1
|
Jiang L, Liu D, Wang W, Lv R, Yu S, Zhou J. Advancements and perspectives of novel freezing and thawing technologies effects on meat: A review. Food Res Int 2025; 204:115942. [PMID: 39986786 DOI: 10.1016/j.foodres.2025.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Freezing is an effective method to extend the shelf life of meat. Traditional slow freezing technologies tend to damage muscle cells due to the formation of large ice crystals. Before further processing, frozen meat needs to undergo a thawing process. Traditional thawing technologies require long thawing times, which may increase the drip loss and accelerate the bacterial growth rate. Quality deterioration and nutrient reduction are common problems in frozen meat. To produce high-quality frozen meat, novel freezing and thawing technologies have been developed constantly over the past decades. This review investigated the effects of eight novel freezing technologies and seven novel thawing technologies on frozen meat quality. Novel freezing technologies with rapid freezing rates contribute to forming small and uniformly distributed ice crystals, thereby reducing the damage to muscle cells. Some novel thawing technologies increase the thawing efficiency by exposing the meat to energy fields to heat all parts of the meat concurrently. Additionally, the principles of these technologies are summarized. Single-method freezing and thawing have limitations in preserving the quality of fresh meat. Therefore, this review also discussed the potential application of combined freezing/thawing technologies, which can better maintain moisture distribution, reduce color and texture changes, and lower lipid and protein oxidation. Many challenges remain in the exploitation of novel freezing/thawing technologies. Further research could focus on investigating the mechanisms and industrial applications of these technologies, establishing models to describe freezing/thawing processes, and exploring different freezing/thawing equipment based on differences in myofibril structure and tissue moisture content.
Collapse
Affiliation(s)
- Ling Jiang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Songfeng Yu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
2
|
Coria-Hernández J, Meléndez-Pérez R. Cryogel Addition Effect on Ultrasound-Assisted Thawing of Pork Meat. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9662782. [PMID: 39720785 PMCID: PMC11668546 DOI: 10.1155/ijfo/9662782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
The use of new technologies that allow for improving conventional food preservation processes is what the industry has been adopting in recent decades, with high-intensity ultrasound (US) and the application of cryoprotectant agents (cryogels) being those that have become more relevant today. For this reason, in this study, cuts of Longissimus thoracis pork frozen in liquid nitrogen with and without waxy starch cryogel and thawed under controlled conditions in water immersion and with US were used, evaluating thermal parameters such as the initial zone and the melting rate of ice crystals and quality parameters such as pH, water holding capacity (WHC), microstructure, color profile, shear force, and surface changes. It was shown that the addition of cryogel modifies the initial fusion zone, that US-assisted thawing increases the fusion rate, and that both factors influence the quality parameters. However, the main effect on pH is the use of cryogel, unlike WHC, color parameters, and shear force, where the main impact is the thawing method. These results conclude that waxy starch cryogel and the US at 50% thawing have the potential to apply assistance technology in food processing.
Collapse
Affiliation(s)
- Jonathan Coria-Hernández
- Laboratory 13 Thermal and Structural Analysis of Materials and Foods, Multidisciplinary Research Unit, National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM–FESC), Cuautitlan Izcalli, Mexico State, Mexico
| | - Rosalía Meléndez-Pérez
- Laboratory 13 Thermal and Structural Analysis of Materials and Foods, Multidisciplinary Research Unit, National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM–FESC), Cuautitlan Izcalli, Mexico State, Mexico
| |
Collapse
|
3
|
Lin H, Wu G, Hu X, Chisoro P, Yang C, Li Q, Blecker C, Li X, Zhang C. Electric fields as effective strategies for enhancing quality attributes of meat in cold chain logistics: A review. Food Res Int 2024; 193:114839. [PMID: 39160042 DOI: 10.1016/j.foodres.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.
