1
|
Deng H, Wang Y, Chen X, Zhou M, Huang Y, Wang M, Xia Z. Construction of three-face recognition molecularly imprinted polymers for extraction and detection of melamine via specific hydrogen bonding. J Chromatogr A 2025; 1748:465850. [PMID: 40086143 DOI: 10.1016/j.chroma.2025.465850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Based on the principle that poly(thymine) ssDNA could recognize melamine (Mel) in aqueous media and the third face of Mel could be accessed by other hydrogen bonding molecules, UiO-66-NH2 was functionalized with poly(thymine) ssDNA and as the matrix to construct three-face recognition molecularly imprinted polymers (UDMIPs). The adsorption processes of UDMIPs towards Mel were accorded to Sips model and exhibited high adsorption capacity (QS=10.60 mg/g) and good imprinting factor (IF=2.67). UDMIPs could reach the adsorption equilibrium within 20 min. Competitive adsorption and regeneration experiments demonstrated that UDMIPs exhibited good selectivity and reusability. The adsorption machanism was investigated by CD spectroscopy. Combined with HPLC, UDMIPs were successfully employed to detect Mel in milk samples with recovery rates ranging from 88.4 % to 94.8 %.
Collapse
Affiliation(s)
- Hanwen Deng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yue Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Xiaoyu Chen
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Meiling Zhou
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Kong WJ, Wang WG, Chen QY, Wang GJ, Chen F. Porphyrin doped europium/black phosphorus nanoarchitectonics as the sensor of L-arginine and gram-negative bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126305. [PMID: 40315776 DOI: 10.1016/j.saa.2025.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
The L-arginine (L-Arg) in Escherichia coli (E. coli) is associated with the biofilm formation and drug resistance evolution. The detection of L-Arg and E. coli is meaningful to the control of pathogen infection. Herein, porphyrin modified europium black phosphorus (BP) nanoarchitectonics (labelled as BPEu@TAC) was synthesized and characterized by a variety of spectroscopic methods. The existence of Eu(II/III)-BP was confirmed by XPS data and Raman spectra. It was found that L-Arg can turn on the emission at 548 nm of BPEu@TAC with a visual color change, while other amino acids showed less effect. The detection limit of L-Arg is ca. 2.02 μM. In particular, the fluorescence response of BPEu@TAC to bacteria is related to the concentration of L-Arg. BPEu@TAC + L-Arg system was more sensitive to E. coli than S. aurus. The fluorescence emission change of BPEu@TAC + L-Arg system is affected by the concentration of E. coli. Therefore, BPEu@TAC can sense the level of L-Arg and the metabolism of L-Arg in E. coli.
Collapse
Affiliation(s)
- Wei-Jian Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei-Guo Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Gao-Ji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Qureshi WA, Haider SNUZ, Qaiser MA, Khan S, Wang W, Ali RN, Ali A, Naveed A, Abdurahman MH, Khan MU, Tayyab M, Wang L, Yousaf B, Liu QQ, Yang J. Breakthrough in plasmonic enhanced MOFs: Design, synthesis, and catalytic mechanisms for various photocatalytic applications. ENVIRONMENTAL RESEARCH 2025; 277:121257. [PMID: 40147511 DOI: 10.1016/j.envres.2025.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Integrating metal-organic framework MOFs with plasmonic nanoparticles (NPs) addresses a significant shortcoming of standard plasmonic platforms: their low efficacy with non-adsorbing compounds. The corporation of porous MOFs complements the plasmonic characteristics, allowing for a broader range of applications. This study highlights recent advancements in the design, synthesis, structural engineering, and functional properties of heterostructures combining plasmonic NPs with MOFs, focusing on their plasmonic and catalytic reaction behaviors. These developments have greatly enhanced the protentional of plasmonic NPs-MOFs heterojunction in nanofabrication and various applications, such as chemical sensing techniques like localized surface plasmon resonance (LSPR) surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorbance (SEIRA). Additionally, the study thoroughly examines the interface interaction and photocatalytic performance of plasmonic NPs-MOFs. Various practical applications of plasmonic NPs-MOFs heterojunction are explored, including their promising role in tackling environmental challenges like industrial water pollution. Furthermore, we have a detailed discussion of various photocatalysis processes, including water splitting, CO2 reduction, pollutant degradation, and various sensing applications. Identifying current limitations and outlining future research directions to bridge existing knowledge gaps, including interface interaction, photocatalytic performance, and practical applications providing a comprehensive understanding, are the main aims of this review to inspire the development of next-generation plasmonic NPs-MOFs materials. It concludes by discussing future directions and challenges in composite development, emphasizing their potential to provide sustainable and efficient solutions for environmental remediation and energy conversion.
