1
|
Belhoussaine O, El Kourchi C, Harhar H, El Moudden H, El Yadini A, Ullah R, Iqbal Z, Goh KW, Goh BH, Bouyahya A, Tabyaoui M. Phytochemical characterization and nutritional value of vegetable oils from ripe berries of Schinus terebinthifolia raddi and Schinus molle L., through extraction methods. Food Chem X 2024; 23:101580. [PMID: 39027685 PMCID: PMC11254949 DOI: 10.1016/j.fochx.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The aims of this study are the phytochemical exploration and food valorization of Schinus molle L. (S. molle) and Schinus terebinthifolia Raddi (S. terebinthifolia) from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% (S. molle) to 13% (S. terebinthifolia). In addition, unsaturated fatty acids represented the major fraction for S. terebinthifolia (79%) and S. molle (81%). However, S. terebinthifolia contains more saturated fatty acids (20%) than S. molle (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in S. molle and S. terebinthifolia, respectively. Moreover, the main sterols are β-sitosterol followed by campesterol and then Δ-5-avenasterol, while β-sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for S. molle, while S. terebinthifolia yeilds concentrations of 170 mg/kg and 138 mg/kg, then Δ-5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.
Collapse
Affiliation(s)
- Oumayma Belhoussaine
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Hamza El Moudden
- Higher School of Technology of El Kelaa Des Sraghna, Cadi Ayyad University, El Kelaa Des Sraghna B.P 104, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh.11472, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| |
Collapse
|
2
|
Blandón Pardo J, David JM, Barros A, Barreto E. Cytotoxic and antibacterial compounds from Schinus terebinthifolia Raddi fruits. Nat Prod Res 2024:1-5. [PMID: 39348222 DOI: 10.1080/14786419.2024.2410421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Chromatographic procedures of extracts of Schinus terebinthifolia Raddi fruits afforded (Z)-masticadienoic (1) and 3β-masticadienolic (2) acids, tetrahydroamentoflavone (3), and 4-O-methyl gallic acid (4). Addicionally, the derivative 6-oxo masticadienoic acid (1a) was prepared by an allylic oxidation. The chemical structures of obtained compounds were elucidated by spectrometric data analyses. Furthermore, both the semi-synthetic derivative and the metabolites were subjected to in vitro cytotoxicity against the A549 human lung cancer cell line, as well as antimicrobial activity tests. Compounds 2 and 1a exhibited cytotoxicity towards A549 cells with IC50 values of 20.13 and 6.11 µM, respectively. In the tests against pathogens, the CHCl3 and EtOAc soluble fractions of MeOH extract along with the pure compounds, exhibited antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Except for 4-O-methyl gallic acid, the other pure compounds showed inhibitory microbial activities with MIC values ranging from 0.25 μg/mL to 25 μg/mL doses.
Collapse
Affiliation(s)
| | | | - Alef Barros
- Laboratory of Cell Biology, Federal University of Alagoas, AL, Brazil Maceió
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, AL, Brazil Maceió
| |
Collapse
|
3
|
Song SY, Lee SH, Park JW, Park DH, Cho SS. Study on the Possibility of Developing Functional Source Through Extraction Optimization of Schinus terebinthifolia Bark and Evaluation of Anti-Oxidant, Elastase Inhibitory and Xanthine Oxidase Inhibitory Effect. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241275016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Introduction: Schinus terebinthifolia (ST) is a plant belonging to the cashew family Anacardiaceae, native to subtropical and tropical South America. ST is commonly called Brazil pepper and aroeira. Several reports have been made on the biological activities of ST, but studies on leaf extracts, especially lectins, have mainly been reported. Objectives: Our study analyzed the active compounds, antioxidant activities, xanthine oxidase inhibitory, elastase inhibitory, and tyrosinase inhibitory activities of S. terebinthifolia (ST) bark extract. Results: Hot water extracts showed the strongest electron donating ability (84.46%) and tyrosinase inhibitory activity (67.1%). Eighty percent ethanol extract showed the highest reducing power, total phenolic, xanthine oxidase (91.7%) and elastase inhibitory ability (85.44%). Catechin, α–amyrin, β–amyrone and 11-Oxo-.α-amyrin were identified through HPLC and GCMS analysis, while eighty percent extract contained the highest amount of catechin. Catechin, α–amyrin, and β–amyrone are considered to be the main xanthine oxidase inhibitors, while β–amyrone is considered to be the main inhibitor of xanthine oxidase and elastase. Conclusion: Through this study, we reported the basic information that S. terebinthifolia bark extract was used in folk medicine as an anti-inflammatory, anti-gout, and skin disease improvement material. S. terebinthifolia bark extract could be used as an anti-gout natural drug or cosmetic material.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| |
Collapse
|
4
|
Laureanti EJG, Paiva TS, de Matos Jorge LM, Jorge RMM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int J Biol Macromol 2023; 253:126969. [PMID: 37730006 DOI: 10.1016/j.ijbiomac.2023.126969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.