Collapse
Affiliation(s)
- Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojia Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Xu Y, Leng D, Li X, Wang D, Chai X, Schroyen M, Zhang D, Hou C. Effects of different electrostatic field intensities assisted controlled freezing point storage on water holding capacity of fresh meat during the early postmortem period. Food Chem 2024; 439:138096. [PMID: 38039609 DOI: 10.1016/j.foodchem.2023.138096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
In this study, the effect of different intensity electrostatic fields on the water holding capacity (WHC) of fresh meat during the early postmortem period in controlled freezing point storage (CFPS) were investigated. Significantly lower cooking loss were found in low voltage electrostatic field (LVEF) and high voltage electrostatic field (HVEF) compared to the control group (CK) (p < 0.05). The myofibril fragmentation index and microstructure results suggested that the sample under HVEF treatment remained relatively intact. It has been revealed that the changes in actomyosin properties under electrostatic field treatment groups were due to the combination and dissociation of actomyosin binding into myofilament concentration, which consequently affects the muscle WHC. The study further demonstrated that the electrostatic field, especially HVEF, might increase the WHC of fresh meat by affecting the distribution of water molecules and physiochemical properties of actomyosin during the early postmortem period.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dongmei Leng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaoyu Chai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
5
|
Xu C, Zang M, Qiao X, Wang S, Zhao B, Shi Y, Bai J, Wu J. Effects of ultrasound-assisted thawing on lamb meat quality and oxidative stability during refrigerated storage using non-targeted metabolomics. ULTRASONICS SONOCHEMISTRY 2022; 90:106211. [PMID: 36327923 PMCID: PMC9619372 DOI: 10.1016/j.ultsonch.2022.106211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the changes of ultrasound-assisted thawing on lamb meat quality and differential metabolite profiles during refrigerated storage. Compared with flow water thawing (FW), pH, a*, C*, and sulfhydryl content of lamb were significantly increased, while L*, drip loss and cooking loss were significantly decreased after ultrasound-assisted thawing (UT). On day 1 (UT1 and FW1) and day 7 (UT7 and FW7) in the UT and FW groups, principal component analysis explained 42.22% and 39.25% of the total variance. In this study, 44 (UT1 and FW1) and 47 (UT7 and FW7) differentially expressed metabolites were identified, including amino acids, carbohydrates and their conjugates, nucleic acids, carbonyl compounds and others. The results of this study provide data to clarify the differences between UT and FW, and lay a foundation for the application of ultrasound-assisted thawing in the meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| |
Collapse
|
6
|
Wang S, Bian T, Wu T, Zhang Y, Awais M, Fu H, Sun Z. Co-analysis of cucumber rhizosphere metabolites and microbial PLFAs under excessive fertilization in solar greenhouse. Front Microbiol 2022; 13:1004836. [PMID: 36274730 PMCID: PMC9582138 DOI: 10.3389/fmicb.2022.1004836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Fertilizer application is the most common measure in agricultural production, which can promote the productivity of crops such as cucumbers, but the problem of excessive fertilization occurs frequently in solar greenhouses. However, the effects of fertilization levels on cucumber rhizosphere soil microbes and metabolites and their relationships are still unclear. In order to determine how fertilization levels affect the rhizosphere microenvironment, we set up four treatments in the solar greenhouse: no-fertilization (N0P0K0), normal fertilization (N1P1K1), slight excessive fertilization (N2P2K2), and extreme excessive fertilization (N3P3K3). The results showed that fertilization treatments significantly increased cucumber yield compared to no-fertilization, but, the yield of N3P3K3 was significantly lower than that of N1P1K1 and N2P2K2. Fertilization levels had significant effects on rhizosphere microorganisms, and pH, NH4 +-N and AP were the main environmental factors that affected the changes in microbial communities. The total PLFAs, the percentages of fungi and arbuscular mycorrhizal fungi (AMF) were significantly reduced and bacteria percentage was significantly increased in N3P3K3 compared to other fertilization treatments. Differential metabolites under different fertilization levels were mainly organic acids, esters and sugars. Soil phenols with autotoxic effect under fertilization treatments were higher than that of N0P0K0. In addition, compared with soil organic acids and alkanes of N0P0K0, N2P2K2 was significantly increased, and N3P3K3 was not significantly different. This suggested that cucumber could maintain microbial communities by secreting beneficial metabolites under slight excessive fertilization (N2P2K2). But under extremely excessive fertilization (N3P3K3), the self-regulating ability of cucumber plants and rhizosphere soil was insufficient to cope with high salt stress. Furthermore, co-occurrence network showed that 16:1ω5c (AMF) was positively correlated with 2-palmitoylglycerol, hentriacontane, 11-octadecenoic acid, decane,4-methyl- and d-trehalose, and negatively correlated with 9-octadecenoic acid at different fertilization levels. This indicated that the beneficial microorganisms in the cucumber rhizosphere soil promoted with beneficial metabolites and antagonized with harmful metabolites. But with the deepening of overfertilization, the content of beneficial microorganisms and metabolites decreased. The study provided new insights into the interaction of plant rhizosphere soil metabolites and soil microbiomes under the different fertilization levels.