Collapse
Affiliation(s)
- Waqar Ahmad Qureshi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | | | - Muhammad Adnan Qaiser
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Shahid Khan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Weikang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Rai Nauman Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Ahmad Naveed
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | | | | | - Muhammad Tayyab
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, PR China
| | - Lele Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Qin Qin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
4
|
Lu Y, Chen F. Synthesis and Spectroscopic Study of a Homogenous Bimetallic Os(II) Complex as a New Gastric Cancer Photosensitizer. Chemistry 2024; 30:e202402861. [PMID: 39258935 DOI: 10.1002/chem.202402861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
A homogenous dinuclear Os(II) complex bisOs was synthesized and fully characterized. The electrochemical cyclic voltammetry study, and density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed to investigate the electronic property. bisOs showed an obvious interaction with lipase and BSA, and can generate singlet oxygen under blue and red LED light irradiation, with a singlet oxygen quantum yield (ΦΔ) of 0.36 in comparison to that of [Ru(bpy)3]Cl2 in acetonitrile. bisOs exhibited moderate to great photocytotoxicity against HGC-27 human gastric cancer cells under blue LED light irradiation, giving the IC50 value as low as 1.83 μM (PI value is 9.7), while was almost non-cytotoxic in the dark. The cellular singlet oxygen detection in HGC-27 cancer cells exhibited a concentration-dependent manner, and cell uptake of bisOs in A549 cells was as high as 120 ng/106 cells, subcellular colocalization study indicated that bisOs was not accumulated in nucleus, and less likely to target mitochondria. This work provides a new example of dinuclear osmium complex as potential photosensitizer candidate for gastric treatment.
Collapse
Affiliation(s)
- Yang Lu
- Jilin Provincial Key Laboratory for Numerical Simulation, Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
5
|
Singuru MMR, Chen JL, Chen HY, Liao WC, Chen YY, Chuang MC. Mercury II-mediated construction of DNA capsules for turn-on fluorescence detection of melamine. Mikrochim Acta 2024; 191:658. [PMID: 39382732 DOI: 10.1007/s00604-024-06735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Researchers have shown significant interest in three-dimensional DNA building blocks due to their potential applications in biomedicine and biosensing. This study focuses on the synthesis of an HgII ion-stabilized DNA capsule with T-HgII-T pairs for the purpose of detecting melamine (MA). MA reacts with HgII to form a MA-HgII-MA complex, which causes HgII to leave the capsule shell, ultimately leading to capsule collapse and release of fluorescent cargo as output signal. Density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS) were used to demonstrate the ability of MA to extract HgII from the T-HgII-T adducts. The DNA capsules were characterized using TEM, SEM, DLS, zeta-potential, and melting curve analysis, which indicated the successful construction of the HgII-intercalated DNA shell. The MA-triggered destruction of the DNA capsules was visualized by confocal microscopy, and the dynamics of decapsulation were evaluated through fluorescent cargo release. The HgII-stabilized DNA capsules enable MA detection with a detection limit of 0.037 µM and are insensitive to potential interfering ions and amino acids. The tests conducted using MA spiked milk solution resulted in recoveries ranging from 109 to 113% (0.1 µM) and 94.5 to 96% (0.5 µM). These results suggest that the system is promising for highly accurate and reproducible monitoring of MA adulteration.
Collapse
Affiliation(s)
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Ya-Yu Chen
- Department of Chemistry, Tunghai University, Taichung, 407224, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, 407224, Taiwan.
- Sustainability Science and Management Program, Tunghai University, Taichung, 407224, Taiwan.