Collapse
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Thainnane Silva Paiva
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Luiz Mário de Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Chemical Engineering Department, State University of Maringá (UEM), Colombo Avenue, 5790, CEP, 87020-900, Maringá, PR, Brazil
| | - Regina Maria Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil.
| |
Collapse
|
5
|
Mügge FLB, Morlock GE. Chemical and cytotoxicity profiles of 11 pink pepper (Schinus spp.) samples via non-targeted hyphenated high-performance thin-layer chromatography. Metabolomics 2023; 19:48. [PMID: 37130976 PMCID: PMC10154279 DOI: 10.1007/s11306-023-02008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Pink pepper is a worldwide used spice that corresponds to the berries of two species, Schinus terebinthifolia Raddi or S. molle L. (Anacardiaceae). Toxic and allergic reactions by ingestion or contact with these plants were reported, and classical in vitro studies have highlighted the cytotoxic properties of apolar extracts from the fruits. OBJECTIVES Perform a non-targeted screening of 11 pink pepper samples for the detection and identification of individual cytotoxic substances. METHODS After reversed-phase high-performance thin-layer chromatography (RP-HPTLC) separation of the extracts and multi-imaging (UV/Vis/FLD), cytotoxic compounds were detected by bioluminescence reduction from luciferase reporter cells (HEK 293 T-CMV-ELuc) applied directly on the adsorbent surface, followed by elution of detected cytotoxic substance into atmospheric-pressure chemical ionization high-resolution mass spectrometry (APCI-HRMS). RESULTS Separations for mid-polar and non-polar fruit extracts demonstrated the selectivity of the method to different substance classes. One cytotoxic substance zone was tentatively assigned as moronic acid, a pentacyclic triterpenoid acid. CONCLUSION The developed non-targeted hyphenated RP-HPTLC-UV/Vis/FLD-bioluminescent cytotoxicity bioassay-FIA-APCI-HRMS method was successfully demonstrated for cytotoxicity screening (bioprofiling) and respective cytotoxin assignment.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Costa da Silva MM, Bezerra de Araújo Neto J, Lucas dos Santos AT, de Morais Oliveira-Tintino CD, de Araújo ACJ, Freitas PR, da Silva LE, do Amaral W, Deschamps C, de Azevedo FR, Gonçalves Lima CM, Golubkina N, Calixto-Júnior JT, Ribeiro-Filho J, Coutinho HDM, Caruso G, Tintino SR. Antibiotic-Potentiating Activity of the Schinus terebinthifolius Raddi Essential Oil against MDR Bacterial Strains. PLANTS (BASEL, SWITZERLAND) 2023; 12:1587. [PMID: 37111810 PMCID: PMC10144370 DOI: 10.3390/plants12081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.
