1
|
Hu Z, Sun W, Guo J, Wang X, Yong L, Ren L, Feng D, Zou X. Establishment and application of a high-performance liquid chromatography-mass spectrometry method for analysis of 15 bisphenols and halogenated phenols in tea. Food Chem 2025; 469:142561. [PMID: 39721436 DOI: 10.1016/j.foodchem.2024.142561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Using high-performance liquid chromatography-mass spectrometry, fifteen bisphenols and halogenated phenols were simultaneously analyzed in tea for the first time in China. Response surface methodology was used to optimize sample preparation conditions based on QuEChERS. Finally, the limits of detection and the limits of quantification were 0.0200-0.173 μg/kg and 0.0892-0.770 μg/kg, respectively. The recoveries were 70 %-120 % for most compounds (except for some compounds at low spiked concentrations) with RSDs <20 %. Then 135 dried tea samples were analyzed. Bisphenol S, A and F were the predominant bisphenol contaminants with detection rates above 80 %, and the median level of bisphenol F (4.90 μg/kg) was even higher than that of bisphenol A (2.74 μg/kg). Bisphenol A (p < 0.001) and bisphenol F (p = 0.007) were significantly higher in black tea than in green tea. Hazard index was estimated and bisphenols in tea may pose potential risks to human health.
Collapse
Affiliation(s)
- Zifan Hu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Weiyang Sun
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Jiaqi Guo
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Lin Ren
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Dejian Feng
- Institute of Biology, National Institute of Measurement and Testing Technology, Chengdu, Sichuan 610021, China
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Chiu CH, Sun SH, Yao YJ, Chuang Y, Lee YT, Lin YJ. Concentrations, composition profiles, and in vitro-in silico-based mixture risk assessment of bisphenol A and its analogs in plant-based foods. ENVIRONMENT INTERNATIONAL 2025; 195:109229. [PMID: 39740268 DOI: 10.1016/j.envint.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The substitution of bisphenol A (BPA) with structurally similar analogs has raised concerns due to their comparable estrogenic activities. Considering the high consumption of plant-based foods, assessing the risks posed by bisphenols (BPs) in such dietary sources is essential. However, limited exposure and animal toxicological data on BP analogs hinder comprehensive risk assessments. This study investigated 16 BPs in 23 plant-based foods from Taiwan and estimated their dietary exposure across age groups. High-throughput toxicokinetic modeling was used to convert in vitro ToxCast estrogen receptor (ER) bioactive concentrations into human-equivalent points of departure (PODs), which were compared to PODs derived from animal studies and applied to assess mixture risks through the margin of exposure based on the common ER pathway. In total, 7 BPs were detected, and most samples (85.9 %) contained detectable concentrations. Total concentrations of the 7 BPs (∑7BP) ranged from 0.06 ± 0.11 ng/g to 26.60 ± 72.18 ng/g, with BPA being the most predominant (63 % of the mean ∑7BP concentrations), followed by bisphenol S (19 %) and 4,4-bisphenol F (13 %). In vitro-in silico-derived PODs were comparable to or even more protective than in vivo animal-derived PODs. For most population groups, combined exposure to multiple BPs from plant-based foods is generally not a risk concern for ER pathway perturbation, although potential concerns in worst-case scenarios cannot be excluded. This study advances the understanding of the dietary risks associated with BP mixtures and illustrates the potential of in vitro-in silico approaches for assessing human health risks from environmental contaminants.
Collapse
Affiliation(s)
- Chun-Hui Chiu
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shih-Han Sun
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yun-Jia Yao
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Yi Chuang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tsung Lee
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
3
|
Martín-Gómez B, Valverde S, Bernal J, Ares AM. Development and validation of an analytical methodology based on solvent microextraction and UHPLC-MS/MS for determining bisphenols in honeys from different botanical origins. Food Chem 2024; 450:139358. [PMID: 38631201 DOI: 10.1016/j.foodchem.2024.139358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A new analytical methodology was proposed to determine fourteen bisphenols in honeys from different botanical origins using ultra-high performance liquid chromatography-tandem mass spectrometry. A fast, efficient, environmentally-friendly and simple sample treatment (recoveries between 81% and 116%; matrix effect <20% for all studied compounds except for bisphenol E, F and S) was proposed, which involved a solvent microextraction with acetone and a small volume/amount of 1-hexanol. Chromatographic analysis (< 15 min) was performed in a Kinetex EVO C18 column under gradient elution mode. The method was validated in terms of selectivity, limits of detection (0.2-1.5 μg/kg) and quantification (0.5-4.7 μg/kg), linearity, matrix effect, trueness, and precision (relative standard deviation <17%). Finally, thirty honey samples were analyzed, revealing the presence of residues of nine bisphenols in some of them. However, quantification was possible only in two cases for bisphenol A, with a concentration of approximately 13 μg/kg.
Collapse
Affiliation(s)
- Beatriz Martín-Gómez
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Silvia Valverde
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana María Ares
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
5
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
6
|
Wang S, Su Y, Cheng M, Wang Q, Wu X, Wang Y, Sun F, Wang R, Ji R. Fate of bisphenol A (BPA) in a flooded soil-rice system. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132177. [PMID: 37531761 DOI: 10.1016/j.jhazmat.2023.132177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
In this study, 14C-tracers were used to investigate the fate of BPA in flooded soil with or without rice plants during a complete growing period. In flooded soil, the dissipation of BPA (half-life 14.8 d) was accompanied by its mineralization (8.4% of the initially applied radioactivity) and the formation of non-extractable residues (NERs) in amounts (79.5%) similar to that formed under oxic conditions. The growth of rice significantly accelerated the dissipation of BPA in flooded soil, resulting in a reduction in both the half-life (5.6 d) and the amount of NERs (35.8%). Two non-polar metabolites were detected both in unplanted and in rice-planted soil. At rice harvest, 57.1% of the radioactivity had accumulated in rice plants, mainly as NERs (54.2%) rather than as extractable radioactivity (2.7%), and mainly in roots (34.5 ± 1.4%), stems (9.4 ± 1.1%), and leaves (8.8 ± 0.6%), with trace amounts in seeds (3.6 ± 0.3%) and seed shells (0.7 ± 0.05%). Our study thus demonstrates that the oxic-anoxic interface stimulates the dissipation of BPA in flooded soil. The link between the releasing of NERs in flooded soil and the uptake of BPA metabolites by rice should be considered in environmental risk assessments of agroecosystems.
Collapse
Affiliation(s)
- Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Miaomiao Cheng
- Center for Sustainable Farming System, Food Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, China
| | - Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, China
| | - Feifei Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, China.