- International Ph.D. Program in Biomedical & Materials Science, Tunghai University, Taichung, 407224, Taiwan.
| |
Collapse
|
6
|
Deng X, Ma B, Gong Y, Li J, Zhou Y, Xu T, Hao P, Sun K, Lv Z, Yu X, Zhang M. Advances in Aptamer-Based Conjugate Recognition Techniques for the Detection of Small Molecules in Food. Foods 2024; 13:1749. [PMID: 38890976 PMCID: PMC11172347 DOI: 10.3390/foods13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Tianran Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Zhiyong Lv
- Dept Qual Managemet, Inner Mongolia Yili Grp. Co., Ltd., Hohhot 151100, China;
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| |
Collapse
|
7
|
Yang Q, Deng X, Niu B, Lin H, Jing J, Chen Q. Qualitative and semi-quantitative analysis of melamine in liquid milk based on surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123143. [PMID: 37478706 DOI: 10.1016/j.saa.2023.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Melamine is one of the common limited contaminations in dairy products. The traditional detection method has a long period and complicated pretreatment process. The rapid detection method is the better method to solve the screening of limited contaminations. In this paper, taking melamine as the research object, the surface enhanced Raman spectrum of melamine in liquid milk were collected by portable Raman spectrometer, and melamine was qualitatively identified and semi-quantitatively analyzed by Raman characteristic peak and Raman intensity, and a simple and efficient rapid screening method for limited contaminations was developed. The limit of detection is 0.25 mg/kg. The probability of detection is 100% at 2.5 mg/kg, which is the same between the two laboratories, indicating that the semi-quantitative method has good repeatability. The method of melamine proposed in this study can meet the rapid screening requirements of limited contaminations at the maximum residue limit, and has a good application prospect.
Collapse
Affiliation(s)
- Qiaoling Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaojun Deng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Jing Jing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Wu D, Tang Z, Dong L, Li G, Li D, Wang L, Shi T, Rahman MM, Zhang X. Enhanced ultrasonic spray ionization for direct mass spectrometry analysis of aqueous solution and complex samples using a single-orifice piezoelectric atomizer. Talanta 2023; 255:124237. [PMID: 36587426 DOI: 10.1016/j.talanta.2022.124237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
An efficient and superior soft ionization approach for direct mass spectrometry analysis of a variety of samples such as aqueous solution, raw biological sample and proteins, was developed based on commercially available piezoelectric atomizers. A single conical orifice (5 μm in diameter) was created on the atomizer, which resulted in generation of uniform fine droplets and long-duration of MS signal. The two electrodes of piezoelectric atomizer were connected to the two sides of ceramic ring which was insulated from the metallic substrate. The unique design allowed an additional high voltage input towards the spray reagents, which facilitated direct analysis of more complex samples without sample pre-treatment, such as biological samples (tomato tissue). The ionization was driven by an extremely low electrical power (3.5 V rechargeable battery) yet providing an efficient and superior soft ionization. The method displayed a better thermal and pH stability than nano electrospray ionization (nanoESI) and electrospray ionization (ESI) on direct analysis of Vitamin B and protein aqueous solutions. Quantitative analysis of Vitamin B and Rhodamine B aqueous solutions was also investigated, showing a good linearity (R2 > 0.99). In addition, our results suggested that compared with ESI and nanoESI, the method not only could be used for direct analysis of intact protein, but also provide more information concerning the association between intact protein and the subunits.
