1
|
Cao J, Zhao H, Peng Z, Yang B, Xu H, Cheng J, Wang H. The effects of non-covalent interaction between rice glutelin and gum arabic on digestibility and stability of perilla oil emulsion. Food Chem 2025; 479:143726. [PMID: 40088649 DOI: 10.1016/j.foodchem.2025.143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
This study investigated the formation formation mechanism of rice glutelin (RG)-gum arabic (GA) complex using multispectral techniques and molecular simulations. RG-GA-perilla oil (PO) emulsions were constructed, and their microstructure, emulsifying, rheological, stability, and digestion properties were systematically evaluated. Turbidity and ζ-potential showed effective RG-GA complexation at pH 3.5, with GA concentration influencing their electrostatic interactions. Multispectral and molecular docking demonstrated that RG and GA interacted through hydrophobic and hydrogen bonding. RG's secondary structure from an α-helix/random coil to β-sheet/β-turn, establishing ordered conformation. At 1.5 w% GA, RG-GA-PO emulsion exhibited reduced particle size and uniform droplet distribution.The emulsions displayed enhanced emulsifying and rheological properties, along with improved stability against thermal processing, freeze-thaw and oxidation. In vitro digestion studies revealed that 1.5 w% GA contributed to PO stability during gastric digestion by inhibiting RG degradation. The RG-GA complex facilitated PO release in small intestine, with a maximum FAA release rate of 58.06 ± 3.83 %.
Collapse
Affiliation(s)
- Jia Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyue Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Wei S, Shi C, Dai Y, Wu L, Ding B, Chen H. Mechanisms underlying the improvement in foaming properties of ovalbumin via non-covalent binding to polymeric proanthocyanidins from Averrhoa carambola fruits. Int J Biol Macromol 2025; 308:142576. [PMID: 40157680 DOI: 10.1016/j.ijbiomac.2025.142576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The strong binding capacity of proanthocyanidins towards proteins provides a potential for natural modification of ovalbumin (OVA) and eventually altering its functionalities. In this study, polymeric proanthocyanidins from the fruit of Averrhoa carambola (APAs) were prepared and structurally characterized, and then the possibility and underlying mechanisms of enhancing OVA foaming properties via non-covalent binding to APAs were evaluated. Procyanidins consisting predominately of epicatechin units connected by both A- and B-type interflavan bonds were identified as APAs principal components. UV-vis absorption, fluorescence, CD, FT-IR spectroscopy and molecular docking results revealed that APAs could bind to OVA to form the ground-state complexes and statically quench the intrinsic fluorescence of OVA. The conformation of OVA was changed by its interaction with APAs, and the main binding forces between them were hydrogen bonding and hydrophobic interactions. Moreover, the surface hydrophobicity, contact angle and surface tension of OVA were declined after complexation with APAs, while the free sulfhydryl content, apparent viscosity and interfacial protein content were increased. The addition of APAs significantly promoted the foaming performance of OVA with an improvement of 15 % in foaming capacity and 7 % in foam stability. These results suggested that APAs might be applied as foaming additives in food industry.
Collapse
Affiliation(s)
- Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Chenjun Shi
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Dai
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Lang Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Wang Y, Zeng L, Deng W, Wang J, Zhang J. The molecular reactive pathway between lipoxygenase and lipase and reactive species generated in dielectric barrier discharge atmospheric cold plasma: An investigation using molecular docking. Food Chem 2025; 465:141973. [PMID: 39522334 DOI: 10.1016/j.foodchem.2024.141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The molecular docking was explored to study the interactions between reactive species generated by cold plasma and the enzymes lipoxygenase (LOX) and lipase (LPS), with the aim of elucidating the molecular mechanisms governing these interactions. Molecular docking results suggest that both LOX and LPS are primarily involved in hydrogen bonding interactions with the seven reactive species. The key binding sites for LOX and LPS were identified as Ile 663 and Glu 188, respectively. Notably, the lowest docking energy was observed between LOX and NO (-13.75 kcal/mol), whereas for LPS, it is between LPS and NO3 (-12.08 kcal/mol). Increased treatment voltage and time resulted in higher inactivation levels, with LPS exhibiting higher residual activity compared to LOX. When the voltage was 75 kV and the time was 120 s, the residual activities of LOX and LPS were 42.88% and 56.77%, respectively. Consequently, the results enhance our understanding of the mechanisms underlying the inhibition of enzyme activity by reactive species generated by cold plasma. Moreover, cold plasma may serve as a novel preservation technology for inhibiting lipid oxidation of food by controlling enzyme activity.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China
| |
Collapse
|
4
|
Song D, Lu C, Chang C, Ji J, Lin L, Liu Y, Li H, Chen L, Chen Z, Chen R. Natural Binary Herbal Small Molecules Self-Assembled Nanogel for Synergistic Inhibition of Respiratory Syncytial Virus. ACS Biomater Sci Eng 2024; 10:6648-6660. [PMID: 39324477 DOI: 10.1021/acsbiomaterials.