1
|
Wu Y, He D, Wu Y, He N, Li L, Zhang X, Xing X, Li B. Chlorogenic acid simultaneously enhances the oxidative protection and anti-digestibility of porous starch. Int J Biol Macromol 2025:143949. [PMID: 40334898 DOI: 10.1016/j.ijbiomac.2025.143949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/20/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Porous starch (PS) has been utilized as an oral protective carrier to enhance the oxidative stability of liposoluble nutrients. However, PS releases more glucose during digestion, thereby increasing the risk of chronic diseases. Chlorogenic acid (CA) has excellent antioxidant properties and enhances the starch digestion resistance. To simultaneously enhance the oxidative protection and anti-digestibility, PS was blended with CA. Morphological analysis revealed that PSs with pores absorbed liposoluble substances. Surface area, total pore volume, and oxidative stability analyses demonstrated that rice starch (RS) enzymatically hydrolyzed for 12 h (PS12) loaded more substances and exerted a better protective effect in cooperation with CA. Simulated digestion confirmed that PS12-CA1 had the best anti-digestibility among PS12-CAs and a similar digestibility as RS. Additionally, CA treatment resulted in more anti-digestive V-type crystals in PSs, which resisted digestion. This study showed that the combination of PS and CA simultaneously enhanced oxidative protection and reduced the digestibility of PS. Thus, CA treatment makes PS a better oral nutrient delivery.
Collapse
Affiliation(s)
- Yongtai Wu
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Dong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ni He
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xinhui Xing
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Center for Synthetic and Systems Biology, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 247117, China; Institute of Biopharmaceutical and Health Engineering, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhong Y, Yuan X, Feng Q, Wang Q, Pan H, Qiao Z, Wang T, Zhuang Y. Application of polyphenols as natural antioxidants in edible oils: Current status, antioxidant mechanism, and advanced technology. Food Res Int 2025; 208:116234. [PMID: 40263800 DOI: 10.1016/j.foodres.2025.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Oxidation of edible oil, especially those rich in polyunsaturated fatty acids, remains an inevitable problem. Since synthesis antioxidants may have some side effects, countries have been encouraging the development of natural alternatives. Polyphenols are natural compounds demonstrating notable potential in mitigating oil oxidation, but the effectiveness of polyphenols in inhibiting oil oxidation seems to be influenced by their antioxidant mechanisms, components, solubility, and application forms. To promote polyphenol application in oils, the present study aims to provide a comprehensive summary of the antioxidant mechanism of polyphenols in vitro, the common polyphenols employed to inhibit oil oxidation, and the pivotal technologies for incorporating polyphenols with low-fat solubility into oils including esterification modification, co-extraction of polyphenols and oils, nano-emulsion, microcapsules, and oleogels. In addition, a strengths, weaknesses, opportunities, and threats analysis of polyphenol application in oil was conducted. This review will provide a guidance for the application of polyphenols in oils.
Collapse
Affiliation(s)
- Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China
| | - Xinyu Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China
| | - Qiqi Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China
| | - Qing Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China
| | - Hongyu Pan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunan Province 650500, China; Yunnan Technology Innovation Center of Woody Oil, Kunming, Yunan Province 650201, China.
| |
Collapse
|
3
|
Li Y, Zhao W, Wang Y, Xie Y, Li J, He J, Wang C, De Souza C, Zhang L, Lin K. Development of low-allergenicity algal oil microcapsules with high encapsulation efficiency using extensively hydrolyzed whey protein. Int J Biol Macromol 2025; 303:140540. [PMID: 39894133 DOI: 10.1016/j.ijbiomac.2025.140540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Algal oil is rich in docosahexaenoic acid, which is beneficial for infant development, but its susceptibility to oxidation necessitates microencapsulation. This study investigated the effects of incorporating varying ratios of octenyl succinic anhydride-modified starch (OSA-MS) into a base wall system comprising extensively hydrolyzed whey protein (eWPH) and maltodextrin (MD) to produce algal oil microcapsules with reduced allergenicity and high nutritional value, replacing whey protein isolate (WPI). The residual antigenicity of α-lactalbumin and β-lactoglobulin in eWPH was 3.60 % and 3.88 %, respectively. The addition of OSA-MS significantly enhanced emulsion stability in the eWPH/MD system for algal oil encapsulation. The highest microencapsulation efficiency (98.35 %) was achieved with 21 % OSA-MS, showing no significant difference from that of WPI/MD-based microcapsules. Furthermore, microcapsules prepared with eWPH/MD/OSA-MS (21 %) exhibited smooth surfaces, good dispersibility, and high solubility (91.79 %). These microcapsules also demonstrated superior oxidative stability after 18 days of storage at 60 °C compared to those with other OSA-MS ratios. Overall, incorporating OSA-MS into the eWPH/MD wall system achieved encapsulation performance comparable to WPI/MD, thereby broadening the application potential of eWPH in microencapsulation.