Collapse
Affiliation(s)
- Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Ziyang Tang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Lulu Dong
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Guolin Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Dian Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Li Wang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Tong Shi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Md Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| |
Collapse
|
9
|
Louis H, Etiese D, Unimuke TO, Owen AE, Rajee AO, Gber TE, Chima CM, Eno EA, Nfor EN. Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H 2S gas. RSC Adv 2022; 12:30365-30380. [PMID: 36337983 PMCID: PMC9590404 DOI: 10.1039/d2ra05456f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 01/14/2023] Open
Abstract
The application of nickel complexes of nicotinic acid hydrazide ligand as a potential gas-sensor and adsorbent material for H2S gas was examined using appropriate density functional theory (DFT) calculations with the ωB97XD/Gen/6-311++G(d,p)/LanL2DZ method. The FT-IR spectrum of the synthesized ligand exhibited a medium band at 3178 cm-1 attributed to ν(NH) stretching vibrations and strong bands at 1657 and 1600 cm-1 corresponding to the presence of ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration modes. In the spectrum of the nickel(ii) complex, the ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration bands experience negative shifts to 1605 cm-1 and 1580 cm-1, respectively, compared to the ligand. This indicates the coordination of the carbonyl oxygen and the azomethine nitrogen atoms to the Ni2+ ion. Thus, the sensing mechanism of the complexes indicated a short recovery time and that the work function value increases for all complexes, necessitating an excellent H2S gas sensor material. Thus, a profound assertion was given that the complex sensor surfaces exhibited very dense stability with regards to their relevant binding energies corresponding to various existing studies.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Daniel Etiese
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Tomsmith O Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Aniekan E Owen
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Chemistry, Akwa-Ibom State University Uyo Nigeria
| | | | - Terkumbur E Gber
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Chioma M Chima
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Ededet A Eno
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | | |
Collapse
|
10
|
Li M, Lu W, Mao Y, Qiu X, Du D. An enhanced immunochromatography assay based on gold growth on the surface of E. coli carrier for the simultaneous detection of mycotoxins. Talanta 2022; 251:123798. [DOI: 10.1016/j.talanta.2022.123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
11
|
Mattath MN, Ghosh D, Dong C, Govindaraju T, Shi S. Mercury mediated DNA-Au/Ag nanocluster ensembles to generate a gray code encoder for biocomputing. MATERIALS HORIZONS 2022; 9:2109-2114. [PMID: 35792070 DOI: 10.1039/d2mh00598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boolean operations utilizing DNA as a platform for biocomputing have become a promising tool for next-generation bio-molecular computers. In the whole process of any binary data transmission, bit errors are unavoidable and commonly occur. Cascades of exclusive-OR (XOR) operations show the great potential to evaluate these errors by introducing a parity generator (pG) and a parity checker (pC). Herein, we constructed a DNA hybrid architecture platform employing a chemosensing ensemble of mercury-mediated DNA-Au/Ag nanoclusters (M-Au/Ag NCs) to operate unconventional pG/pC for "error detection". Taking advantage of pG/pC, the transmitted and received data is converted to secure information using a binary to gray code encoder. To the best of our knowledge, this is the first molecular gray code encoder for biocomputing, which discovers an exciting avenue to protect information security through sophisticated logic circuits.
Collapse
Affiliation(s)
- Mohamed Nabeel Mattath
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Chunyan Dong
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
| |
Collapse
|
12
|
Li M, Han C, Yang C, Sun M, Duan J, Qiu X, Du D. Ultrasensitive fluorometric oligonucleotide immunoassay for the simultaneous and efficient detection of two mycotoxins in agricultural products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2108-2116. [PMID: 35583257 DOI: 10.1039/d2ay00367h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ultrasensitive fluorometric oligonucleotide immunoassay (UFOIA) based on a fluorometric oligonucleotide and magnetic separation was proposed for the simultaneous detection of two mycotoxins. Two kinds of magnetic nanoparticle (MNP) probes and their corresponding fluorometric oligonucleotide probes were prepared. After the immune reaction, Cy5-linked and 6-FAM-linked oligonucleotides were dissociated and applied to detect fluorescence signals simultaneously. Under optimal conditions, the detection ranges of the UFOIA were in the range of 0.654-1438.8 pg mL-1 for zearalenone (ZEN) and 0.215-3190.1 pg mL-1 for aflatoxin B1 (AFB1). The limits of detection (LODs) were 0.378 pg mL-1 for ZEN and 0.043 pg mL-1 for AFB1, which showed improved sensitivities of 529-fold and 112-fold compared to those from the ELISA. The positive results of the UFOIA for authentic agricultural products were highly correlated with those from LC-MS/MS. The specificity, accuracy, precision and reliability of the UFOIA are well demonstrated. The proposed UFOIA method achieved the simultaneous and ultrasensitive detection of mycotoxins at the pg mL-1 level, which was a considerable improvement. This study might provide an alternative approach for detecting multi-component contamination equipped with the notable highlights of ultrasensitivity, simultaneity, simplicity, high efficiency and a low background signal.