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Respiratory syncytial virus (RSV) is one of the most significant pathogenic infections in childhood, associated with high morbidity and mortality rates. Currently, there is no effective and safe drug or vaccine available for RSV. Glycyrrhizic acid (GA), an active compound derived from the natural herb licorice, has been reported to provide protection against influenza and coronaviruses, exhibiting notable antiviral and anti-inflammatory properties. Ephedrine (EPH) is a commonly prescribed medication for the treatment of cough and asthma, and it also demonstrates certain antiviral effects. In this study, EPH and GA were combined to form an efficient nanomaterial (EPH-GA nanogel). The self-assembly of this nanogel is driven by hydrogen bonding and hydrophobic interactions, allowing it to serve as an antiviral nanomedicine without the need for a dual-component carrier, achieving a 100% drug loading efficiency. Oral administration of the EPH-GA nanogel significantly reduced viral load in the lungs of mice and improved lung lesions and tissue infiltration caused by RSV. Notably, we discovered that the assembled drug may create a "physical barrier" that prevents RSV from adsorbing to host cells, while free GA and EPH may compete with RSV for protein binding sites, thereby enhancing cellular uptake of EPH. Consequently, this prevents RSV infection and proliferation within host cells. Furthermore, the EC50 values changed from 310.83 μM for EPH and 262.88 μM for GA to 68.25 μM for the EPH-GA combination, with a combination index of 0.458. In addition, the in vivo biopharmaceutic process of GA and EPH was investigated, revealing that the oral administration of EPH-GA significantly increased the bioavailability of EPH while maintaining its plasma concentration at a relatively stable level. This enhancement may contribute to a synergistic antiviral effect when combined with GA. Furthermore, the in vivo process of EPH-GA demonstrates the advantage of delivering the drug to the lesion at elevated levels, thereby facilitating its antiviral mechanism at the cellular level. In this study, we identified an effective nanomedicine, EPH-GA nanogel, which can inhibit the proliferation of RSV and mitigate lung lesions resulting from viral infection by influencing the biopharmaceutical process in vivo. This research not only offers a novel strategy for the nanomedicine treatment of RSV but also elucidates, to some extent, the compatibility mechanisms of the multicomponents of traditional Chinese medicine.
Collapse
Affiliation(s)
- Dandan Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Affiliated Dongtai Hospital of Nantong University, Yancheng 224200, China
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Chang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenqi Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huizhu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Tumor Hospital of Jining, Jining 272004, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Xu X, Djohari KN, Jiang Y, Zhou W. Deciphering the inhibitory mechanisms of betanin and phyllocactin from Hylocereus polyrhizus peel on protein glycation, with insights into their application in bread. Food Chem 2024; 452:139594. [PMID: 38749142 DOI: 10.1016/j.foodchem.2024.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Kelly Natalia Djohari
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Yingfen Jiang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, 215123, China.
| |
Collapse
|
6
|
Ali MY, Zamponi GW, Abdul QA, Seong SH, Min BS, Jung HA, Choi JS. Prunin from Poncirus trifoliata (L.) Rafin Inhibits Aldose Reductase and Glucose-Fructose-Mediated Protein Glycation and Oxidation of Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7203-7218. [PMID: 38518258 DOI: 10.1021/acs.jafc.3c09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 μM) and HRAR (IC50 0.68-4.88 μM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 μM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the β-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, AB, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, AB, Canada
| | - Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Natural Products Research Division, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Byung-Sun Min
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Lee DY, Han D, Lee SY, Yun SH, Lee J, Mariano E, Choi Y, Kim JS, Park J, Hur SJ. Preliminary study on comparison of egg extraction methods for development of fetal bovine serum substitutes in cultured meat. Food Chem X 2024; 21:101202. [PMID: 38434697 PMCID: PMC10904906 DOI: 10.1016/j.fochx.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
Fetal bovine serum (FBS) substitution remains one of the challenges to the realization of cultured meat production in the marketplace. In this study, three methods were developed to extract a substitute for FBS using egg white extract (EWE): using 25 mM CaCl2/2.5 % ammonium sulfate/citric acid (A); ethyl alcohol (B); and 5 % ammonium sulfate/citric acid (C). B EWE can effectively replace up to 50 % of FBS in growth media (10 % of the total). Ovalbumin in the extracts can promote cell proliferation, and components along the 12 kDa protein band have the potential to inhibit cell proliferation. Chick primary muscle cells applied with B EWE, an edible material that improved the cost and time efficiency of cultured meat production, effectively proliferated/differentiated. Therefore, EWE extracted using ethyl alcohol may be used as an FBS substitute to reduce animal sacrifices and should be considered a viable alternative to FBS for cultured meat.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
8
|
Xu T, Li X, Wu C, Fan G, Li T, Zhou D, Zhu J, Wu Z, Hua X. Improved encapsulation effect and structural properties of whey protein isolate by dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 257:128556. [PMID: 38061529 DOI: 10.1016/j.ijbiomac.2023.128556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The whey protein isolate (WPI) was modified by dielectric barrier discharge cold plasma (DBD) in order to improve its encapsulation efficiency of rutin. In this work, the effect of DBD treatment on structure and physicochemical properties of WPI and the interaction between DBD-treated WPI and rutin were investigated. The results showed that the structural change of WPI leaded to the exposure of internal hydrophobic groups, increasing the interaction site with rutin. The encapsulation efficiency of DBD-treated WPI (30 kV, 30 s) on rutin was improved by 12.42 % compared with control group. The results of multispectral analysis showed that static quenching occurred in the process of interaction between DBD-treated and rutin, hydrogen bond and van der Waals force were the main forces between them. Therefore, DBD treatment can be used as a method to improve the encapsulation efficiency of WPI on hydrophobic active substances.