Collapse
Affiliation(s)
- Yanbin Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Weixue Zhao
- Meitek Technology (Qingdao) Co., Ltd, Qingdao 266400, China
| | - Yongchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yumeng Xie
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiadong Li
- Innochina Biotech Co., Ltd, Shanghai 201400, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Caiyun Wang
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lanwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Leal AR, de Oliveira GF, da Silva EKM, Araújo AJC, Araújo IMDS, Magalhães HCR, Ribeiro PRV, de Souza ACR, Dionísio AP, de Sousa PHM. Oxidative stability and affective/descriptive sensory properties of cashew nut (Anacardium occidentale L.) oil during accelerated storage conditions. J Food Sci 2025; 90:e70176. [PMID: 40205782 PMCID: PMC11982663 DOI: 10.1111/1750-3841.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Cashew nut (Anacardium occidentale L.) oil is not commonly consumed, but it has great potential to add value to broken nuts. Therefore, studies on its characteristics are important to provide a basis for encouraging consumption. This study aimed to characterize cashew nut oil's physical, chemical, and sensory composition. It also evaluated changes in the oil over 60 days of storage at 30°C, 40°C, and 50°C (accelerated storage). The results showed that cashew nut oil contains anacardic acids and phytosterols and is primarily composed of oleic acid (65.24%-66.49%). Throughout storage, subtle changes in the oxidative quality of the oil were observed, particularly at 50°C, with increases in acid value (0.74-0.96 mg KOH/g) and peroxide value (1.43-4.60 meq/kg), color differences (ΔE, 0.37-8.83), and a reduction in polyunsaturated fatty acids (16.98%-16.63%). However, the acidity and peroxide values did not exceed the limits established by the Codex Alimentarius (4.0 mg KOH/g and 15 meq/kg, respectively). Sensory acceptance decreased over time, but at the end of storage, the oil still received scores above 6 (liked slightly). Furthermore, the Check-All-That-Apply test revealed that the oil exhibited positive sensory attributes, such as yellow color, shiny, light appearance, sweet taste, neutral flavor, and cashew nut aroma. It was concluded that the oil has great potential for commercialization and consumption, both for direct use and in culinary preparations. PRACTICAL APPLICATION: Cashew nuts are widely consumed in Brazil, but their oil remains unknown to consumers. However, this product has great potential for commercialization, as it is a food with adequate nutritional, sensory, and oxidative qualities to be included in a balanced and healthy diet, with potential applications for direct consumption and in culinary preparations. It could also help strengthen the production chain for cashew nuts with lower commercial value (broken cashew nuts). The current study aims to expand knowledge about the nutritional and sensory characteristics, as well as the oxidative stability, of cashew nut oil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paulo Henrique Machado de Sousa
- Department of Food EngineeringFederal University of CearaFortalezaCearáBrazil
- Post‐Graduate Program in Gastronomy, Culture and Art InstituteFederal University of CearáFortalezaCearáBrazil
| |
Collapse
|
5
|
Tang L, Liu Y, Liang Z, Chen M, Zhao L. Enhancing the stability of krill oil through microencapsulation with endogenous krill protein and chitosan and application in senior milk powder. Int J Biol Macromol 2025; 293:139224. [PMID: 39732231 DOI: 10.1016/j.ijbiomac.2024.139224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Krill oil (KO) exhibits several biological actions, particularly providing distinct advantages for cognitive health in the aged. Nonetheless, its inadequate water solubility, pronounced flavor, and vulnerability to oxidative degradation restrict its utilization in the food sector. Encapsulation provides a solution, and the study of natural, suitable wall materials is crucial. This study employs endogenous krill protein (KP) and krill chitosan (CS) as encapsulating agents. It utilizes a complex coacervation technique to encapsulate KO, thereby broadening its application and successfully incorporating it into senior milk powder. The microcapsules have the best properties when the KP + CS complex to krill oil ratio is 1:1. They are able to encapsulate 77.96 % of the oil, stay stable at high temperatures (with little mass loss), and stay stable over time (with a peroxide value increase of only 4.51 mmol/kg). Moreover, the release rate in simulated intestinal conditions reaches 83.26 %. When added at 0.8 % to senior milk powder, it imparts the highest nutritional value without significantly affecting the flavor. Thus, this study provides valuable insights for enhancing the stability of krill oil and its application in the food industry.