Collapse
Affiliation(s)
- Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Chenfei Han
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Chuqin Yang
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, South Road of Agricultural Science 40, Hefei 230031, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Key Laboratory of Agro-Product Safety Risk Evaluation, Ministry of Agriculture, South Road of Agricultural Science 40, Hefei 230031, China.
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Daolin Du
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
13
|
Development of an optical immunoassay based on peroxidase-mimicking Prussian blue nanoparticles and a label-free electrochemical immunosensor for accurate and sensitive quantification of milk species adulteration. Mikrochim Acta 2022; 189:209. [PMID: 35501410 DOI: 10.1007/s00604-022-05302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
In contrast to reported enzyme-based immunoassays, an enzyme-free immunoassay (optical and electrochemical) is presented here for the first time that can be used as point-of-need detection bioplatforms of bovine IgG as goat milk adulterant. In the first format, Prussian blue nanoparticles (PBNPs) were used as antibody catalytic labels in a competitive colorimetric microplate immunoassay. Absorbance measurement was performed photometrically at 450 nm. After in-depth optimization, excellent sensitivity was achieved (0.01% cow/goat volume ratio), which is 100 times lower than the limit allowed by the European legislation (EL) (1% v/v), thanks to the high catalytic activity of PBNPs compared with natural peroxidase. Moreover, the antibody-PBNPs bioconjugates showed excellent stability over 4 weeks (> 94% of the initial response) confirming the successful anchoring of the antibodies to the surface of the PBNPs. On the other hand, a label-free voltammetric immunoassay for the detection of bovine IgG was developed. The sensing principle was based on the hindrance of charge transfer between ferri-ferrocyanide redox couple and the screen-printed gold electrodes modified with bovine IgG antibody. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the step-by-step modification of the electrode surface. Under optimal conditions, this single-step electrochemical analysis achieved a high sensitivity of 0.1% (cow/goat) when monitoring the ferrocyanide oxidation at + 0.092 V (vs. Ag/AgCl) using differential pulse voltammetry (DPV). The selectivity of the developed immunoassays was evaluated for different species of milk of similar composition, and both immunoassays exhibited a selective response only to bovine IgG. Unlike conventional immunoassays, the developed enzyme-free immunoassays have many attractive features for the detection of milk adulteration, whether they are used in quality control laboratories for routine milk analysis (optical immunoassay) or at on-site checkpoints (electrochemical immunoassay) using wireless electrochemical detectors. The sensors provide high sensitivity (≤ 0.1%), excellent precision (RSD < 6%), low cost (no enzyme is required) and ease of operation, including handling of milk samples.
Collapse
|
14
|
Background-free room temperature phosphorescence and digital image colorimetry detection of melamine by carbon nitride quantum dots in cellulose matrix with smartphone-based portable device. Food Chem 2022; 390:133135. [PMID: 35597095 DOI: 10.1016/j.foodchem.2022.133135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/03/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Carbon nitride quantum dots (CNQDs) were embedded in the sodium carboxymethyl cellulose (CMC) matrix to form CNQDs-CMC film to explore the room temperature phosphorescence (RTP) of CNQDs, which suppress the non-radiative relaxation process due to the internal hydrogen bonding interactions between CMC and CNQDs. Then, a simple, inexpensive, background-free miniature device integrating with CNQDs-CMC film and smartphone was fabricated for rapid and quantitative detection of melamine (MEL). In the present of MEL, the yellow RTP color of the CNQDs-CMC film was quenched and photographed by the smartphone. The Color Recognizer APP in the smartphone recognized the red (R) value for quantitative detection of MEL. Thus, digital image colorimetry (DIC) determination of MEL was achieved due to the visible RTP color change of CNQDs-CMC film. The smartphone-based miniature device provided a promising platform for the on-site monitoring analytes in the complex matrix including food safety, environmental screening, health monitoring, and disease prevention.