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing 210023, China
| |
Collapse
|
7
|
Numsriskulrat N, Teeranathada T, Bongsebandhu-Phubhakdi C, Aroonparkmongkol S, Choi K, Supornsilchai V. Exposure to Bisphenol A and Its Analogs among Thai School-Age Children. TOXICS 2023; 11:761. [PMID: 37755771 PMCID: PMC10536550 DOI: 10.3390/toxics11090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Bisphenol F (BPF) and bisphenol S (BPS) have become popular substitutes for bisphenol A (BPA) in the plastic industry due to concerns over BPA's adverse effects. However, there is limited information on children's exposure to these chemicals. This study aims to assess the extent of BPA, BPF, and BPS exposure and determine factors that influence such exposure. A group of Thai children (age 6-13 years, N = 358) were recruited between October 2019 and 2020. Two first-morning voids were collected one week apart. Demographic and exposure-related information was gathered. Urinary concentrations of bisphenols were analyzed by liquid chromatography and tandem mass spectrometry. Correlation between bisphenol concentrations with age, body weight, and sources of bisphenol exposure, was determined using generalized estimating equations with linear model. BPA, BPF, and BPS were detected at 79.6%, 31.0%, and 16.8%, with geometric mean (GM) concentrations of 1.41, 0.013, and 0.014 ng/mL, respectively. Younger children aged <10 years exhibited 1.3-1.6 times higher GM levels of all bisphenols compared to older children. Exposure to food stored in plastic containers was associated with higher levels of BPF and BPS. In conclusion, BPA was the most frequently detected bisphenol in urine samples from Thai children, followed by BPF and BPS.
Collapse
Affiliation(s)
- Nattakarn Numsriskulrat
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (C.B.-P.)
| | - Thanawan Teeranathada
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (C.B.-P.)
| | - Chansuda Bongsebandhu-Phubhakdi
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (C.B.-P.)
| | - Suphab Aroonparkmongkol
- Division of Pediatric Endocrinology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea;
| | - Vichit Supornsilchai
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.); (C.B.-P.)
| |
Collapse
|
8
|
Zhou J, Yao SS, Wang JM, Chen XH, Qin C, Jin MC, Zhang DD, Xu JJ, Cai ZX. Multiple mycotoxins in commonly used edible oils: Occurrence and evaluation of potential health risks. Food Chem 2023; 426:136629. [PMID: 37331146 DOI: 10.1016/j.foodchem.2023.136629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
In this study, the contamination of 51 mycotoxins in 416 edible oils were determined by UPLC-MS/MS. Totally, twenty-four mycotoxins were detected and nearly half of the samples (46.9%, n = 195) were contaminated simultaneously with six to nine kinds of mycotoxins. The predominant mycotoxins and contamination characteristics varied depending on the type of oils. More specifically, four enniatins, alternariol monomethyl ether (AME) and zearalenone were the most frequent combination. Overall, peanut and sesame oils (10.7-11.7 mycotoxins on average) were found to be the most contaminated matrices whereas camellia and sunflower seed oils (1.8-2.7 species) were the opposite. Dietary exposure risks of mycotoxins were acceptable in most cases, however, the ingestion of aflatoxins (especially aflatoxin B1) through peanut and sesame oil (margin of exposure: 239.4-386.3 < 10000) exceeded the acceptable carcinogenic risk level. Meanwhile, the risks of cumulative ingestion through the food chain should be of great concern, especially sterigmatocystin, ochratoxin A, AME and zearalenone.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Shan-Shan Yao
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Jian-Mei Wang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Xiao-Hong Chen
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Chen Qin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Mi-Cong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Dan-Dan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Jiao-Jiao Xu
- Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Centre for Disease Control and Prevention, Zhejiang 310051, China
| | - Zeng-Xuan Cai
- Lab of Physicochemical Research, Department of Physicochemical & Toxicology, Zhejiang Provincial Centre for Disease Control and Prevention, Zhejiang 310051, China
| |
Collapse
|
9
|
Tan Z, Tan J, Yang Z, Sun W, Guo A, Wang J, Li Y, Lin X. Stable and recyclable FeS-CMC-based peroxydisulfate activation for effective bisphenol A reduction: performance and mechanism. CHEMOSPHERE 2023:139129. [PMID: 37279822 DOI: 10.1016/j.chemosphere.2023.139129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
In this study, a novel material, iron sulfide modified by sodium carboxymethyl cellulose (FeS-CMC), was successfully synthetized for peroxydisulfate (PDS) activation to remove bisphenol A (BPA). Characterization results showed that FeS-CMC had more attachment sites for PDS activation due to its higher specific surface area. A stronger negative potential contributed to preventing nanoparticles from reuniting in the reaction and improving the interparticle electrostatic interactions of the materials. Fourier transform infrared spectrometer (FTIR) analysis of FeS-CMC suggested that the coordination of the ligand for combining sodium carboxymethyl cellulose (CMC) with FeS was monodentate. A total of 98.4% BPA was decomposed by the FeS-CMC/PDS system after 20 min under optimized conditions (pH = 3.60, [FeS-CMC] = 0.05 g/L and [PDS] = 0.88 mM). The isoelectric point (pHpzc) of FeS-CMC is 5.20, and FeS-CMC contributed to reducing BPA under acidic conditions but showed a negative effect under basic conditions. The presence of HCO3-, NO3- and HA inhibited BPA degradation by FeS-CMC/PDS, while excess Cl- accelerated the reaction. FeS-CMC exhibited excellent performance in oxidation resistance with a final removal degree of 95.0%, while FeS was only 20.0%. Furthermore, FeS-CMC showed excellent reusability and still reached 90.2% after triple reusability experiments. The study confirmed that the homogeneous reaction was the primary part of the system. Surface-bound Fe(II) and S (-II) were found to be the major electron donors during activation, and the reduction of S (-II) contributed to the cycle of Fe(III)/Fe(II). Sulfate radicals (SO4•-), hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2) were produced at the surface of FeS-CMC and accelerated the decomposition of BPA. This study offered a theoretical basis for improving the oxidation resistance and reusability of iron-based materials in the presence of advanced oxidation processes.
Collapse
Affiliation(s)
- Zijun Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiaqu Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zijiang Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenxin Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Aiying Guo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, PR China; College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
10
|
Ni L, Zhong J, Chi H, Lin N, Liu Z. Recent Advances in Sources, Migration, Public Health, and Surveillance of Bisphenol A and Its Structural Analogs in Canned Foods. Foods 2023; 12:foods12101989. [PMID: 37238807 DOI: 10.3390/foods12101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The occurrence of bisphenol A (BPA) and its structural analogs, known as endocrine disruptors is widely reported. Consumers could be exposed to these chemicals through canned foods, leading to health risks. Considerable advances have occurred in the pathogenic mechanism, migration law, and analytical methodologies for these compounds in canned foods. However, the confusion and controversies on sources, migration, and health impacts have plagued researchers. This review aimed to provide insights and perspectives on sources, migration, effects on human health, and surveillance of these chemicals in canned food products. Current trends in the determination of BPA and its structural analogs have focused on mass spectroscopy and electrochemical sensor techniques. Several factors, including pH, time, temperature, and volume of the headspace in canned foods, could affect the migration of the chemicals. Moreover, it is necessary to quantify the proportion of them originating from the can material used in canned product manufacturing. In addition, adverse reaction research about exposure to low doses and combined exposure with other food contaminants will be required. We strongly believe that the information presented in this paper will assist in highlighting the research needs on these chemicals in canned foods for future risk evaluations.