Collapse
Affiliation(s)
- Lei Tang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yue Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangzhou College of Technology and Business, School of engineering, Guangzhou 510850, Guangdong, China
| | - Ziyin Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Mao Chen
- Bohai Seafood Co., Ltd., Binzhou 251907, Shandong, China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
6
|
Arsecularatne A, Kapini R, Liu Y, Chang D, Münch G, Zhou X. Combination Therapy for Sustainable Fish Oil Products: Improving Cognitive Function with n-3 PUFA and Natural Ingredients. Biomedicines 2024; 12:1237. [PMID: 38927446 PMCID: PMC11201817 DOI: 10.3390/biomedicines12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are recommended as beneficial dietary supplements for enhancing cognitive function. Although fish oil (FO) is renowned for its abundant n-3 PUFA content, combining FO with other natural products is considered as a viable option to support the sustainable development of FO products. This review aims to provide comprehensive insights into the advanced effects of combining FO or its components of DHA and EPA with natural products on protecting cognitive function. In two double-blind random control trials, no advanced effects were observed for adding curcumin to FO on cerebral function protection. However, 16 week's treatment of FO combined with vitamin E did not yield any advanced effects in cognitive factor scores. Several preclinical studies have demonstrated that combinations of FO with natural products can exhibit advanced effects in addressing pathological components in cognitive impairment, including neuroinflammation, oxidative stress, and neuronal survival. In conclusion, evidence from clinical trials for beneficial use of FO and natural ingredients combination is lacking. Greater cohesion is needed between preclinical and clinical data to substantiate the efficacy of FO and natural product combinations in preventing or slowing the progression of cognitive decline.
Collapse
Affiliation(s)
- Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Science, Western Sydney University, Paramatta, NSW 2150, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| |
Collapse
|
7
|
Liu Y, Wang Z, Lv L, Wang L, Li D, Miao X, Zhan H. Characterisation of a casein-/whey protein concentrate-Antarctic krill oil emulsion system and improvement of its storage stability. J Microencapsul 2024; 41:190-203. [PMID: 38602138 DOI: 10.1080/02652048.2024.2335152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
AIMS To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION The prepared krill oil emulsions have great potential to become a new krill oil supplement.
Collapse
Affiliation(s)
- Yujia Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ziyang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Lu Lv
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Dalian, Liaoning, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Wang G, Liu L, Peng F, Ma Y, Deng Z, Li H. Natural antioxidants enhance the oxidation stability of blended oils enriched in unsaturated fatty acids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2907-2916. [PMID: 38029376 DOI: 10.1002/jsfa.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Rancidity causes unpleasant tastes and smells, and the degradation of fatty acids and natural antioxidants, so that an oil is unfit to be consumed. Natural antioxidants, including tocopherols, polyphenols (sesamol, canolol, ferulic acid, caffeic acid, etc.), β-carotene, squalene and phytosterols, contribute to delay the oxidation of vegetable oils. However, studies on the combination of natural antioxidants to lengthen the shelf life of unsaturated fatty acid-rich blended oil have not been reported. RESULTS All of the composite antioxidants had the potential to significantly improve the oxidation stability of blended oil. Blended oil G with 0.05 g kg-1 β-carotene, 0.25 g kg-1 sesamol and 0.25 g kg-1 caffeic acid showed the best anti-autooxidation. It is also effective in improving the oxidative stability of vegetable oils containing various fatty acids. The oxidation stability index of the blended oil containing the optimum composition of natural antioxidants was 2.17-fold longer than that of the control sample. After the end of accelerated oxidation, the oil's peroxide value, p-anisidine value and total oxidation value were 6.59 times, 12.26 times and 6.65 times lower than those of the control sample, respectively. CONCLUSION (1) The combination of natural antioxidants β-carotene (0.05 g kg-1 ), sesamol (0.25 g kg-1 ) and caffeic acid (0.25 g kg-1 ) enhances the oxidative stability of unsaturated fatty acid-rich blended oils. (2) β-Carotene is the main antioxidant in the early stages of oxidation. (3) Sesamol and caffeic acid are the main antioxidants in the middle and late stages of oxidation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Lele Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fuliang Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuchen Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Fabrication of double nano-emulsions loaded with hyssop (Hyssopus officinalis L.) extract stabilized with soy protein isolate alone and combined with chia seed gum in controlling the oxidative stability of canola oil. Food Chem 2024; 430:137093. [PMID: 37562266 DOI: 10.1016/j.foodchem.2023.137093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The aim of this study was to encapsulate hyssop (Hyssopus officinalis L.) extract obtained through ultrasound-assisted cold plasma pretreatment extraction within a double emulsion stabilized by soy protein isolate alone (SPI) and combined with chia seed gum (CSG) in the external aqueous phase on the stabilization of canola oil. FTIR analysis verified that there were electrostatic interactions between CSG and SPI. The SPI/CSG-stabilized emulsion demonstrated lower viscosity, smaller droplets, higher ζ-potential, and encapsulation efficiency compared to the SPI-stabilized emulsion. Non-Newtonian, pseudoplastic behaviors were shown by emulsions. Also, according to the dynamic rheological parameters (G' and G''), the SPI/CSG-stabilized emulsion had elastic behavior with weak gel properties. The antioxidant activity of the encapsulated extract at 1500 ppm during the storage in canola oil was investigated and compared to unencapsulated extract and TBHQ. The results showed that oil containing encapsulated extract had lower oxidative alterations than the unencapsulated form.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
10
|
Huang PW, Yan CX, Sun XM, Huang H. Economical downstream processing of microbial polyunsaturated fatty acids. Trends Biotechnol 2023; 41:857-859. [PMID: 36709095 DOI: 10.1016/j.tibtech.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are important nutrients for humans and animals. Microorganisms, such as yeast, filamentous fungi, and microalgae, have successfully been modified to produce PUFAs. Apart from strain improvement and fermentation optimization, efficient and cost-effective downstream processing will determine whether production can advance from the laboratory to the factory.
