1
|
Shi X, Xue Y, Tu Y, Chen C, Zhang Y, Lin Z, Cai Z. Covalent organic framework-based solid phase microextraction coupled with electrospray ionization mass spectrometry for the quantitative assessment of abnormal bile acids by triclosan exposure in mice. Talanta 2025; 285:127398. [PMID: 39700720 DOI: 10.1016/j.talanta.2024.127398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Bile acids, a representative diagnostic indicator of liver function, are used to visualize the extent of liver injury. Numerous studies have shown that triclosan (TCS) exposure leads to abnormal bile acid metabolism. As a result, there is a requirement to develop a fast and smart means to quantitatively monitor abnormal bile acids from exposure to triclosan in bio-sample. In this work, solid-phase microextraction (SPME) probes of sea urchin-like covalent organic frameworks (COF) were in situ synthesized on steel needles by using 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) as two organic units and employed for extraction of bile acids. This TAPB-DMTP-COF-SPME possessed an excellent specified surface area (3351 m2 g-1) and a high regular porosity (∼3.6 nm), which was an ideal adsorbent to concentrate bile acids efficiently. The created probe, together with electrospray ionization mass spectrometry (ESI/MS), proved to be a fast and specific assay for the detection of bile acids in bio-samples. The proposed method had a low limitation of detection (0.03 μg L-1), good linearity (R2 ≥ 0.9931), wide linear range (0.10-1000.00 μg L-1) and excellent enrichment factor (63.60-252.00). Based on these excellent properties, it was successful application for the analyzing of bile acids in mice liver and feces, demonstrating the great potential of TAPB-DMTP-COF-SPME-ESI/MS in bile acids detection and liver injury diagnosis.
Collapse
Affiliation(s)
- Xinye Shi
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuandi Xue
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yajing Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Yuan Y, Li B, Zhang K, Zhu H. A Novel Gully-like Surface of Stainless-Steel Fiber Coated with COF-TPB-DMTP Nanoparticles for Solid-Phase Microextraction of Phthalic Acid Esters in Bottled Tea Beverages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:385. [PMID: 40072188 PMCID: PMC11901468 DOI: 10.3390/nano15050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
A covalent organic framework TPB-DMTP was physically coated onto the gully-like surface of stainless-steel fiber. The fabricated TPB-DMTP-coated stainless-steel fiber was used to extract five phthalic acid esters (PAEs) prior to the GC-FID separation and determination in bottled tea beverages. The developed SPME-GC-FID method gave limits of detection (S/N = 3) from 0.04 µg·L-1 (DBP) to 0.44 µg·L-1 (BBP), with the enrichment factors from 268 (DEHP) to 2657 (DPP). The relative standard deviations (RSDs) of the built method for inter-day and fiber-to-fiber were 4.1-11.8% and 2.3-9.9%, respectively. The prepared TPB-DMTP-coated stainless-steel fibers could stand at least 180 cycles without a significant loss of extraction efficiency. The developed method was successfully applied for the determination of trace PAEs in different bottled tea beverages, with recoveries from 85.5% to 115%.
Collapse
Affiliation(s)
- Yuanyuan Yuan
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Baohui Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Keqing Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
| | - Hongtao Zhu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (Y.Y.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| |
Collapse
|
3
|
He Q, Yang M, Wang X, Yang B, Zhang F. A covalent organic framework-coated steel substrate as a mass spectrometric ionization source for the effective enrichment and rapid detection of phthalates in beverages. Mikrochim Acta 2025; 192:183. [PMID: 39992473 DOI: 10.1007/s00604-025-06994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
A novel, rapid, and simple detection method is proposed to realize the simultaneous detection of seven phthalate esters (PAEs) within 1.5 min. A suitable covalent organic framework (COF) was coated on a stainless steel substrate (COFCS) to serve as both an enrichment element and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). Twenty microliters of elution solvent was added dropwise to the COFCS enriched with analytes, and then high voltage electricity was applied and combined with ambient mass spectrometry (AMS) to realize the detection of PAEs. In order to investigate the reliability of the COFCS-ESI-MS method, dimethyl phthalate (DMP), diethyl phthalate (DEP), ethyl phthalate (2-methoxy) (DMEP), phthalate(2-ethoxy) ethyl ester (DEEP), dipentyl phthalate (DPP), dihexyl phthalate (DHXP), and butyl benzyl phthalate (BBP) were detected simultaneously. The proposed method showed good linearity in the range 0.1-80 μg/L with the determination coefficient (R2) > 0.9916. The limits of detection (LODs) and limits of quantification (LOQs) of the determination technology were in the ranges 0.03-0.40 μg/L and 0.1-2.0 μg/L, respectively. The results demonstrated that the simultaneous detection of the seven PAEs in beverages can be realized using the method, and the spiked recoveries were in the range 85.17-104.09% with the relative standard deviations (RSDs) < 8.32%. In addition, the COFCS has good reusability and batch-to-batch repeatability and can be re-used at least 5 times and still maintain good enrichment performance.
