1
|
Al-Zahrany LA, Alafaleq NO, Bhat SA, Islam BU, Jali BR, Naz H, Al-Okail MS, Alenad AM, Al-Twaijry N, Khan MS. Inhibition of Catalase Glycation by Ajwa Date Phenolics: A Spectroscopic and Computational Study. Chem Biodivers 2025:e202403144. [PMID: 40156324 DOI: 10.1002/cbdv.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Glycation is a non-enzymatic process where reducing sugars react with the free amino groups of proteins, a phenomenon that occurs under hyperglycemic conditions such as diabetes. Ajwa dates are widely consumed for their health benefits, but limited studies have investigated their potential to inhibit glycation. In this study, we evaluate the antiglycation effects of Ajwa date pulp extracts (ADEs) using the glyoxal (GO)-catalase (CAT) glycation model. Phytochemical analysis revealed that the dry ADE contains significantly higher total phenolic content (2619 ± 121 mg GAE/100 g dry weight [DW] [p < 0.0001]) compared to fresh Ajwa dates. Moreover, the acid hydrolysis method proved more effective for extracting bound phenolic acids (1035 ± 353 mg/100 g DW) than the alkaline hydrolysis method (446 ± 18 mg/100 g DW) from dry Ajwa dates. Using ultrahigh-performance liquid chromatography with a photodiode array detector, p-coumaric and ferulic acid were identified as the primary polyphenols in the ADE. The study demonstrated that GO-induced CAT glycation and the resulting advanced glycation end-products (AGEs) were significantly inhibited by ADE, as measured by AGE-specific fluorescence. While glycation caused conformational changes in CAT, ADE treatment effectively reduced these alterations, as observed through ultraviolet-visible absorption, circular dichroism, and tryptophan spectroscopies. Molecular docking analysis showed that Ajwa date constituent; caffeic acid, p-coumaric acid and ferulic acid had estimated binding affinities of 6.9, 7.1 and 6.1 kcal/mol, respectively with CAT. Multiple hydrogen bonds were seen between these phenolic acids and amino acid residues in addition to other weak interactions. In conclusion, this study highlights the preventive effects of ADE against glycation, offering potential pathways for addressing diabetes-related complications with increased efficacy, selectivity and safety in humans.
Collapse
Affiliation(s)
- Lamya A Al-Zahrany
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf O Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Badar Ul Islam
- Department of Biochemistry, RG Medical College and Research centre, Hathras, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | - Majed S Al-Okail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal M Alenad
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhang F, Yu X, Tian Y, Zeng J, Zhuang P, Jia W, Zhang Y. Joint control of multiple food processing contaminants in Maillard reaction: A comprehensive review of health risks and prevention. Compr Rev Food Sci Food Saf 2025; 24:e70138. [PMID: 39929674 DOI: 10.1111/1541-4337.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 05/08/2025]
Abstract
There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.
Collapse
Affiliation(s)
- Fan Zhang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaomei Yu
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yimei Tian
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jia Zeng
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pan Zhuang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Jia
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Agri-Food Resources and High-Value Utilization, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Takata T, Inoue S, Kunii K, Masauji T, Moriya J, Motoo Y, Miyazawa K. Advanced Glycation End-Product-Modified Heat Shock Protein 90 May Be Associated with Urinary Stones. Diseases 2025; 13:7. [PMID: 39851471 PMCID: PMC11764404 DOI: 10.3390/diseases13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity. Further, HSP90 in human pancreatic and breast cells can be modified by various advanced glycation end-products (AGEs), thus affecting their function. Hypothesis 1: We hypothesized that HSP90s on/in human proximal tubular epithelium cells can be modified by various types of AGEs, and that they may affect their functions and it may be a key to reveal that LSRDs are associated with urolithiasis. Hypothesis 2: We considered the possibility that Japanese traditional medicines for urolithiasis may inhibit AGE generation. Of Choreito and Urocalun (the extract of Quercus salicina Blume/Quercus stenophylla Makino) used in the clinic, Choreito is a Kampo medicine, while Urocalun is a characteristic Japanese traditional medicine. As Urocalun contains quercetin, hesperidin, and p-hydroxy cinnamic acid, which can inhibit AGE generation, we hypothesized that Urocalun may inhibit the generation of AGE-modified HSP90s in human proximal tubular epithelium cells.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
- Inoue Iin Clinic, Kusatsu 525-0034, Shiga, Japan
| | - Kenshiro Kunii
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Junji Moriya
- Department of General Internal Medicine, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan;
- General Medical Center, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka 918-8503, Fukui, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan or (S.I.); (K.K.)