Collapse
Affiliation(s)
- Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
11
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
12
|
Thakur S, Singh A, Kaur M, Reza N, Kumar N, Kour R, Kaur S, Singh Bedi PM, Jain SK. Vitamins and minerals fortified emulsion of omega-3 fatty acids for the management of preterm birth: In-vitro, in-silico, and in-vivo studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Leal AR, Dionísio AP, Abreu FAPD, Oliveira GFD, Araújo IMDS, Magalhães HCR, Leite AB, Silva EKMD, Nascimento RFD, Nascimento HOD, Sousa PHMD. Impact of different kernel grades on volatile compounds profile, fatty acids and oxidative quality of cashew nut oil. Food Res Int 2023; 165:112526. [PMID: 36869453 DOI: 10.1016/j.foodres.2023.112526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
In this study, the impact of kernel grade on the physicochemical quality, fatty acids, and volatile compounds of cashew nut oil was assessed. The oil samples were obtained from different classifications of nuts and analyzed for acid and peroxide values, color, fatty acids and volatile compounds. The broken kernel oils showed similar or superior quality to the whole kernel oil (LW3), especially samples B3 (batoque) and P3 (large piece), with acid, peroxide and color values equal to the one in LW3. The oils from less intact nuts showed high proportions of monounsaturated fatty acids (MUFA), with acid ratios higher than the ones in LW3 (64.47 to 65.28 %, while the latter displayed 63.33 %). Sample P3 showed higher proportions of volatile compounds not derived from oxidation. This study expands the possibility of valorizing lower commercial value cashew nuts by producing oil with adequate quality for consumption.
Collapse
Affiliation(s)
- Amanda Rodrigues Leal
- Department of Food Engineering, Federal University of Ceara, 60356-000 Fortaleza, CE, Brazil.
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita St., 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | | | | | - Andressa Barbosa Leite
- Department of Food Engineering, Federal University of Ceara, 60356-000 Fortaleza, CE, Brazil.
| | | | | | | | - Paulo Henrique Machado de Sousa
- Department of Food Engineering, Federal University of Ceara, 60356-000 Fortaleza, CE, Brazil; Graduate Program in Gastronomy, Culture and Art Institute, Federal University of Ceara, 60356-000 Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Song P, Liang J, Du J, Feng X, Geng Q, Zhao M, Guan D, Yang M, Du Y, Gao L. Optimization of the preparation process of algae oil microcapsules and analysis of influencing factors of its shelf life. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Mane S, Kumari P, Singh A, Taneja NK, Chopra R. Amelioration for oxidative stability and bioavailability of N-3 PUFA enriched microalgae oil: an overview. Crit Rev Food Sci Nutr 2022; 64:2579-2600. [PMID: 36128949 DOI: 10.1080/10408398.2022.2124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Technological improvements in dietary supplements and nutraceuticals have highlighted the significance of bioactive molecules in a healthy lifestyle. Eicosapentaenoic acid and Cervonic acid (DHA), omega-3 polyunsaturated fatty acids seem to be famed for their ability to prevent diverse physiological abnormalities. Selection of appropriate pretreatments and extraction techniques for extraction of lipids from robust microalgae cell wall are very important to retain their stability and bioactivity. Therefore, extraction techniques with optimized extraction parameters offer an excellent approach for obtaining quality oil with a high yield. Oils enriched in omega-3 are particularly imperiled to oxidation which ultimately affects customer acceptance. Bio active encapsulation could be one of the effective approaches to overcome this dilemma. This review paper aims to give insight into the cultivation methods, and downstream processes, various lipid extraction approaches, techniques for retaining oxidative stability, bioavailability and food applications based on extracted or encapsulated omega-3.