Collapse
Affiliation(s)
- Qin He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Bingcheng Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China.
| |
Collapse
|
4
|
Wei W, Shi Y, Zhang K, Li B. The Preparation of Robust Gully-like Surface of Stainless Steel Fiber-Bonded TFPA-TTA-COF with Nano Pores for Solid-Phase Microextraction of Phenolic Compounds in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:354. [PMID: 40072157 PMCID: PMC11902147 DOI: 10.3390/nano15050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
In this paper, a novel robust TFPA-TTA-COF coating with nano pores was grafted to the gully-like surface of stainless steel fibers (GS-SSF). The GS-SSF were prepared using a two-step electrochemical etching method, and the covalent organic framework (COF) TFPA-TTA-COF coating was chemically bonded to the gully-like surface via in situ growth. The prepared metal fibers were applied as the headspace solid-phase microextraction (HS-SPME) fibers and combined with gas chromatography (GC) to develop a detection method for phenolic compounds (PCs) in water. The developed method gave the limits of detection (S/N = 3) from 0.07 µg·L-1 to 0.52 µg·L-1 with enrichment factors from 243 to 2405. The relative standard deviations for inter-day study (n = 5) and fiber-to-fiber were from 3.94% to 8.89% and 2.17% to 8.05%, respectively. The prepared fiber could stand at least 180 cycles without remarkable loss of extraction efficiency. The developed method was successfully employed for the determination of trace PCs in environmental water with recoveries from 84.76% to 124.84%.
Collapse
Affiliation(s)
- Wanqian Wei
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Yu Shi
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Keqing Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| | - Baohui Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; (W.W.)
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Baoding 071003, China
| |
Collapse
|
5
|
Tu Y, Li H, Xue Y, Xie W, Chen C, Zhong Y, Lin Z, Cai Z. Fluorine-functionalized covalent organic framework coated solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for monitoring triclosan, triclocarban, and chlorophenols in mice. Talanta 2024; 278:126503. [PMID: 38963976 DOI: 10.1016/j.talanta.2024.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Triclosan (TCS), triclocarban (TCC), and chlorophenols (CPs) are broad-spectrum antibacterials widely used in dermatological and oral hygiene products, which could induce severe liver and intestine injuries. Hence, it is essential to establish a rapid and sensitive method to monitor TCS, TCC, and CPs in various organisms. In this work, fluorine-functionalized covalent organic framework (COF-F) was prepared by using 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tri-aniline and 2,3,5,6-tetrafluoroterephthalaldehyde as two building units and employed as a solid phase microextraction (SPME) probe for the extraction of TCS, TCC and CPs. The COF-F possessed excellent hydrophobicity, a large specific surface area (1354.3 m2 g-1) and high uniform porosity (3.2 nm), which facilitated high selectivity and adsorption properties towards TCS, TCC, and CPs. Therefore, the as-prepared COF-F-SPME in combination with electrospray ionization mass spectrometry has been developed to provide fast and ultrasensitive detection of TCS, TCC, and CPs in biological samples. The established method demonstrated satisfactory linear ranges (0.01-100.00 μg L-1) and low limits of detection (0.003-0.040 μg L-1) for TCS, TCC and CPs. The developed method could be successfully applied to detect TCS, TCC and CPs in the liver and kidney tissues of mice, demonstrating the potential for the detection of chlorinated aromatic pollutants in the biological samples.