Collapse
Affiliation(s)
- Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhihao Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaowen Hua
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
9
|
Tao Y, Fan Y, Wang M, Wang S, Cui JJ, Lian D, Lu S, Li L. Comparative study of the interaction mechanism of astilbin, isoastilbin, and neoastilbin with CYP3A4. LUMINESCENCE 2023; 38:1654-1667. [PMID: 37421260 DOI: 10.1002/bio.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The interactions of human CYP3A4 with three selected isomer flavonoids, such as astilbin, isoastilbin and neoastilbin, were clarified using spectral analysis, molecular docking, and molecular dynamics simulation. During binding with the three flavonoids, the intrinsic fluorescence of CYP3A4 was statically quenched in static mode with nonradiative energy conversion. The fluorescence and ultraviolet/visible (UV/vis) data revealed that the three flavonoids had a moderate and stronger binding affinity with CYP3A4 due to the order of the Ka1 and Ka2 values ranging from 104 to 105 L·mol-1 . In addition, astilbin had the highest affinity with CYP3A4, then isoastilbin and neoastilbin, at the three experimental temperatures. Multispectral analysis confirmed that binding of the three flavonoids resulted in clear changes in the secondary structure of CYP3A4. It was found from fluorescence, UV/vis and molecular docking analyses that these three flavonoids strongly bound to CYP3A4 by means of hydrogen bonds and van der Waals forces. The key amino acids around the binding site were also elucidated. Furthermore, the stabilities of the three CYP3A4 complexes were evaluated using molecular dynamics simulation.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Jing Jing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuning Lu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
10
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
Affiliation(s)
| | | | | | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| | | | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| |
Collapse
|
11
|
Guo J, Gan C, Cheng B, Cui B, Yi F. Exploration of binding mechanism of apigenin to pepsin: Spectroscopic analysis, molecular docking, enzyme activity and antioxidant assays. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122281. [PMID: 36584639 DOI: 10.1016/j.saa.2022.122281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Pepsin plays an important role in nutrient metabolism. Apigenin (AP) is a beneficial polyphenol to human health. To enhance the bioavailability of AP and elucidate the inhibitory effect of AP on pepsin, the interaction mechanism of AP with pepsin was investigated using spectroscopic analysis and molecular docking, and the activity of pepsin and antioxidant activity of AP was also evaluated. Specifically, AP performed static quenching of pepsin and had only one binding site on pepsin. More interestingly, the interaction between AP and pepsin was spontaneous, while hydrogen bonds and van der Waals forces were the main binding forces. Generally, synchronous and three-dimensional fluorescence confirmed that AP induced the conformational changes of pepsin, and molecular docking proved the above results and illustrated the specific binding patterns. Specifically, AP inhibited the activity of pepsin, while pepsin decreased the antioxidant activity of AP. These results provided useful information for elucidating the interactions between AP and pepsin.