Collapse
Affiliation(s)
- Sheetal Mane
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Purnima Kumari
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| |
Collapse
|
16
|
Effects of Marine Bioactive Compounds on Gut Ecology Based on In Vitro Digestion and Colonic Fermentation Models. Nutrients 2022; 14:nu14163307. [PMID: 36014813 PMCID: PMC9412687 DOI: 10.3390/nu14163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Digestion and the absorption of food compounds are necessary steps before nutrients can exert a role in human health. The absorption and utilization of nutrients in the diet is an extremely complex dynamic process. Accurately grasping the digestion and absorption mechanisms of different nutrients or bioactive compounds can provide a better understanding regarding the relationship between health and nutrition. Several in vitro models for simulating human gastrointestinal digestion and colonic fermentation have been established to obtain more accurate data for further understanding of the metabolism of dietary components. Marine media is rich in a wide variety of nutrients that are essential for humans and is gaining increased attention as a research topic. This review summarizes some of the most explored in vitro digestion and colonic fermentation models. It also summarizes the research progress on the digestion and absorption of nutrients and bioactive compounds from marine substrates when subjected to these in vitro models. Additionally, an overview of the changes imparted by the digestion process on these bioactive compounds is provided, in order to support those marine resources that can be utilized for developing new healthy foods.
Collapse
|
17
|
Wang Q, Song Y, Sun J, Jiang G. A novel functionalized food packaging film with microwave-modified konjac glucomannan/chitosan/citric acid incorporated with antioxidant of bamboo leaves. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Du J, Zhang M, Zhang L, Law CL, Liu K. Shelf-Life Prediction and Critical Value of Quality Index of Sichuan Sauerkraut Based on Kinetic Model and Principal Component Analysis. Foods 2022; 11:foods11121762. [PMID: 35741958 PMCID: PMC9222660 DOI: 10.3390/foods11121762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Kinetic models and accelerated shelf-life testing were employed to estimate the shelf-life of Sichuan sauerkraut. The texture, color, total acid, microbe, near-infrared analysis, volatile components, taste, and sensory evaluation of Sichuan sauerkraut stored at 25, 35, and 45 °C were determined. Principal component analysis (PCA) and Fisher discriminant analysis (FDA) were used to analyze the e-tongue data. According to the above analysis, Sichuan sauerkraut with different storage times can be divided into three types: completely acceptable period, acceptable period, and unacceptable period. The model was found to be useful to determine the critical values of various quality indicators. Furthermore, the zero-order kinetic reaction model (R2, 0.8699-0.9895) was fitted better than the first-order kinetic reaction model. The Arrhenius model (Ea value was 47.23-72.09 kJ/mol, kref value was 1.076 × 106-9.220 × 1010 d-1) exhibited a higher fitting degree than the Eyring model. Based on the analysis of physical properties, the shelf-life of Sichuan sauerkraut was more accurately predicted by the combination of the zero-order kinetic reaction model and the Arrhenius model, while the error back propagation artificial neural network (BP-ANN) model could better predict the chemical properties. It is a better choice for dealers and consumers to judge the shelf life and edibility of food by shelf-life model.
Collapse
Affiliation(s)
- Jie Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85877225
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Malaysia Campus, University of Nottingham, Semenyih 43500, Selangor, Malaysia;
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd., Chengdu 610207, China;
| |
Collapse
|
19
|
Improving the Oxidation Stability and Shelf-Life of Peanut Oil by Addition of Rosemary Extract Combined with Vitamin C and Ascorbyl Palmitate. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7229412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rosemary extracts are natural antioxidants, which can be considered an alternative for synthetic antioxidants in the food industry. The aim of the present study was to evaluate the oxidation stability and shelf-life of rosemary extracts combined with vitamin C (VC) and ascorbyl palmitate (AP) in peanut oil stored at 65°C. Peanut oil with tertbutyl hydroquinone (TBHQ) and without additives served as positive and negative controls, respectively. The peroxide value (POV), thiobarbituric acid reactant (TBARs), conjugated diene (CD), and conjugated triene (CT) values of the peanut oil samples were evaluated during accelerated storage every 48 h. Among them, 0.23 g/kg rosemary extracts combined with 0.13 g/kg VC and 0.07 mg/kg AP exhibited the best oxidative stability. Additionally, the oxidation kinetics model predicated that the rosemary extracts combined with VC and AP could effectively prolong the shelf-life of peanut oil. In accelerated storage, the rosemary extracts combined with VC and AP not only inhibited peanut oil oxidation like chemical antioxidants, but also were safer than chemical antioxidants. Therefore, the rosemary extracts combined with VC and AP were an effective alternative to chemical antioxidants, which could improve the oxidation stability and shelf-life of peanut oil.