Collapse
Affiliation(s)
- Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuandi Xue
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
7
|
Xue R, Liu Y, Wu X, Lv Y, Guo J, Yang GY. Covalent Organic Frameworks Meet Titanium Oxide. ACS NANO 2024. [PMID: 39028766 DOI: 10.1021/acsnano.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yinsheng Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Su P, Wang Q, Li M, Tian X, Song J, Yang Y. Electrospun nanofibers-based thin film microextraction for enrichment of phthalate esters in biodegradable plastics. J Sep Sci 2024; 47:e2400314. [PMID: 39034893 DOI: 10.1002/jssc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this work, a novel electrospun nanofiber (PAN/TpBD; 2,4,6-triformylphloroglucinol [Tp] and benzidine [BD]; polyacrylonitrile [PAN]) was fabricated via a facile electrospinning method and utilized as adsorbent in thin film microextraction (TFME) of phthalate esters (PAEs) (dimethyl phthalate, diethyl phthalate, diallyl phthalate, dibutyl phthalate, and dioctyl phthalate) in biodegradable plastics. The prepared PAN/TpBD combines the strong stability of nanofibers with increased exposure sites for covalent organic frameworks and enhanced interactions with the target, thus improving the enrichment effect on the target. The extraction efficiency of PAN/TpBD reached above 80%. Based on PAN/TpBD, a TFME-high-performance liquid chromatography method was established, and the experimental parameters were optimized. Under the optimal extraction conditions, the PAEs of this method varied linearly in the range of 10-10 000 µg/L with low detection limits (0.69-2.72 µg/L). The intra-day and inter-day relative standard deviation values of the PAEs were less than 8.04% and 8.73%, respectively. The adsorbent can achieve more than 80% recovery of the five targets after six times reuse. The developed method was successfully applied for the determination of trace PAEs in biodegradable plastics with recoveries ranging from 80.1% to 113.4% and relative standard deviations were less than 9.45%. The as-synthesized PAN/TpBD adsorbent exhibited great potential in PAE analysis.
Collapse
Affiliation(s)
- Ping Su
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qiqi Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Mengxi Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Xinrui Tian
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Jiayi Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yi Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
9
|
Yang C, Mo ZL, Zhang QF, Xu JJ, Shen XF, Pang YH. Membrane-protected magnetic covalent organic framework for efficient extraction of estrogens in dairy products. Food Chem 2024; 438:137984. [PMID: 37979275 DOI: 10.1016/j.foodchem.2023.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The presence of estrogens residues in dairy products is a growing concern due to their potential health risk. Herein, in this study, we have developed a membrane-protected magnetic solid-phase extraction (MP-MSPE) method that utilized a magnetic adsorbent (Fe3O4@COF-LZU1) with in-situ growth for the efficient extraction of estrone (E1), 17β-estradiol (E2), and estriol (E3). When combined with HPLC-FLD, this method allows for the efficient detection of estrogens in dairy products. The stability of the MP-MSPE was improved by the presence of a dialysis membrane, which remained a high extraction efficiency (90 %) even after ten reuse cycles. The hydrogen bonding, π-π interactions and pore size effect contribute to the excellent adsorption of three estrogens onto Fe3O4@COF-LZU1. Under optimal conditions, the method exhibits a low detection limit (0.01-0.15 μg L-1), wide linear range (0.1-800 μg L-1), and favorable recoveries (77.3 %-109.4 %) at three concentration levels (10, 50 and 100 μg L-1). This proposed method is characterized by its simplicity, high efficiency and eco-friendliness, making it a promising approach for extracting estrogens from dairy products.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zheng-Lian Mo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiu-Fang Zhang
- Zibo Institute of Inspection, Testing and Metrology, Zibo 255199, Shandong, China
| | - Jin-Jie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Hu P, Zhang Y, Wei H, Zhang W, Song L, Zhang M, Meng X, Shang M, Wang C. Point-of-Use SERS Approach for Efficient Determination and Removal of Phthalic Acid Esters Based on a Metal-Organic Framework-Coated Melamine Sponge. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11528-11536. [PMID: 38386864 DOI: 10.1021/acsami.3c17729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Phthalic acid esters (PAEs) are ubiquitous environmental contaminants, and their real-time monitoring and removal remain challenging. Herein, a point-of-use (POU) device integrating adsorption, surface-enhanced Raman spectroscopy (SERS), and removal strategy was developed and realized ultrafast on-site determination of PAEs and cleanup of them from water. A piece of flexible melamine sponge (MS) was coated with gold nanostars (AuNSs) and metal-organic frameworks (MOFs), thus obtaining SERS activity and adsorption capacity. Based on this multifunctional AuNSs@MOFs/MS composite, clear trends were observed between SERS signal intensity and concentration of di(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP). The method detection limits of DEHP and DBP were calculated to be 0.75 × 10-7 and 0.67 × 10-7 M in water, respectively, proving good sensitivity. Furthermore, this POU device exhibited satisfactory adsorption capacity (∼82.3 g/g for DBP and ∼90.0 g/g for DEHP), high adsorption efficiency (equilibrium in 100 s), and good regeneration capability (removal efficiency >70% after 5 cycles). The applicability of this device was verified by its good determination and removal performance in real environmental water matrices. The whole process could be completed within 5 min. This approach provides a new POU alternative for real-time monitoring and removal of PAEs in water.
