1
|
Gong YY, Wu CZ, Wu YS, Alfieri A, Xiang YC, Shi DX, Duan S, Zhang MF, Li XX, Sun YC, Chao J, Tester M, Shang Z, Forde BG, Liu LH. A Glutamate Receptor-Like Gene AtGLR2.5 With Its Unusual Splice Variant Has a Role in Mediating Glutamate-Elicited Changes in Arabidopsis Root Architecture. PLANT, CELL & ENVIRONMENT 2025; 48:3778-3792. [PMID: 39817416 DOI: 10.1111/pce.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca2+-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes. Reduced sensitivity of root growth to L-Glu was found in mutants of one gene, GLR2.5. Interestingly, GLR2.5 was found to apparently produce four transcript variants encoding hypothetical proteins of 169-720 amino acids. One of these transcripts, GLR2.5c, encodes a truncated GLR protein lacking both the conserved amino-terminal domain and part of the ligand-binding domain. When a glr2.5 mutant was transformed with a construct constitutively expressing GLR2.5c, both L-Glu sensitivity of root growth and L-Glu-elicited Ca2+ currents in root tip protoplasts were restored. These results, along with homology modelling of the truncated ligand-binding domain of GLR2.5c, suggest that GLR2.5c has a regulatory or scaffolding role in heteromeric GLR complex(es) that may involve triggering the root architectural response to L-Glu.
Collapse
Affiliation(s)
- Yuan-Yong Gong
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Chang-Zheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Yan-Sheng Wu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Andrea Alfieri
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Yu-Cheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Dong-Xue Shi
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Ming-Fa Zhang
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Xiao-Xu Li
- Tobacco Research, Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, Yuhua, China
| | - Yi-Chen Sun
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Jin Chao
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| |
Collapse
|
2
|
Shu C, Jiao W, Cui K, Cao J, Jiang W. Ursolic Acid Induces Multifaceted Defense Responses Against Postharvest Blue Mold Rot in Apple Fruit. Foods 2025; 14:761. [PMID: 40077464 PMCID: PMC11899365 DOI: 10.3390/foods14050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The disease resistance and defense mechanisms induced by ursolic acid (UA) in apple fruit were studied in this paper. UA was directly mixed with potato dextrose agar and broth media to assay its antifungal activity in vitro. The results showed that UA exerted inherent antifungal activity and directly inhibited the in vitro growth and spore germination of Penicillium expansum. Its half-maximal inhibitory concentration for hyphal growth was 175.6 mg L-1. Apple fruit were immersed in UA solution, followed by inoculation with P. expansum, to measure their disease response. The results demonstrated that UA induced significant disease resistance in apple fruit and that its mechanisms are multifaceted and associated with defensive and antioxidative enzymes and the phenylpropanoid pathway. Chitinase, β-1,3-glucanase, peroxidase, and polyphenol oxidase were activated and maintained at relatively high levels. The activities of enzymes and their metabolites in the phenylpropanoid pathway, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase were significantly increased; accordingly, total phenolics, flavonoid, and lignin contents were significantly increased. The activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase were enhanced upon UA treatment, while catalase activity was suppressed, which regulates hydrogen peroxide accumulation to defend against pathogens. These results suggest that UA induces defense responses against postharvest blue mold rot in apple fruit and that it may be a promising elicitor to induce fruit disease resistance to control postharvest decay.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| | - Wenxiao Jiao
- College of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China;
| | - Kuanbo Cui
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.S.); (J.C.)
