1
|
Ma J, Yang N, Zhang X, Xiao M, Cao C, Xie Z, Li P, Liao Q, Chen Y. Molecularly imprinted polymer combined with multiple-component covalent organic frameworks for extraction of naringenin enantiomers. Food Chem 2025; 474:143133. [PMID: 39914356 DOI: 10.1016/j.foodchem.2025.143133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Naringenin is a plant flavonoid found in citrus fruits and is known for its anti-inflammatory and antioxidant activities. However, extracting high-purity naringenin from citrus fruits and separating its enantiomers remains challenging. This study synthesized a molecularly imprinted multiple-component covalent organic framework (MI COF) with abundant imprinted recognition sites for the first time. This MI COF combines the advantages of molecular imprinting and covalent organic frameworks into an innovative adsorbent capable of specifically recognizing and efficiently adsorbing naringenin. MI COF exhibited an excellent adsorption capacity of 121 mg/g and a superior selectivity with an imprinting factor of 2.8 for naringenin. As a result, remarkably selective extraction of naringenin from citrus fruit extracts was achieved, with recoveries and purities of 85.7 % and 87.5 %, respectively. In addition, the vitro immunological and anticancer activities of naringenin enantiomers from citrus fruit was preliminarily investigated. These findings demonstrate that MI COF is an effective sorbent for the selective adsorption and separation of naringenin and its enantiomers from plants and fruits, holding significant potential for practical applications in food and clinical fields.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Manyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Cheng Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat -sen University, Shenzhen 518106, China
| | - Pei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zhong W, Liang F, Zhong L, Ou J, He J, Wu Q. Kaempferol Molecularly Imprinted Monolithic Columns Prepared by a Surface Imprinting Method and Their Applications to Direct Separation of Flavonoids From Ginkgo Leaves by Liquid Chromatography. J Sep Sci 2025; 48:e70126. [PMID: 40205661 DOI: 10.1002/jssc.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
In this study, kaempferol molecularly imprinted monolithic columns (MIMCs) featuring a homogeneous pore structure and high separation ability were successfully prepared by surface imprinting on silica monoliths. These columns were then used to separate flavonoids from the hydrolysate of Ginkgo leaves. The preparation process involved three simple steps: preparation of silica monoliths, functionalization of the silica surface, and polymerization of the imprinting system onto the silica surface. The resulting MIMCs exhibited a homogeneous pore structure, high surface area (>100 m2/g), high porosity (ca. 74%), and good permeability (3.0 - 3.9 × 10-15 m2). The chromatographic separation performance of the MIMCs prepared on amino-functionalized silica monoliths was significantly superior to those prepared on thiol and vinyl-functionalized silica monoliths. The MIMCs prepared on amino-functionalized silica monoliths (I.D. 4.6 × 20 mm) could nearly achieve baseline separation of four structurally similar flavonoids: genistein, kaempferol, isorhamnetin, and quercetin. In addition, these MIMCs exhibited excellent selectivity in the chromatographic separation of flavonoids from the hydrolysate of Ginkgo leaves. However, when used as SPE adsorbents, the MIMCs prepared on thiol and vinyl-functionalized silica monoliths were superior to those on amino-functionalized silica monoliths in terms of purification of flavonoids from the Ginkgo hydrolysate. This study may be of instructive significance to the facile preparation of MIMCs for the high-selectivity separation and analysis of target components in complex natural systems.
