniques are presented, as well as a comparison between the quantification of total phenolic compounds by traditional and IR methods. This review concludes by focusing on model building, highlighting that IR data are mainly processed using the partial least-squares (PLS) regression method to predict total phenolic content. The development of portable and inexpensive IR instruments, combined with multivariate data processing, could give to the consumers a straightforward technology to evaluate the total phenolic content of fruits prior to purchase.
Collapse
Affiliation(s)
- Y J S Santos
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Pirassununga, SP, Brazil
| | - C Malegori
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| | - L A Colnago
- Brazilian Corporation for Agricultural Research - Embrapa Instrumentation, São Carlos, SP, Brazil
| | - F M Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Pirassununga, SP, Brazil
| |
Collapse
|
30
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
31
|
Leyva-Jiménez FJ, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Lozano-Sánchez J, Oliver-Simancas R, Alañón ME, Castangia I, Segura-Carretero A, Arráez-Román D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants (Basel) 2022; 11:antiox11081552. [PMID: 36009270 PMCID: PMC9404794 DOI: 10.3390/antiox11081552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, green and advanced extraction technologies have gained great interest to revalue several food by-products. This by-product revaluation is currently allowing the development of high value-added products, such as functional foods, nutraceuticals, or cosmeceuticals. Among the high valued-added products, cosmeceuticals are innovative cosmetic formulations which have incorporated bioactive natural ingredients providing multiple benefits on skin health. In this context, the extraction techniques are an important step during the elaboration of cosmetic ingredients since they represent the beginning of the formulation process and have a great influence on the quality of the final product. Indeed, these technologies are claimed as efficient methods to retrieve bioactive compounds from natural sources in terms of resource utilization, environmental impact, and costs. This review offers a summary of the most-used green and advanced methodologies to obtain cosmetic ingredients with the maximum performance of these extraction techniques. Response surface methodologies may be applied to enhance the optimization processes, providing a simple way to understand the extraction process as well as to reach the optimum conditions to increase the extraction efficiency. The combination of both assumes an economic improvement to attain high value products that may be applied to develop functional ingredients for cosmetics purposes.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (F.-J.L.-J.); (M.d.l.L.C.-G.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Rodrigo Oliver-Simancas
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - M. Elena Alañón
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Avenida Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Ines Castangia
- Deparment of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
32
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
33
|
Christofoletti CR, Fernandes AC, Gandra RL, Martins IM, Gambero A, Macedo GA, Macedo JA. “Wine residues extracts modulating in vitro metabolic syndrome”. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Angelini P, Flores GA, Piccirilli A, Venanzoni R, Acquaviva A, Di Simone SC, Libero ML, Tirillini B, Zengin G, Chiavaroli A, Recinella L, Leone S, Brunetti L, Orlando G, Menghini L, Ferrante C. Polyphenolic composition and antimicrobial activity of extracts obtained from grape processing by-products: Between green biotechnology and nutraceutical. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Souza EL, Nascimento TS, Magalhães CM, Barreto GDA, Leal IL, dos Anjos JP, Machado BAS. Development and Characterization of Powdered Antioxidant Compounds Made from Shiraz ( Vitis vinifera L.) Grape Peels and Arrowroot ( Maranta arundinacea L.). ScientificWorldJournal 2022; 2022:7664321. [PMID: 35514608 PMCID: PMC9064501 DOI: 10.1155/2022/7664321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Grapevine (Vitis vinifera L.) is a plant containing many phenolic compounds, mostly distributed in the peel, pulp, and seeds. This study evaluates the centesimal composition and bioactive compounds in Shiraz grape (Vitis vinifera) peels using spectrophotometric and UHPLC techniques and develops different formulations of compound powders from the peels and arrowroot using conventional drying technology. The results demonstrate that Shiraz grape skin contains significant amounts of insoluble fiber (15.3%), phenolics (157.09 ± 6.96-149.11 ± 9.27 mg GAE g-1), and flavonoids (0.75 ± 0.50-2.00 ± 0.50 mg QE g-1), with excellent antioxidant capacity observed in the alcoholic extracts. The phenolic content in the developed powdered compounds ranged from 128.32 to 139.70 mg GAE g-1. In general, the compounds showed good antioxidant capacity (IC50 = 0.17 to 0.19 μg mL-1). According to the chromatographic evaluation, it was possible to quantify gallic acid, catechin, and epicatechin, the latter of which was found in the largest quantities in the six formulations. The EV5 formulation was the most efficient in terms of phenolic compounds and protein amounts. This formulation's composition and low cost could make it viable for use in the food industry.