| |
Collapse
|
3
|
Bai C, Zheng Y, Brian Watkins C, Ma L, Jiang Y, Chen S, Wang H, He X, Han L, Zhou X, Wang Q, Wu C, Zuo J. Multiomics analyses of the effects of LED white light on the ripening of apricot fruits. J Adv Res 2025; 67:1-13. [PMID: 38199454 PMCID: PMC11725099 DOI: 10.1016/j.jare.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Apricot (Prunus armeniaca L.) fruits are highly perishable and prone to quality deterioration during storage and transportation. OBJECTIVES To investigate the effects of LED white light treatment on postharvest ripening of fruits using metabolomics, transcriptomics, and ATAC-Seq analysis. METHODS Fruits were exposed to 5 μmol m-2 s-1 LED white light for 12 h followed by 12 h of darkness at 20 °C daily for 12 days. The effects of the treatments on the physiological and nutritional quality of the fruits were evaluated. These data were combined with transcriptomic, metabolomic, and ATAC-Seq data from fruits taken on 8 d of treatment to provide insight into the potential mechanism by which LED treatment delays ripening. RESULTS LED treatment activated pathways involved in ascorbate and aldarate metabolism and flavonoid and phenylpropanoid biosynthesis. Specifically, LED treatment increased the expression of UDP-sugar pyrophosphorylase (USP), L-ascorbate peroxidase (AO), dihydroflavonol 4-reductase (DFR), chalcone synthase (CHS), and caffeoyl-CoA O-methyltransferase (CCOAOMT1), leading to the accumulation of caffeoyl quinic acid, epigallocatechin, and dihydroquercetin and the activation of anthocyanin biosynthesis. LED treatment also affected the expression of genes associated with plant hormone signal transduction, fruit texture and color transformation, and antioxidant activity. The notable genes affected by LED treatment included 1-aminocyclopropane-1-carboxylate synthase (ACS), 1-aminocyclopropane-1-carboxylate oxidase (ACO), hexokinase (HK), lipoxygenase (LOX), malate dehydrogenase (MDH), endoglucanase (CEL), various transcription factors (TCP, MYB, EFR), and peroxidase (POD). ATAC-Seq analysis further revealed that LED treatment primarily regulated phenylpropanoid biosynthesis. CONCLUSION The results obtained in this study provide insights into the effects of LED light exposure on apricot fruits ripening. LEDs offer a promising approach for extending the shelf life of other fruits and vegetables.
Collapse
Affiliation(s)
- Chunmei Bai
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Christopher Brian Watkins
- School of Integrative Plant Science, Horticulture Section, College of Agriculture and Life Science, Cornell University, NY 14853, USA
| | - Lili Ma
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yuanye Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shaoqing Chen
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Hongwei Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xuelian He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Lichun Han
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xinyuan Zhou
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
4
|
Yang S, Wang G, Niu M, Zhang H, Ma J, Qu C, Liu G. Impacts of AlaAT3 transgenic poplar on rhizosphere soil chemical properties, enzyme activity, bacterial community, and metabolites under two nitrogen conditions. GM CROPS & FOOD 2024; 15:1-15. [PMID: 38625676 PMCID: PMC11028027 DOI: 10.1080/21645698.2024.2339568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.
Collapse
Affiliation(s)
| | - Gang Wang
- Guizhou Institute of Walnut, Guizhou Academy of Forestry, Guiyang, China
| | - Minghui Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Jing Ma
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chunpu Qu
- College of Foresty, Guizhou University, Guiyang, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Hou Y, Deng R, Shataer D, Hong J, Wang L, Jin P, Zhao Y. L-Glutamate treatment alleviates chilling injury of prune (Prunus domestica L.) fruit by regulating ROS homeostasis, GABA shunt, and energy metabolism. Food Chem 2024; 461:140899. [PMID: 39208637 DOI: 10.1016/j.foodchem.2024.140899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The impacts of L-glutamate (L-Glu) treatment on chilling injury (CI), Ca2+ signaling, mitochondrial ultrastructure, and metabolisms of reactive oxygen species (ROS), γ-aminobutyric acid (GABA), energy of prune fruit under chilling stress were studied. The results found that the optimal concentration of L-Glu to suppress CI occurrence and maintain quality in prune fruit was 0.1 g L-1, which also enhanced the PdGLRs expression, cytoplasmic Ca2+ concentration, the contents of CaM, and CML under cold stress. Moreover, L-Glu treatment could reduce ROS accumulation and increase GABA content, and energy level, contributing to maintaining the integrity of the mitochondrial structure in cold-stored prune fruit. More importantly, PdGLRs expression and CaM/CML content positively correlated with antioxidant enzyme activities, GABA shunt, and energy status in prune fruit. These results indicated that the enhanced cold resistance of L-Glu-treated prunes might be attributed to the activated Ca2+ signaling, thus improving the antioxidant capacity, GABA, and energy levels.
Collapse
Affiliation(s)
- Yuanyuan Hou
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Rui Deng
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Dilireba Shataer
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jingyang Hong
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang 830052, China.
| |
Collapse
|
6
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Lacrampe N, Lugan R, Dumont D, Nicot PC, Lecompte F, Colombié S. Modelling metabolic fluxes of tomato stems reveals that nitrogen shapes central metabolism for defence against Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4093-4110. [PMID: 38551810 PMCID: PMC11233421 DOI: 10.1093/jxb/erae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 07/11/2024]
Abstract
Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions for 7 d post-inoculation, using a reconstructed metabolic model constrained by a large and consistent metabolic dataset acquired under four different N supplies. An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the tricarboxylic acid cycle, and amino acid and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, F-84914 Avignon, France
- UMR Qualisud, Avignon Université, F-84916 Avignon, France
| | | | | | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, F-33883 Villenave d’Ornon, France
| |
Collapse
|
9
|
Zhang J, Zhao J, Zuo X, You W, Ru X, Xu F, Jin P, Zheng Y, Cao S. Glutamate application maintains quality and antioxidant capacity of fresh-cut carrots by modulating GABA shunt, phenylpropanoid and ROS metabolism. Food Chem 2024; 443:138545. [PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.