Collapse
Affiliation(s)
- Peishan Hu
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yuxuan Zhang
- The First Clinical Medical College, Nanjing Medical University, Nanjing 211166, China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Wei Zhang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Liqun Song
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Mengping Zhang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Meng
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ming Shang
- Shandong Provincial Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Cuijuan Wang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
12
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
13
|
Song XL, Liu YQ, He FY, Wu YY, Wang DD, Lv H, Wang XS, Sun ZG, Cheng CL, Liao KC, Chen Y. Facile fabrication of carbon nanotube hollow microspheres as a fiber coating for ultrasensitive solid-phase microextraction of phthalic acid esters in tea beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:420-426. [PMID: 38165136 DOI: 10.1039/d3ay01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 μg L-1), low limits of detection (0.00011-0.0026 μg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.
Collapse
Affiliation(s)
- Xin-Li Song
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yu-Qing Liu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Fei-Yan He
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yi-Yao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Dong-Dong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Hui Lv
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Xue-Shan Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Zhong-Guan Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Can-Ling Cheng
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Ke-Chao Liao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Yue Chen
- Department of Criminal Science and Technology, Shandong Police College, Jinan 250014, China
| |
Collapse
|
14
|
Fang Y, Zhou F, Zhang Q, Deng C, Wu M, Shen HH, Tang Y, Wang Y. Hierarchical covalent organic framework hollow nanofibers-bonded stainless steel fiber for efficient solid phase microextraction. Talanta 2024; 267:125223. [PMID: 37748274 DOI: 10.1016/j.talanta.2023.125223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
The solid phase microextraction (SPME) technique has been widely applied in the detection of trace compounds in food, environment, and medicine due to its advantages of easy quantification, simple operation, and greenness. Herein, a templating strategy with SiO2 nanofibers (SiO2 NFs) is reported to synthesize hierarchical covalent organic framework hollow nanofibers (COF HNFs)-coated stainless steel fiber for SPME application with dramatically enhanced enrichment performance for trace analytes. The construction of hierarchical porosity inside the microextraction coatings can not only increase the specific surface area of COF extraction materials for obtaining more abundant adsorption sites but also greatly improve the accessibility of internal COF micropores. Moreover, the thicknesses of the microextraction COF coatings can be facilely tailored by adjusting the amount of SiO2 NFs pre-assembled on the SPME fibers. On the headspace solid phase microextraction (HS-SPME) of antimicrobial residues, the developed COF TpBD-Me2 HNFs-12 fibers achieve enrichment factors of 2026 and 1823 for thymol and carvacrol respectively, which are significantly higher than those obtained from the counterpart COF TpBD-Me2-bonded fiber (8.5-8.2 times) and commercial CAR/PDMS fiber (3.3-4.4 times). Furthermore, the developed method was demonstrated to have wide linearity (0.1-50 μg L-1), low limits of detection (0.010 μg L-1), good thermal stability and excellent reusability (>60 recycles), demonstrating great application potential in the extraction of trace organic pollutants. The strategy developed in this work is applicable to preparing a variety of topological COF (e.g., TpBD, TpPa-1) HNFs-bonded fibers.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Fangzhou Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Qian Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Chao Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, Zhejiang, PR China.
| | - Minying Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
| | - Yajun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, Zhejiang, PR China.
| |
Collapse
|
15
|
Skok A, Bazel Y. Headspace Microextraction. A Comprehensive Review on Method Application to the Analysis of Real Samples (from 2018 till Present). Crit Rev Anal Chem 2023; 55:375-405. [PMID: 38079469 DOI: 10.1080/10408347.2023.2291695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This work describes current trends in the development of headspace microextraction methods. The main trends in the selection of detection techniques used in combination with microextraction and preferences in the selection of headspace liquid-phase microextraction (HS-LPME) or headspace solid-phase microextraction (HS-SPME) methods, depending on the analytes and their quantity, are also briefly presented. In the main part of the work, on the basis of current journal literature, headspace microextraction analytical methods used for the determination of various inorganic and organic analytes are classified and compared over the last five years. The work also reflects the current modifications of techniques and approaches proposed for these microextraction methods.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
16
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
17
|