Collapse
Affiliation(s)
- Shuang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China
| | - Ting Bian
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China
| | - Tong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China
| | - Yidi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China
| | - Muhammad Awais
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China
| | - Hongdan Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China,*Correspondence: Hongdan Fu,
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Protected Horticulture of the Education Ministry, Liaoning, China,National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, China,Zhouping Sun,
| |
Collapse
|
7
|
Proteomics and Metabolomics Profiling of Pork Exudate Reveals Meat Spoilage during Storage. Metabolites 2022; 12:metabo12070570. [PMID: 35888694 PMCID: PMC9323900 DOI: 10.3390/metabo12070570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies have evaluated pork quality by omics methods. However, proteomics coupled with metabolomics to investigate pork freshness by using pork exudates has not been reported. This study determined the changes in the profiles of peptides and metabolites in exudates from pork stored at different temperatures (25, 10, 4, and −2 °C). Multivariate statistical analysis revealed similar changes in profiles in exudates collected from pork stored at −2 and 4 °C, and additional changes following storage at higher temperatures. We identified peptides from 7 proteins and 30 metabolites differing in abundance between fresh and spoiled pork. Significant correlations between pork quality and most of the peptides from these 7 proteins and 30 metabolites were found. The present study provides insight into changes in the peptide and metabolite profiles of exudates from pork during storage at different temperatures, and our analysis suggests that such changes can be used as markers of pork spoilage.
Collapse
|
8
|
Effects of ultrasonic treatment on physico-chemical properties and structure of tuna (Thunnus tonggol) myofibrillar proteins. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ma Y, Wang X, Huang C, Tian M, Wei A. Use of mineral element profiling coupled with chemometric analysis to distinguish Zanthoxylum bungeanum cultivars and health risks of potentially toxic elements in pericarps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1823-1831. [PMID: 34462928 DOI: 10.1002/jsfa.11517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zanthoxylum bungeanum pericarps (ZBP) are commonly used as food additives and traditional herbal medicines. Several mineral elements are known to have important physiological functions in organisms, whereas others are reported to have toxic effects. We determined levels of macro elements (Mg, S and Ca), essential trace elements (B, Mn, Fe, Cu, Zn, Se and Mo) and toxic elements (Ni, Al, Cr, As, Cd, Hg and Pb) in the pericarps of 19 Z. bungeanum cultivars. Hazard index values and incremental lifetime cancer risks were calculated to express health risks associated with pericarp consumption. Moreover, several chemometric analyses based on the mineral elements were used to distinguish Z. bungeanum cultivars. RESULTS The concentrations of 17 determined elements in the pericarps were ranked: Ca > Mg > S > Fe > Al > Mn > Zn > B > Cu > Ni > Pb > Cr > Mo > As > Cd > Hg > Se. The elements Zn, Cr and As had the highest variations in their concentrations. Cu, Mn, Se, Zn, Al, As, Cd, Cr, Hg, Ni and Pb posed some non-cancer risks, while As and Cd posed cancer risks. Mn, Fe, Zn, and Al were chosen as critical element markers for assessing ZBP using chemometric analyses. CONCLUSION Chemometric analyses could highlight mineral concentration differentiation among the 19 cultivars. The Z. bungeanum cultivar Z12 (from Wudu, Gansu) is best for producing ZBP, and cultivar Z18 (Guanling, Guizhou) can be a reference to classify and evaluate ZBP quality. The results provide valuable information for evaluating the potential safety risks of ZBP and contribute to inter-cultivar discrimination. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Ma
- College of Forestry, Northwest A&F University, Yangling, China
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling, China
| | - Xiaona Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Chen Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Mingjing Tian
- College of Forestry, Northwest A&F University, Yangling, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, China
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling, China
| |
Collapse
|
10
|
Jin J, Wang J, Li K, Wang S, Qin J, Zhang G, Na X, Wang X, Bi Y. Integrated Physiological, Transcriptomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean Roots. Int J Mol Sci 2021; 22:12848. [PMID: 34884654 PMCID: PMC8657671 DOI: 10.3390/ijms222312848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Salinity stress is a threat to yield in many crops, including soybean (Glycine max L.). In this study, three soybean cultivars (JD19, LH3, and LD2) with different salt resistance were used to analyze salt tolerance mechanisms using physiology, transcriptomic, metabolomic, and bioinformatic methods. Physiological studies showed that salt-tolerant cultivars JD19 and LH3 had less root growth inhibition, higher antioxidant enzyme activities, lower ROS accumulation, and lower Na+ and Cl- contents than salt-susceptible cultivar LD2 under 100 mM NaCl treatment. Comparative transcriptome analysis showed that compared with LD2, salt stress increased the expression of antioxidant metabolism, stress response metabolism, glycine, serine and threonine metabolism, auxin response protein, transcription, and translation-related genes in JD19 and LH3. The comparison of metabolite profiles indicated that amino acid metabolism and the TCA cycle were important metabolic pathways of soybean in response to salt stress. In the further validation analysis of the above two pathways, it was found that compared with LD2, JD19, and LH3 had higher nitrogen absorption and assimilation rate, more amino acid accumulation, and faster TCA cycle activity under salt stress, which helped them better adapt to salt stress. Taken together, this study provides valuable information for better understanding the molecular mechanism underlying salt tolerance of soybean and also proposes new ideas and methods for cultivating stress-tolerant soybean.