Collapse
Affiliation(s)
- Wenlin Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangping Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Jiabo Pharmaceutical Co., Ltd., Qingyuan, China
| | - Lingling Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiming Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianfeng He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quanzhou Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Cheng D, Chen Y, Feng Y, Zeng Y, Zhao Z. Preparation of Temperature-Sensitive Molecularly Imprinted Cryogel for Specific Recognition of Proteins. ACS OMEGA 2025; 10:11312-11324. [PMID: 40160783 PMCID: PMC11947846 DOI: 10.1021/acsomega.4c11143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
In order to maintain the stability of the structure of protein molecules and improve the recognition during the separation process, molecular imprinting technology is combined with freeze polymerization to synthesize molecular imprinting cryogels (MICs). This study uses bovine serum albumin (BSA) as a template protein, low critical cosolubility temperature (LCST)-type ionic liquids as temperature-sensitive functional monomers, imidazole ionic liquids, and acrylamides as auxiliary functional monomers to prepare MICs with specific recognition, temperature sensitivity, interpenetrating macroporous structure, and large specific surface area. The MICs prepared at freezing temperature have uniform macroporous structures and good mechanical properties, which is conducive to the improvement of the mass transfer and adsorption capacities. Due to the advantages, the MIC reaches the adsorption equilibrium within 125 min with a saturated adsorption capacity of 741.5 mg g-1 and an imprinting factor of 1.65. Their static and dynamic adsorption behaviors are more in line with the Langmuir model and the quasi-secondary kinetic model, respectively. In addition, the MIC has obvious temperature sensitivity, and the maximum adsorption amount is reached at 37 °C. The separation factor (relative to cytochrome c, bovine blood hemoglobin, and lysozyme) of the MICs for BSA is up to 1.39. Repeatability experiments reveal that the adsorption capacity of molecularly imprinted cryogels is retained at 87% after five adsorption-desorption cycles, indicating excellent recyclability and potential for practical application.
Collapse
Affiliation(s)
- Dandan Cheng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yahong Chen
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yalan Feng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Yijun Zeng
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Zhao Zhao
- School of Life
Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| |
Collapse
|
4
|
Yang DD, Li SY, Xu XW, Li QY, He JY, Zhou LD, Zhang QH. Using Quercetin to Construct Molecularly Imprinting Polymer in the Preparation and Enrichment of Flavonol and Flavonoid Compounds. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1137-1154. [PMID: 38879746 DOI: 10.1142/s0192415x24500459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.
Collapse
Affiliation(s)
- Dan-Dan Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Shu-Yi Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Wei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qing-Yao Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, P. R. China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
5
|
Li Z, Zhang L, Han X, An Q, Chen M, Song Z, Dong L, Wang X, Yu Y. Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers (Basel) 2024; 16:1539. [PMID: 38891485 PMCID: PMC11174375 DOI: 10.3390/polym16111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sample pretreatment is a key step for qualitative and quantitative analysis of trace substances in complex samples. Cis-dihydroxyl (cis-diol) group-containing substances exist widely in biological samples and can be selectively bound by boronate affinity adsorbents. Based on this, in this article, we proposed a simple method for the preparation of novel spherical three-dimensionally ordered macropore (3DOM) materials based on a combination of the boronate affinity technique and colloidal crystal template method. The prepared 3DOM materials were characterized using Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis, and results showed that they possessed the characteristics of a high specific surface area, high porosity, and more boronic acid recognition sites. The adsorption performance evaluation results showed that the maximum adsorption capacity of the boron affinity 3DOMs on ovalbumin (OVA) could reach to 438.79 mg/g. Kinetic and isothermal adsorption experiments indicated that the boronate affinity 3DOM material exhibited a high affinity and selectivity towards OVA and adenosine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the proteins in egg whites was conducted and proved that the glycoprotein in the egg whites could be separated and enriched with a good performance. Therefore, a novel boronate affinity 3DOM material a with highly ordered and interconnected pore structure was prepared and could be applied in the separation and enrichment of molecules with cis-diol groups from complex samples with a good selectivity, efficiency, and high throughput.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (Z.L.); (L.Z.); (X.H.); (Q.A.); (M.C.); (Z.S.); (L.D.)