Collapse
Affiliation(s)
- Maria Milene Costa da Silva
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - José Bezerra de Araújo Neto
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Antonia Thassya Lucas dos Santos
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | | | - Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Priscilla Ramos Freitas
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Wanderlei do Amaral
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Cícero Deschamps
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | | | | | - Nadezhda Golubkina
- Federal Scientific Center of Vegetable Production, Selectsionnaya 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - João Tavares Calixto-Júnior
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Saulo Relison Tintino
- Department of Biological Sciences, Regional University of Cariri—URCA, Rua Cel. Antonio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil
| |
Collapse
|
7
|
Hussein HS, Salem MZM, Soliman AM, Eldesouky SE. Comparative study of three plant-derived extracts as new management strategies against Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Sci Rep 2023; 13:3542. [PMID: 36864078 PMCID: PMC9981771 DOI: 10.1038/s41598-023-30588-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Finding innovative eco-friendly agents for pest control may be aided by investigating the plant-derived extracts' properties on economic pests. Therefore, the insecticidal, behavioral, biological and biochemical effects of Magnolia grandiflora (Magnoliaceae) leaf water and methanol extracts, Schinus terebinthifolius (Anacardiaceae) wood methanol extract, and Salix babylonica (Salicaceae) leaf methanol extract in comparison with a reference insecticide novaluron against S. littoralis were evaluated. The extracts were analyzed by High-Performance Liquid Chromatography (HPLC). The most abundant phenolic compounds were 4-hydroxybenzoic acid (7.16 mg/mL) and ferulic acid (6.34 mg/mL) in M. grandiflora leaf water extract; catechol (13.05 mg/mL), ferulic acid (11.87 mg/mL), and chlorogenic acid (10.33 mg/mL) in M. grandiflora leaf methanol extract; ferulic acid (14.81 mg/mL), caffeic acid (5.61 mg/mL), and gallic acid (5.07 mg/mL) In the S. terebinthifolius extract; cinnamic acid (11.36 mg/mL), and protocatechuic acid (10.33 mg/mL) In the methanol extract from S. babylonica extract. S. terebinthifolius extract had a highly toxic effect against second larvae after 96 h and eggs with LC50 values of 0.89 and 0.94 mg/L, respectively. Despite M. grandiflora extracts didn't show any toxicity against S. littoralis stages, they had an attractant effect on fourth- and second larvae, with feeding deterrence values of - 2.7% and - 6.7%, respectively, at 10 mg/L. S. terebinthifolius extract significantly reduced the percentage of pupation, adult emergence, hatchability, and fecundity, with values of 60.2%, 56.7%, 35.3%, and 105.4 eggs/female, respectively. Novaluron and S. terebinthifolius extract drastically inhibited the activities of α-amylase and total proteases to 1.16 and 0.52, and 1.47 and 0.65 ΔOD/mg protein/min, respectively. In the semi-field experiment, the residual toxicity of tested extracts on S. littoralis gradually decreased over time compared to novaluron. These findings indicate that extract from S. terebinthifolius is a promising insecticidal agent against S. littoralis.
Collapse
Affiliation(s)
- Hanaa S Hussein
- Applied Entomology and Zoology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Ahmed M Soliman
- Applied Entomology and Zoology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Sahar E Eldesouky
- Cotton Pesticides Evaluation Department, Plant Protection Research Institute, Agricultural Research Center, El-Sabhia, Alexandria, Egypt
| |
Collapse
|
8
|
Barreira CFT, de Oliveira VS, Chávez DWH, Gamallo OD, Castro RN, Júnior PCD, Sawaya ACHF, da Silva Ferreira M, Sampaio GR, Torres EAFDS, Saldanha T. The impacts of pink pepper (Schinus terebinthifolius Raddi) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chem 2023; 403:134347. [DOI: 10.1016/j.foodchem.2022.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
|
9
|
Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
UPLC-QTOF-MS-Based Metabolomics and Antioxidant Capacity of Codonopsis lanceolata from Different Geographical Origins. Foods 2023; 12:foods12020267. [PMID: 36673357 PMCID: PMC9858319 DOI: 10.3390/foods12020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Codonopsis lanceolata (C. lanceolata) has been commonly utilized as a therapeutic plant in traditional medicine. In this study, we examined variations in metabolites in C. lanceolata roots grown in different regions using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Multivariate analysis showed that the metabolite profiles of plants grown in Hoengseong and Jeongseon were more similar to each other than to that of C. lanceolata grown in Jeju. Most primary metabolites were present at higher levels in C. lanceolata grown in Jeju. In contrast, C. lanceolata grown in Hoengseong and Jeongseon had high levels of secondary metabolites such as phenylpropanoids and triterpenoid saponins, respectively. In addition, the bioactive compound content and antioxidant capacity of in C. lanceolata grown in Hoengseong and Jeongseon were observed to be higher than those of C. lanceolata grown in Jeju. This study suggests that metabolomics is an effective approach to investigate the difference of metabolite profiling in C. lanceolata from different geographical origins, and is useful for evaluating its pharmacological potential.