Collapse
Affiliation(s)
- Jie Jin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Jianfeng Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keke Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Shengwang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Juan Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Guohong Zhang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Xiaofan Na
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.J.); (K.L.); (S.W.); (J.Q.); (X.N.)
| |
Collapse
|
11
|
Zhang C, Shi C, Zhang H, Yu K, Wang Y, Jiang J, Kan G. Metabolomics reveals the mechanism of Antarctic yeast Rhodotorula mucliaginosa AN5 to cope with cadmium stress. Biometals 2021; 35:53-65. [PMID: 34731410 DOI: 10.1007/s10534-021-00350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Heavy metal pollution in Antarctica has far exceeded expectations. Antarctic yeast is widely present in polar marine environment. The mechanisms of metabolomics effect of heavy metal on polar yeast have not been reported previously. In this study, gas chromatography-mass spectrometry (GC-MS) wascarried out to performed the metabolite profiling analysis of Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5 exposed to different cadmium (Cd) stresses of 5 mM (HM5), 10 mM (HM10) and 20 mM (HM20), respectively. Metabolic profile analysis showed that the composition and contents of cellular metabolites have been altered by cadmium. 93 different metabolites were identified altogether, among which 23, 58 and 81 different metabolites were found in HM5, HM10 and HM20 group respectively. MetaboAnalyst analysis showed that in HM5, HM10 and HM20 groups, 12, 24 and 31 metabolic pathways were involved in the stress of cadmium to R. mucilaginosa, respectively. By contrasting with Kyoto Encyclopedia of Genes and Genomes database, we discovered that exposure of yeast AN5 to Cd stress resulted in profound biochemical changes including amino acids, organic acids and saccharides. These results will supply a nonnegligible basis of studying the adaptive resistance mechanism of Antarctic yeast Rhodotorula mucilaginosa to heavy metal.
Collapse
Affiliation(s)
- Chuanzhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Yingying Wang
- School of Science, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.
| |
Collapse
|
12
|
Volatile Oil Profile of Prickly Ash ( Zanthoxylum) Pericarps from Different Locations in China. Foods 2021; 10:foods10102386. [PMID: 34681436 PMCID: PMC8535335 DOI: 10.3390/foods10102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
Volatile oils of prickly ash (Zanthoxylum) pericarps have various potential biological functions with considerable relevance to food, pharmacological, and industrial applications. The volatile profile of oils extracted from prickly ash pericarps obtained from 72 plantations in China was determined by gas chromatography and mass spectrometry. Several chemometric analyses were used to better understand the volatile oil profile differences among different pericarps and to determine the key factors that affected geographical variations in the main volatile constituents of oils. A total of 47 constituents were detected with D-limonene, alfa-myrcene, and linalool as the most abundant. The volatile profile of pericarp oils was significantly affected by prickly ash species and some environmental factors, and the key factors that affected volatile profile variations for different prickly ash species were diverse. Chemometric analyses based on the volatile oil profile could properly distinguish Z. armatum pericarps from other pericarps. This study provides comprehensive information on the volatile oil profile of pericarps from different prickly ash species and different plantations, and it can be beneficial to a system for evaluating of pericarp quality. Moreover, this study speculates on the key environmental factors that cause volatile oil variations for each species, and can help to obtain better prickly ash pericarp volatile oils by improving the cultivated environments.