Collapse
Affiliation(s)
- Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiaoxia Zuo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Wanli University, Ningbo 315100, PR China.
| |
Collapse
|
10
|
Xiao J, He M, Chen P, Li M, Liu J, Li Y, Lu W, Jiang C, Liu D, Quzha K, Zheng Y. Proanthocyanidins delay the senescence of young asparagus stems by regulating antioxidant capacity and synthesis of phytochemicals. Food Chem X 2024; 21:101222. [PMID: 38389577 PMCID: PMC10881539 DOI: 10.1016/j.fochx.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Asparagus, characterized by its high metabolic rate, is susceptible to quality degradation. Proanthocyanidins have antioxidant, antibacterial, antiviral, and other biological functions and can inhibit the production of reactive oxygen species in plants. To enhance the shelf life of asparagus, we investigated the impact of various concentrations of proanthocyanidins on its cold storage and preservation. The findings revealed that proanthocyanidins effectively mitigated water loss, delayed chlorophyll degradation, and prevented firmness decline. Furthermore, they enhanced the activity of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase), bolstered DPPH free radical scavenging ability, and increased the levels of total phenol, total flavone, rutin, oligomeric procyanidins, proline, and soluble protein. Moreover, proanthocyanidins promoted the accumulation of vitamin C, amino acids, total saponins, and lignin in the later storage stage, contributing to increased mechanical tissue thickness. These results suggest that proanthocyanidins play a crucial role in retarding the deterioration of asparagus quality during storage by affecting the antioxidant capacity and phytochemical (polyphenol,amino acid, total saponin, and lignin) synthesis in asparagus.
Collapse
Affiliation(s)
- Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Maolin He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiran Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanwen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dingsong Liu
- Education, Technology and Sports Bureau of Enyang District, Bazhong 636063, China
| | - Konggar Quzha
- Jiangzi County Rilang Township Agriculture and Animal Husbandry Comprehensive Service Center, Shigatse 857400, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Chabi IB, Zannou O, Dedehou ES, Ayegnon BP, Oscar Odouaro OB, Maqsood S, Galanakis CM, Pierre Polycarpe Kayodé A. Tomato pomace as a source of valuable functional ingredients for improving physicochemical and sensory properties and extending the shelf life of foods: A review. Heliyon 2024; 10:e25261. [PMID: 38327467 PMCID: PMC10847943 DOI: 10.1016/j.heliyon.2024.e25261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.
Collapse
Affiliation(s)
- Ifagbémi Bienvenue Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Oscar Zannou
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Emmanuelle S.C.A. Dedehou
- Ecole des Sciences et Techniques de Conservation et de Transformation des Produits Agricoles, Université Nationale d’Agriculture (UNA), BP 114, Sakété, Benin
| | - Bernolde Paul Ayegnon
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Oloudé B. Oscar Odouaro
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
- College of Science, Taif University, Taif, Saudi Arabia
| | - Adéchola Pierre Polycarpe Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, 03 BP 2819, Jericho Cotonou, Benin
| |
Collapse
|
12
|
Li C, Zhang C, Liu J, Qu L, Ge Y. l-Glutamate maintains the quality of apple fruit by mediating carotenoid, sorbitol and sucrose metabolisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4944-4955. [PMID: 36944028 DOI: 10.1002/jsfa.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND l-Glutamate is involved in many important chemical reactions in horticultural products and improves postharvest disease resistance. Quality decline of apple fruit caused by senescence and fungus invasion often leads to tremendous losses during logistics. This study was performed to evaluate the variations of quality attributes, carotenoid, sorbitol and sucrose metabolisms in apples (cv. Qiujin) after l-glutamate dipping treatment. RESUITS l-Glutamate immersion maintained high values of L*, a* and b*, flesh firmness, titratable acidity, as well as the total soluble solids, soluble sugar, reducing sugar and ascorbic acid contents in apples. l-Glutamate also decreased mass loss, respiratory rate and ethylene release, enhanced sucrose synthase-cleavage, acid invertase and neutral invertase activities, whereas reduced sorbitol dehydrogenase, sucrose phosphate synthase, sucrose synthase synthesis and sorbitol oxidase activities in apples. Moreover, l-glutamate inhibited lutein, β-carotene and lycopene accumulation, and down-regulated phytoene synthase, lycopene β-cyclase, ζ-carotene desaturase, phytoene desaturase, carotenoid isomerase, ζ-carotene isomerase and carotenoids cleavage dioxygenase gene expressions, but up-regulated 9-cis-epoxycarotenoid dioxygenase gene expression in apples. CONCLUSION Postharvest l-glutamate dipping treatment can keep apple quality by modulating key enzyme activity and gene expression in sorbitol, sucrose and carotenoid metabolisms. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Engineering, Bohai University, 121013, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, China
| | - Chenyang Zhang