Collapse
|
15
|
|
16
|
Rational design of an allosteric G-quadruplex aptamer probe for ultra-sensitive detection of melamine in milk. Int J Biol Macromol 2022; 210:430-438. [PMID: 35500779 DOI: 10.1016/j.ijbiomac.2022.04.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Efficient and accurate detection of melamine in dairy products remains a crucial yet challenging task. Herein, an allosterically modulated G-quadruplex-integrated aptamer is rationally designed with thymine-rich recognition termini for melamine binding. The detection process is facile by simply introducing the analyte into the mixture consisting of G-quadruplex aptamer probes, exonuclease III, and thioflavin T (ThT). The detection feasibility is confirmed by the polyacrylamide gel electrophoresis and fluorescence measurement results. This exonuclease III-assisted signal amplifiable approach works well in a linear range from 0.1 nM to 0.1 μM. Moreover, a detection limit as low as 83 pM is easily achieved, which is almost five orders of magnitude smaller than the maximum allowable melamine levels (about 8 μM) defined by many countries all over the world. The whole assay time for each test is no longer than 1 h. Additionally, the scheme is highly specific and satisfactory recovery rates (from 91% to 104%) are readily obtained when challenged with melamine-spiked milk samples. Therefore, the label-free, turn-on, low-cost, and time-efficient method can be used for reliable detection of melamine in an easily manipulated and ultra-sensitive manner, which may find its utilization in the field of food safety, biomedical engineering, and clinical diagnosis.
Collapse
|
17
|
Zhang T, Wu X, Wu B, Dai C, Fu H. Rapid authentication of the geographical origin of milk using portable near‐infrared spectrometer and fuzzy uncorrelated discriminant transformation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingfei Zhang
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
- High‐tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province Jiangsu University Zhenjiang China
| | - Xiaohong Wu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
- High‐tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province Jiangsu University Zhenjiang China
| | - Bin Wu
- Department of Information Engineering Chuzhou Polytechnic Chuzhou China
| | - Chunxia Dai
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Haijun Fu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
18
|
Yang C, Du C, Su R, Wang J, Li Y, Ma X, Li Z, Sun C. A signal-on fluorescent aptasensor by sensitized Tb 3+ luminescence for detection of melamine in milk. Talanta 2022; 236:122842. [PMID: 34635232 DOI: 10.1016/j.talanta.2021.122842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
A fluorescent aptasensor based on sensitized terbium(III) luminescence was constructed to detect melamine in milk. Tb3+ as the fluorescence probe can be sensitized by a guanine-rich single-stranded DNA sequence, so the complementary sequence of the polythymidine aptamer (cDNA) was modified with six consecutive guanine bases (G6). In the absence of melamine, melamine aptamer combined with cDNA to form a double helix structure, and G6 hybridized with the extended cytosine bases in the aptamer, resulting in low fluorescence intensity of Tb3+. In the presence of melamine, cDNA was released due to the specific recognition of melamine to the aptamer, resulting in stronger sensitized fluorescence intensity of Tb3+. Under the optimum conditions, the linear concentration of melamine in the milk ranged from 1.0 μg/mL to 10.0 μg/mL. This aptasensor can be used for the accurate and rapid detection of melamine in milk with a detection limit of 0.02 μg/mL, and has the advantages of high sensitivity, high efficiency, simple operation and low cost.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Caiyi Du
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Junyang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Ali AM, Wang W, Chen QY. Structure and biomolecular recognition of nitro-BODIPY-andrographolide assembles for cancer treatment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120180. [PMID: 34303221 DOI: 10.1016/j.saa.2021.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Andrographolide (Andro) derivatives can interfere with a variety of enzymes. To increase the cancer cell absorption of Andro and to enhance the therapeutic effect of breast cancer, nitro group substituted boron dipyrromethene (NBDP) was used as the carrier of Andro. Two NBDP based assemblies (NBDP-Andro and nano NBDPAndro@PEG) were synthesized and characterized by spectroscopic methods. The affinity of Andro with NBDP enhanced the emission of NBDP. The interaction of the compounds with lipase was also studied. NBDP-Andro can bind with lipase and form new species with an emission at 360 nm. Results demonstrate that the Andro of NBDP-Andro drives the interaction of compounds with protein (BSA) and lipase by inter-molecular forces. The large red shift emission at 611 nm of the NBDPAndro@PEG is observed and discussed. Also, the MTT assay confirms that Nano NBDPAndro@PEG can enhance the inhibition rate of the proliferation of MCF-7 breast cancer cells. Therefore, nitro substituted BODIPY can be a carrier of andrographolide for cancer treatment.