Collapse
Affiliation(s)
- Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Chuanfa Gan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Bo Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Bo Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Fankai Yi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
12
|
Seo G, Kim K. Exploring the mechanism of action of Hedyotis diffusa Willd on acne using network analysis. Medicine (Baltimore) 2023; 102:e33323. [PMID: 36961163 PMCID: PMC10037416 DOI: 10.1097/md.0000000000033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
In this study, we used a network pharmacological method to explore the active ingredients of Hedyotis diffusa Willd (HDW) in the treatment of acne and elucidated the physiological mechanisms in the human body in which they are involved. We identified the active compounds of HDW that are expected to act effectively in the human body using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform and extracted potential interacting proteins for each active compound using the Swiss Target Prediction platform. Next, we analyzed the potential mechanisms of action of the protein targets shared by HDW and each standard drug on acne and assessed the possibility of spontaneous occurrence of the binding between proteins and active compounds through the molecular docking process. Seven active compounds were selected according to the oral bioavailability and drug-likeness criteria of the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. Subsequently, 300 protein targets were collected from the Swiss Target Prediction. Using the Search Tool for the Retrieval of Interacting Genes/Proteins database, a protein-protein interaction network was constructed by analyzing the relationship between HDW, acne, and each standard drug. By analyzing the gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway, the "positive regulation of lipid metabolic process" was found to be the most involved pathway shared by HDW, acne, and isotretinoin. An analysis of the protein targets shared by the antibiotic agents with HDW and acne found that "cholesterol storage" in tetracycline, "icosacoid transport" in azithromycin, "steroid hydroxylase activity" in erythromycin, "positive regulation of leukocyte tethering or rolling" in clindamycin, "response to UV-A" in minocycline, "steroid 11-beta-monooxygenase activity" in doxycycline, and "neutrophil-mediated immunity" in trimethoprim were the most involved. Virtual molecular docking analysis showed that all proteins spontaneously bound to their corresponding active compounds. Our analysis suggests that HDW can, directly and indirectly, suppress sebum secretion and exert antiinflammatory effects on acne. Further, HDW may regulate free radicals and suppress apoptosis. Therefore, HDW can be used as an alternative or supplement to standard drugs for acne treatment in patients who cannot use standard treatments due to side effects.
Collapse
Affiliation(s)
- Gwangyeel Seo
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Li T, Li J, Huang Y, Qayum A, Jiang Z, Liu Z. Comparison of interaction, structure, and cell proliferation of α-lactalbumin-safflower yellow complex induced by microwave heating or conventional heating. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1846-1855. [PMID: 36347624 DOI: 10.1002/jsfa.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The protein-polyphenol interaction mechanism has always been a research hotspot, but their interaction is affected by heat treatment, which is widely applied in food processing. Moreover, the effects of microwave or water-bath heating on the protein-polyphenol interaction mechanism have been not clarified. The pasteurization condition (65 °C, 30 min) was selected to compare the effects of microwave or water bath on binding behavior, structure, and cell proliferation between α-lactalbumin (α-LA) and safflower yellow (SY), thus providing a guide for the selection of functional dairy processing conditions. RESULTS Microwave heat treatment of α-LA-SY resulted in stronger fluorescence quenching than that of conventional heat treatment. Moreover, the binding constant Ka of all α-LA-SY samples was augmented significantly after microwave or water bath treatment, and microwave-heated α-LA-SY showed the maximum Ka . Fourier transform infrared spectroscopy showed that microwave heating resulted in more ordered structures of α-LA into its disordered structures than water bath heating. However, the ferric reducing antioxidant power and chroma value of α-LA-SY were more reduced by microwave heating than by water bath heating. Moreover, microwave heating facilitated the cell proliferation of α-LA-SY compared with water bath treatment. CONCLUSION It was demonstrated that microwave heating promoted interaction between α-LA and SY more than water bath heating did. Microwave heat treatment was a safe and effective way to enhance the binding affinity of α-LA to SY, being a potential application in food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Abdul Qayum
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhanmei Jiang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
| |
Collapse
|
14
|
Liu L, Dong Q, Kong Y, Kong Y, Yu Z, Li B, Yan H, Chen X, Shen Y. The Effect of B-type Procyanidin on Free Radical and Metal Ion Induced β-Lactoglobulin Glyco-oxidation via Mass Spectrometry and Interaction Analysis. Food Res Int 2023; 168:112744. [PMID: 37120199 DOI: 10.1016/j.foodres.2023.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
Procyanidin is a group of dietary flavonoids abundant in berry fruits. In this study, the effects and underlying mechanisms of B type procyanidin (PC) on free radical and metal ion (H2O2, AAPH and Fe3+) induced milk protein β-lactoglobulin (BLG) glyco-oxidation were investigated. The results indicated that PC protected BLG structure changes from cross-link and aggregation induced by free radicals and metal ion. Additionally, it effectively inhibited BLG oxidation by reducing approximately 21%-30% carbonyls and 15%-61% schiff base crosslink formation. Also, PC suppressed BLG glycation by inhibiting 48-70% advanced glycation end-products (AGEs) and reduced the accumulation of intermediate product methylglyoxal (MGO). The corresponding mechanisms were elucidated that PC exhibited great free radical scavenging and metal chelating properties; PC had non-covalent bind with the amino acid residues (preferably lysine and arginine) of BLG and blocked them from glycation; PC interrupted BLG glycation by forming procyanidin-MGO conjugates. Therefore, B type procyanidin was an effective glyco-oxidation inhibitor in milk products.