- College of Food Science and Engineering, Bohai University, 121013, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, China
| | - Jiaxin Liu
- College of Food Science and Engineering, Bohai University, 121013, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, China
| | - Linhong Qu
- College of Food Science and Engineering, Bohai University, 121013, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, China
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, 121013, Jinzhou, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, China
| |
Collapse
|
13
|
Yuxiao Z, Guo Y, Xinhua S. Comprehensive insight into an amino acid metabolic network in postharvest horticultural products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37066732 DOI: 10.1002/jsfa.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Amino acid (AA) metabolism plays a vital role in the central metabolism of plants. In addition to protein biosynthesis, AAs are involved in secondary metabolite biosynthesis, signal transduction, stress response, defense against pathogens, flavor formation, and so on. Besides these functions, AAs can be degraded into precursors or intermediates of the tricarboxylic acid cycle to substitute respiratory substrates and restore energy homeostasis, as well as directly acting as signal molecules or be involved in the regulation of plant signals to delay senescence of postharvest horticultural products (PHPs). AA metabolism and its role in plants growth have been clarified; however, only a few studies about their roles exist concerning the postharvest preservation of fruit and vegetables. This study reviews the potential functions of various AAs by comparing the difference in AA metabolism at the postharvest stage and then discusses the crosstalk of AA metabolism and energy metabolism, the target of rapamycin/sucrose nonfermenting-related kinase 1 signaling and secondary metabolism. Finally, the roles and effect mechanism of several exogenous AAs in the preservation of PHPs are highlighted. This review provides a comprehensive insight into the AA metabolism network in PHPs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Yuxiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Song Xinhua
- College of Life Science, Shandong University of Technology, Zi'bo, China
| |
Collapse
|
14
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
15
|
Wu C, Hao W, Yan L, Zhang H, Zhang J, Liu C, Zheng L. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chem 2023; 419:136088. [PMID: 37023675 DOI: 10.1016/j.foodchem.2023.136088] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The effects of postharvest melatonin treatment on antioxidant activity and γ-aminobutyric acid (GABA) biosynthesis in yellow-flesh peach fruit stored at 4 °C and 90% RH for 28 d were explored. Results showed that melatonin treatment was effective in maintaining firmness, total soluble solids content and color in peach fruit. Melatonin treatment significantly reduced H2O2 and MDA contents, enhanced high level of non-enzymatic antioxidant system (ABTS∙+ scavenging capacity), and increased the activity or content of antioxidant enzymes including CAT, POD, SOD and APX. Melatonin treatment increased the contents of total soluble protein and glutamate, while reducing total free amino acid content. Moreover, melatonin treatment up-regulated the expression of GABA biosynthesis genes (PpGAD1 and PpGAD4) and suppressed the expression of GABA degradation gene (PpGABA-T), resulting in the accumulation of endogenous GABA. These findings indicated that melatonin treatment exerted positive effects on improving antioxidant activity and promoting GABA biosynthesis in yellow-flesh peach fruit.
Collapse
|
16
|
Zhao H, Liu K, Fan Y, Cao J, Li H, Song W, Liu Y, Miao M. Cell-free supernatant of Bacillus velezensis suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing oxidative stress. Front Microbiol 2022; 13:980022. [PMID: 35992680 PMCID: PMC9389153 DOI: 10.3389/fmicb.2022.980022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
As a notorious pathogenic fungus, Botrytis cinerea has been reported to infect more than 1400 species of plants and cause postharvest gray mold of numerous economic fruits, leading to substantial economic losses. Traditional chemical fungicides in pathogen control have potential issues regarding environmental pollution, disease resistance and human health. More safety and efficacious prevention technique of postharvest gray mold are in urgent demand. This study aims to investigate the potential function and mechanism of Bacillus velezensis to control gray mold for harvested fruits. The results showed that the cell-free supernatant (CFS) generated from B. velezensis strain A4 was able to inhibit spore germination, germ tube elongation and hyphal growth of B. cinerea in vitro, and impair the pathogenicity of B. cinerea on the four tested fruits. Further analysis demonstrated that CFS significantly reduced the expression of genes associated with growth and pathogenicity and weakened the ability of B. cinerea spores to penetrate plant cell walls in a dose-dependent manner. Moreover, the CFS destroyed the membrane of hyphae, resulting in exosmosis of cell contents and caused hyphal cells to accumulate excessive reactive oxygen species (ROS), leading to hyphal oxidative damage. Our findings indicate that B. velezensis CFS can damage B. cinerea mycelial cells by promoting excessive accumulation of ROS to realize its biological control function.