Collapse
|
20
|
Effects of Tea Polyphenol Palmitate Existing in the Oil Phase on the Stability of Myofibrillar Protein O/W Emulsion. Foods 2022; 11:foods11091326. [PMID: 35564049 PMCID: PMC9104160 DOI: 10.3390/foods11091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to explore the effect of adding different concentrations (0, 0.01%, 0.03%, and 0.05% (w/w)) of tea polyphenol palmitate (TPP) in the oil phase on the emulsifying properties of 5 and 10 mg/mL myofibrillar protein (MP). Particle size results revealed that the flocculation of droplets increased as TPP concentration increased and that droplets in 5 mg/mL MP emulsions (25−34 μm) were larger than in 10 mg/mL MP emulsions (14−22 μm). The emulsifying activity index of 5 mg/mL MP emulsions decreased with increasing TPP concentration. The micrographs showed that the droplets of MP emulsions exhibited extensive flocculation at TPP concentrations >0.03%. Compared with 5 mg/mL MP emulsions, 10 mg/mL MP emulsions showed better physical stability and reduced flocculation degree, which coincided with lower delta backscattering intensity (ΔBS) and Turbiscan stability index values. The flow properties of emulsions can be successfully depicted by Ostwald−de Waele models (R2 > 0.99). The concentrations of TPP and protein affect the K values of emulsions (p < 0.05). Altogether, increased protein concentration in the continuous phase could improve emulsion stability by increasing viscosity, offsetting the adverse effects of TPP to a certain extent. This study is expected to promote the rational application of TPP in protein emulsion products of high quality and acceptability.
Collapse
|
21
|
Niño-Vásquez IA, Muñiz-Márquez D, Ascacio-Valdés JA, Contreras-Esquivel JC, Aguilar CN, Rodríguez-Herrera R, Flores-Gallegos AC. Co-microencapsulation: a promising multi-approach technique for enhancement of functional properties. Bioengineered 2022; 13:5168-5189. [PMID: 35172666 PMCID: PMC8973973 DOI: 10.1080/21655979.2022.2037363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/02/2022] Open
Abstract
Co-microencapsulation is a growing technique in the food industry because it is a technique that, under the same fundamentals of microencapsulation, allows the generation of microcapsules with a longer shelf life, using a smaller number of encapsulating materials and a smaller amount of active compounds, while having a greater beneficial activity. This responds to consumer demand for higher quality foods that limit the use of ingredients with low nutritional content and provide beneficial health effects, such as probiotics, prebiotics, vitamins, fatty acids, and compounds with antioxidant activity. The combination of two or more active compounds that achieve a synergy between them and between the encapsulating materials offers an advantage over the well-known microencapsulation. Among the main active compounds used in this process are probiotics, prebiotics, fatty acids, and polyphenols, the main combination being that of probiotics with one of the other active compounds that enhances their benefits. The present review discusses the advantages and disadvantages of the different encapsulating materials and techniques used to obtain co-microencapsulants, where the main result is a higher survival of probiotics, higher stability of the active compounds and a more controlled release, which can lead to the generation of new foods, food supplements, or therapeutic foods for the treatment of common ailments.
Collapse
Affiliation(s)
- Iván A. Niño-Vásquez
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Diana Muñiz-Márquez
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles. Ciudad Valles, Slp, México, Ciudad Valles, México
| | - Juan A. Ascacio-Valdés
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Juan Carlos Contreras-Esquivel
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Cristóbal N. Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| | - Adriana C. Flores-Gallegos
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza E Ing, Saltillo, México
| |
Collapse
|
22
|
Zhou P, Tang D, Zou J, Wang X. An alternative strategy for enhancing stability and antimicrobial activity of catechins by natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Rakariyatham K, Zhou D, Lu T, Yin F, Yu Z, Li D, Shen Y, Zhu B. Synergistic effects of longan (Dimocarpus longan) peel extracts and food additives on oxidative stability of tuna oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
25
|
Flores M, Avendaño V, Bravo J, Valdés C, Forero-Doria O, Quitral V, Vilcanqui Y, Ortiz-Viedma J. Edible Oil Parameters during Deterioration Processes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7105170. [PMID: 34568484 PMCID: PMC8463213 DOI: 10.1155/2021/7105170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022]
Abstract
With the continuous increase in research on lipids, technologies and the development of chemical-analytical methods associated with the characterization and monitoring of different processes that involve modifications in edible fats are increasing. The beneficial effect of lipids, especially those essential for the health of the population, is widely known. However, degradation compounds are also produced that eventually have negative effects. In this dual context, the monitoring of the changes suffered by nutritional compounds can be obtained thanks to the development of technologies and analytical methods applied to the study of lipids. The modifications that lipids undergo can be followed by a wide variety of methods, ranging from the basic ones associated with simple chemical titrations to the more complex ones associated with sophisticated laboratory equipment. These determinations involve chemical and/or physical quantification of lipids to know an initial condition on the major and minor components. In addition to technologies that allow monitoring during more complex processes such as thermal deterioration, in multiple conditions depending on the objective of the study, this review could benefit a comprehensive understanding of lipid deterioration for future developments and research in the study of fats and oils for human consumption.