Collapse
Affiliation(s)
- Ling Ni
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology & Nutrition, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
11
|
Yao K, Zhang J, Niu Y, Zhang X, Yang Y, Wu Y, Wen K, Shao B. Multi-immunoaffinity column for the simultaneous analysis of bisphenol A and its analogues in Chinese foods by liquid chromatography tandem mass spectrometry. Food Chem 2023; 422:136295. [PMID: 37150113 DOI: 10.1016/j.foodchem.2023.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Bisphenol A (BPA) and its four analogues have been receiving considerable attention owing to their potential endocrine disrupting effects. The European Food Safety Authority has proposed 0.04 ng/kg·body weight/day of thetemporary tolerable daily intake for BPA. Therefore, a more sensitive analytical method was urgently needed for the necessity of the risk reassessment of bisphenols (BPs). The matrix effect of Chinese foods is a challenge for the analysis of ultra-trace analytes due to the presence of various spices. A multi-immunoaffinity column (mIAC) was prepared for the purification of BPA, BPB, BPF, BPS, and BPAF in Chinese foods following ultra-high-performance liquid chromatography tandem mass spectrometry detection (UHLPC-MS/MS). The recoveries of each of BPs were ranged from 84.6% to 116.7%, and the intra-day precision and inter-day precision were ranged from 1.6% to 12.4%, and from 4.1% to 14.0%, respectively. This is the first report on the mIACs for simultaneous clean-up and analysis of BPs in complex Chinese foods.
Collapse
Affiliation(s)
- Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Xin Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Yige Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
12
|
Toptancı İ. Risk assessment of bisphenol related compounds in canned convenience foods, olives, olive oil, and canned soft drinks in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54177-54192. [PMID: 36869959 DOI: 10.1007/s11356-023-26228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The presence of Bisphenol A (BPA), Bisphenol A Diglycidyl Ether (BADGE), and their derivatives in seventy-nine samples of food products available in Turkish stores was determined using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Among Bisphenol A and its analogues, BPA was the most detected migrant with 56.97%. Fish products had the highest level of BPA with 0.102 mg/kg although only three fish samples exceeded the Specific Migration Limit (SML) for BPA of 0.05 mg/kg of food. The BPF, BPS, and BPB in all analyzed foods ranged between 0-0.021, 0-0.036, and 0.072 mg/kg, respectively. BADGE derivates, BADGE·2H2O and cyclo-di-BADGE (CdB) were present in 57 and 52 samples with concentrations ranging between 0-0.354, and 0-1.056 mg/kg, respectively. All the analyzed traditional Turkish ready-to-eat meals and fish products were contaminated with BADGE·2H2O and CdB. The overall levels of BADGE and the derivates were below the specific migration limit. CdB was found at higher concentrations in traditional Turkish ready-to-eat meals, up to 1.056 mg/kg. The CdB concentration in most of the samples was above the highest figure with 0.05 mg/kg authorized by the German Federal Institute for Risk Assessment. The predominant chlorinated derivative was BADGE·H2O·HCl which was found in thirty-seven samples in the range of 0.007-0.061 mg/kg.
Collapse
Affiliation(s)
- İsra Toptancı
- Department of Food Contact Material and Dioxin, Istanbul Food Control Laboratory, Istanbul, Türkiye.
| |
Collapse
|
13
|
Shan W, Niu W, Lin Q, Shen Y, Shen F, Lou K, Zhang Y. Bisphenol S exposure promotes cell apoptosis and mitophagy in murine osteocytes by regulating mtROS signaling. Microsc Res Tech 2023; 86:481-493. [PMID: 36625337 DOI: 10.1002/jemt.24289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Bisphenol S (BPS), a safer alternative to bisphenol A, is commonly used as a plasticizer to manufacture various food-packaging materials. The accumulated BPS inhibits osteoblastic bone formation and promotes osteoclastogenesis, thereby accelerating remarkable bone destruction, but it is unclear whether BPS affects osteocytes, comprising over 95% of all bone cells. This study aimed to investigate the biological effect of BPS on osteocytes in vitro, as well as the detailed mechanism. Results showed that BPS (200, 400 μmol/L) exposure caused dose-dependently cell death of osteocytes MLO-Y4, and increased cell apoptosis. BPS induced loss of mitochondrial membrane potential (MMP) and mitochondria impairment. Furthermore, BPS upregulated expressions of mitophagy-related proteins including microtubule-associated protein light chain 3 (LC-3) II and PTEN-induced putative kinase (PINK) 1, accompanied by elevation of autophagy flux and the accumulation of acidic vacuoles; whereas p62 level was downregulated after BPS treatment. Additionally, BPS triggered the production of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS), while it decreased expression levels of nuclear factor E2-related factor 2 (Nrf2) and quinone oxidoreductase 1 (NQO1). The specific mtROS scavenger MitoTEMPO reversed cell apoptosis and mitophagy, suggesting that mtROS contributes to BPS exposure-induced apoptosis and mitophagy in MLO-Y4 cells. Our data first provide novel evidence that apoptosis and mitophagy as cellular mechanisms for the toxic effect of BPS on osteocytes, thereby helping our understanding of the potential role of osteocytes in the adverse effect of BPS and its analogs on bone growth, and supporting strategies targeting bone destruction caused by BPS.
Collapse
Affiliation(s)
- Weiyan Shan
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiao Lin
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yuchen Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Fangmin Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Kai Lou
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
14
|
Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals (Basel) 2023; 13:ani13071132. [PMID: 37048387 PMCID: PMC10093235 DOI: 10.3390/ani13071132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the long-term consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.
Collapse
Affiliation(s)
- Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
15
|
Li T, Wang R, Yin R, Xu H, Han X, Du Q, Cheng J, Lin Z, Wang P. Effective Extraction of Bisphenol Compounds from Milk with Stable Zr(IV)-Based Metal-Organic Framework Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4272-4280. [PMID: 36857603 DOI: 10.1021/acs.jafc.2c09085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol compounds (BPs) have recently been the subject of growing interest due to their wide use in industrial and consumer products. Besides their adverse effects on human endocrine system, effective extraction of BPs and their elimination from complex sample matrix are still significant challenges in food analysis. Herein, a novel Zr(IV)-based metal-organic framework (MOF), named BUT-16, has been synthesized and utilized for the extraction and enrichment of BPs in milk samples. Bisphenol A (BPA), one of the highest production volume BPs, is used as a model molecule. The uptake capacity for BPA can reach up to 48 mg/g, and the adsorption rate is rapid (∼10 min), because of the larger surface area and cooperation of multiple functionalities of BUT-16. Employing BUT-16 in solid-phase extraction, coupled with ultra-performance liquid chromatography-tandem mass spectrometry detection, we generated a rapid, facile, and robust method for the enrichment and detection of trace BPA and its 12 substitutes in milk samples. After optimization, the limits of detection and quantification for BPs can be achieved as low as 0.05 and 0.2 ng/mL, respectively. Without the correction of the isotopic internal standard, the average recoveries of BPs at the different spiked concentrations varied from 63.8 to 120.6%, with a satisfactory precision (RSD ≤ 8.2%). Furthermore, the proposed method was successfully applied to the detection of BPs in real milk samples, and the results were in accordance with those of methods reported previously.