Collapse
|
15
|
Deng Y, Wang X, Zhang Y, Zhang C, Xie P, Huang L. Inhibitory effect of Ginkgo biloba seeds peptides on methylglyoxal-induced glycations. Food Chem Toxicol 2023; 172:113587. [PMID: 36596446 DOI: 10.1016/j.fct.2022.113587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate the antiglycation activity and mechanism of two identified peptides, Valine-Valine-Phenylalanine-Proline-Glycine-Cysteine-Proline-Glutamic acid (VVFPGCPE) and Serine-Valine-Aspartic acid-Aspartic acid-Proline-Arginine-Threonine-Lysine (SVDDPRTL), from Ginkgo biloba seeds protein hydrolysates. Both VVFPGCPE and SVDDPRTL were efficient in bovine serum albumin (BSA)-methylglyoxal (MGO) model to inhibit BSA glycation, while VVFPGCPE showed higher antiglycation activity than SVDDPRTL. In antioxidant assays, VVFPGCPE scavenged more hydroxyl and super anion radicals, and chelated more Fe2+. Moreover, VVFPGCPE was more efficient in alleviating glycoxidation since it retained higher content of tryptophan and reduced dityrosine and kynurenine generation. Compared with SVDDPRTL, VVFPGCPE showed better performance in inhibiting protein aggregation and amyloid-like fibrillation formation. Therefore, VVFPGCPE was selected for further mechanism study. The circular dichroism analysis suggested VVFPGCPE could preserve α-helix structure and stabilize protein structure. The MGO trapping assay indicated VVFPGCPE (5 mg/mL) could capture 66.25% MGO within 24 h, and the mass spectrometry revealed VVFPGCPE could trap MGO by forming VVFPGCPE-mono-MGO adducts. Besides, molecular simulations suggested VVFPGCPE could interact with key glycation residues, arginine and lysine residues, of BSA mainly through van der Waals and hydrogen bonds. This study might supply a theoretical basis for the development of VVFPGCPE as an effective antiglycation agent.
Collapse
Affiliation(s)
- Yejun Deng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Xiang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Yang Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing, 210037, China.
| |
Collapse
|
16
|
He Q, Mu Q, Wei Z, Peng B, Lan Z, Zhang Y, Yao W, Nie J. Investigation of the binding behavior of bioactive 7-methoxyflavone to human serum albumin by coupling multi-spectroscopic with computational approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121920. [PMID: 36201870 DOI: 10.1016/j.saa.2022.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.
Collapse
Affiliation(s)
- Qing He
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qi'er Mu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongxun Wei
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Bin Peng
- Momordica grosvenori Research Institution, Yongfu County Bureau of Agriculture and Rural Affairs, Guilin 541800, China
| | - Zhenni Lan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Weihao Yao
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
17
|
Yi J, Che H, Ren J, Yu H, Song K, Wang X, Zhao X, Wang X, Li Q. Insights into the interaction of cyclooxygenase and lipoxygenase with natural compound 3,4',5,7-Tetrahydroxyflavone based on multi-spectroscopic and metabolomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121800. [PMID: 36067623 DOI: 10.1016/j.saa.2022.121800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.
Collapse
Affiliation(s)
- Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Jiping Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Kexin Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
18
|
Chen YT, Lin YY, Pan MH, Ho CT, Hung WL. Inhibitory effects of rooibos (Aspalathus linearis) against reactive carbonyl species and advanced glycation end product formation in cookies. Food Chem X 2022; 16:100515. [DOI: 10.1016/j.fochx.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
19
|
6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules 2022; 27:molecules27175720. [PMID: 36080485 PMCID: PMC9458250 DOI: 10.3390/molecules27175720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 μM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 μM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.