Collapse
Affiliation(s)
- Huanlan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kui Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Institute of Botany, Chinese Academy of Sciencess, Beijing, China
| | - Yezhen Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiacan Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huanghuan Li
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Min Miao,
| |
Collapse
|
17
|
Duan B, Du H, Zhang W, Wang J, Cai Z, Shen Y, Huang T, Yuan J, Gan Z, Chen J, Zhu L. An Antifungal Role of Hydrogen Sulfide on Botryosphaeria Dothidea and Amino Acid Metabolism Involved in Disease Resistance Induced in Postharvest Kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:888647. [PMID: 35783925 PMCID: PMC9244146 DOI: 10.3389/fpls.2022.888647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea is a major pathogen responsible for postharvest kiwifruit soft rot. This study aimed to determine the influence of hydrogen sulfide (H2S) on postharvest resistance to kiwifruit soft rot and the antifungal role of H2S against B. dothidea. The results indicated that H2S (20 μl L-1) restricted the lesion area following inoculation with B. dothidea. H2S enhanced the production of shikimic acid, tyrosine, tryptophan, and phenylalanine while also increasing the total phenols, flavonoids, and lignin. H2S upregulated the expression of AcDHQS, AcSDH, AcSK, AcPAL, AcCAD, and AcCHS. Additionally, sodium hydrosulfide (NaHS)-released H2S inhibited mycelial growth. NaHS concentrations of 20 and 40 mmol L-1 significantly decreased the mycelial weight and malondialdehyde content (MDA) content while increasing cell membrane conductivity and membrane leakage. The results indicate that H2S induces resistance in kiwifruit via a microbicidal role and amino acid metabolism involved in postharvest kiwifruit disease resistance.
Collapse
Affiliation(s)
- Bing Duan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yonggen Shen
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tenghuan Huang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yuan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
19
|
Shu P, Li Y, Li Z, Xiang L, Sheng J, Shen L. Ferulic acid enhances chilling tolerance in tomato fruit by up-regulating the gene expression of CBF transcriptional pathway in MAPK3-dependent manner. POSTHARVEST BIOLOGY AND TECHNOLOGY 2022; 185:111775. [PMID: 0 DOI: 10.1016/j.postharvbio.2021.111775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
20
|
Zhang Z, Wei J, Wang M, Zhang J, Wu B. Induced sulfur metabolism by sulfur dioxide maintains postharvest quality of 'Thompson Seedless' grape through increasing sulfite content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1174-1184. [PMID: 34338316 DOI: 10.1002/jsfa.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The commercial preservation of table grapes largely depends on the application of sulfur dioxide (SO2 ). However, little is known about whether SO2 participates in sulfur metabolism to improve the postharvest quality of table grapes. In this study, the contents of sulfur-containing compounds, activities of enzymes, and expression of genes involved in sulfur metabolism in table grapes (Vitis vinifera cv. Thompson Seedless) were evaluated. RESULTS The results indicated that SO2 treatment maintained the postharvest quality of table grapes. The sulfite content in rachises and berries, but not the sulfate content, increased in response to SO2 treatment. SO2 caused high activities of sulfite reductase, O-acetylserine (thiol)-lyase, and γ-glutamylcysteine synthetase, thereby increasing the contents of cysteine, hydrogen sulfide, and glutathione in the rachises and berries. The expression of VvSURTL, VvATPS1, VvATPS2, and VvAPR3 decreased in response to SO2 treatment; however, the transcript levels of VvSiR1 and VvOASTL exhibited the opposite tendency. CONCLUSION These findings indicated that the sulfite converted from SO2 participated in sulfur metabolism and maintained the postharvest quality of table grapes by modulating the contents of metabolites, activities of enzymes, and expression of genes related to sulfur metabolism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China
| | - Jia Wei
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinejiang, People's Republic of China
| | - Man Wang
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, Xinjiaeng, People's Republic of China
| | - Jian Zhang
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinejiang, People's Republic of China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinejiang, People's Republic of China
| |
Collapse
|
21
|