Collapse
Affiliation(s)
- Tong Li
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruiguo Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruijie Yin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Hongyan Xu
- Inner Mongolia Yili Industrial Group Co.,Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Xiaoxu Han
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Qiuling Du
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Jie Cheng
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Peilong Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| |
Collapse
|
16
|
Zhou J, Chen XH, Zhang DD, Jin MC, Zhuang L, Du Y. Determination of multiple bisphenol analogues and their metabolites in human serum by liquid chromatography tandem mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120092. [PMID: 36064063 DOI: 10.1016/j.envpol.2022.120092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
To date, knowledge of internal human exposure to BPA and its analogues (particularly bisphenol S and bisphenol F, etc.) remains limited. In the present study, a method involving dispersive solid-phase extraction and LC/MS was proposed to investigate the contamination levels of 28 precursor bisphenols and 9 major metabolites in serum. The critical variables of preparation method were screened out by Plackett-Burman design and further optimized by central composite design. Left in optimal conditions, a total of 286 samples consisting of 153 males and 133 females were analyzed. The results showed that BPA dominated over all the cases with the highest positive rate (82.2% of all the surveyed people), and totally four metabolites (BPA β-D-glucuronide, BPA monosulfate, BPA bis-(β-D-glucuronide) and BPS monosulfate) were detectable. The occurrence of BPA bis-(β-D-glucuronide) in serum is reported for the first time and its higher positive rate and contamination concentrations suggested that it may be a more important metabolite of BPA than others. Negligible potential risk of health effects to blood donors was observed, since the estimated exposure levels (mean 32.1 ng/kg bw/day, 95th 123.2 ng/kg bw/day) were well below far less than the temporary tolerable reference dose of BPA that recommended by the European Food Safety Authority (4 μg/kg bw/day by). The reference level of BPA for healthy population was determined to be 4.09 μg/L via the percentile method.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| | - Xiao-Hong Chen
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Dan-Dan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Mi-Cong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Li Zhuang
- Ningbo Municipal Center Blood Station, Ningbo Blood Management Center, Ningbo, 315010, China
| | - Yong Du
- Ningbo Municipal Center Blood Station, Ningbo Blood Management Center, Ningbo, 315010, China
| |
Collapse
|
17
|
Shaaban H, Mostafa A, Alqarni AM, Almohamed Y, Abualrahi D, Hussein D, Alghamdi M. Simultaneous determination of bisphenol A and its analogues in foodstuff using UPLC-MS/MS and assessment of their health risk in adult population. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Lestido-Cardama A, Sendón R, Bustos J, Nieto MT, Paseiro-Losada P, Rodríguez-Bernaldo de Quirós A. Food and beverage can coatings: A review on chemical analysis, migration, and risk assessment. Compr Rev Food Sci Food Saf 2022; 21:3558-3611. [PMID: 35687326 DOI: 10.1111/1541-4337.12976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
The internal surface of food and beverage cans is generally covered with polymeric coatings to preserve food and protect metal substrate from corrosion. Coating materials are complex formulations that contain different starting substances (e.g., monomers, prepolymers, additives, etc.) and in addition during the manufacture of the material several compounds can be formed (e.g., reaction products, degradation products, etc.). These substances have the potential to migrate into the food. Many of them have not been identified and only some have been toxicologically evaluated. This article aims to provide a comprehensive review on the analytical methods used for the identification of potential migrants in can coatings. The migration and exposure to chemicals migrating from can coatings are also reviewed and discussed so far, which is essential for risk assessment. Moreover, a brief section on the current status of the legislation on varnishes and coatings for food contact in Europe is also presented. Liquid chromatography coupled to diode array and fluorescence detectors and particularly to mass spectrometry and gas chromatography-tandem mass spectrometry seem to be the techniques of choice for the identification of potential migrants in can coatings. Some studies have reported migration levels of BPA (bisphenol A) and BADGE (bisphenol A diglycidyl ether) and derivatives exceeding the specific migration limits set in the European legislation. On the whole, low dietary exposure to migrants from can coatings has been reported. However, it is interesting to highlight that in these studies the combined exposure to multiple chemicals has not been considered.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juana Bustos
- National Food Centre, Spanish Agency for Food Safety and Nutrition, Majadahonda, Spain
| | - María Teresa Nieto
- National Food Centre, Spanish Agency for Food Safety and Nutrition, Majadahonda, Spain
| | - Perfecto Paseiro-Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Rodríguez-Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Ao J, Liu Y, Tang W, Zhang J. Bisphenol S exposure induces intestinal inflammation: An integrated metabolomic and transcriptomic study. CHEMOSPHERE 2022; 292:133510. [PMID: 34979203 DOI: 10.1016/j.chemosphere.2021.133510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
As a typical substitute for bisphenol A (BPA), bisphenol S (BPS) is raising concerns due to the potential adverse effects on human health. Limit evidence is available to understand the toxicity of BPS to the digestive system, especially for intestine. In this study, we aimed to investigate the potential effects and underlying mechanisms of BPS exposure on human colon mucosal epithelial cells (NCM460). Our results showed that BPS exposure significantly increased the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-17A (IL-17A). The tight junctions of the cells has been destroyed by BPS exposure, which was characterized by a down-regulation of the tight junction proteins (Claudin1 and zonula occluden 1 (ZO1)). A multi-omics study explored the underlying mechanisms based on the metabolomic and transcriptomic responses. A variety of neurotransmitters increased significantly after exposure to BPS. The top enriched pathway was "glutamatergic synapse", which was activated by BPS exposure, resulting in the up-regulation of l-glutamine. Links were observed among the altered metabolites, genes and cytokines. Our results indicate that exposure to BPS may disturb the balance of gut-brain axis, leading to the production of inflammatory cytokines and the destruction of tight junction in NCM460 cells. It provides new clue for the development of intestinal inflammation in terms of the environmental pollutants.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| |
Collapse
|
20
|
ZHOU J, CHEN X, JIN M. [Adulteration identification of wheat flour in chestnut flour based on differences in mycotoxin contamination by liquid chromatography-tandem mass spectrometry]. Se Pu 2022; 40:303-312. [PMID: 35362678 PMCID: PMC9404217 DOI: 10.3724/sp.j.1123.2021.10021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