Collapse
|
13
|
Huang P, Xu L, Xie Y. Biomedical Applications of Electromagnetic Detection: A Brief Review. BIOSENSORS 2021; 11:225. [PMID: 34356696 PMCID: PMC8301974 DOI: 10.3390/bios11070225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
This paper presents a review on the biomedical applications of electromagnetic detection in recent years. First of all, the thermal, non-thermal, and cumulative thermal effects of electromagnetic field on organism and their biological mechanisms are introduced. According to the electromagnetic biological theory, the main parameters affecting electromagnetic biological effects are frequency and intensity. This review subsequently makes a brief review about the related biomedical application of electromagnetic detection and biosensors using frequency as a clue, such as health monitoring, food preservation, and disease treatment. In addition, electromagnetic detection in combination with machine learning (ML) technology has been used in clinical diagnosis because of its powerful feature extraction capabilities. Therefore, the relevant research involving the application of ML technology to electromagnetic medical images are summarized. Finally, the future development to electromagnetic detection for biomedical applications are presented.
Collapse
Affiliation(s)
- Pu Huang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
| | - Lijun Xu
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China;
| | - Yuedong Xie
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China;
| |
Collapse
|
14
|
Čuboň J, Haščík P, Herc P, Hleba L, Hlebová M, Šimonová N, Bučko O. The use of mutton in sausage production. POTRAVINARSTVO 2021. [DOI: 10.5219/1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The work analyzes the quality of sausage with mutton. The proportion of individual commodities was as follows 40% sheep thigh, 40% pork shoulder, and belly 20%. The protein content in pork shoulder was 20.11 g.100g-1 in sheep thigh 23.65 g.100g-1 and sausage 19.89 g.100g-1. Of the monitored amino acids, the highest content was in lysine, in the sausage was 1.9 g.100g-1 and of the raw materials in the belly 2.1 g.100g-1. We also found a higher proportion of leucine 1.7 g.100g-1 in both sausage and sheep thighs. The arginine content in the sausage was also high 1.39 g.100g-1. We found a high content of palmitic acid in the pork shoulder of 24.38 g.100g-1 FAME. The content of palmitic acid in sheep meat was 24.32 g.100g-1 FAME and in sausage 24.16 g.100g-1 FAME. The content of stearic acid in the pork shoulder was 10.89g.100g-1 FAME, in the sheep thigh 10.64g.100g-1 FAME, in the belly 11.07 g.100g-1 FAME, and the sausage 10.92 g.100g-1 FAME. The MDA content in sheep meat was 0.185 mg.kg-1, in pork shoulder 0.141 mg.kg-1, in pork belly 0.22 mg.kg-1 and in sausage on the day of production 0.45 mg.kg-1. On the 30th day, the MDA content was in the sausage 0.78 mg.kg-1. The high MDA content of the sausage was probably most influenced by the technological process, as all raw materials, because there was a lower MDA content.
Collapse
|
15
|
Alkylamide Profiling of Pericarps Coupled with Chemometric Analysis to Distinguish Prickly Ash Pericarps. Foods 2021; 10:foods10040866. [PMID: 33921089 PMCID: PMC8071439 DOI: 10.3390/foods10040866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/17/2023] Open
Abstract
Because of extensive cultivation areas, various cultivars, nonstandard naming notations, and morphology similarity among relative cultivars, adulteration and associated business fraud may happen in the marketplaces of prickly ash pericarps due to higher financial gain and high-frequency trading. This study presents variations in the chemical components and contents of different prickly ash species from different plantations. Alkylamide profiling of pericarps derived from Zanthoxylum armatum, Z. bungeanum, and some relative Zanthoxylum species from 72 plantations across China were tested using ultra-performance liquid chromatography. Then, several chemometrics were applied to classify the prickly ash pericarps to reveal potential indicators that distinguish prickly ash pericarps and to identify the key factors that affect pericarp alkylamide profiling. The dominating alkylamides in the prickly ash pericarps were Z. piperitum (ZP)-amide C (0–20.64 mg/g) and ZP-amide D (0–30.43 mg/g). Alkylamide profiling of prickly ash pericarps varied significantly across species and geographical variations. ZP-amide D in prickly ash pericarps was identified as a potential indicator to distinguish prickly ash species. Longitude and aluminum content in soils were identified as key factors that affected alkylamide profiling of prickly ash pericarps. This study provides a useful tool to classify prickly ash species based on pericarp alkylamide profiling and to determine the key influence factors on pericarp alkylamide variations.