Bai C, Zheng Y, Watkins CB, Fu A, Ma L, Gao H, Yuan S, Zheng S, Gao L, Wang Q, Meng D, Zuo J. Revealing the Specific Regulations of Brassinolide on Tomato Fruit Chilling Injury by Integrated Multi-Omics. Front Nutr 2021; 8:769715. [PMID: 34926549 PMCID: PMC8681340 DOI: 10.3389/fnut.2021.769715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Tomato fruit is susceptible to chilling injury (CI) when stored at low temperatures, limiting its storage potential, and resulting in economic loss if inappropriate temperatures are used. Brassinolide (BR) is a plant growth regulator that is known to decrease the susceptibility of fruit to CI. In this study, transcriptome, metabolome, and proteome analysis revealed the regulation mechanism of BR treatment in alleviating tomato fruit CI. The results showed that the differentially expressed metabolites mainly included amino acids, organic acids, carbohydrates, and lipids. Differentially expressed genes (DEGs) were involved in plant cold stress response (HSFA3, SHSP, and TPR), fruit redox process (POD, PAL, and LOX), related to the fruit texture (CESA, β-Gal, and PAE), plant hormone signal transduction (ACS3, ARF, and ERF,), transcription factors (TCP, bHLH, GATA). Moreover, differentially expressed proteins were associated with fruit texture (CESA, PE, PL, and CHI), plant oxidation processes (LOX, GPX, CAT, and POD), plant cold stress response (HSF, HSP20, HSP70, and HSP90B), plant hormone signal transduction (BSK1 and JAR1) and transcription factors (WRKY and MYB). Our study showed that BR alleviates CI symptoms of tomato fruit by regulating LOX in the α-linolenic acid metabolism pathway, enhancing jasmonic acid-CoA (JA-CoA) synthesis, inhibiting cell wall and membrane lipid damage. The results provided a theoretical basis for further study on the CI mechanism of tomato fruit.
Collapse
Affiliation(s)
- Chunmei Bai
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Christopher B. Watkins
- School of Integrative Plant Science, Horticulture Section, College of Agriculture and Life Science, Cornell University, Ithaca, NY, United States
| | - Anzhen Fu
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lili Ma
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - HongWu Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shufang Zheng
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lipu Gao
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qing Wang
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Post-harvest Processing, Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
22
|
The Glutamate Receptor Plays a Role in Defense against Botrytis cinerea through Electrical Signaling in Tomato. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant glutamate-like receptor genes (GLRs) are homologous to mammalian ionotropic glutamate receptors genes (iGluRs). Although GLRs have been implicated in plant defenses to biotic stress, the relationship between GLR-mediated plant immunity against fungal pathogens and electrical signals remains poorly understood. Here, we found that pretreatment with a GLR inhibitor, 6,7-dinitriquinoxaline-2,3-dione (DNQX), increased the susceptibility of tomato plants to the necrotrophic fungal pathogen Botrytis cinerea. Assessment of the glr3.3, glr3.5 and glr3.3/glr3.5 double-mutants upon B. cinerea infection showed that tomato GLR3.3 and GLR3.5 are essential for plant immunity against B. cinerea, wherein GLR3.3 plays the main role. Analysis of the membrane potential changes induced by glutamate (Glu) or glycine (Gly) revealed that amplitude was significantly reduced by knocking out GLR3.3 in tomato. While treatment with Glu or Gly significantly increased immunity against B. cinerea in wild-type plants, this effect was significantly attenuated in glr3.3 mutants. Thus, our data demonstrate that GLR3.3- and GLR3.5-mediated plant immunity against B. cinerea is associated with electrical signals in tomato plants.
Collapse
|
23
|
Duan B, Gao Z, Reymick OO, Ouyang Q, Chen Y, Long C, Yang B, Tao N. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104976. [PMID: 34802526 DOI: 10.1016/j.pestbp.2021.104976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Induced resistance in harvested fruit and vegetables is a superior strategy to reduce postharvest decay. In the present study, Cinnamaldehyde (CA) was applied to investigate for its induced resistance against Penicillium digitatum and Geotrichum citri-aurantii. The results showed that 5250 mg CA/L wax was effective concentration in inducing the resistance of citrus fruit to green mold and sour rot. Wax+ CA (WCA) reduced significantly green mold and sour rot incidences at different exposure times, with 24 h being the optimal exposure time. The host reactions under infection with different pathogens were similar. During initial exposure, treatment with 5250 mg CA/L wax enhanced significantly the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD), polyphenol oxidase (PPO), β-1, 3-glucanase (GLU) and chitinase (CHT) in the presence of direct contact with the pathogen. Simultaneously, WCA induced an increase in total phenolic, flavanone and dihydroflavonol, flavone and flavonol, and lignin contents. Thus, our results suggest that treatment using 5250 mg CA/L wax can be applied early to control diseases by provoking response reactions in citrus fruit.
Collapse
Affiliation(s)
- Bin Duan
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Zhouju Gao
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Okwong Oketch Reymick
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Yue Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Chunyan Long
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, PR China.