An analytical method based on dispersive solid-phase extraction (d-SPE) and ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) was employed for the determination of 43 mycotoxins in chestnut flour and wheat flour. A total of 128 samples consisting of 48 chestnut samples and 80 wheat flour samples were collected randomly and subjected to analysis. Finally, five specific toxins were selected as markers to identify these two foodstuffs. Acetonitrile-water (84∶16, v/v) was used to extract mycotoxins from chestnut flour and wheat flour. After extraction, the supernatant was transferred to the d-SPE equipment, using which purification was performed with C18 and EMR-Lipid (lipid adsorbent). Chromatographic separation was carried out by gradient elution with eluent A (ESI+: 0.1% formic acid, ESI-: water) and eluent B (ESI+: methanol-acetonitrile (1∶1) containing 0.1% formic acid, ESI-: acetonitrile) on a BEH C18 column (100 mm×2.1 mm, 1.7 μm). Quantitative analysis was performed with the aid of matrix-matched curves. When establishing the method, the experimental matrix for optimization was designed by central-composite design based on the response surface methodology. Quadratic polynomial equations were deduced to describe the relationships between the responses and variables, and assess the interaction effects among the variables to acquire the true optimal conditions with less workload. Using the optimum experimental conditions, the accuracy of the proposed method was determined through three-level spiking tests, while the precision was evaluated in terms of the repeatability (six replications per level). Satisfactory precisions (RSDs≤7.5% in chestnut flour and RSDs≤9.3% in wheat flour) were achieved in all tested assays. The recoveries were also acceptable, and ranged from 72.4% to 109.4% for chestnut flour and from 70.7% to 112.9% for wheat flour. The matrix effects of mycotoxins were 48%-128% in wheat flour and 41%-112% in chestnut flour. The detectability of mycotoxins in the two matrices was assessed by spiking the blank extracts with various low concentrations, and determined as the lowest values that can produce chromatographic peaks at a signal-to-noise ratio (S/N) of 3∶1. The obtained limits of quantification varied from 0.10 μg/kg to 20 μg/kg (bongkrekic acid) in both investigated matrices. Satisfactory linearities were obtained, with correlation coefficients>0.9991 for all the analytes. After validation, the contamination status of the multiple mycotoxins was evaluated for various concentration ranges. Based on the obtained data, both wheat flour and chestnut flour were severely contaminated, with 17 mycotoxins detected in them. Particularly, chaetoglobosin A, ochratoxin B, and penicillic acid were only detected in chestnut flour, while 3-acetyl-deoxynivalenol, deoxynivalenol, and nivalenol were detected in wheat flour. Further, the positive rates and contamination concentrations of chaetoglobosin A, ochratoxin B, and penicillic acid were not significant; hence, they did not qualify as identification markers. On the other hand, the incidence of deoxynivalenol in wheat flour almost reached 100%, which is very significant. Finally, deoxynivalenol and its four derivatives (3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, deepoxy-deoxynivalenol, and nivalenol) were treated as adulteration markers for the two foodstuffs. To improve the reliability of the conclusion, all samples were re-tested using the first method prescribed by the National Food Safety Standard, i. e., GB 5009.111-2016. Ten chestnut flour samples were also randomly selected to prepare moldy samples under suitable environmental conditions for the growth of Fusarium, to verify the production and release of deoxynivalenol and its derivative mycotoxins under the extreme conditions. The distribution data for these mycotoxins were consistent with those obtained by d-SPE, confirming that the adulteration criterion is trustworthy. The established method is simple, rapid, sensitive, and accurate, and can effectively meet the requirements for the simultaneous determination of multiple mycotoxins in chestnut flour and wheat flour. Moreover, the adulteration results, which were obtained for natural contaminants (deoxynivalenol and its four derivatives), are less affected by humans and hence, much more accurate and reliable.
Collapse
Affiliation(s)
- Jian ZHOU
- 宁波市疾病预防控制中心, 浙江省微量有毒化学物健康风险评估技术研究重点实验室, 浙江 宁波 315010
- Ningbo Municipal Center for Disease Control and Prevention, Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo 315010, China
| | - Xiaohong CHEN
- 宁波市疾病预防控制中心, 浙江省微量有毒化学物健康风险评估技术研究重点实验室, 浙江 宁波 315010
- Ningbo Municipal Center for Disease Control and Prevention, Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo 315010, China
| | - Micong JIN
- 宁波市疾病预防控制中心, 浙江省微量有毒化学物健康风险评估技术研究重点实验室, 浙江 宁波 315010
- Ningbo Municipal Center for Disease Control and Prevention, Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
21
|
Chakraborty P, Bharat GK, Gaonkar O, Mukhopadhyay M, Chandra S, Steindal EH, Nizzetto L. Endocrine-disrupting chemicals used as common plastic additives: Levels, profiles, and human dietary exposure from the Indian food basket. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152200. [PMID: 34890663 DOI: 10.1016/j.scitotenv.2021.152200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) such as phthalic acid esters (PAEs) and bisphenol A (BPA) are the most widely used plastic additives in polymeric materials. These EDCs are ubiquitously distributed in the environment. Hence selected PAEs and BPA were investigated in twenty-five food types and drinking water (supply and packaged) from the metropolitan city, Delhi, and the peri-urban areas of a non-metropolitan city, Dehradun. Except cabbage and orange, the sum of thirteen PAEs (∑13PAEs) and BPA in all the other food types were significantly higher in Delhi over Dehradun (p < 0.01). Highest mean ∑13PAEs (665 ng/g) and BPA (73 ng/g) were observed in cottage cheese and potatoes, respectively followed by fish (PAEs - 477 ng/g, BPA - 16 ng/g). Supply water from the west zone of Delhi was found to contain the highest concentration of BPA (309 ng/L) and ∑13PAEs (5765 ng/L) with the dominance of diethyl phthalate (DEP). Based on the compositional profile and compound-wise principal component analysis, environmental contamination and food processing were attributed as significant sources of most priority PAEs in food samples. Di-ethyl hexyl phthalate (DEHP) was over 100-fold higher in the bottled water from local brands than composite bottled water samples. Packaging material was identified as a source for di-n-butyl phthalate (DnBP) in packaged food. This study observed the highest estimated daily dietary intake (EDI) in the high-fat-containing food products viz., cottage cheese, and fish from north Delhi. High bioaccumulation of BPA can be a possible reason for elevated EDI in vegetables and local fish of Delhi. Unlike Dehradun, EDI for ∑13PAEs and BPA was slightly higher for the non-vegetarian adult when compared to the vegetarian adult. DEHP and DnBP exhibited the highest estimated estrogenic potential for bottled water from local brands. Dietary exposure due to six priority PAEs contamination in food stuffs was two to four-fold higher in Delhi than Dehradun for adult man and woman.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Nuevo Chakra (OPC) Pvt Ltd., Mumbai, Maharashtra, India.
| | | | - Omkar Gaonkar
- Nuevo Chakra (OPC) Pvt Ltd., Mumbai, Maharashtra, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Sarath Chandra
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Department of International Environment and Development Studies, Norwegian University of Life Sciences, Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
22
|
Huang YY, Pang YH, Shen XF, Jiang R, Wang YY. Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta 2022; 236:122859. [PMID: 34635243 DOI: 10.1016/j.talanta.2021.122859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The sensitivity and selectivity of electrochemical analysis are challenging due to the materials used for electrode modification as well as electrical conductivity, catalytic activity and recognition ability of the working electrode. In this work, a portable 3D-printed electrochemical electrode clamp was designed and applied in combination with the developed covalent organic framework (COF DQTP)-modified pencil graphite electrode (DQTP/PGE). The β-ketoenamine-linked COF DQTP synthesized by 1,3,5-triformylphloroglucinol (TP) and 2,6-diaminoanthraquinone (DQ) through solvothermal method is a porous crystalline with excellent conductivity and large periodic π-arrays, coupled with commercial available pencil graphite electrode to fabricate a disposable sensor for simultaneous determination of environmental endocrine disruptors bisphenol A and bisphenol S. The DQTP/PGE sensor exhibited high electrical conductivity and catalytic activity, and a good linearity was obtained in a range of 0.5-30 μM for two bisphenols with a detection limit of 0.15 μM (S/N = 3). Moreover, the sensor showed a reproducible and stable response over one month with negligible interference, and an accepted recovery with real food packaging samples.