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (Z.L.); (L.Z.); (X.H.); (Q.A.); (M.C.); (Z.S.); (L.D.)
| |
Collapse
|
6
|
Wang X, Wang M, Wu B, Yu S, Liu Z, Qin X, Xu H, Li W, Luo S, Wang L, Ma C, Liu S. Magnetic molecularly imprinted polymers using ternary deep eutectic solvent as novel functional monomer for hydroxytyrosol separation. Heliyon 2024; 10:e28257. [PMID: 38655314 PMCID: PMC11035953 DOI: 10.1016/j.heliyon.2024.e28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 μL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Mengru Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Bailin Wu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shengyuan Yu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Xuyang Qin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Huijuan Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Lijuan Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
7
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Ye K, Xu S, Zhou Q, Wang S, Xu Z, Liu Z. Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers (Basel) 2023; 15:polym15092107. [PMID: 37177253 PMCID: PMC10180927 DOI: 10.3390/polym15092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Quercetin is a kind of flavonoid compound, which has antioxidative, anti-aging and anti-cancer effects, so it is of great importance to study the efficient extraction and highly sensitive detection of quercetin. Molecular imprinting technology has remarkable selectivity and resistance to complex matrix interference, which is often used for extracting quercetin. The methods of molecular imprinted solid phase extraction, molecularly imprinted microsphere extraction, molecularly imprinted electrochemical sensor recognition and molecularly imprinted composite material extraction of quercetin from plant samples were discussed in detail. This review provides valuable information on efficient and sensitive methods for separating and purifying quercetin in plants. It also provides a technical reference for further investigation of the separation and analysis of active ingredients in natural products.
Collapse
Affiliation(s)
- Kexi Ye
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Liang F, Li W, Li M, Li X, He J, Wu Q. Kaempferol molecularly imprinted polymers: preparation, characterization and application to the separation of kaempferol from ginkgo leaves. POLYM INT 2023. [DOI: 10.1002/pi.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Fangping Liang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Wurong Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Mingao Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Xican Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianfeng He
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Quanzhou Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
10
|
Selective Adsorption of Quercetin by the Sol-Gel Surface Molecularly Imprinted Polymer. Polymers (Basel) 2023; 15:polym15040905. [PMID: 36850189 PMCID: PMC9962813 DOI: 10.3390/polym15040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Quercetin, as one of the most biologically active natural flavonoids, is widely found in various vegetables, fruits and Chinese herbs. In this work, molecularly imprinted polymer (MIP) was synthesized through surface molecular imprinting technology with sol-gel polymerization mechanism on SiO2 at room temperature using quercetin as the template, SiO2 as the supporter, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, and tetraethoxysilane (TEOS) as the cross-linker. The prepared MIP was characterized via scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and nitrogen adsorption measurements to validate its surface morphology, structure and functionality. SEM images revealed that the morphology of MIP was rough and spherical with the particle size of 260 nm larger than that of the support SiO2. In the FTIR spectra of MIP, the band around 1499 cm-1 and 2932 cm-1 were assigned to N-H and C-H groups, respectively. The results indicated that the imprinted polymer layers were grafted on the surface of SiO2 and the MIP had been successfully prepared. Since the specific surface area and pore volume of MIP were markedly higher than those of NIP and SiO2 and were 52.10 m2 g-1 and 0.150 cm3 g-1, respectively, it was evident that the imprinting process created corresponding imprinted cavities and porosity. The MIP for adsorbing quercetin was evaluated by static adsorption experiment. The results indicated that the adsorption equilibrium could be reached within 90 min and the maximum adsorption capacity was as high as 35.70 mg/g. The mechanism for adsorption kinetics and isotherm of MIP for quercetin was proved to conform the pseudo-second-order kinetics model (R2 = 0.9930) and the Freundlich isotherm model (R2 = 0.9999), respectively, revealing that chemical adsorption and heterogeneous surface with multilayer adsorption dominated. In contrast to non-imprinted polymer (NIP), the MIP demonstrated high selectivity and specific recognition towards quercetin whose selectivity coefficients for quercetin relative to biochanin A were 1.61. Furthermore, the adsorption capacity of MIP can be maintaining above 90% after five regeneration cycles, indicating brilliant reusability and potential application for selective adsorption of quercetin.