Collapse
|
20
|
Wu X, Yang X, Geng X, Ji X, Zhang X, Yue H, Li G, Sang N. Bisphenol A Analogs Induce Cellular Dysfunction in Human Trophoblast Cells in a Thyroid Hormone Receptor-Dependent Manner: In Silico and In Vitro Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8384-8394. [PMID: 35666658 DOI: 10.1021/acs.est.1c08161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) and its analogs are frequently detected in human daily necessities and environmental media. Placental thyroid hormone plays an important role in fetal development. Herein, we followed the adverse outcome pathway (AOP) to explore the toxic mechanisms of BPA and its analogs toward placental thyroid hormone receptor (TR). First, the TOX21 database was used, and the interactions between BPA analogs and the ligand-binding domains (LBDs) of two subtypes of TR (TRα and TRβ) were subjected to in silico screening using molecular docking (MD) and molecular dynamics simulation (MDS). Fluorescence spectra and circular dichroism (CD) showed that BPA and its analogs interfere with TRs as a molecular initiation event (MIE), including static fluorescence quenching and secondary structural content changes in TR-LBDs. Key events (KEs) of the AOP, including the toxicity induced in placental chorionic trophoblast cells (HTR-8/SVneo) by an inverted U-shaped dose effect and changes in ROS levels, were tested in vitro. BPA, BPB, and BPAF significantly changed the expression level of TRβ, and only BPAF significantly downregulated the expression level of TRα. In conclusion, our study contributes to the health risk assessment of BPA and its analogs regarding placental adverse outcomes (AOs).
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P. R. China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
21
|
Wang Z, Yang L, Xue S, Wang S, Zhu L, Ma T, Liu H, Li R. Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ziyi Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Sen Xue
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lijie Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Tao Ma
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Ruren Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|
22
|
High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Zhang Y, Pan Y, Li J, Zhang Z, He Y, Yang H, Zhou P. Inhibition on α-Glucosidase Activity and Non-Enzymatic Glycation by an Anti-Oxidative Proteoglycan from Ganoderma lucidum. Molecules 2022; 27:1457. [PMID: 35268560 PMCID: PMC8912016 DOI: 10.3390/molecules27051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
The prevention of postprandial hyperglycemia and diabetic complications is crucial for diabetes management. Inhibition of α-glucosidase to slow carbohydrate metabolism is a strategy to alleviate postprandial hyperglycemia. In addition, suppression of non-enzymatic glycation can diminish the advanced glycation end products and reduce the oxidative stress and inflammation, thereby preventing the diabetic complications. In this study, an anti-oxidative proteoglycan (named FYGL) extracted from Ganoderma lucidum was investigated in vitro for its inhibitory effect on α-glucosidase and non-enzymatic glycation using molecular kinetics, intrinsic fluorescence assay, and bovine serum albumin glycation models. The molecular kinetics and fluorescence assay revealed that FYGL decreases α-glucosidase activity by forming a FYGL-α-glucosidase complex. To evaluate the anti-glycation effect, fructose-glycated and methylglyoxal-glycated BSA models were analyzed by spectroscopic and SDS-PAGE methods. Results showed that FYGL inhibited the glycation at every stage and suppressed glycoxidation, possibly due to its anti-oxidative capacity and FYGL-BSA complex formation. Furthermore, we demonstrated in vivo that FYGL could alleviate postprandial hyperglycemia in db/db mice as well as AGE accumulation and vascular injury in diabetic rats. Overall, FYGL possesses anti-postprandial hyperglycemia and anti-glycation functions and would be potentially used in clinic for diabetes and related complication management.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China; (Y.Z.); (Y.P.); (J.L.)
| | - Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China; (Y.Z.); (Y.P.); (J.L.)
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China; (Y.Z.); (Y.P.); (J.L.)
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; (Z.Z.); (Y.H.)
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; (Z.Z.); (Y.H.)
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; (Z.Z.); (Y.H.)
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China; (Y.Z.); (Y.P.); (J.L.)
| |
Collapse
|
24
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
25
|
Peng CY, Zhu HD, Zhang L, Li XF, Zhou WN, Tu ZC. Urolithin A alleviates advanced glycation end-product formation by altering protein structures, trapping methylglyoxal and forming complexes. Food Funct 2021; 12:11849-11861. [PMID: 34734623 DOI: 10.1039/d1fo02631c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urolithin A (UroA) is a first-in-class natural compound derived from the gut microbiota-derived metabolites of ellagitannins. This research for the first time evaluates the mechanisms of UroA inhibiting advanced glycation end-product (AGE) formation by fluorescence spectroscopy, molecular docking, liquid chromatography (LC) and LC-Oribitrap tandem mass spectrometry. The results indicated that UroA exhibited a good suppression effect on the formation of AGEs in human serum albumin (HSA)-fructose and HSA-methylglyoxal (MGO) systems. Further mechanism analysis revealed that UroA alleviated AGE formation by changing the conformational structure of HSA, trapping reactive MGO to form mono-MGO-UroA complexes, promoting the exposure of chromophores to a more hydrophobic micro-environment, and forming stable UroA-HSA complexes. UroA bound with HSA in an equimolar manner, the binding was an exothermic spontaneous process, subdomain IIIA was the preferred binding pocket, and hydrogen bonding, hydrophobic interactions and van der Waals forces were the major interaction forces. The number of glycation sites detected in glycated HSA was reduced by 1 and 2, respectively, when 181.82 and 363.64 μM UroA was added. These could provide an insight into the mechanism of UroA inhibiting HSA glycation, and highlight its value as a promising glycation inhibitor in the prevention of diabetic complications.