Collapse
Affiliation(s)
- Euzélia Lima Souza
- Post-Graduate Program–Industrial Technology and Management, University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
- Nutrition School, Gastronomy Course, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Camila Miranda Magalhães
- Institute of Health Sciences, Biotechnology Course, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Gabriele de Abreu Barreto
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | - Ingrid Lessa Leal
- Laboratory of Applied Research in Food and Biotechnology, University Center SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | - Jeancarlo Pereira dos Anjos
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| |
Collapse
|
36
|
José Aliaño González M, Carrera C, Barbero GF, Palma M. A comparison study between ultrasound-assisted and enzyme-assisted extraction of anthocyanins from blackcurrant ( Ribes nigrum L.). Food Chem X 2022; 13:100192. [PMID: 35498970 PMCID: PMC9039916 DOI: 10.1016/j.fochx.2021.100192] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
2 anthocyanin extraction methods have been developed in blackcurrant by EAE and UAE. The 7 major anthocyanins have been separated in less than 7 min. The composition of the extraction solvent has been the most influential variable. Optimal extraction times have been 5 min for UAE and 10 min for EAE. No differences have been observed in anthocyanin extraction with both methods.
Blackcurrant (Ribes nigrum L.) is a fruit rich in vitamins, fatty acids, minerals, essential oils and phenolic compounds, including anthocyanins. In the present work, two anthocyanin extraction methods from blackcurrant samples based on Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) have been developed. A Plackett–Burman design with seven variables has been preliminary used for both UAE and EAE in order to determine the most influential variables in each methodology. After that, a Box-Behnken design was employed to optimize the extraction methods. The composition of the extraction solvent (% EtOH in water) has been the most influential variable for both UAE and EAE. The optimal extraction times have been 5 min for UAE and 10 min for EAE. No differences have been observed in anthocyanin extraction with both methodologies. Both methods have been applied to blackcurrant-derived products and proven their suitability for quality control analysis.
Collapse
Affiliation(s)
- María José Aliaño González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
37
|
Taghian Dinani S, van der Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr 2022; 63:7749-7771. [PMID: 35275755 DOI: 10.1080/10408398.2022.2049692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Every year, huge amounts of fruit and vegetable by-products in the food processing factories are produced. These by-products have great potential to be used for different targets especially the extraction of value-added ingredients. The target of this study is to review the challenges of extraction of value-added ingredients from fruit and vegetable by-products on the industrial scale and to describe current trends in solving these problems. In addition, some strategies such as multi-component extraction as well as application of fermentation before or after the extraction process, and production of biofuel, organic fertilizers, animal feeds, etc. on final residues after extraction of value-added ingredients are discussed in this review paper. In fact, simultaneous extraction of different value-added ingredients from fruit and vegetable by-products can increase the extraction efficiency and reduce the cost of value-added ingredients as well as the final volume of these by-products. After extraction of value-added ingredients, the residues can be used to produce biofuels, or they can be used to produce organic fertilizers, animal feeds, etc. Therefore, the application of several appropriate strategies to treat the fruit and vegetable by-products can increase their application, protect the environment, and improve the food economy.
Collapse
Affiliation(s)
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
38
|
Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10030469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years there has been a growing concern about environmental pollution linked to the generation of agroindustrial waste. The wine industry generates approximately 8.49 million tons of grape pomace per year worldwide; this residue can be used to obtain compounds with biological activity. Grape pomace is a source of anthocyanins, pigments that have antioxidant properties and help prevent cardiovascular disease. The development of sustainable extraction, purification and identification techniques constitutes an important step in adding value to this waste. Therefore, the present research has focused on presenting a review of works carried out in the last years.
Collapse
|
39
|
Jelley RE, Lee AJ, Zujovic Z, Villas-Boas SG, Barker D, Fedrizzi B. First use of grape waste-derived building blocks to yield antimicrobial materials. Food Chem 2022; 370:131025. [PMID: 34509147 DOI: 10.1016/j.foodchem.2021.131025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Grape marc is an underutilised waste material that poses significant environmental issues. This study offers the first proof-of-concept investigation into the polymerisation of both crude and purified Sauvignon blanc grape marc extracts using the diacyl chlorides terephthaloyl chloride, succinyl chloride, adipoyl chloride, sebacoyl chloride, and the tartaric acid derivative (4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-dicarbonyl dichloride to obtain new materials, in what to the best of our knowledge is the first reported example of a direct polymerisation of an agricultural waste extract. A total of 26 novel materials were prepared. It has also shown that quercetin, a phenolic monomer found in grape marc extracts, can be polymerised with (4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-dicarbonyl dichloride to give a polymer that shows activity towards S. aureus.