| |
Collapse
|
4
|
Mwaheb MA, Reda NM, El-Wetidy MS, Sheded AH, Al-Otibi F, Al-Hamoud GA, Said MA, Aidy EA. Versatile properties of Opuntia ficus-indica (L.) Mill. flowers: In vitro exploration of antioxidant, antimicrobial, and anticancer activities, network pharmacology analysis, and In-silico molecular docking simulation. PLoS One 2024; 19:e0313064. [PMID: 39495776 PMCID: PMC11534206 DOI: 10.1371/journal.pone.0313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Opuntia ficus-indica (L.) Mill. has been used in folk medicine against several diseases. The objectives of the present study were to investigate the chemical composition of the methanolic extract of O. ficus-indica (L.) Mill. flowers and their antioxidant, antimicrobial, and anticancer properties. Besides, network pharmacology and molecular docking were used to explore the potential antitumor effect of active metabolites of O. ficus-indica (L.) Mill. against breast and liver cancer. The results revealed many bioactive components known for their antimicrobial and anticancer properties. Furthermore, scavenging activity was obtained, which indicated strong antioxidant properties. The plant extract exhibited antimicrobial activities against Aspergillus brasiliensis (MIC of 0.625 mg/mL), Candida albicans, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at MICs of 1.25 mg/mL. The results revealed proapoptotic activities of the O. ficus-indica (L.) Mill. extract against MCF7, MDA-MB-231, and HepG2 cell lines, where it induced significant early apoptosis and cell cycle arrest at sub-G1 phases, besides increasing the expression levels of p53, cyclin D1, and caspase 3 (p <0.005). The network pharmacology and molecular docking analysis revealed that the anticancer components of O. ficus-indica (L.) Mill. flower extract targets the PI3K-Akt pathway. More investigations might be required to test the mechanistic pathways by which O. ficus-indica (L.) Mill. might exhibit its biological activities in vivo.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nashwa Mohamed Reda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa H. Sheded
- Organic Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esraa A. Aidy
- Cancer Biology Department, Medical Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
6
|
Oh J, Lee Y, Lee KG. Analytical methods, risk assessment, and mitigation strategies for furan in processed foods in various countries. Food Sci Biotechnol 2024; 33:2427-2440. [PMID: 39144195 PMCID: PMC11319557 DOI: 10.1007/s10068-024-01578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 04/01/2024] [Indexed: 08/16/2024] Open
Abstract
This article provides an overview of analytical methods for measuring furan levels in food. Given the potential carcinogenicity of furans in humans, several studies have focused on assessing furan levels in various food products. In this review, we specifically examine furan levels in foods that are central to regional culinary traditions and summarize the results of country-specific risk assessments. Consequently, we have identified foods that contribute significantly to dietary furan exposure in each region. Coffee and baby foods, regardless of region, emerged as the primary sources of furan intake among adults and infants, respectively. Several previous studies have been conducted to develop various mitigation strategies aimed at reducing exposure to furan through food intake. Therefore, in this paper, we categorize effective mitigation strategies into two main groups: alterations to processing conditions and the addition or removal of food additives and ingredients.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Yoojeong Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326 Gyeonggi-do Republic of Korea
| |
Collapse
|
7
|
Bork LV, Proksch N, Stobernack T, Rohn S, Kanzler C. Influence of Hydroxycinnamic Acids on the Maillard Reaction of Arabinose and Galactose beyond Carbonyl-Trapping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15933-15947. [PMID: 38968025 PMCID: PMC11261603 DOI: 10.1021/acs.jafc.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Hydroxycinnamic acids, known for their health benefits and widespread presence in plant-based food, undergo complex transformations during high-temperature processing. Recent studies revealed a high browning potential of hydroxycinnamic acids and reactive Maillard reaction intermediates, but the role of phenolic compounds in the early stage of these reactions is not unambiguously understood. Therefore, we investigated the influence of caffeic acid and ferulic acid on the nonenzymatic browning of arabinose, galactose, and/or alanine, focusing on the implications on the formation of relevant early-stage Maillard intermediates and phenol-deriving products. Contrary to previous assumptions, hydroxycinnamic acids were found to promote nonenzymatic browning instead of solely trapping reactive intermediates. This was reflected by an intense browning, which was attributed to the formation of heterogeneous phenol-containing Maillard products. Although, caffeic acid is more reactive than ferulic acid, the formation of reactive furan derivatives and of heterogeneous phenol-containing colorants was promoted in the presence of both hydroxycinnamic acids.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nicolas Proksch
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Leibniz
Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality
and Food Security, Theodor-Echtermeyer-Weg
1, 14979 Grossbeeren, Germany
| | - Tobias Stobernack
- Department
of Chemical and Product Safety, Federal
Institute of Risk Assessment, Max-Dohrn-Street 8−10, 10589 Berlin, Germany
| | - Sascha Rohn
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Clemens Kanzler
- Institute
of Food Technology and Food Chemistry, Department of Food Chemistry
and Analysis, Technische Universität
Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
8
|
Takata T, Inoue S, Masauji T, Miyazawa K, Motoo Y. Generation and Accumulation of Various Advanced Glycation End-Products in Cardiomyocytes May Induce Cardiovascular Disease. Int J Mol Sci 2024; 25:7319. [PMID: 39000424 PMCID: PMC11242264 DOI: 10.3390/ijms25137319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan;
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; (S.I.); (K.M.)