Fu Q, Li J, Wang X, Sun-Waterhouse D, Sun X, Waterhouse GIN, Wu P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Mikrochim Acta 2023; 190:383. [PMID: 37697171 DOI: 10.1007/s00604-023-05958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Covalent organic framework-coated magnetite particles (Fe3O4@COF) were synthesized and applied as the adsorbent to the selective capture of phthalate esters (PAEs) in liquid foods. Combined with the magnetic solid-phase extraction (MSPE) technology, a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was employed for the separation and quantification of PAEs. Following optimization of the magnetic extraction and elution parameters, the developed analytical method offered a satisfactory linear range (0.1-5 μg L-1) with determination coefficients ranging from 0.9934 to 0.9975 for the five different PAEs studied. The limits of detection (LOD) were in the range 1.9-12.8 ng L-1. The recoveries ranged from 70.0 to 119.8% with a relative standard deviation (RSD) less than 9.7%. Density functional theory (DFT) calculations established that the dominant adsorption mechanism used by the COF to bind PAEs involved π-π stacking interactions. Results encourage the wider use of COF-based adsorbents and MSPE methods in the analytical determination of PAEs in foods.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xin Wang
- Weifang Inspection and Testing Center, Weifang, 261000, People's Republic of China
| | | | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
18
|
Carolina de Almeida M, Machado MR, Costa GG, de Oliveira GAR, Nunes HF, Maciel Costa Veloso DF, Ishizawa TA, Pereira J, Ferreira de Oliveira T. Influence of different concentrations of plasticizer diethyl phthalate (DEP) on toxicity of Lactuca sativa seeds, Artemia salina and Zebrafish. Heliyon 2023; 9:e18855. [PMID: 37809487 PMCID: PMC10558298 DOI: 10.1016/j.heliyon.2023.e18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Like other phthalates, diethyl phthalate (DEP) is considered as a contaminant of emerging concern (CEC) due to its ease in migrating from a package to water and food, and hence contaminate consumers, being metabolized and excreted in the urine. Its presence has a negative impact on aquatic ecosystems, especially with respect to disruption of the endocrine system and to reproductive disorders in humans. It mainly enters water bodies via sewage effluents from effluent treatment plants, due to its incomplete or inefficient removal. The objective of this work was to evaluate the toxicity of DEP at different trophic levels and to analyze data on the incidence and concentration of DEP according to its solubility. The concentrations ranged from 12.5 mg L-1 to 500 mg L-1 considering the response for toxicity at each trophic level and to determine the lethal concentration in 50% of the following organisms (LC50) (in mg L-1): Lactuca sativa seeds, Artemia salina Leach nauplii and Zebrafish embryo larval stage (Danio rerio), being 41,057.58 after 120 h; 401.77 after 48 h; and 470 after 96 h of exposure, respectively. As expected, higher organisms were more affected even at low concentrations, which shows the anthropological contribution of CECs to water bodies.
Collapse
Affiliation(s)
- Maria Carolina de Almeida
- Federal Institute of Education, Science and Technology of Goiás-IFG, Inhumas Campus, Avenida Universitária, Vale das Goiabeiras, 75402-556, Inhumas, Goiás, Brazil
| | - Michele Resende Machado
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Gessyca Gonçalves Costa
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Hugo Freire Nunes
- Laboratory of Extraction and Separation Methods-LAMES, Chemistry College, Federal University of Goiás-UFG, Samambaia Campus, Alameda Palmeiras, Chácaras Califórnia, 74045-155, Goiânia, Goiás, Brazil
| | - Danillo Fabrini Maciel Costa Veloso
- Center for Research, Technological Development and Innovation in Pharmaceuticals, Medicines and Cosmetics-FARMATEC, Pharmacy College, Federal University of Goiás-UFG, Samambaia Campus, Alameda Flamboyant, Quadra K, Edifício Life, Parque Tecnológico Samambaia, 74690-631, Goiânia, Goiás, Brazil
| | - Taís Aragão Ishizawa
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| | - Julião Pereira
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| | - Tatianne Ferreira de Oliveira
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| |
Collapse
|
19
|
Bhogal S, Grover A, Mohiuddin I. A Review of the Analysis of Phthalates by Gas Chromatography in Aqueous and Food Matrices. Crit Rev Anal Chem 2023; 54:3428-3452. [PMID: 37647342 DOI: 10.1080/10408347.2023.2250876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
As a commonly well-known industrial chemical, phthalates are produced in high volumes to be used in various consumer products (e.g., plasticizers, medical devices, construction materials, and toys) to enhance softness, durability, transparency, and flexibility. Phthalates are generally not chemically bonded to the polymer chain of the plastic in which they are mixed. Thus, they may leach, migrate, or evaporate into indoor/outdoor air, and foodstuffs. In this review, a comprehensive overview of several sample preparation methods coupled with gas chromatography for the analysis of phthalates in various kinds of complex matrices, with a focus on the last 20 years' worth of papers. The review begins by highlighting the environmental significance of phthalate pollution along with the various routes to their exposure to general population. Then, the discussion is extended to cover the pretreatment and extraction techniques for phthalates for their quantitation based on gas chromatographic approach. Finally, the present and future challenges for the detection of phthalates in aqueous and food matrices are discussed.