Collapse
Affiliation(s)
- Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Victoria Avendaño
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Jessica Bravo
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército 141, Santiago, Chile
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Oscar Forero-Doria
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Vilma Quitral
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Yesica Vilcanqui
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash S/N, Moquegua, Peru
| | - Jaime Ortiz-Viedma
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| |
Collapse
|
26
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
The study on the use of flavonoid- phosphatidylcholine coating in extending the oxidative stability of flaxseed oil during storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Shen Y, Guo C, Lu T, Ding XY, Zhao MT, Zhang M, Liu HL, Song L, Zhou DY. Effects of gallic acid alkyl esters and their combinations with other antioxidants on oxidative stability of DHA algae oil. Food Res Int 2021; 143:110280. [PMID: 33992380 DOI: 10.1016/j.foodres.2021.110280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022]
Abstract
The most effective composite antioxidants for DHA algae oil were optimized by combining the selected gallic acid (GA) alkyl ester with other commonly used antioxidants. Results of Rancimat induction time, peroxide value, thiobarbituric acid-reactive substances, and free radical generation indicated that octyl gallate (OG) was the best one in DHA algae oil among GA alkyl esters with various chain lengths. Therefore, OG was used to combine other antioxidants (antioxidant of bamboo leaves, rosemary extract, tea polyphenols, tea polyphenol palmitate (TPP), ascorbyl palmitate, vitamin E, phytic acid and phospholipid) for further improving the oxidative stability of DHA algae oil. The combination of OG + TPP showed the best antioxidant effect among the composite antioxidants of two and three components. Through optimization of mixture ratio, the combination of 53.20 mg/kg OG + 360 mg/kg TPP demonstrated the best antioxidant capacity, which prolonged the shelf life of DHA algae oil by 4.24 folds.
Collapse
Affiliation(s)
- Yan Shen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ting Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xu-Yang Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Man-Tong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China.
| |
Collapse
|
29
|
Wei Q, Zheng Y, Ma R, Wan J, Zhou R, Ma M. Kinetics of proteolysis in stored Mongolian cheese at ice-temperatures and split-split-plot analysis of storage factors affecting cheese quality. Food Res Int 2021; 140:109850. [PMID: 33648168 DOI: 10.1016/j.foodres.2020.109850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
Mongolian cheese is non-fermented cheese, which easily deteriorates during storage because of hydrolysis. The freezing points of sucrose and sucrose-free cheese were measured -5.16 °C and -4.29 °C, respectively. Ice-storage temperatures of -2 °C and -4 °C were used and 0 °C was used as reference temperature. In this study, the changes of proteolytic indexes (PI) and total viable counts (TVC) of cheese at different ice-temperatures during storage were studied. The PIs of all treatments increased over storage time, which conformed to the Arrhenius first-order kinetic model. The shelf lives of sucrose and sucrose-free cheese were predicted. In addition, -4 °C effectively suppressed the increases in TVC and PIs. The split-split-plot design was applied in comparing the effects of cheese type, the storage time and storage temperature on PI. Storage time was the most important factor followed by cheese type and storage temperature.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruochen Ma
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jinqing Wan
- Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China
| | - Ran Zhou
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Ming Ma
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
30
|
Enhancing the oxidative stability of algal oil powders stabilized by egg yolk granules/lecithin composites. Food Chem 2020; 345:128782. [PMID: 33302099 DOI: 10.1016/j.foodchem.2020.128782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/29/2020] [Indexed: 01/17/2023]
Abstract
This study reported a powder formulation containing omega-3-rich algal oil emulsions stabilized by egg yolk granules (EYGs)/lecithin composites. The improved physical stability of the algal oil samples due to increasing pH and lecithin addition was beneficial to the oxidative stability through analysis of free radical scavenging activities, metal ion chelating activities, and the release of primary and secondary oxidation products during accelerated storage (12 days, 60 °C). In addition, the effect of three antioxidants, i.e. ascorbic acid (VC), ascorbyl palmitate (AP), and α-tocopherol (VE), on lipid oxidation was investigated. Results showed that antioxidant partitioning at different regions of the emulsion system influenced its ability to prevent oxidation with the effectiveness of AP (at the O/W interface) > VE (in the oil phase) > VC (in the aqueous phase). This study developed a new powder-based emulsion formulation for algal oils with superior oxidative stability as an alternative source of omega-3.