Collapse
|
11
|
Liu H, Zhang F, Lin X, Wu J, Huang J. A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H 3PO 4 for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:786-795. [PMID: 36756496 PMCID: PMC9890899 DOI: 10.1039/d2na00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/02/2023] [Accepted: 12/06/2022] [Indexed: 05/20/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of H3PO4 and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g-1 at 1 A g-1) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g-1) and an impressive energy density as large as ∼71 W h kg-1 at a power density of 1.2 kW kg-1. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Fumin Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Xinyu Lin
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| |
Collapse
|
12
|
Fluorescent Molecularly Imprinted Polymers Loaded with Avenanthramides for Inhibition of Advanced Glycation End Products. Polymers (Basel) 2023; 15:polym15030538. [PMID: 36771840 PMCID: PMC9920636 DOI: 10.3390/polym15030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Encapsulating bioactive avenanthramides (AVAs) in carriers to respond to the environmental changes of food thermal processing allows the controlled release of AVAs for the effective inhibition of biohazards. In this study, fluorescent molecular imprinted polymers (FMIPs) loaded with AVAs were prepared by reverse microemulsion. The fluorescent signal was generated by carbon dots (CDs), which were derived from oat bran to determine the load of AVAs. The FMIPs were uniformly spherical in appearance and demonstrated favorable properties, such as thermal stability, protection of AVAs against photodegradation, high encapsulation efficiency, and effective scavenging of free radicals. After consideration of the different kinetics models, the release of AVAs from the FMIPs matched the Weibull model and followed a Fickian diffusion mechanism. The FMIPs exhibited good inhibition of pyrraline in a simulated casein-ribose system and in milk samples, indicating the release of AVAs could inhibit the generation of pyrraline.
Collapse
|
13
|
XING X, ZHAO M, WANG X, TANG Y. Hyperspectral image-based measurement of total flavonoid content of leaf-use Ginkgo biloba L. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Yang Y, Shen X. Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules 2022; 27:7355. [PMID: 36364181 PMCID: PMC9653670 DOI: 10.3390/molecules27217355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
The separation and detection of flavonoids from various natural products have attracted increasing attention in the field of natural product research and development. Depending on the high specificity of molecularly imprinted polymers (MIPs), MIPs are proposed as efficient adsorbents for the selective extraction and separation of flavonoids from complex samples. At present, a comprehensive review article to summarize the separation and purification of flavonoids using molecular imprinting, and the employment of MIP-based sensors for the detection of flavonoids is still lacking. Here, we reviewed the general preparation methods of MIPs towards flavonoids, including bulk polymerization, precipitation polymerization, surface imprinting and emulsion polymerization. Additionally, a variety of applications of MIPs towards flavonoids are summarized, such as the different forms of MIP-based solid phase extraction (SPE) for the separation of flavonoids, and the MIP-based sensors for the detection of flavonoids. Finally, we discussed the advantages and disadvantages of the current synthetic methods for preparing MIPs of flavonoids and prospected the approaches for detecting flavonoids in the future. The purpose of this review is to provide helpful suggestions for the novel preparation methods of MIPs for the extraction of flavonoids and emerging applications of MIPs for the detection of flavonoids from natural products and biological samples.
Collapse
Affiliation(s)
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
15
|
Preparation and Recognition Properties of Molecularly Imprinted Nanofiber Membrane of Chrysin. Polymers (Basel) 2022; 14:polym14122398. [PMID: 35745975 PMCID: PMC9229621 DOI: 10.3390/polym14122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
The separation and extraction of chrysin from active ingredients of natural products are of great significance, but the existing separation and extraction methods have certain drawbacks. Here, chrysin molecularly imprinted nanofiber membranes (MINMs) were prepared by means of electrospinning using chrysin as a template and polyvinyl alcohol and natural renewable resource rosin ester as membrane materials, which were used for the separation of active components in the natural product. The MINM was examined using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption performance, adsorption kinetics, adsorption selectivity, and reusability of the MINM were investigated in static adsorption experiments. The analysis results show that the MINM was successfully prepared with good morphology and thermal stability. The MINM has a good adsorption capacity for chrysin, showing fast adsorption kinetics, and the maximum adsorption capacity was 127.5 mg·g−1, conforming to the Langmuir isotherm model and pseudo-second-order kinetic model. In addition, the MINM exhibited good selectivity and excellent reusability. Therefore, the MINM proposed in this paper is a promising material for the adsorption and separation of chrysin.