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China.
| |
Collapse
|
24
|
Zheng H, Jin R, Liu Z, Sun C, Shi Y, Grierson D, Zhu C, Li S, Ferguson I, Chen K. Role of the tomato fruit ripening regulator MADS-RIN in resistance to Botrytis cinerea infection. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Tomato MADS-RIN (RIN) transcription factor has been shown to be a master activator regulating fruit ripening. Recent studies have revealed that in addition to activating many other cell wall genes, it also represses expression of XTH5, XTH8, and MAN4a, which are positively related to excess flesh softening and cell wall degradation, which might indicate it has a potential role in pathogen resistance of ripening fruit. In this study, both wild-type (WT) and RIN-knockout (RIN-KO) mutant tomato fruit were infected with Botrytis cinerea to investigate the function of RIN in defense against pathogen infection during ripening. The results showed that RIN-KO fruit were much more sensitive to B. cinerea infection with larger lesion sizes. Transcriptome data and qRT-PCR assay indicate genes of phenylalanine ammonialyase (PAL) and chitinase (CHI) in RIN-KO fruit were reduced and their corresponding enzyme activities were decreased. Transcripts of genes encoding pathogenesis-related proteins (PRs), including PR1a, PRSTH2, and APETALA2/Ethylene Response Factor (AP2/ERF) including ERF.A1, Pti5, Pti6, ERF.A4, were reduced in RIN-KO fruit compared to WT fruit. Moreover, in the absence of RIN the expression of genes encoding cell wall-modifying enzymes XTH5, XTH8, MAN4a has been reported to be elevated, which is potentially correlated with cell wall properties. When present, RIN represses transcription of XTH5 by activating ERF.F4, a class II (repressor class) ERF gene family member, and ERF.F5. These results support the conclusion that RIN enhances ripening-related resistance to gray mold infection by upregulating pathogen-resistance genes and defense enzyme activities as well as reducing accumulation of transcripts encoding some cell wall enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou,China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough,UK
| | | | | | - Ian Ferguson
- Zhejiang University (Visiting Scientist), Hangzhou, China
| | | |
Collapse
|
25
|
Rani M, Jha G. Host Gamma-Aminobutyric Acid Metabolic Pathway Is Involved in Resistance Against Rhizoctonia solani. PHYTOPATHOLOGY 2021; 111:1207-1218. [PMID: 33320020 DOI: 10.1094/phyto-08-20-0356-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is a highly destructive necrotrophic fungal pathogen having a diverse host range, including rice and tomato. Previously R. solani infection has been found to cause large-scale readjustment in host primary metabolism and accumulation of various stress-associated metabolites such as gamma-aminobutyric acid (GABA) in rice. In this study, we report upregulation of GABA pathway genes during pathogenesis of R. solani in rice and tomato. The exogenous application of GABA provided partial resistance against R. solani infection in both the hosts. Furthermore, by using the virus-induced gene silencing approach, we knocked down the expression of some of the tomato genes involved in GABA biosynthesis (glutamate decarboxylase) and GABA catabolism (GABA-transaminase and succinic semialdehyde dehydrogenase) to study their role in host defense against R. solani infection. The silencing of each of these genes increased disease susceptibility in tomato. Overall the results from gene expression analysis, exogenous chemical application, and gene silencing studies suggest that the GABA pathway plays a positive role in plant defense against necrotrophic pathogen R. solani.
Collapse
Affiliation(s)
- Mamta Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
26
|
Effect of Oxidative Stress on Physicochemical Quality of Taiwanese Seagrape (Caulerpa lentillifera) with the Application of Alternating Current Electric Field (ACEF) during Post-Harvest Storage. Processes (Basel) 2021. [DOI: 10.3390/pr9061011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aims to determine the physicochemical quality of seagrape (Caulerpa lentillifera) as a freshness label for products cultivated in different seasons. The applied post-harvest storage experiments compared between, within and without seawater that led to oxidative stress conditions. Water content, malondialdehyde (MDA) compound, total phenolic content (TPC), and chlorophyll content were observed at 0, 3, 6, and 9 days of storage. The storage without seawater showed sharper quality reductions by reaching 20–40% of water loss, 70–90% of MDA production, 15–25% of TPC reduction, and 40–60% of total chlorophyll degradation. The storage within seawater showed lower quality reductions due to the specific growth rates still reaching 5–10%. This study found that the greater the physicochemical quality, the slower the decomposition rates of the stored seagrape during storage. Therefore, the seagrapes’ obvious discoloration occurred earlier in winter, followed by summer and spring. Kinetics of chlorophyll degradation on seagrape in different seasons meet different order-reactions during storage. Furthermore, alternating current electric field (ACEF) treatment with 125 kV/m of intensity for 60 min can lower the spring seagrapes’ physicochemical quality by reaching 10–30% of inhibition, resulting in the shelf-life extension for up to 12 days of post-harvest storage.