Collapse
|
11
|
Nunes MAS, Silva LDS, Santos DM, Cutrim BDS, Vieira SL, Silva ISS, Castelo Branco SJDS, do Nascimento MDS, Vale AAM, dos Santos-Azevedo APS, Zagmignan A, Sousa JCDS, Napoleão TH, Paiva PMG, Monteiro-Neto V, Nascimento da Silva LC. Schinus terebinthifolius Leaf Lectin (SteLL) Reduces the Bacterial and Inflammatory Burden of Wounds Infected by Staphylococcus aureus Promoting Skin Repair. Pharmaceuticals (Basel) 2022; 15:ph15111441. [PMID: 36422571 PMCID: PMC9697850 DOI: 10.3390/ph15111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.
Collapse
Affiliation(s)
- Marcio Anderson Sousa Nunes
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Deivid Martins Santos
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Brenda da Silva Cutrim
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Silvamara Leite Vieira
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | | | | | | | | | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| | - Luís Cláudio Nascimento da Silva
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| |
Collapse
|
12
|
Analysis of Volatiles of Rose Pepper Fruits by GC/MS: Drying Kinetics, Essential Oil Yield, and External Color Analysis. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1963261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Condiments and culinary supplements are subjected to long-term storage and may undergo physical, chemical, and biological changes that can influence their quality. Thus, the objective of the present study was to analyze the drying kinetics of rose pepper (Schinus terebinthifolius Raddi) fruits in an oven with forced air circulation at different temperatures, namely, 45, 55, 65, and 75°C, and determine the effective diffusion coefficient and activation energy using different mathematical models. Furthermore, the effects of the different drying temperatures were analyzed for external color parameters and yield of essential oil contents by gas chromatography coupled to a mass spectrometer. Of the ten models used for fitting, Thompson’s model was one with the best fitting to represent the drying of rose pepper fruits. The diffusion coefficient increases with the elevation of drying air temperature, described by the Arrhenius equation, with activation energy of 53.579 kJ·mol−1. The color of the fruits decreased in lightness (L
) with the increase in temperature. Of the thirty-eight terpenes identified, α-pinene and cis-ocimene were the most abundant, with the overall highest yield being found at a drying temperature of 45°C.
Collapse
|
13
|
Oliveira OA, Ferreira SR, Ribeiro EDS, Ferreira ATS, Perales J, Fernandes KVS, Oliveira AEA. Deleterious effects of Schinus terebinthifolius Raddi seed flour on cowpea weevil, Callosobruchus maculatus (F.), larval development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105082. [PMID: 35430072 DOI: 10.1016/j.pestbp.2022.105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Schinus terebinthifolius, Raddi, has been extensively studied due to its anti-inflammatory and antibiotic properties. S. terebinthifolius was also toxic to some insects, however little has been explored about the nature of its insecticide compounds or the toxicity of this plant to insect species. In this work, we investigate the toxicity of S. terebinthifolius seed flour against the insect C. maculatus. S. terebinthifolius seed flour interfered with the post hatch development of the C. maculatus larvae, decreasing larval survival, mass and length. Using DEAE-cellulose chromatography, five protein fractions were isolated, a non-retained fraction (NRF) and four retained fractions, eluted with 0.25, 0.5, 0.7 and 1.0 M NaCl. Proteins with varying molecular masses were observed in all fractions. The majority protein bands were identified by mass spectrometry analysis and among the main identified proteins are 11S globulins (such glycinin), lipoxygenase, chitinases, 7S globulins (vicilins, canavalin and β conglycinin), annexin, catalase and sucrose binding protein. All DEAE-protein fractions were toxic to the insect, interfering with the post hatch larval development and survival. Decreases greater than 90% were observed in the larval mass and length at 20 days after oviposition (DAO) for larvae raised on diet containing 0.5% of some fractions. Alterations in the level of proteins, glucose and in the activity of the enzymes lipases and cysteine proteases were also detected in these larvae. Our results show that seeds of S. terebinthifolius have an arsenal of toxic proteins with potential for the control of the insect C. maculatus.