Collapse
Affiliation(s)
- Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Mohali, India
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala, India
| | | |
Collapse
|
20
|
Hu Y, Li Y, Shi Y, Kuang Y, Zhou S, Peng Y, Liu Y, Chen L, Zhou N, Zheng J, Zhu F, Ouyang G. A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea. Food Chem 2023; 415:135790. [PMID: 36868067 DOI: 10.1016/j.foodchem.2023.135790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Persistent organic pollutants (POPs) are widely distributed in the environment and are toxic, even at low concentrations. In this study, we first used hydrogen-bonded organic framework (HOF) to enrich POPs, based on solid phase microextraction (SPME). The HOF called PFC-1 (self-assembled by 1,3,6,8-tetra(4-carboxylphenyl)pyrene) has an ultra-high specific surface area, excellent thermochemical stability, and abundant functional groups, making it potential to be an excellent coating in SPME. And the as-prepared PFC-1 fiber have demonstrated outstanding enrichment abilities for nitroaromatic compounds (NACs) and POPs. Furthermore, the PFC-1 fiber was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an ultrasensitive and practical analytical method with wide linearity (0.2-200 ng·L-1), low detection limits for organochlorine pesticides (OCPs) (0.070-0.082 ng·L-1) and polychlorinated biphenyls (PCBs) (0.030-0.084 ng·L-1), good repeatability (6.7-9.9%), and satisfactory reproducibility (4.1-8.2%). Trace concentrations of OCPs and PCBs in drinking water, tea beverage, and tea were also determined precisely with the proposed analytical method.
Collapse
Affiliation(s)
- Yalan Hu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Youyou Li
- Joint International Center for CO(2) Capture and Storage (iCCS), College of Chemistry and Chemical Engineering, Hunan University, Lushannan Road 1, Changsha 410082, PR China
| | - Yueru Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Yixin Kuang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Suxin Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Yuan Peng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, PR China.
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, PR China.
| | - Juan Zheng
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | - Fang Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China
| |
Collapse
|
21
|
Qiao JY, Pang YH, Yan ZY, Shen XF. Electro-enhanced solid-phase microextraction with membrane protection for enrichment of bisphenols in canned meat. J Chromatogr A 2022; 1685:463592. [DOI: 10.1016/j.chroma.2022.463592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
22
|
Hou F, Chang Q, Wan N, Li J, Zang X, Zhang S, Wang C, Wang Z. A novel porphyrin-based conjugated microporous nanomaterial for solid-phase microextraction of phthalate esters residues in children's food. Food Chem 2022; 388:133015. [PMID: 35468464 DOI: 10.1016/j.foodchem.2022.133015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
A novel porphyrin-based conjugated microporous polymer (PCMP) with microporous structure and nitrogen-rich pyrrole building blocks was synthesized. The PCMP was used as a coating material to prepare solid-phase microextraction (SPME) fibers by sol-gel technique. Due to the toxicity of the phthalate esters (PAEs) and the necessity for their sensitive determinations in some food samples, the SPME fiber was investigated for the extraction of eleven PAEs from six different children's milk beverages prior to their detection by gas chromatography-mass spectrometry. Under the optimal conditions, the linear response range for the PAEs was in the range from 0.03 to 200 µg L-1 and the limits of detection (S/N = 3) for the analytes were 0.01-3.00 μg L-1. The method recoveries for the PAEs were between 80% and 120%, with the relative standard deviations varying from 1.3% to 9.8%. The method was successfully applied for the determination of PAEs in children's milk beverages.
Collapse
Affiliation(s)
- Fangyuan Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Nana Wan
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Jie Li
- Testing Center of the Geophysical Exploration Academy of China Metallurgical Bureau, Baoding 071051, China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
23
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
24
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
25
|
Pan A, Zhang C, Guo M, Wei D, Wang X. Fabrication of magnetic covalent organic framework for efficient extraction and determination of phthalate esters in milk samples. J Sep Sci 2022; 45:3014-3021. [PMID: 35728929 DOI: 10.1002/jssc.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Using two monomers of 4,4″-diamino-p-terphenyl and 1,3,5-triformylphloroglucinol, a co-precipitation structured magnetic covalent organic framework adsorbent was fabricated. After that, a high efficient vortex-assisted magnetic solid-phase extraction method was developed prior to gas chromatography-tandem mass spectrometry analysis for the determination of phthalate esters in milk samples. The fabricated magnetic adsorbent was facilely fabricated, fully characterized, and exhibited high extraction efficiency, which can be attributed to its larger pore size as well as strong hydrophobic and π-π stacking interactions between adsorbent and phthalate esters. Key parameters affecting extraction efficiency were investigated. Under the optimized conditions, the proposed method possessed good linearity (3.0-1000 μg/L), high sensitivity (0.8-2.1 μg/L for limits of detection), and satisfactory recoveries (76.8%-99.2%). The relative standard deviations for intra-day was 3.1%-4.5% and inter-day was 3.3%-6.1%. This work is suitable for high efficient separation/preconcentration of phthalate esters in milk samples.