Collapse
|
31
|
Fu J, Song L, Guan J, Sun C, Zhou D, Zhu B. Encapsulation of Antarctic krill oil in yeast cell microcarriers: Evaluation of oxidative stability and in vitro release. Food Chem 2020; 338:128089. [PMID: 33091980 DOI: 10.1016/j.foodchem.2020.128089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/08/2020] [Accepted: 09/11/2020] [Indexed: 11/15/2022]
Abstract
Antarctic krill oil (KO) was encapsulated into yeast cells (YCs), and the physicochemical, morphological, and conformational characterizations of KO-loaded YCs (KYCs) were investigated. Moreover, the oxidation stability and in vitro release behavior of KYCs were evaluated. Results showed that KYCs provided significantly higher oxidative stability than native KO. The fatty acid profile remained obviously unchanged after encapsulation. Most interestingly, the phospholipid proportion increased from 49.76% ± 1.42% to 59.92% ± 1.39% after encapsulation. Furthermore, there was a slow and prolonged release of KYCs, along with higher bioaccessibility of docosahexaenoic acid and eicosapentaenoic acid than the KO-in-water emulsion (69.62% ± 7.67% and 66.67% ± 4.55% vs 47.44% ± 4.4% and 39.74% ± 3.89%). KO encapsulation in YCs can be considered as an efficient approach for extending the oxidative and in vitro stability of this nutritious oil and facilitating its application in food products.
Collapse
Affiliation(s)
- Jingjing Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Jiajia Guan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cong Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
32
|
Effects of Supplementation of Microalgae ( Aurantiochytrium sp.) to Laying Hen Diets on Fatty Acid Content, Health Lipid Indices, Oxidative Stability, and Quality Attributes of Meat. Foods 2020; 9:foods9091271. [PMID: 32927865 PMCID: PMC7555786 DOI: 10.3390/foods9091271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The present study is conducted to investigate the effects of dietary docosahexaenoic acid (DHA)-rich microalgae (MA, Aurantiochytrium sp.) on health lipid indices, stability, and quality properties of meat from laying hens. A total of 450 healthy 50-wk-old Hy-Line Brown layers were randomly allotted to 5 groups (6 replicates of 15 birds each), which received diets supplemented with 0, 0.5, 1.0, 1.5, and 2.0% MA for 15 weeks. Fatty acid contents and quality properties of breast and thigh muscles from two randomly selected birds per replicate (n = 12) were measured. The oxidative stability of fresh, refrigerated, frozen, and cooked meat was also determined. Results indicated that supplemental MA produced dose-dependent enrichments of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), predominantly DHA, in breast and thigh muscles, with more health-promoting n-6/n-3 ratios (1.87-5.27) and favorable lipid health indices (p < 0.05). MA supplementation did not affect tenderness (shear force) and color (L*, a*, and b* values) of hen meat nor muscle endogenous antioxidant enzymes and fresh meat oxidation (p > 0.05). However, the n-3 LC-PUFA deposition slightly increased lipid oxidation in cooked and stored (4 °C) meat (p < 0.05). In conclusion, MA supplementation improves the nutritional quality of hen meat in terms of lipid profile without compromising meat quality attributes. Appropriate antioxidants are required to mitigate oxidation when such DHA-enriched meat is subjected to cooking and storage.
Collapse
|
33
|
Zhang J, Tao N, Qian X, Wang X, Wang M. Evaluation of antioxidative capacity and lipidomics profiling of big eye tuna (
Thunns obesus
) head soup with different colloidal particle size. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai201306 China
| | - Ningping Tao
- College of Food Science and Technology Shanghai Ocean University Shanghai201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai201306China
| | - Xueli Qian
- College of Food Science and Technology Shanghai Ocean University Shanghai201306 China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai201306 China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai201306China
| | - Mingfu Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai201306 China
- School of biological sciences The University of Hong Kong Pokfulam Road Hong Kong999077China
| |
Collapse
|