Collapse
Affiliation(s)
- Rebecca E Jelley
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Alex J Lee
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zoran Zujovic
- Centre for NMR, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
40
|
A Green Ultrasound-assisted Enzymatic Extraction Method for Efficient Extraction of Total Polyphenols from Empetrum nigrum and Determination of its Bioactivities. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Tena N, Asuero AG. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel) 2022; 11:antiox11020286. [PMID: 35204169 PMCID: PMC8868086 DOI: 10.3390/antiox11020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
Nowadays, food industries are concerned about satisfying legal requirements related to waste policy and environmental protection. In addition, they take steps to ensure food safety and quality products that have high nutritional properties. Anthocyanins are considered high added-value compounds due to their sensory qualities, colors, and nutritional properties; they are considered bioactive ingredients. They are found in high concentrations in many by-products across the food industry. Thus, the non-conventional extraction techniques presented here are useful in satisfying the current food industry requirements. However, selecting more convenient extraction techniques is not easy. Multiple factors are implicated in the decision. In this review, we compile the most recent applications (since 2015) used to extract anthocyanins from different natural matrices, via conventional and non-conventional extraction techniques. We analyze the main advantages and disadvantages of anthocyanin extraction techniques from different natural matrices and discuss the selection criteria for sustainability of the processes. We present an up-to-date analysis of the principles of the techniques and an optimization of the extraction conditions, technical progress, and industrial applications. Finally, we provide a critical comparison between these techniques and some recommendations, to select and optimize the techniques for industrial applications.
Collapse
|
42
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
43
|
Abbasi-Parizad P, De Nisi P, Pepè Sciarria T, Scarafoni A, Squillace P, Adani F, Scaglia B. Polyphenol bioactivity evolution during the spontaneous fermentation of vegetal by-products. Food Chem 2021; 374:131791. [PMID: 34915367 DOI: 10.1016/j.foodchem.2021.131791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 11/04/2022]
Abstract
Food industry by-products such as grape pomace (GP), tomato pomace (TP), and spent coffee grounds (SCG) are rich in polyphenols (PP) but are easily biodegradable. The aim of this study is to test Spontaneous Fermentation (SF) as treatment to modify PP profile and bioactivity. The results highlighted that the by-products' organic matter and the microbial populations drove the SF evolution; heterolactic, alcoholic, and their mixtures were the predominant metabolisms of TP, GP, and SCG + GP co-fermentation. Increases in the extractable amounts and antiradical activity occurred for all the biomasses. Regarding the aglycate-PPs (APP), i.e. the most bioreactive PPs, significant changes occurred for TP and GP but did not influence the anti-inflammatory bioactivity. The co-fermentation increased significantly chlorogenic acid and consumed most of the APPs, acting as a purification system to obtain a highly concentrated APP fraction, so that the extract might be employed for a specific purpose.
Collapse
Affiliation(s)
- Parisa Abbasi-Parizad
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Patrizia De Nisi
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Pietro Squillace
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Ricicla Group Labs. - Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Giovanni Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
44
|
de Andrade RB, Machado BAS, Barreto GDA, Nascimento RQ, Corrêa LC, Leal IL, Tavares PPLG, Ferreira EDS, Umsza-Guez MA. Syrah Grape Skin Residues Has Potential as Source of Antioxidant and Anti-Microbial Bioactive Compounds. BIOLOGY 2021; 10:biology10121262. [PMID: 34943177 PMCID: PMC8698917 DOI: 10.3390/biology10121262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary The aim of this study was to verify the influence of different extraction parameters (temperature and ultrasound time) of bioactive compounds from the skin of the Syrah variety of grape. Among the extracts obtained, those exposed to 20 min of sonication had the best results in terms of flavonoid content, antioxidant potential and phenolic profile. The temperature of 60 °C provided the most relevant results for the content of total phenolics, stilbenes, flavonols and phenolic acids, however, the association of this temperature with the use of ultrasound showed lower results as a source of antioxidant and antimicrobial bioactive compounds. Abstract In this study, we evaluated the effects of ultrasound-assisted extraction (UAE) under different time-temperature conditions on the content of bioactive compounds, antioxidant and antimicrobial activities of Syrah grape skin residue. The application of UAE showed a positive effect on the extraction of total flavonoids, and a negative effect on total polyphenols. The temperature of 40 °C and 60 °C without the UAE caused an increase of 260% and 287% of the total polyphenols, respectively. Nineteen individually bioactive compounds were quantified. The anthocyanin concentration (malvidin-3,5-di-O-glucoside 118.8–324.5 mg/100 g) showed high variation, to a lesser extent for phenolic acids, flavonoids, flavonols, procyanidins and stilbenes due to the UAE process. The Syrah grape skin residue has a high concentration of total phenolic compounds of 196–733.7 mg·GAE/100 g and a total flavonoid content of 9.8–40.0 mg·QE/100 g. The results of free radical scavenging activity (16.0–48.7 mg/100 mL, as EC50) and its inhibition of microbial growth (0.16 mg/mL, as EC50 for S. aureus, and 0.04 mg/mL, as EC50 for E. coli) by grape skin extract (UAE 40:20) indicate high antioxidant and antibacterial activity. It was concluded that the use of ultrasound needs further analysis for its application in this context, as it has shown deleterious effects on some compounds of interest. Syrah grape skin residue has potential as a source of bioactive antioxidants, antimicrobial activity and for use as a functional food ingredient.