Collapse
Affiliation(s)
- Odara Araújo Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brazil
| | - Sarah Rodrigues Ferreira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brazil
| | | | - Andre T S Ferreira
- Laboratório de Toxinologia, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Kátia V S Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brazil
| | - Antonia E A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
14
|
Locali-Pereira AR, Lopes NA, Nicoletti VR. Pink Pepper ( Schinus terebinthifolius Raddi) from Extracts to application: Truths about a Fake Pepper. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Adilson Roberto Locali-Pereira
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Unesp - São Paulo State University, São José do Rio Preto, Brazil
| | - Nathalie Almeida Lopes
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Unesp - São Paulo State University, São José do Rio Preto, Brazil
| | - Vânia Regina Nicoletti
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Unesp - São Paulo State University, São José do Rio Preto, Brazil
| |
Collapse
|
15
|
Bajpai VK, Bahuguna A, Kumar V, Khan I, Alrokayan SH, Khan HA, Simal-Gandara J, Xiao J, Na M, Sonwal S, Lee H, Kim M, Suk Huh Y, Han YK, Shukla S. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition. Food Chem 2022; 373:131392. [PMID: 34742043 DOI: 10.1016/j.foodchem.2021.131392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023]
Abstract
A sesquiterpene quinone, ilimaquinone, was accessed for its cellular antioxidant efficacy and possible antimicrobial mechanism of action against foodborne pathogens (Staphylococcus aureus and Escherichia coli) in vitro and in vivo. Ilimaquinone was found to be protective against H2O2-induced oxidative stress as validated by the reduction in the ROS levels, including increasing expression of SOD1 and SOD2 enzymes. Furthermore, ilimaquinone evoked MIC against S. aureus and E. coli within the range of 125-250 µg/mL. Ilimaquinone established its antimicrobial mode of action against both tested pathogens as evident by bacterial membrane depolarization, loss of nuclear genetic material, potassium ion, and release of extracellular ATP, as well as compromised membrane permeabilization and cellular component damage. Also, ilimaquinone showed no teratogenic effect against zebrafish, suggesting its nontoxic nature. Moreover, ilimaquinone significantly reduced the S. aureus count without affecting the sensory properties and color values of cold-storaged ground chicken meat even under temperature abuse condition.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Salman H Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain; Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India.
| |
Collapse
|
16
|
Mariano BJ, Sales de Oliveira V, Hidalgo Chávez DW, Castro RN, Riger CJ, Mendes JS, da Costa Souza M, Helena Frankland Sawaya AC, Sampaio GR, Ferraz da Silva Torres EA, Saldanha T. Biquinho pepper (Capsium chinense): Bioactive compounds, in vivo and in vitro antioxidant capacities and anti-cholesterol oxidation kinetics in fish balls during frozen storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
18
|
LORENZO ND, SANTOS OVD, LANNES SCDS. Structure and nutrition of dark chocolate with pequi mesocarp (Caryocar villosum (Alb.) Pers.). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.88021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Laureanti EJG, Paiva TS, Souza Tasso I, Dallabona ID, Helm CV, Matos Jorge LM, Jorge RMM. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J Appl Polym Sci 2021. [DOI: 10.1002/app.50922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
| | - Thainnane Silva Paiva
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ivisson Souza Tasso
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ithiara Dalponte Dallabona
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | | | - Luiz Mario Matos Jorge
- Department of Chemical Engineering State University of Maringá (UEM) Maringá Paraná Brazil
| | - Regina Maria Matos Jorge
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
20
|
Huei Zago Wang J, Kozuchovski Daré P, Armiliato Emer A. The perception of Naturology students from inhaling the pink pepper essential oil (
Schinus terebinthifolius
Raddi). FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
de Carvalho Martins V, França LP, da Silva Ferreira Y, Pires DC, de Souza Cardoso B, Pessanha de Araújo Santiago MC, Pacheco S, da Costa Souza M, Riger CJ, de Oliveira Godoy RL, Geraldo de Carvalho M. Determination of the Phytochemical Composition and Antioxidant Potential of Eugenia copacabanensis and Myrciaria tenella Leaves (Myrtaceae) Using a Saccharomyces cerevisiae Model. Chem Biodivers 2021; 18:e2100054. [PMID: 33915032 DOI: 10.1002/cbdv.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022]
Abstract
Eugenia copacabanensis and Myrciaria tenella are present in restingas of the Atlantic Forest, but little information is available about their chemical and biological potential. In this context, the hexane, dichloromethane, ethyl acetate and butanol fractions from the leaves of methanolic extract were analyzed by GC/MS and HPLC-DAD and the antioxidant potential was determined by DPPH and ABTS assays and using a Saccharomyces cerevisiae model. Dereplication allowed the identification of 68 compounds, 42 and 41 of which, respectively, are first reported here for E. copacabanensis and M. tenella. In vivo results revealed that the ethyl acetate and butanol fractions showed expressive antioxidant protection in the BY4741 and Δgsh1 strains, with greater impact on glutathione-deficient cells. With a high diversity of phenolic compounds, these polar fractions of E. copacabanensis and M. tenella leaves are potential protectors against intracellular oxidative stress.