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanaka, Fukui 918-8503, Japan
| |
Collapse
|
9
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
10
|
Xu L, Liu H, Dong L, Liu Y, Liu L, Cao H, Wang W, Liu L. Research advance on AGEs generation, detection, influencing factors and inhibition mechanism in bakery products processing. FOOD BIOSCI 2024; 57:103404. [DOI: 10.1016/j.fbio.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Añazco C, Riedelsberger J, Vega-Montoto L, Rojas A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int J Mol Sci 2023; 24:10985. [PMID: 37446164 PMCID: PMC10342021 DOI: 10.3390/ijms241310985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Collagen, the most abundant structural protein found in mammals, plays a vital role as a constituent of the extracellular matrix (ECM) that surrounds cells. Collagen fibrils are strengthened through the formation of covalent cross-links, which involve complex enzymatic and non-enzymatic reactions. Lysyl oxidase (LOX) is responsible for catalyzing the oxidative deamination of lysine and hydroxylysine residues, resulting in the production of aldehydes, allysine, and hydroxyallysine. These intermediates undergo spontaneous condensation reactions, leading to the formation of immature cross-links, which are the initial step in the development of mature covalent cross-links. Additionally, non-enzymatic glycation contributes to the formation of abnormal cross-linking in collagen fibrils. During glycation, specific lysine and arginine residues in collagen are modified by reducing sugars, leading to the creation of Advanced Glycation End-products (AGEs). These AGEs have been associated with changes in the mechanical properties of collagen fibers. Interestingly, various studies have reported that plant polyphenols possess amine oxidase-like activity and can act as potent inhibitors of protein glycation. This review article focuses on compiling the literature describing polyphenols with amine oxidase-like activity and antiglycation properties. Specifically, we explore the molecular mechanisms by which specific flavonoids impact or protect the normal collagen cross-linking process. Furthermore, we discuss how these dual activities can be harnessed to generate properly cross-linked collagen molecules, thereby promoting the stabilization of highly organized collagen fibrils.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca 3462227, Chile;
| | - Lorenzo Vega-Montoto
- Chemical and Radiation Measurement, Idaho National Laboratory (INL), 1705 N. Yellowstone Hwy, Idaho Falls, ID 83415, USA;
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 3480112, Chile;
| |
Collapse
|
12
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Formation and reduction of furan in pumpkin puree by precursors, antioxidants, sterilization and reheating. Food Chem 2023; 402:134141. [DOI: 10.1016/j.foodchem.2022.134141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022]
|
14
|
Han Z, Zhu M, Wan X, Zhai X, Ho CT, Zhang L. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Crit Rev Food Sci Nutr 2022; 64:4904-4920. [PMID: 36382683 DOI: 10.1080/10408398.2022.2146653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maillard reaction is a non-enzymatic thermal reaction during food processing and storage. It massively contributes to the flavor, color, health benefits and safety of foods and could be briefly segmented into initial, intermediate and final stages with the development of a cascade of chemical reactions. During thermal reaction of food ingredients, sugar, protein and amino acids are usually the main substrates, and polyphenols co-existed in food could also participate in the Maillard reaction as a modulator. Polyphenols including flavan-3-ols, hydroxycinnamic acids, flavonoids, and tannins have shown various effects throughout the process of Maillard reaction, including conjugating amino acids/sugars, trapping α-dicarbonyls, capturing Amadori rearrangement products (ARPs), as well as decreasing acrylamide and 5-hydroxymethylfurfural (5-HMF) levels. These effects significantly influenced the flavor, taste and color of processed foods, and also decreased the hazard products' level. The chemical mechanism of polyphenols-Maillard products involved the scavenging of radicals, as well as nucleophilic addition and substitution reactions. In the present review, we concluded and discussed the interaction of polyphenols and Maillard reaction, and proposed some perspectives for future studies.