Collapse
Affiliation(s)
- Abbas Mohammed Ali
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Guinati BGS, Sousa LR, Oliveira KA, Coltro WKT. Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5383-5390. [PMID: 34734929 DOI: 10.1039/d1ay01339d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study reports the simultaneous colorimetric detection of urea, H2O2, and pH in milk samples using microfluidic paper-based analytical devices (μPADs) fabricated through a craft cutter printer. Paper-based devices were designed to contain three detection zones interconnected to a sampling zone by microfluidic channels. Colorimetric analysis was performed using images digitalized through an office scanner. The volumes of chromogenic and sample solutions were optimized, and the best colorimetric performance was achieved by adding 0.5 and 10 μL into detection and sampling zones, respectively. Simultaneous assays were then carried out, and the recorded responses revealed a linear behavior in the concentration ranges from 0-30.0 mmol L-1, 0-10.0 mmol L-1 and 6.0-9.0 for urea, H2O2 and pH, respectively. The limit of detection values obtained for urea and H2O2 were 2.4 mmol L-1 and 0.1 mmol L-1, respectively. For pH measurements, colorimetric assay allowed the monitoring of solution pH with a resolution of 0.25 units. The use of μPADs to detect target adulterants exhibited suitable reproducibility (RSD ≤ 6.0%), accuracy (91-102%) and no cross-reaction occurrence. When compared to reference techniques, colorimetric assays did not reveal a significant difference at a confidence level of 95%. As a proof-of-concept, the feasibility of the proposed approach was successfully demonstrated through the analysis of potential adulterants in sixteen milk samples, which were tested without any pretreatment requirement. Based on the achievements, μPADs in conjunction with colorimetric measurements emerge as a powerful tool for rapid screening of potential adulterants in milk.
Collapse
Affiliation(s)
- Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas R Sousa
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Karoliny A Oliveira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
21
|
Li X, Ma C, Li L, Gao H, Gu J, Zhu C, Wu Y, Guo S, Wei Y, Wang G, Wang Z, Chen G. A Lanthanide Complex Fluorescent Probe for the Detection of Melamine. APPLIED SPECTROSCOPY 2021; 75:1312-1319. [PMID: 34041959 DOI: 10.1177/00037028211022375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melamine has been illegally adulterated in dairy food because of the rich nitrogen content and stable chemical properties in recent years. Therefore, the detection of melamine is of great significance for food safety supervision and human health protection. As melamine is a weak fluorescent substance, it is difficult to detect melamine directly by fluorescence spectroscopy. In this work, we found that melamine can significantly enhance the emission of the tetracycline-europium (EuTC) complex at 616 nm. Therefore, we took EuTC complex as a fluorescent probe to detect melamine. According to the characterizations of absorption spectra, molecular electrostatic potential distribution, and the time-resolved spectra, we speculated that tetracycline and melamine may form a complex through hydrogen bonding interaction in the melamine-EuTC reaction system, causing the melamine closer approach to Eu3+ and reducing the non-radiative energy loss of water molecules to Eu3+, which significantly enhanced the fluorescence intensity of EuTC. The fluorescence intensity of EuTC complex with melamine concentration in the range of 0.5-40.0 μM shows a good linear relationship, and the correlation coefficient is 0.9951 with the detection limit of 7.85 × 10-8 M. It shows a high sensitivity for the EuTC complex as a fluorescent probe to detect melamine, which provides a supplement and extension for the detection of melamine by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Xiaolin Li
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chaoqun Ma
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Lei Li
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Hui Gao
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Jiao Gu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chun Zhu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Yamin Wu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Senqi Guo
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Yitao Wei
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoyu Wang
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Zirui Wang
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoqing Chen
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| |
Collapse
|
22
|
Yu C, Li L, Ding Y, Liu H, Cui H, Zhang F, Lin J, Duan Y. A sensitive molecularly imprinted electrochemical aptasensor for highly specific determination of melamine. Food Chem 2021; 363:130202. [PMID: 34304106 DOI: 10.1016/j.foodchem.2021.130202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/29/2022]