Collapse
Affiliation(s)
- Víctor de Carvalho Martins
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil.,Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, 23020-470, Brasil
| | - Liliana Princisval França
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Yasmim da Silva Ferreira
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Daniele Cabral Pires
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Bárbara de Souza Cardoso
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | | | - Sidney Pacheco
- Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, 23020-470, Brasil
| | - Marcelo da Costa Souza
- Herbário RBR, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Cristiano Jorge Riger
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | | | - Mario Geraldo de Carvalho
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| |
Collapse
|
22
|
Sganzerla WG, Pereira Ribeiro CP, Uliana NR, Cassetari Rodrigues MB, da Rosa CG, Ferrareze JP, Veeck APDL, Nunes MR. Bioactive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract: A perspective coating material to improve the shelf life of cherry tomato (Solanum lycopersicum L. var. cerasiforme). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Feriani A, Tir M, Arafah M, Gómez-Caravaca AM, Contreras MDM, Nahdi S, Taamalli A, Allagui MS, Alwasel S, Segura-Carretero A, Harrath AH, Tlili N. Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113701. [PMID: 33346028 DOI: 10.1016/j.jep.2020.113701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolius is traditionally used for its anti inflammatory capacity, and indicated as a cardioprotective agent, whereas, its preventive effect against atherogenic diet fed (AD) induced metabolic disorders and the underlying mechanisms has not yet been explored. AIM OF THE STUDY This study was undertaken to investigate the ameliorative role of Schinus terebinthifolius fruits extract (STFE) against cardiovascular problem, oxidative and inflammatory status related to obesity in rats fed an atherogenic diet. MATERIALS AND METHODS The metabolites profile in STFE was evaluated using HPLC-DAD-ESI-QTOF-MS/MS analysis. In Wistar rats, atherogenic diet was added for 9 weeks to induce lipid accumulation simultaneously with STFE (50 mg/kg b. w) or saline treatment. Biochemical, oxidant, and inflammatory criteria together with hepatic and arterial integrity examination were assessed. RESULTS A total of thirty three metabolites were identified using HPLC-DAD-ESI-QTOF-MS, among them masazino-flavanone was the major compound (2645.50 μg/g DW). The results indicated that STFE supplementation during 9 weeks (50 mg/kg b. w.) significantly attenuated the altered lipid profile by decreasing the levels of TC, TG, LDL-C and increasing the HDL-C content both in plasma and liver, when compared with the AD-group. The histological analysis using ORO staining revealed a decrease in the lipid droplet deposit in the cytoplasm of hepatocytes of STFE + AD group. The addition of STFE could improve the glycemic status of AD-treated rats by decreasing the glucose and insulin secretion, and ameliorating the hepatic glycogen synthesis. The harmful effects of atherogenic diet on hepatic oxidative stress indicators (MDA, PC, GSH, SOD, CAT, and GPx), biochemical markers (AST, ALT, LDH and ALP), and liver function, were found to be decreased by the addition of STFE. Moreover, the reduction of inflammatory markers (CRP, IL-6 and TNF-α), associated to alleviating of aortic oxidative stress and integrity, highlighted the positive anti-atherogenic effect of STFE. CONCLUSION Overall, the pleiotropic protective effect observed with S. terebinthifolius fruits might be related to the presence of various bioactive compounds.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Meriam Tir
- Laboratoire d'Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Maria Arafah
- King Saud University, Department of Pathology, College of Medicine, Riyadh, 11451, Saudi Arabia
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Saber Nahdi
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, BP, 901, 2050, Hammam-Lif, Tunisia
| | - Mohamed Salah Allagui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax, 3052, Tunisia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia.