Collapse
|
16
|
Preparation of boronate-modified larger mesoporous polymer microspheres with fumed silica nanoparticle and toluene as synergistic porogen for selective separation of sulfonamides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wang F, Ni X, Zhang J, Zhang Q, Jia H, He H, Dramou P. Novel composite nanomaterials based on magnetic molecularly imprinted polymers for selective extraction and determination of rutin in fruit juice. Food Chem 2022; 381:132275. [PMID: 35123225 DOI: 10.1016/j.foodchem.2022.132275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
In this work, with the attempt to further improve the selectivity, magnetism and loading proportion of existing adsorbents, a novel composite (MGO/MHNTs@MIPs) was synthesized by electrostatically combining molecularly imprinted polymer based on the surface of magnetic halloysite nanotubes (MHNTs@MIPs) with magnetic graphene oxide (MGO). Then some characterizations were done to prove its successful synthesis. Besides, the bonding experiment showed that it possessed a loading capacity of up to 132 mg·g-1, and the adsorption behavior of MGO/MHNTs@MIPs was elucidated by Langmuir isotherm model and Pseudo-second order model. By comparing its adsorption capacity to analogues, we concluded that the MGO/MHNTs@MIPs with the MHNTs@MIPs as basic elements exhibited higher selectivity (imprinting factor = 2.25) than that of MGO/MHNTs@NIPs based on MHNTs@NIPs for template rutin. Furthermore, a series of solid phase extraction conditions were optimized, and then the materials were used for the extraction and detection of rutin in fruit juice under the optimal conditions.
Collapse
Affiliation(s)
- Fangqi Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qikun Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huning Jia
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhang Z, Rui L, Lin Y, Zhang H, Ou J, He J, Wu Q. Preparation of ordered macroporous molecularly imprinted polymers and their applications in purifying cinchona alkaloids from cinchona extract. POLYM INT 2021. [DOI: 10.1002/pi.6205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi‐Yuan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Li‐Li Rui
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ya‐Li Lin
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui‐Dan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ji‐Ming Ou
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jian‐Feng He
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Quan‐Zhou Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
20
|
Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Hu T, Chen R, Wang Q, He C, Liu S. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J Sep Sci 2021; 44:274-309. [PMID: 33236831 DOI: 10.1002/jssc.202000832] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Sample pretreatment is essential for the analysis of complicated real samples due to their complex matrices and low analyte concentrations. Among all sample pretreatment methods, solid-phase extraction is arguably the most frequently used one. However, the majority of available solid-phase extraction adsorbents suffer from limited selectivity. Molecularly imprinted polymers are a type of tailor-made artificial antibodies and receptors with specific recognition sites for target molecules. Using molecularly imprinted polymers instead of conventional adsorbents can greatly improve the selectivity of solid-phase extraction, and therefore molecularly imprinted polymer-based solid-phase extraction has been widely applied to separation, clean up and/or preconcentration of target analytes in various kinds of real samples. In this article, after a brief introduction, the recent developments and applications of molecularly imprinted polymer-based solid-phase extraction for determination of different analytes in complicated real samples during the 2015-2020 are reviewed systematically, including the solid-phase extraction modes, molecularly imprinted adsorbent types and their preparations, and the practical applications of solid-phase extraction to various real samples (environmental, food, biological, and pharmaceutical samples). Finally, the challenges and opportunities of using molecularly imprinted polymer-based solid-phase extraction for real sample analysis are discussed.