Collapse
Affiliation(s)
- Ao Pan
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, P. R. China
| | - Can Zhang
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, P. R. China
| | - Ming Guo
- Zhejiang Chemical Production Quality Inspection Co., Ltd., Hangzhou, P. R. China
| | - Dan Wei
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, P. R. China
| | - Xu Wang
- School Laboratory Medicine, Hangzhou Medical College, Hangzhou, P. R. China.,Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, P. R. China
| |
Collapse
|
26
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
27
|
Li WK, Xue YJ, Fu XY, Ma ZQ, Feng JT. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Chen A, Guo H, Luan J, Li Y, He X, Chen L, Zhang Y. The electrospun polyacrylonitrile/covalent organic framework nanofibers for efficient enrichment of trace sulfonamides residues in food samples. J Chromatogr A 2022; 1668:462917. [PMID: 35247720 DOI: 10.1016/j.chroma.2022.462917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
In this work, the electrospun polyacrylonitrile/covalent organic frameworks Tp-BD nanofibers (PAN/Tp-BD) were synthesized and applied as an adsorbent for thin film microextraction (TFME) of seven sulfonamides in animal derived food samples. The morphology, structure, porosity, and stability of the prepared nanofibers were investigated. The PAN/Tp-BD nanofibers exhibited good chemical stability, high flexibility, porous fibrous structure, and excellent extraction efficiency. Based on the PAN/Tp-BD nanofibers as the adsorbent, a thin film microextraction-high performance liquid chromatography (TFME-HPLC) method for the determination of seven sulfonamides (SAs) in food samples was developed. Under the optimal conditions, the TFME-HPLC exhibited the low limit of detection (0.10-0.18 ng·mL-1), the low limit of quantitation (0.33-0.60 ng·mL-1), the wide linear range (0.5-50 ng·mL-1) with correlation coefficients between 0.994 and 0.998, and good enrichment factors between 39.7 to 170.1 towards 20 ng/mL SAs solution. The relative standard deviation (RSD) was lower than 11% in the interday and intraday analysis. Furthermore, the applicability of PAN/Tp-BD nanofibers was demonstrated for measuring trace SAs residues in the spiked food samples with recoveries ranging from 85.3% to 115.2%. The results demonstrated that the PAN/Tp-BD nanofibers have great potential for the efficient extraction of sulfonamides from complex food samples.
Collapse
Affiliation(s)
- An Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Hongying Guo
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Jingyi Luan
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Self-assembly of core-shell structured multiwalled nanotubes@covalent organic frameworks composite for solid-phase extraction of four phytohormones from fruit juices. J Chromatogr A 2022; 1664:462807. [PMID: 35032898 DOI: 10.1016/j.chroma.2022.462807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Covalent organic frameworks (COFs) have attracted considerable attention in sample pretreatment because of their unique characteristics. However, the submicron or micron size of COFs has restricted their wider applications in solid-phase extraction (SPE). Herein, multiwalled nanotubes (MWNTs) were used as substrate materials to synthesize core-shell structured MWNTs@COFs composites (MWNTs@SNW-1) using a simple self-assembly method. The as-prepared MWNTs@SNW-1 composite exhibited a high BET surface area, good thermal stability, and good adsorption capacity. The MWNTs@SNW-1 composite was used as an adsorbent in cartridge-based SPE to extract four phytohormones before determining their levels by high-performance liquid chromatography. The experimental parameters affecting extraction efficiency, including the amount of adsorbents, solution pH, ionic strength, eluent type, and eluent volume, were investigated. The developed method showed a wide linear range (0.37-100 ng mL-1), low detection limits (0.11-0.32 ng mL-1), low limits of quantification (0.37-1.07 ng mL-1), high enrichment factors (45.9-49.3), and good reproducibility (<4.8%) for phytohormones. The developed analytical method was used to analyze trace phytohormones in fruit juices with good recoveries, highlighting the potential of the MWNTs@SNW-1 composite as an adsorbent in sample preparation.