Collapse
|
16
|
Wang YY, Tayyab Rashid M, Yan JK, Ma H. Effect of multi-frequency ultrasound thawing on the structure and rheological properties of myofibrillar proteins from small yellow croaker. ULTRASONICS SONOCHEMISTRY 2021; 70:105352. [PMID: 32979636 PMCID: PMC7786597 DOI: 10.1016/j.ultsonch.2020.105352] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 05/03/2023]
Abstract
The influence of multi-frequency combined ultrasound thawing on primary, secondary, and tertiary structures, electrophoresis pattern, particle size distribution, zeta potential values, thermal stability, rheological behavior, and microstructure of small yellow croaker myofibrillar proteins (MPs) were studied. Four treatments were used for thawing small yellow croakers: flow water thawing (FWT), mono-frequency ultrasonic thawing (MUT), dual-frequency ultrasonic thawing (DUT), and tri-frequency ultrasonic thawing (TUT). Compared with fresh samples (FS), the MPs of the sample pretreated by DUT had non-significant effect on protein primary (including free amino groups and surface hydrophobicity), secondary, tertiary structures, electrophoresis pattern, and microstructure. MPs pretreated by DUT had less aggregation and degradation. Besides, DUT treatment increased the thermal stability of MPs. The ultrasound had significant effects on the rheological properties of MPs. Overall, DUT effectively minimized the changes in MPs structure and protected the protein thermal stability and rheological behavior during the thawing process.
Collapse
Affiliation(s)
- Yao-Yao Wang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Tayyab Rashid
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Ma Y, Tian J, Wang X, Huang C, Tian M, Wei A. Fatty Acid Profiling and Chemometric Analyses for Zanthoxylum Pericarps from Different Geographic Origin and Genotype. Foods 2020; 9:E1676. [PMID: 33207730 PMCID: PMC7698129 DOI: 10.3390/foods9111676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Zanthoxylum plants, important aromatic plants, have attracted considerable attention in the food, pharmacological, and industrial fields because of their potential health benefits, and they are easily accessible because of the wild distribution in most parts of China. The chemical components vary with inter and intraspecific variations, ontogenic variations, and climate and soil conditions in compositions and contents. To classify the relationships between different Zanthoxylum species and to determine the key factors that influence geographical variations in the main components of the plant, the fatty acid composition and content of 72 pericarp samples from 12 cultivation regions were measured and evaluated. Four fatty acids, palmitic acid (21.33-125.03 mg/g), oleic acid (10.66-181.37 mg/g), linoleic acid (21.98-305.32 mg/g), and linolenic acid (0.06-218.84 mg/g), were the most common fatty acid components in the Zanthoxylum pericarps. Fatty acid profiling of Zanthoxylum pericarps was significantly affected by Zanthoxylum species and geographical variations. Stearic acid and oleic acid in pericarps were typical fatty acids that distinguished Zanthoxylum species based on the result of DA. Palmitic acid, palmitoleic acid, trans-13-oleic acid, and linoleic acid were important differential indicators in distinguishing given Zanthoxylum pericarps based on the result of OPLS-DA. In different Zanthoxylum species, the geographical influence on fatty acid variations was diverse. This study provides information on how to classify the Zanthoxylum species based on pericarp fatty acid compositions and determines the key fatty acids used to classify the Zanthoxylum species.
Collapse
Affiliation(s)
- Yao Ma
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Chen Huang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
| | - Mingjing Tian
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| |
Collapse
|
18
|
Chen C, Liu H, Wang C, Liu Z, Liu X, Zou L, Zhao H, Yan Y, Shi J, Chen S. Metabolomics characterizes metabolic changes of Apocyni Veneti Folium in response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:187-196. [PMID: 31585397 DOI: 10.1016/j.plaphy.2019.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 05/09/2023]
Abstract
Apocyni Veneti Folium (AVF) has been raised great interest in the antioxidant properties recently for the preservation of human health. However, little research was found on the integrate metabolites except our previous investigation on the variations of the bioactive constituents. To understand the salt-tolerant mechanisms of the halophyte, metabolomic platform based on ultra-fast liquid chromatography tandem triple time-of-flight mass/mass spectrometer was applied in this study. The results showed that metabolic profiles were separated and differentiated among groups based on multivariate statistical analysis; different metabolites belonged to various chemical classes. Besides, phenylpropanoid pathway and terpenoid biosynthesis were disturbed in all salt-stressed AVF and low salt-treated group appeared to be better than other samples in terms of relative contents (peak areas) of the wide variety of bioactive components and physiological variations of photosynthetic pigments, osmotic homeostasis, lipid peroxidation product and antioxidative enzymes. This study may provide additional insight into the salt-tolerant mechanisms and the quality assessment of AVF in a holistic level based on the plant metabolomics.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huimin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zixiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyu Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|