Collapse
Affiliation(s)
- Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
23
|
Zhou J, Zhang DD, Chen XH, Guo YB, Jin MC, Zhao YG. Investigation on the occurrence and contamination of multi-mycotoxin in chestnut and jujube (red date). J Chromatogr A 2021; 1659:462486. [PMID: 34710806 DOI: 10.1016/j.chroma.2021.462486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
A rapid and efficient QuEChERS-based preparation method was established for the simultaneous determination of 43 mycotoxins in chestnut and jujube (Chinese date). The contaminants were extracted using acetonitrile and subjected to dispersive solid-phase extraction for further clean-up. Central composite design was conducted to overcome the limitations of conventional optimization methods, and assess the interaction effects between variables and reach the true optimal conditions. Quantitative analysis was performed on UHPLC-MS/MS with the aid of stable isotope internal standards and matrix-matched curves, whereas qualitative identification was carried out by using high-resolution MS based on exact masses and fragmentation patterns. In addition to the mycotoxins that are routinely monitored (like aflatoxins, ochratoxin A, etc.), this study also revealed a non-negligible contamination of zearalenone (56/170), beauvericin (52/170), enniatin B (43/170), and alternariol monomethyl ether (42/170) in chestnut and jujube, especially the chestnut flour.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Dan-Dan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Xiao-Hong Chen
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Yan-Bo Guo
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Mi-Cong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Yong-Gang Zhao
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| |
Collapse
|
24
|
Wang J, Yin R, Zhang X, Wang N, Xiao P, Hirai H, Xiao T. Transcriptomic analysis reveals ligninolytic enzymes of white-rot fungus Phanerochaete sordida YK-624 participating in bisphenol F biodegradation under ligninolytic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62390-62397. [PMID: 34195946 DOI: 10.1007/s11356-021-15012-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol F (BPF) is widely used in the plastic manufacturing industry as a replacement for bisphenol A (BPA) because BPF and BPA have similar structures and comparable properties. However, BPF is ubiquitously present in the environment and has higher toxicity to humans. This study is the first to report BPF degradation using the white-rot fungus Phanerochaete sordida YK-624 under ligninolytic conditions (pH=4.5, 30 °C). P. sordida YK-624 almost completely degraded BPF within 4 days. Moreover, functional genes involved in BPF degradation were detected by RNA-Seq. Metabolic processes and peroxidases were enriched by GO analysis, and the metabolic pathway was enriched according to the KEGG pathway analysis. These results suggested that P. sordida YK-624 could secrete higher levels of ligninolytic enzymes lignin peroxidase (LiP) and manganese peroxidase (MnP) for BPF degradation. The results indicated that LiPs and MnPs are important for BPF degradation and cytochrome P450s play a small role. Furthermore, reliability of the RNA-Seq results was validated by qRT-PCR.
Collapse
Affiliation(s)
- Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ru Yin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xue Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
25
|
Wang R, Dong S, Wang P, Li T, Huang Y, Zhao L, Su X. Development and validation of an ultra performance liquid chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal feed. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122613. [PMID: 34153545 DOI: 10.1016/j.jchromb.2021.122613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Bisphenol compounds (BPs) are a group of environmental contaminants with endocrine-disrupting effects both for humans and animals. The present work developed a sensitive analytical method for the detection of multiple BPs in the animal feed based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with post-column ammonium hydroxide (NH4OH) infusion. A modified QuEChERS method was incorporated into the extraction and purification processes. The limit of detection (LODs) and quantification (LOQs) for the target BPs were in the ranges of 0.02-0.75 μg kg-1 and 0.04-0.95 μg kg-1, respectively. Average recoveries were ranged between 82.6% and 112%. The proposed method was successfully applied to determine the concentrations of BPs in 20 actual feed samples, and the preliminary profiles of BPs in products from local feed factories were obtained. Each sample was simultaneously contaminated with at least 2 to 4 BPs, and bisphenol A (BPA) was the dominant analog of BPs found in animal feed.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Tong Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Lijuan Zhao
- Beijing University of Agriculture, Beijing 102206, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
26
|
da Silva Costa R, Sainara Maia Fernandes T, de Sousa Almeida E, Tomé Oliveira J, Carvalho Guedes JA, Julião Zocolo G, Wagner de Sousa F, do Nascimento RF. Potential risk of BPA and phthalates in commercial water bottles: a minireview. JOURNAL OF WATER AND HEALTH 2021; 19:411-435. [PMID: 34152295 DOI: 10.2166/wh.2021.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.
Collapse
Affiliation(s)
- Rouse da Silva Costa
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Tatiana Sainara Maia Fernandes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Edmilson de Sousa Almeida
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Juliene Tomé Oliveira
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail: ; Embrapa Tropical Agroindustry, R. Dra Sara Mesquita 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Francisco Wagner de Sousa
- Department of Education - Chemistry Licenciate, Federal Institute of Education, Science and Technology, R. Francisco da Rocha Martins S/N, 61609-090 Caucaia, CE, Brazil
| | - Ronaldo Ferreira do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| |
Collapse
|
27
|
Morgan MK, Clifton MS. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. TOXICS 2021; 9:47. [PMID: 33802249 PMCID: PMC8001473 DOI: 10.3390/toxics9030047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Triclosan (TCS) and bisphenol analogues are used in a variety of consumer goods. Few data exist on the temporal exposures of adults to these phenolic compounds in their everyday diets. The objectives were to determine the levels of TCS and five bisphenol analogues (BPB, BPF, BPP, BPS, and BPZ) in duplicate-diet solid food (DDSF) samples of adults and to estimate maximum dietary exposures and intake doses per phenol. Fifty adults collected 776 DDSF samples over a six-week monitoring period in North Carolina in 2009-2011. The levels of the target phenols were concurrently quantified in the DDSF samples using gas chromatography/mass spectrometry. TCS (59%), BPS (32%), and BPZ (28%) were most often detected in the samples. BPB, BPF, and BPP were all detected in <16% of the samples. In addition, 82% of the total samples contained at least one target phenol. The highest measured concentration of 394 ng/g occurred for TCS in the food samples. The adults' maximum 24-h dietary intake doses per phenol ranged from 17.5 ng/kg/day (BPB) to 1600 ng/kg/day (TCS). An oral reference dose (300,000 ng/kg/day) is currently available for only TCS, and the adult's maximum dietary intake dose was well below a level of concern.