Collapse
Affiliation(s)
- Roberta Barreto de Andrade
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | - Gabriele de Abreu Barreto
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | - Renata Quartieri Nascimento
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
| | - Luiz Claudio Corrêa
- Brazilian Semi-Arid Agricultural Research Company (Embrapa Semiárido), BR428, Km 152, P.O. Box 23, Petrolina 56302-970, PE, Brazil;
| | - Ingrid Lessa Leal
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | | | - Ederlan de Souza Ferreira
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
- Correspondence: (E.d.S.F.); (M.A.U.-G.); Tel.: +55-71-9923-13184 (E.d.S.F.); +55-71-9285-9330 (M.A.U.-G.)
| | - Marcelo Andrés Umsza-Guez
- Department of Biotechnology, Health Science Institute, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil
- Correspondence: (E.d.S.F.); (M.A.U.-G.); Tel.: +55-71-9923-13184 (E.d.S.F.); +55-71-9285-9330 (M.A.U.-G.)
| |
Collapse
|
45
|
Influence of green extraction techniques on green coffee: Nutraceutical compositions, antioxidant potential and in vitro bio-accessibility of phenolics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Teles ASC, Chávez DWH, Santiago MCPDA, Gottschalk LMF, Tonon RV. Composition of different media for enzyme production and its effect on the recovery of phenolic compounds from grape pomace. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Martín-Gómez J, García-Martínez T, Varo MÁ, Mérida J, Serratosa MP. Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Chowdhary P, Gupta A, Gnansounou E, Pandey A, Chaturvedi P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116796. [PMID: 33740601 DOI: 10.1016/j.envpol.2021.116796] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Grape pomace (GP) is a low-value by-product that contains a significant amount of high value-added products. The huge amount of non-edible residues of GP wastes (seeds, skins, leaves and, stems) produced by wine industries causes' environmental pollution, management issues as well as economic loss. Studies over the past 15-20 years revealed that GP could serve as a potential source for valuable bioactive compounds like antioxidants, bioactive, nutraceuticals, single-cell protein, and volatile organic compounds with an increasing scientific interest in their beneficial effects on human and animal health. However, the selection of appropriate techniques for the extraction of these compounds without compromising the stability of the extracted products is still a challenging task for the researcher. Based on the current scenario, the review mainly summarizes the novel applications of winery wastes in many sectors such as agriculture, pharmaceuticals, cosmetics, livestock fields, and also the bio-energy recovery system. We also summarize the existing information/knowledge on several green technologies for the recovery of value-added by-products. For the promotion of many emerging technologies, the entrepreneur should be aware of the opportunities/techniques for the development of high-quality value-added products. Thus, this review presents systematic information on value-added by-products that are used for societal benefits concerning the potential for human health and a sustainable environment.
Collapse
Affiliation(s)
- Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Abhishek Gupta
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning, IIC, ENAC, École Polytechnique fédérale de Lausanne (EPFL), Station 18, CH-1015, Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
50
|
Iuga M, Mironeasa S. Use of Grape Peels By-Product for Wheat Pasta Manufacturing. PLANTS (BASEL, SWITZERLAND) 2021; 10:926. [PMID: 34066588 PMCID: PMC8148588 DOI: 10.3390/plants10050926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 05/05/2023]
Abstract
Grape peels (GP) use in pasta formulation represents an economic and eco-friendly way to create value-added products with multiple nutritional benefits. This study aimed to evaluate the effect of the GP by-product on common wheat flour (Triticum aestivum), dough and pasta properties in order to achieve the optimal level that can be incorporated. Response surface methodology (RSM) was performed taking into account the influence of GP level on flour viscosity, dough cohesiveness and complex modulus, pasta color, fracturability, chewiness, cooking loss, total polyphenols, dietary fibers and resistant starch amounts. The result show that 4.62% GP can be added to wheat flour to obtain higher total polyphenols, resistant starch and dietary fiber contents with minimum negative effects on pasta quality. Flour viscosity, dough cohesiveness, complex modulus and pasta fracturability of the optimal sample were higher compared to the control, while chewiness was lower. Proteins' secondary structures were influenced by GP addition, while starch was not affected. Smooth starch grains embedded in a compact protein structure containing GP fiber was observed. These results show that GP can be successfully incorporated in wheat pasta, offering nutritional benefits by their antioxidants and fiber contents, without many negative effects on the final product's properties.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Ştefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Ştefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| |
Collapse
|