Abstract
An electrochemical aptamer sensor based on gold nanoparticles (AuNPs) was developed for highly specific sensing of melamine (MEL), which combines molecularly imprinted polymers (MIPs) and aptamers. AuNPs were synthesized by simple reduction of sodium citrate and characterized by transmission electron microscopy. The MIP membranes with particular recognition sites were formed by electropolymerization of dopamine (DA) with polythymine (poly T) aptamers as functional monomers and melamine as template molecules. Under optimal experimental conditions, this molecularly imprinted electrochemical aptamer sensor (MIEAS) exhibits a linear relationship between 10-12 M and 10-4 M for detecting MEL with the detection limit of 6.7 × 10-13 M. Moreover, this sensor displays excellent selectivity, reproducibility and stability. The milk samples analysis has confirmed the potential application of this MIEAS to quantitative detection of melamine.
Collapse
Affiliation(s)
- Chenhong Yu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Huajie Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Hanyue Cui
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Fenfen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Jiaxin Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yingchun Duan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
23
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
Lv J, Liu S, Miao Y. Synthesis of biological quantum dots based on single-strand DNA and its application in melamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119254. [PMID: 33310270 DOI: 10.1016/j.saa.2020.119254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
By taking TC base-rich single-stranded DNA (ssDNA) as the raw material, a fluorescent biological quantum dots (Bio-dots) probe was prepared in one step through hydrothermal method, where its lifetime was greatly extended in comparison with Carbon quantum dots (CQDs), reaching 10.7 ns. The fluorescent detection of melamine in milk samples was realized by using the base pairing principle. Under the optimal conditions, the linear range of Bio-dots probe fluorescence sensor for melamine detection is 5-600 μM, and the detection limit is (3σ) 1.4 μM. Bio-dots can not only emit photoluminescence, but also detect target molecules as a functional recognition group. As the raw material ssDNA was basically non-toxic and there was no toxic substances participated in its synmanuscript process, this Bio-dots probe was a kind of green and environmentally-friendly photoluminescent functional material.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
25
|
Alikord M, Mohammadi A, Kamankesh M, Shariatifar N. Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 2021; 62:4833-4866. [PMID: 33554631 DOI: 10.1080/10408398.2021.1879003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is an analytical separation and diagnostic technique that is simple and sensitive and a rapid response and low-priced technique for detecting trace levels of chemical compounds in different matrices. Chemical agents and environmental contaminants are successfully detected by IMS and have been recently considered to employ in food safety. In addition, IMS uses stand-alone or coupled analytical diagnostic tools with chromatographic and spectroscopic methods. Scientific publications show that IMS has been applied 21% in the pharmaceutical industry, 9% in environmental studies and 13% in quality control and food safety. Nevertheless, applications of IMS in food safety and quality analysis have not been adequately explored. This review presents the IMS-related analysis and focuses on the application of IMS in food safety and quality. This review presents the important topics including detection of traces of chemicals, rate of food spoilage and freshness, food adulteration and authenticity as well as natural toxins, pesticides, herbicides, fungicides, veterinary, and growth promoter drug residues. Further, persistent organic pollutants (POPs), acrylamide, polycyclic aromatic hydrocarbon (PAH), biogenic amines, nitrosamine, furfural, phenolic compounds, heavy metals, food packaging materials, melamine, and food additives were also examined for the first time. Therefore, it is logical to predict that the application of the IMS technique in food safety, food quality, and contaminant analysis will be impressively increased in the future. HighlightsCurrent status of IMS for residues and contaminant detection in food safety.To assess all the detected contaminants in food safety, for the first time.Identified IMS-related parameters and chemical compounds in food safety control.
Collapse
Affiliation(s)
- Mahsa Alikord
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Halal Research Center of the Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|