Collapse
Affiliation(s)
- Marsha K. Morgan
- United States Environmental Protection Agency’s Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - Matthew S. Clifton
- United States Environmental Protection Agency’s Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| |
Collapse
|
28
|
Xiao Z, Wang R, Suo D, Wang S, Li X, Dong S, Li T, Su X. Deposition, depletion, and potential bioaccumulation of bisphenol F in eggs of laying hens after consumption of contaminated feed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:115721. [PMID: 33321439 DOI: 10.1016/j.envpol.2020.115721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
Increasing concerns over bisphenol A (BPA) as an endocrine disrupting chemical (EDC) and its adverse effects on both humans and animals have led to the substitution by structural analogs, such as bisphenol F (BPF), in many application areas. Information regarding to the carry-over of this emerging chemical in farm animals is essential for legislation and risk assessment purposes. In this study, a large-scale number of animal experiments were designed to investigate the transfer of BPF from feed to eggs. One control and three experimental groups of laying hens (72 hens per group) were fed with basal diets and BPF-contaminated feed at concentration levels of 0.1, 0.5 and 2.5 mg kg-1, respectively, for two weeks. The hens were then fed with BPF-free diets for a further four weeks. Eggs were collected daily, and separated into egg yolk and white for BPF analysis. The effects of different levels of BPF exposure on laying performance followed a non-monotonic dose-response curve, since low level BPF (0.1 mg kg-1) exposure did increase the laying rate, mean egg weight and daily feed intake, while high level BPF (2.5 mg kg-1) exposure showed a decreasing trend. BPF residues were detected in both egg yolks and whole eggs after two days of administration, and plateau phase was achieved within 9-18 days. There are clear linear dose-response relationships between the plateau BPF concentrations in feed and eggs. The residue of BPF was found mainly in egg yolks with conjugated form and depleted slowly (still detected 21 days after feeding the BPF-free diet of the high level group). Mean carry-over rate of 0.59% BPF from feed to eggs was obtained. Compared with the carry-over rates of PCBs and dioxins, BPF showed a relatively minor trend of bioaccumulation in eggs. To the best of our knowledge, this is the first report on the deposition, depletion, and bioaccumulation study of bisphenols in farm animals. The quantity of data can therefore be helpful in the frame of risk assessment, especially for a comprehensive estimation of consumer exposure to the residues of bisphenols.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujun Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tong Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
29
|
Wang R, Huang Y, Dong S, Wang P, Su X. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. CHEMOSPHERE 2021; 265:129022. [PMID: 33288279 DOI: 10.1016/j.chemosphere.2020.129022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Animal-derived food plays an important role in human exposure to bisphenol compounds (BPs), potentially as a result of the presence of BPs in animal feed. Even so, there have been few studies regarding the source of BPs in animal feed. The objective of the present study was to assess both the occurrence of BPs in animal feed packaging and the migration of BPs from feed packaging into animal feed. Thirteen BPs were monitored in 30 used animal feed plastic packaging samples previously employed for different animal feedstuffs and made of polypropylene (PP) or polyethylene (PE). Six and two BPs were found in PP-based woven bags and PE-based films, respectively. Bisphenol A (BPA) was the predominant analogue with a wide range of concentrations in both the PP- and PE-based packaging. A migration experiment was performed and provided the first-ever confirmation that BPA is able to migrate from plastic packaging into solid feed. Both contact time and the initial BP concentration affected the extent of migration. These results expand our knowledge regarding the origin of BPs in the food chain and suggest that further study of the bioaccumulation of BPs in animals is warranted.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| |
Collapse
|
30
|
Bisphenol A and Its Analogues in Chinese Total Diets: Contaminated Levels and Risk Assessment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8822321. [PMID: 33381270 PMCID: PMC7759395 DOI: 10.1155/2020/8822321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Bisphenol A (BPA) and its analogues (BPs) are suspected posing potential endocrine disrupting properties. They might migrate into foodstuffs through food packaging materials or contaminated water and soil. Dietary exposure is of paramount importance way for human health. European Food Safety Authority (EFSA) lowered the value of tolerable daily intake (TDI) from 50 μg/kg bw/day (d) to a temporary (t) TDI (t-TDI) of 4 μg/kg bw/d. In this study, the Chinese total dietary samples were analyzed for assessing the exposure risk of BPs by diets. BPA, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) were found in 12 kinds of food samples except for bisphenol B (BPB). A deterministic approach was used to calculate the dietary intakes of 4 kinds of compounds. For different age and gender groups, the exposure levels of BPA (178.440-403.672 ng/kg bw/d) was the highest, followed by BPS (21.372-52.112 ng/kg bw/d), BPF (20.641-50.507 ng/kg bw/d), and BPAF (0.434-1.210 ng/kg bw/d). Based on the t-TDI set by EFSA (4 μg/kg bw/d for BPA), the BPs through dietary intake pose low risks on the Chinese general population even summarization exposure levels of different BPs. However, human can be exposed to multiple endocrine disrupting chemicals rather than BPs alone; combined exposure risks should be further considered.
Collapse
|
31
|
Aguinaga Martínez MV, González N, Acebal CC, Domini CE. Coacervative microextraction with solidification of floating surfactant droplets for the determination of glibenclamide in environmental water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
33
|
Identification and Quantitation Studies of Migrants from BPA Alternative Food-Contact Metal Can Coatings. Polymers (Basel) 2020; 12:polym12122846. [PMID: 33260375 PMCID: PMC7760808 DOI: 10.3390/polym12122846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA)-based epoxy resins have wide applications as food-contact materials such as metal can coatings. However, negative consumer perceptions toward BPA have driven the food packaging industry to develop other alternatives. In this study, four different metal cans and their lids manufactured with different BPA-replacement food-contact coatings are subjected to migration testing in order to identify migratory chemical species from the coatings. Migration tests are conducted using food simulants and conditions of use corresponding to the intended applications and regulatory guidance from the U.S. Food and Drug Administration. Extracts are analyzed by gas chromatography mass spectrometry (GC-MS) and high resolution GC-MS. The migratory compounds identified include short chain cyclic polyester migrants from polyester-based coatings and bisphenol-type migrants including tetramethyl bisphenol F (TMBPF), tetramethyl bisphenol F diglycidyl ether (TMBPF DGE), bisphenol F (BPF), bisphenol C (BPC), and other related monomers or oligomers. The concentration of the migrants is estimated using an internal standard, and validated trimethylsilyl (TMS) derivatization GC-MS methods are developed to specifically quantify TMBPF, BPF, BPC, and BPA in the coatings. The results will aid the safety evaluation of new food-contact material coating technology based on TMBPF chemistry and will provide an important reference for the industry in identifying and quantifying non-BPA coating-borne migrants.