| |
Collapse
|
24
|
HPLC-ESI-QTOF-MS/MS profiling and therapeutic effects of Schinus terebinthifolius and Schinus molle fruits: investigation of their antioxidant, antidiabetic, anti-inflammatory and antinociceptive properties. Inflammopharmacology 2021; 29:467-481. [PMID: 33635473 DOI: 10.1007/s10787-021-00791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
The aim of the current work was to study the phytochemical variability among Schinus terebinthifolius (STE) and Schinus molle (SME) fruit extracts. The in vitro antioxidant, antihemolytic, antidiabetic, and macromolecule damage protective activities, as well as, the in vivo anti-inflammatory and antinociceptive capacities were assessed. Using the HPLC-ESI-QTOF/MS analysis, the chemical profile of fruit extract varied between S. terebinthifolius (30 compounds) and S. molle (16 compounds). The major compound was masazino-flavanone (5774.98 and 1177.65 μg/g sample for STE and SME, respectively). The investigations highlighted significant antioxidant proprieties when using ABTS radical (IC50; 0.12 and 0.14 mg/ml for STE and SME, respectively), superoxide (IC50; 0.17 and 0.22 mg/ml for STE and SME, respectively) and hydrogen peroxide (IC50; 014 and 0.17 mg/ml for STE and SME, respectively). In addition, STE and SME proved preventive effects against H2O2-induced hemolysis (IC50; 0.22 and 0.14 mg/ml for STE and SME, respectively). The in vitro antidiabetic effect revealed that STE and SME exhibited important inhibitory effects against α-amylase (IC50; 0.13 and 0.19 mg/ml for STE and SME, respectively) and α-glycosidase (IC50; 0.21 and 0.18 mg/ml for STE and SME, respectively) when compared with acarbose. Furthermore, the extracts showed potent inhibitory activity against AAPH-induced plasmid DNA damage, and protein oxidation. In vivo study revealed that STE and SME presented interesting antinociceptive and anti-inflammatory capacities. All observed effects highlighted the potential application of Schinus fruit extract in food and pharmaceutical industries against ROS-induced damage.
Collapse
|
25
|
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H, Kang KS, Chung SJ, Kim KH. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1816-1830. [PMID: 33406828 DOI: 10.1021/acs.jafc.0c06085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Qualitative analysis of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia L.) using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry revealed 27 promising cucurbitane-type triterpenoids, and LC/MS-guided chemical analysis of M. charantia fruit extract led to the isolation and structural characterization of 22 cucurbitane-type triterpenoids (1-22), including 8 new cucurbitane-type triterpenoidal saponins, yeojoosides A-H (1-8). The structures of the new compounds (1-8) were elucidated by spectroscopic methods, including 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were assigned by quantum chemical electronic circular dichroism calculations, chemical reactions, and DP4+ analysis using gauge-including atomic orbital NMR chemical shift calculations. All isolated compounds (1-22) were examined for inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. Nine compounds (7, 8, 9, 11, 14, 15, 19, 20, and 21) showed selective inhibitory effects of over 70% against PTPN2. The present results suggested that these compounds would be potential antidiabetic agents.
Collapse
Affiliation(s)
- Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Korea
| | - Jiyun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Feriani A, Tir M, Hamed M, Sila A, Nahdi S, Alwasel S, Harrath AH, Tlili N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol 2020; 165:2576-2587. [DOI: 10.1016/j.ijbiomac.2020.10.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
|
27
|
Bittencourt Fagundes M, Ballus CA, Perceval Soares V, de Freitas Ferreira D, Sena Vaz Leães Y, Sasso Robalo S, Guidetti Vendruscolo R, Bastianello Campagnol PC, Smanioto Barin J, Cichoski AJ, Bevilacqua Marcuzzo S, Assumpção Bertuol D, Wagner R. Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Res Int 2020; 137:109593. [PMID: 33233197 DOI: 10.1016/j.foodres.2020.109593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 01/18/2023]
Abstract
The present study aimed to evaluate two different processes of olive oil aromatization with Schinus terebinthifolius Raddi, conventional maceration (CM) and ultrasound-assisted maceration (UM), and their influence on quality parameters, total phenolic compounds (TPC), fatty acid profile (FA), volatile organic compounds (VOCs), antioxidant capacity, and oxidative stability. Flavoring reduced peroxide values, although it increased free fatty acids and extinction coefficients. The flavorization process did not change the FA profile, which showed oleic acid as a major compound. The VOCs varied and the migration of oxygenated monoterpenes were more effective in UM-flavored olive oil compared to its CM counterpart. All flavored olive oils presented higher oxidative stability than the control samples and UM-flavored olive oil was highlighted for its higher antioxidant activity. These findings proved that aromatization with pink pepper assisted by ultrasound may be an alternative to improve olive oil quality and create a new competitive flavored product.