Collapse
Affiliation(s)
- Chun-Yan Peng
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Hua-Dong Zhu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lu Zhang
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Xiao-Feng Li
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Wen-Na Zhou
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. .,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
26
|
Kuhn F, Santagapita PR, Noreña CPZ. Influence of egg albumin and whey protein in the co‐encapsulation of betalains and phenolic compounds from
Bougainvillea glabra
bracts in Ca(II)‐alginate beads. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fernanda Kuhn
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Patricio R. Santagapita
- Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica y Departamento de Industrias, & CONICET‐Universidad de Buenos Aires Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Universidad de Buenos Aires Buenos Aires Argentina
| | | |
Collapse
|
27
|
Li T, Yang Y, Wang X, Dai W, Zhang L, Piao C. Flavonoids derived from buckwheat hull can break advanced glycation end-products and improve diabetic nephropathy. Food Funct 2021; 12:7161-7170. [PMID: 34169956 DOI: 10.1039/d1fo01170g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) is the most important complication in patients with diabetes. The accumulation of advanced glycation end-products (AGEs) is the main reason for the development of DN. In this study, we investigated the mechanism of buckwheat hull flavonoids to break AGEs in vitro by measuring fluorescence analysis, three-dimensional fluorescence, protein molecular weight, free amino groups, and the sulfhydryl group content. Proteomics analysis was used to determine the effect of total buckwheat hull flavonoids (TBHF) intervention on protein differential expression in the kidney of db/db mice. The results showed that buckwheat hull flavonoids were potent in breaking AGEs in vitro, and they protected mice kidneys by regulating the renal AGE-RAGE pathway. This study lays a strong experimental and theoretical foundation for the development of new lysing agents to break AGEs. The findings should make an important contribution to the field of flavonoids in improving the application of diabetic nephropathy in the diet.
Collapse
Affiliation(s)
- Tianzhu Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Q, Huang Z, Wang Y, Wang Y, Fu L, Su L. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: A mechanistic investigation. Food Chem 2021; 361:130102. [PMID: 34029891 DOI: 10.1016/j.foodchem.2021.130102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Protein glycation and formation of advanced glycation end-products (AGEs) impose threats to the human health. This study firstly investigated the inhibition of Chinese bayberry (Myrica rubra) phenolics on AGEs formation through mechanistic analysis. Four common Chinese bayberry cultivars were selected to prepare phenolic-rich extracts (CBEs) and characterized for phenolic composition, and their anti-AGE properties were evaluated in multiple in vitro systems. Total sixteen phenolics were quantified in CBEs by UPLC-ESI-MS/MS. CBEs reduced total and specific fluorescent AGEs formation in various simulating models, and protected the protein from structural modification, oxidation, and cross-linking. Mechanistic analysis unveiled that scavenging of free radicals, inactivation of transition metals, interaction with protein to form complexes, and trapping of reactive α-dicarbonyls to form adducts underlain the mechanisms of the anti-glycative actions of CBEs. Chinese bayberry fruits, especially the cultivars Biqi and Wuzi, may be a promising dietary strategy to mitigate AGEs load in the human body.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhijie Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Laijin Su
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, PR China.
| |
Collapse
|
29
|
Ni M, Song X, Pan J, Gong D, Zhang G. Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2462-2476. [PMID: 33600185 DOI: 10.1021/acs.jafc.0c08052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the antiglycation potential and mechanisms of vitexin were explored in vitro by multispectroscopy, microscope imaging, high-resolution mass spectrometry, and computational simulations. Vitexin was found to show much stronger antiglycation effects than aminoguanidine. The inhibition against the fluorescent advanced glycation end products was more than 80% at 500 μM vitexin in both bovine serum albumin (BSA)-fructose and BSA-methylglyoxal (MGO) models. Treated with 100 and 200 μM vitexin for 24 h, the contents of MGO were reduced to 4.97 and 0.2%, respectively, and only one vitexin-mono-MGO adduct was formed. LC-Orbitrap-MS/MS analysis showed that vitexin altered the glycated sites and reduced the glycation degree of some sites. The mechanisms of vitexin against protein glycation were mainly through BSA structural protection, MGO trapping, and alteration of glycation sites induced by interaction with BSA. These findings provided valuable information about the functional development of vitexin as a potential antiglycation agent.