Collapse
|
34
|
Lin YJ, Lin Z. In vitro-in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122856. [PMID: 32937695 DOI: 10.1016/j.jhazmat.2020.122856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Combined risk assessment of endocrine effects of bisphenol A (BPA) and its analogues, such as bisphenols S, F, and AF (BPS, BPF, and BPAF), is challenging due to lack of related common toxicity metrics. This study conducted a population-based in vitro-to-in vivo extrapolation using physiologically based pharmacokinetic (PBPK) models coupled with Monte Carlo simulations to convert ToxCast in vitro estrogen receptor (ER) assays to human equivalent doses (HEDs). The ER pathway-based HEDs were compared with HEDs from animal studies and used to assess the combined risks for different populations across different countries/regions in a probabilistic manner. The estimated ER pathway-based HEDs for the four bisphenols (BPs) matched the animal-derived HEDs. The HEDs for the ER gene transcription (the common biological process target among BPs) were 0.40 (2.5th-97.5th percentiles: 0.06-5.42), 4.43 (0.69-53.84), 3.30 (0.51-626.57), and 1.12 (0.16-9.73) mg/kg/day for BPA, BPS, BPF, and BPAF, respectively. Results suggest a potentially moderate concern for combined risks of activating the ER pathway for toddlers and adults with high dietary exposures. This study presents in vitro-based credible HEDs for the four BPs and represents an advancement in the application of in vitro-in silico-based alternative approaches in human health risk assessment.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, 11221, Taiwan; Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
35
|
Kovačič A, Gys C, Gulin MR, Kosjek T, Heath D, Covaci A, Heath E. The migration of bisphenols from beverage cans and reusable sports bottles. Food Chem 2020; 331:127326. [DOI: 10.1016/j.foodchem.2020.127326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/26/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
|
36
|
Subuhi NEAM, Saad SM, Zain NNM, Lim V, Miskam M, Kamaruzaman S, Raoov M, Yahaya N. An efficient biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles for quantification of bisphenol A in water samples by gas chromatography‐mass spectrometry detection. J Sep Sci 2020; 43:3294-3303. [DOI: 10.1002/jssc.201901194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Nur Ezwan Anis Muhd Subuhi
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
- School of Chemical SciencesUniversiti Sains Malaysia Penang Malaysia
| | - Salwani Md Saad
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | - Vuanghao Lim
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | | | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of ScienceUniversiti Putra Malaysia Selangor Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of ScienceUniversiti Malaya Kuala Lumpur Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
- Department of ChemistryUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
37
|
Dummy molecularly imprinted polymer (DMIP) as a sorbent for bisphenol S and bisphenol F extraction from food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Akhbarizadeh R, Dobaradaran S, Schmidt TC, Nabipour I, Spitz J. Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122271. [PMID: 32311916 DOI: 10.1016/j.jhazmat.2020.122271] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
Contaminants of emerging concern (CECs) have recently been detected in bottled water and have brought about discussions on possible risks for human health. However, a systematic review of CECs in bottled water is currently lacking due to the relatively new introduction and/or detection of these pollutants. Hence, this paper reviews the existing studies on the presence of six major groups of emerging contaminants including microplastics (MPs), pharmaceuticals and personal care products (PPCPs), bisphenol A (BPA), phthalates, alkylphenols (APs), and perfluoroalkyl and polyfluoroalkyl substances (PFASs) in bottled water from different countries. Also, the findings related to CECs' levels, their possible sources, and their risks are summarized. The gathered data indicate that MPs within the size range of 1-5 μm are the most predominant and potentially toxic classes of MPs in bottled water. In addition, PPCPs, PFASs, APs, and BPA occur in concentration levels of ng/L, while phthalates occur in the μg/L level in bottled water. The bottle type plays an important role in the contamination level. As expected, water in plastic bottles with plastic caps is more polluted than in glass bottles. However, other sources of contamination such as contact materials during cleaning, bottling, and storage are not negligible. Based on the gathered data in this review, the CEC levels except for MPs (no threshold values) in bottled water of most countries do not raise a safety concern for the human. However, the occurrence of individual CECs and their association in bottled water need more accurate data to understand their own/synergistic effects on human health.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jörg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
39
|
Shen Y, Liu T, Shi Y, Zhuang F, Lu J, Zhu Q, Ding F. Bisphenol A analogs in patients with chronic kidney disease and dialysis therapy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109684. [PMID: 31541948 DOI: 10.1016/j.ecoenv.2019.109684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) accumulates in patients with chronic kidney disease (CKD), and hemodialysis filters may contribute to bisphenol burden in patients on hemodialysis (HD). The serum levels of BPA and three BPA analogs, namely, bisphenol B (BPB), bisphenol S (BPS), and bisphenol F (BPF), in 58 patients with CKD, 66 patients on dialysis therapy and 30 healthy control were investigated. The content of four bisphenols (BPs) was also examined in three types of dialysis filters, followed by an in vitro elution experiment to test the release of BPs from the dialysis filters. The serum levels of BPA (r = -0.746, p < 0.05) and BPS (r = -0.433, p < 0.05) in 58 CKD patients and 30 healthy control were correlated with the decrease in estimated glomerular filtration rate. The serum levels of BPs in the HD patients were higher than those in the peritoneal dialysis patients (p < 0.05). In the in vitro study on the BP contents in dialysis filters, BPA was the main form of the BPs in the polysulfone membrane (20.86 ± 1.18 ng/mg) and in the polyamide membrane (18.70 ± 2.88 ng/mg), and a modicum of BPS (0.01 ± 0.01 ng/mg) was detected in the polyethersulfone membrane. The results of the elution experiment were in accordance with the results of BPs content in the dialysis filters. Insufficient renal function may lead to BPs accumulation in patients with CKD, and BPs in dialysis products may cause BPs burden in patients on HD.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Tingyan Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuanyuan Shi
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Feng Zhuang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jianxin Lu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.
| |
Collapse
|
40
|
Russo G, Varriale F, Barbato F, Grumetto L. Are Canned Beverages Industries Progressively Switching to Bisphenol AF? J Food Sci 2019; 84:3303-3311. [DOI: 10.1111/1750-3841.14833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/03/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Giacomo Russo
- Dept. of PharmacySchool of Medicine and SurgeryUniv. of Naples Federico II Via D. Montesano, 49 I‐80131 Naples Italy
- Consorzio Interuniversitario INBB Viale Medaglie d'Oro, 305 I‐00136 Rome Italy
| | - Fabio Varriale
- Dept. of PharmacySchool of Medicine and SurgeryUniv. of Naples Federico II Via D. Montesano, 49 I‐80131 Naples Italy
| | - Francesco Barbato
- Dept. of PharmacySchool of Medicine and SurgeryUniv. of Naples Federico II Via D. Montesano, 49 I‐80131 Naples Italy
- Consorzio Interuniversitario INBB Viale Medaglie d'Oro, 305 I‐00136 Rome Italy
| | - Lucia Grumetto
- Dept. of PharmacySchool of Medicine and SurgeryUniv. of Naples Federico II Via D. Montesano, 49 I‐80131 Naples Italy
- Consorzio Interuniversitario INBB Viale Medaglie d'Oro, 305 I‐00136 Rome Italy
| |
Collapse
|