Collapse
Affiliation(s)
- Tianliang Hu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Run Chen
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Qiang Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Chiyang He
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
22
|
Xu H, Gao Y, Tao Q, Li A, Liu Z, Jiang Y, Liu H, Yang R, Liu Y. Synthesizing a surface-imprinted polymer based on the nanoreactor SBA-15 for optimizing the adsorption of salicylic acid from aqueous solution by response surface methodology. NEW J CHEM 2021. [DOI: 10.1039/d1nj00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.
Collapse
Affiliation(s)
- Haiqing Xu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Yuhang Gao
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Qiantu Tao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Aiping Li
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hongwei Liu
- College of Civil Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Rongguang Yang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
23
|
Zhao X, Cheng Y, Xu H, Hao Y, Lv Y, Li X. Design and Preparation of Molecularly Imprinted Membranes for Selective Separation of Acteoside. Front Chem 2020; 8:775. [PMID: 33195018 PMCID: PMC7554516 DOI: 10.3389/fchem.2020.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023] Open
Abstract
Acteoside (ACT) belongs to a type of phenylethanoid glycosides (PhGs), and it is worthy of obtaining high-purity due to its significant medicinal functions. In this study, a novel class of MIMs was designed and synthesized with PVDF membranes as the base membrane for high selective separation and enrichment of ACT. The effects of the different functional monomers, the amounts of functional monomers, crosslinking agents, and initiators on the separation properties of MIMs were investigated. Furthermore, adsorption ability, permeation capacity, and reusability of MIMs were discussed for ACT. It indicated that MIM7 was the optimal performance of MIMs. The adsorption ability of MIM7 for ACT was 62.83 mg/g, and the selectivity factor (α) of MIM7 was up to 2.74 and its permeability factor (β) was greater than 2.66. Moreover, the adsorption amount of MIM7 was still more than 88.57% of the initial value after five cycles. As an ACT imprinted layer of MIMs only had recognition sites for ACT molecules, which recombined with the recognition sites in the membrane permeation experiment, ACT molecules penetration was hindered. However, the analogs of ECH successfully passed MIMs. It indicated that the selective MIMs for ACT followed the mechanism of delayed permeation. This work provides an important reference for the high permselective separation of natural products.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yun Cheng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Helin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Hao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yin Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
24
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
25
|
A versatile microfluidic paper chip platform based on MIPs for rapid ratiometric sensing of dual fluorescence signals. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105050] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats' plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1156:122307. [PMID: 32835909 DOI: 10.1016/j.jchromb.2020.122307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Molecularly imprinted polymers (MIPs) based on polydatin were prepared by precipitation polymerization method. Synthesis process of MIPs was optimized by discussion of functional monomers, porogens and the molar ratio of template- functional monomer-cross linker. Then, MIPs were prepared with polydatin as the template, 4-vinyl pyridine as the functional monomer, ethylene glycol dimethyl acrylate as the cross linker, acetonitrile as the porogen and the molar ratio of template-monomer-cross linker at 1:10:20. Scanning electron microscopy and Fourier transform infrared spectrometer were used to inspect macroscale and chemical bond of MIPs. Adsorption capability and selectivity of MIPs to polydatin were investigated by carrying out the static, dynamic and selective experiments. The results showed MIPs performed high adsorption ability and selectivity to polydatin, indicating MIPs could be used to separate and enrich polydatin from the complex systems. Finally, MIPs were applied as the adsorbent for isolation and purification of polydatin from the extract of Polygoni Cuspidati Rhizoma et Radix, rats' plasma and urine samples. MIPs were successfully used to separate polydatin from the Polygoni Cuspidati Rhizoma et Radix and recovery ranged from 89.2% to 91.6%. The maximum concentration of polydatin in rats' plasma and urine samples was 2.84 ± 0.0748 µg mL-1 and 2.64 ± 0.485 µg mL-1, respectively. Moreover, to compare with the MIPs method, organic solvent methods were used to analyze the polydatin in rats' plasma and urine samples. The results illustrated MIPs method was effective and selective for enrichment of polydatin from the medicinal plants and biological samples.
Collapse
|