Collapse
Affiliation(s)
- Mengting Ni
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xin Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
30
|
Ai M, Xiao N, Jiang A. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Insight into the mechanism of urea inhibit ovalbumin-glucose glycation by conventional spectrometry and liquid chromatography-high resolution mass spectrometry. Food Chem 2020; 342:128340. [PMID: 33069536 DOI: 10.1016/j.foodchem.2020.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
The inhibition effect of urea on ovalbumin (OVA) glycation was investigated, and the mechanism was evaluated through the changes in protein structure as well as glycation sites and average degree of substitution per peptide molecule (DSP) by conventional spectrometry and liquid chromatography-high resolution mass spectrometry (LC-HRMS). A urea concentration of 3 M was chosen as the optimum condition. Ultraviolet and fluorescence spectra suggested that both glycation and urea treatment could unfold the OVA, but urea inhibited the glycation-induced protein unfolding. Circular dichroism spectra showed that urea treatment could increase the β-sheet content and reduce the α-helix content of OVA. LC-HRMS indicated that the number of glycation sites was reduced from 15 to 3, and DSP values decreased with urea treatment. In conclusion, urea could significantly inhibit the OVA-glucose glycation, and the sites competition as well as structure unfolding inhibition resulted from urea could be the main factors.
Collapse
|
32
|
Du PC, Tu ZC, Wang H, Hu YM. Mechanism of Selenium Nanoparticles Inhibiting Advanced Glycation End Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10586-10595. [PMID: 32866004 DOI: 10.1021/acs.jafc.0c03229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Selenium nanoparticles (SeNPs) have been applied in fields of nanobiosensors, environment, nanomedicine, etc. as a result of their excellent characteristics. Early studies had shown that SeNPs have certain inhibition ability against glycation, but the inhibition mechanism, especially for the influence of SeNPs on the reaction activity of glycation sites, remains unclear. The aim of the presented research was to reveal the effects of SeNPs on the β-lactoglobulin (β-Lg)/d-ribose glycation system at the molecular level and explore the possible inhibitory mechanism of SeNPs on the formation of advanced glycation end products (AGEs) by analyzing the glycation sites via high-performance liquid chromatography (HPLC)-Orbitrap-tandem mass spectrometry (MS/MS). Changes in contents of AGE formation and free amino acid contents had indicated that SeNPs could significantly slow the glycation process, thus attenuating the formation of AGEs. HPLC-Orbitrap-MS/MS analysis revealed that, at 6, 12, and 24 h, the number of glycation sites of glycated β-Lg decreased from 7, 7, and 9 to 5, 5, and 6 after the intervention of SeNPs, respectively. The glycation extent of each glycation site was controlled, and the dual-glycation ability of K8, K14, K47, K91, and K101 was changed. All of these results confirmed that SeNPs could indeed slow the process of protein glycation at the molecular level. This may be the reason for SeNPs reducing the formation of AGEs during glycation. Therefore, this study shed light on the insight of how SeNPs reduce the formation of AGEs.
Collapse
Affiliation(s)
- Peng-Cheng Du
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
33
|
Zhang L, Zhou WN, Tu ZC, Yang SH, Xu L, Yuan T. Influence of Hydroxyl Substitution on the Suppression of Flavonol in Harmful Glycation Product Formation and the Inhibition Mechanism Revealed by Spectroscopy and Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8263-8273. [PMID: 32662984 DOI: 10.1021/acs.jafc.0c03163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quercetin (Que), kaempferol (Kaem), isorhamnetin (Irh), and myricetin (Myri) are typical flavonols that are abundant in plant resources. This research investigated their ability in attenuating harmful glycation product formation and the effect of hydroxyl substitution. The inhibition mechanisms were elucidated by fluorescence spectroscopy and nano-liquid chromatography Orbitrap tandem mass spectrometry. The results indicated that the 3'-OH on the B-ring is critical in alleviating harmful glycation product formation, methylation reduced its inhibition, and the 5'-OH showed much less contribution than the 3'-OH. Que showed the strongest suppression on initial product, 5-hydroxymethylfurfural, and advanced glycation end product formation, with the corresponding percentage inhibitions at 36.58 μM of 81.1, 56.9, and 95.4%. Que and Myri also clearly inhibited fructosamine and acrylaminde production, while no suppression was observed by Irh and Kaem. The number of glycated sites was reduced from ten to seven, five, six, and nine, respectively, when 36.58 μM Que, Myri, Kaem, and Irh was added. Suppressing the conformational changes of ovalbumin induced by glycation, trapping dicarbonyl compounds, altering the microenvironment around tryptophan, and reducing the glycation activity of potential sites were the major inhibition mechanisms. These results suggest that Que and Myri may be promising natural agents for inhibiting harmful glycation and provide theoretical support for the effective screening of natural antiglycation reagents.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Na Zhou
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Si-Hang Yang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Liang Xu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tao Yuan
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|