Collapse
Affiliation(s)
- Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|
16
|
Investigation of thermal contaminants in coffee beans induced by roasting: A kinetic modeling approach. Food Chem 2022; 378:132063. [PMID: 35032810 DOI: 10.1016/j.foodchem.2022.132063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
The roasting-induced formation of thermal contaminants in coffee beans, including 5-hydroxymethylfurfural (5-HMF), acrylamide (AA), furan (F), 2-methyl furan (2-MF), and 3-methyl furan (3-MF), was investigated using a kinetic modeling approach. Results showed that AA and 5-HMF formation and elimination occur simultaneously in coffee beans during roasting and that the related reactions follow first-order reaction kinetics. The concentrations of F, 2-MF, and 3-MF increased throughout the roasting experiment, and variations in the concentrations of these compounds during roasting could be best described by empirical, logistic model. The increase in weight loss and decrease in moisture content of the beans during roasting also displayed first-order reaction kinetics. High coefficients of determination (R2 > 0.981) were observed for all fitted models, and the reaction rate constants of all models followed the Arrhenius law.
Collapse
|
17
|
Song M, Wang K, Lu H, Yan S, Wu L, Xue X. Composition and distribution of α-dicarbonyl compounds in propolis from different plant origins and extraction processing. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Zhang D, Zhu P, Han L, Chen X, Liu H, Sun B. Highland Barley and Its By-Products Enriched with Phenolic Compounds for Inhibition of Pyrraline Formation by Scavenging α-Dicarbonyl Compounds. Foods 2021; 10:1109. [PMID: 34067809 PMCID: PMC8156036 DOI: 10.3390/foods10051109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
Pyrraline, a typical kind of advanced glycation end product, has been found to contribute to the development of pathologies associated with ageing and diabetes mellitus. In the study, phenolic compounds extracted from highland barley whole grain (HBWG) and vinasse (HBVN) were used to inhibit pyrraline formation in a simulated food. The optimal extraction condition for HBWG and HBVN was using 8 mL of 50% acetone solution at 50 °C for 60 min. The extraction and identification of phenolic compounds from HBWG and HBVN were performed by UPLC-PAD-MS/MS. The inhibitory effects of pyrraline in the simulated food were 52.03% and 49.22% by HBVN and HBWG, respectively. The diphenyl picrylhydrazyl radical- and ferric-reducing ability of plasma assays was used to evaluate the antioxidant activity of the extracts. The main inhibition pathways and molecular mechanism of phenolic compounds on pyrraline regulation were explored by scavenging α-dicarbonyl compounds. The study demonstrated that highland barley and its by-products can potentially be used as a functional food to regulate pyrraline formation during food processing.
Collapse
Affiliation(s)
| | | | | | | | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (D.Z.); (P.Z.); (L.H.); (X.C.); (B.S.)
| | | |
Collapse
|
19
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021; 107:201-212. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020; 21:ijms21165712. [PMID: 32784935 PMCID: PMC7460980 DOI: 10.3390/ijms21165712] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
The role played by cinnamic acid derivatives in treating cancer, bacterial infections, diabetes and neurological disorders, among many, has been reported. Cinnamic acid is obtained from cinnamon bark. Its structure is composed of a benzene ring, an alkene double bond and an acrylic acid functional group making it possible to modify the aforementioned functionalities with a variety of compounds resulting in bioactive agents with enhanced efficacy. The nature of the substituents incorporated into cinnamic acid has been found to play a huge role in either enhancing or decreasing the biological efficacy of the synthesized cinnamic acid derivatives. Some of the derivatives have been reported to be more effective when compared to the standard drugs used to treat chronic or infectious diseases in vitro, thus making them very promising therapeutic agents. Compound 20 displayed potent anti-TB activity, compound 27 exhibited significant antibacterial activity on S. aureus strain of bacteria and compounds with potent antimalarial activity are 35a, 35g, 35i, 36i, and 36b. Furthermore, compounds 43d, 44o, 55g–55p, 59e, 59g displayed potent anticancer activity and compounds 86f–h were active against both hAChE and hBuChE. This review will expound on the recent advances on cinnamic acid derivatives and their biological efficacy.
Collapse
|