Collapse
Affiliation(s)
- Mariane Bittencourt Fagundes
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Victória Perceval Soares
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Daniele de Freitas Ferreira
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Yasmin Sena Vaz Leães
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Silvino Sasso Robalo
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Raquel Guidetti Vendruscolo
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | | | - Juliano Smanioto Barin
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | - Alexandre José Cichoski
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil
| | | | - Daniel Assumpção Bertuol
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), Santa Maria CEP: 97105-900, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria CEP: 97105-900, Brazil.
| |
Collapse
|
28
|
da Cunha MA, Paraguassú LAA, Assis JGDA, Silva ABDPC, Cardoso RDCV. Urban gardening and neglected and underutilized species in Salvador, Bahia, Brazil. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:67. [PMID: 33121514 PMCID: PMC7596975 DOI: 10.1186/s13002-020-00421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Urban agriculture has been evidenced as a food production and environmental sustainability strategy, although it faces many obstacles in Latin American countries. Additionally, in urban areas, low consumption of fruit and greenery is noticeable, along with loss in food diversity, including the neglected and underutilized species (NUS), which involve potential to strengthen local food systems. For this reason, this work has sought to map urban gardens in the city of Salvador, Bahia, Brazil, characterizing their gardeners, and to systematize information regarding food produced and the use of NUS. METHODS The municipality's urban gardens were mapped and data was collected from the gardeners. The study included two steps: (i) garden localization; (ii) on-site visits for interviews with gardeners and verification of cultivated food, destination of production, availability, and use of NUS. RESULTS Eighteen active food gardens were located, seventeen of which participated in the study: eight (8) communal (UCG) and nine (9) private (UPG). Respondents were on average 55.76 years old, mostly (52.9%) male, working at UPG (88.9%). Women predominated in the UCG (87.5%), with higher levels of education. For 52.9% of the interviewees, the garden was their main source of income. Food produced at the urban gardens was consumed by 82.4% of the gardeners and their families. In 70.6% of the gardens, production was also sold, while 47.1% donated. During the survey, 59 NUS were found and 76.5% of respondents reported consuming 19 of the species. NUS leaves, fruits, and seeds were found to be eaten raw, boiled, or sautéed in various preparations, especially Coleus amboinicus Lour. (76.5%), Eryngium foetidum L. (35.3%), Talinum fruticosum (L.) Juss., and Pereskia aculeata Mill (both 29.4%). Occurrence and utilization of NUS did not present significant associations with the gardens or gardeners (p > 0.05). CONCLUSIONS Salvador urban gardens, even in small numbers and without government support, have produced affordable food for the local population, preserved food diversity, and the tradition of NUS cultivation and use. Thus, urban gardens are reaffirmed as relevant spaces that should be included in public policies in order to promote food and nutritional security, biodiversity, and urban environmental sustainability.
Collapse
Affiliation(s)
- Manuela Alves da Cunha
- Escola de Nutrição, Universidade Federal da Bahia, Basílio Gama Street, Canela Campus, Salvador, Bahia, 40110-907, Brazil.
| | - Lidice Almeida Arlego Paraguassú
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Emídio dos Santos Street, Barbalho Campus, Salvador, Bahia, 40301-015, Brazil
| | - José Geraldo de Aquino Assis
- Instituto de Biologia, Universidade Federal da Bahia, 668, Barão de Jeremoabo Street, Ondina Campus, Salvador, Bahia, 40170-115, Brazil
| | | | - Ryzia de Cassia Vieira Cardoso
- Escola de Nutrição, Universidade Federal da Bahia, Basílio Gama Street, Canela Campus, Salvador, Bahia, 40110-907, Brazil
| |
Collapse
|
29
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|