Collapse
|
27
|
Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. COATINGS 2021. [DOI: 10.3390/coatings11030367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tomato Lycopersicon esculentum Mill. is one of the most cultivated and widely consumed vegetables in the world. However, it is very susceptible to the infection initiated by Fusariumoxysporum fruit rot, which shortens post-harvest life and thus reduces market value. This disease can be regulated appropriately by the application of synthetic fungicides. However, chemical fungicides constitute a serious health risk, and have harmful environment effects and increase disease resistance, even when microbes are dead. Hence, to overcome this problem, chitosan and vanillin, which have antimicrobial bioactive properties against the growth of microorganisms, could be an alternative to disease control, while maintaining fruit quality and prolonging shelf life. The aim of this research was to evaluate the antimicrobial activity of chitosan and vanillin towards the inoculate pathogen and to investigate the effect of chitosan and vanillin coating in vivo on Fusarium oxysporum fruit rot and defense-related enzymes (PAL, PPO and POD). Chitosan and vanillin in aqueous solutions, i.e., 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan + 15 mM vanillin, 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin, were used as edible coatings on tomatoes stored at 26 ± 2 °C and 60 ± 5 relative humidity. The result revealed 1.5% chitosan + 15 mM vanillin was able to control disease incidence by 70.84% and severity by 70%. These combinations of coatings were also able to retain phenylalanine ammonia-lyase (PAL), peroxidase activity (POD), and polyphenol oxidase (PPO) enzyme activities as well as prolong shelf life of tomatoes up to 15 days.
Collapse
|
28
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
29
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
30
|
Priming with γ-Aminobutyric Acid against Botrytis cinerea Reshuffles Metabolism and Reactive Oxygen Species: Dissecting Signalling and Metabolism. Antioxidants (Basel) 2020; 9:antiox9121174. [PMID: 33255543 PMCID: PMC7759855 DOI: 10.3390/antiox9121174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The stress-inducible non-proteinogenic amino acid γ-aminobutyric acid (GABA) is known to alleviate several (a)biotic stresses in plants. GABA forms an important link between carbon and nitrogen metabolism and has been proposed as a signalling molecule in plants. Here, we set out to establish GABA as a priming compound against Botrytis cinerea in Arabidopsis thaliana and how metabolism and reactive oxygen species (ROS) are influenced after GABA treatment and infection. We show that GABA already primes disease resistance at low concentrations (100 µM), comparable to the well-characterized priming agent β-Aminobutyric acid (BABA). Treatment with GABA reduced ROS burst in response to flg22 (bacterial peptide derived from flagellum) and oligogalacturonides (OGs). Plants treated with GABA showed reduced H2O2 accumulation after infection due to increased activity of catalase and guaiacol peroxidase. Contrary to 100 µM GABA treatments, 1 mM exogenous GABA induced endogenous GABA before and after infection. Strikingly, 1 mM GABA promoted total and active nitrate reductase activity whereas 100 µM inhibited active nitrate reductase. Sucrose accumulated after GABA treatment, whereas glucose and fructose only accumulated in treated plants after infection. We propose that extracellular GABA signalling and endogenous metabolism can be separated at low exogenous concentrations.
Collapse
|
31
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Qiu XM, Sun YY, Ye XY, Li ZG. Signaling Role of Glutamate in Plants. FRONTIERS IN PLANT SCIENCE 2020; 10:1743. [PMID: 32063909 PMCID: PMC6999156 DOI: 10.3389/fpls.2019.01743] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/11/2019] [Indexed: 05/11/2023]
Abstract
It is well known that glutamate (Glu), a neurotransmitter in human body, is a protein amino acid. It plays a very important role in plant growth and development. Nowadays, Glu has been found to emerge as signaling role. Under normal conditions, Glu takes part in seed germination, root architecture, pollen germination, and pollen tube growth. Under stress conditions, Glu participates in wound response, pathogen resistance, response and adaptation to abiotic stress (such as salt, cold, heat, and drought), and local stimulation (abiotic or biotic stress)-triggered long distance signaling transduction. In this review, in the light of the current opinion on Glu signaling in plants, the following knowledge was updated and discussed. 1) Glu metabolism; 2) signaling role of Glu in plant growth, development, and response and adaptation to environmental stress; as well as 3) the underlying research directions in the future. The purpose of this review was to look forward to inspiring the rapid development of Glu signaling research in plant biology, particularly in the field of stress biology of plants.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Xin-Yu Ye
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| |
Collapse
|