Collapse
|
30
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|
31
|
Biopolymer-imidazolium based dicationic ionic liquid modified clay bionanocomposite coating for solid-phase microextraction of phthalate esters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
33
|
Yu Q, Ma W, Zhang W, Chen H, Ding Q, Guo Y, Yang J, Zhang L. In situ room-temperature rapidly fabricated imine-linked covalent organic framework coated fibers for efficient solid-phase microextraction of pyrethroids. Anal Chim Acta 2021; 1181:338886. [PMID: 34556223 DOI: 10.1016/j.aca.2021.338886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 01/09/2023]
Abstract
A facile and rapid strategy for preparation of covalent organic framework (COF) coated fibers at ambient temperature is urgently needed for solid-phase microextraction (SPME) technology. In this work, an in situ room-temperature rapid growth strategy was developed to high-efficiently fabricate imine-linked COF (TPB-DVA) coated fibers in as little as 30 min at room temperature, and the thickness of the coating reached 9 μm. The prepared TPB-DVA coated fiber offer high thermal and chemical stability, and outstanding service lifetime. Moreover, we generalize this strategy to other two imine-linked COF (TPB-DMTP and TFPB-TAPB) coated fibers and the fibers were fabricated at room temperature for 3 h and 12 h, respectively, which demonstrate the applicability of this strategy. Subsequently, a SPME-GC-MS/MS analytical method was developed for trace pyrethroids (PYs) detection, which exhibited high enhancement factors (EFs, 2700-13195), wide linear range (0.08-800 ng L-1), low limits of detection (LODs, 0.02-0.20 ng L-1), and good repeatability (RSD ≤ 8.5%, n = 6). Furthermore, the developed analytical method was applied to tea samples and trace PYs (1.31-4.32 ng L-1) were found with satisfactory recovery (80.2-119.8%). The above results demonstrated that the feasibility of the developed strategy for the facile and rapid fabrication of imine-linked COF coated fibers.
Collapse
Affiliation(s)
- Qidong Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wende Ma
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yuheng Guo
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
34
|
Li Y, Dong G, Li J, Xiang J, Yuan J, Wang H, Wang X. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112319. [PMID: 33993090 DOI: 10.1016/j.ecoenv.2021.112319] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, we synthesized a kind of magnetic covalent organic framework nanohybrids (NiFe2O4@COF), and integrated it with polydimethyl siloxane and silicone rubber curing agent for solid phase microextraction (SPME) fiber coating. The fiber coating demonstrated a porous and uniform surface with the BET specific surface of 169.7 m2 g-1. As for seven environmental analytes, the NiFe2O4@COF-based SPME fiber coating gave the higher extraction recoveries for triclosan (TCS) and methyltriclosn (MTCS) than those of fenpropathrin, bifenthrin, permethrin, fenvalerate and deltamethrin. Several operational parameters were rigorously optimized, such as extraction temperature, extraction time, thermal desorption time, solution pH and salt effect. Combined with the GC-ECD detection, the newly developed microextraction method supplied the wide linear range of 0.1-1000 µg L-1 with the correlation coefficients of > 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) reached as low as 1-7 ng L-1 and 3.3-23 ng L-1, respectively. The intra-day and inter-day precisions in six replicates (n = 6 ) were < 3.55% and < 5.06%, respectively, and the fiber-to-fiber reproducibility (n = 3) was < 7.64%. To evaluate its feasibility in real samples, the fortified recoveries for TCS and MTCS, at low (0.2 µg L-1), middle (2.0 µg L-1) and high (20.0 µg L-1) levels, varied between 81.9% and 119.1% in tap, river and barreled waters as well as male, female and children urine samples. Especially, it is worth mentioning that the NiFe2O4@COF-based SPME coating fiber can be recycled for at least 150 times with nearly unchanged extraction efficiency. Moreover, the extraction recoveries by the as-fabricated fiber coating were much higher than those by three commercial fibers (PDMS, PDMS/DVB and PDMS/DVB/CAR). Overall, the NiFe2O4@COF-based SPME is a convenient, sensitive, efficient and "green" pretreatment method, thereby possessing important application prospects in trace monitoring of TCS-like pollutants in complex liquid matrices.
Collapse
Affiliation(s)
- Yanyan Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Guozhong Dong
- School of Sports Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianye Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianxing Xiang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingrui Yuan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
35
|
Chen S, Fu J, Zhou S, Zhao P, Wu X, Tang S, Zhang Z. Rapid recognition of di-n-butyl phthalate in food samples with a near infrared fluorescence imprinted sensor based on zeolite imidazolate framework-67. Food Chem 2021; 367:130505. [PMID: 34343813 DOI: 10.1016/j.foodchem.2021.130505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Di-n-butyl phthalate (DBP) as a plasticizer is widely used in food and chemical industries. It is harm to human health when it appeared in food and water. A novel near-infrared (NIR) fluorescence molecularly imprinted sensor based on CdTe quantum dots and zeolite imidazolate framework-67 was developed with a sol-gel polymerization method for rapid and sensitive determination of DBP in foodstuff rapidly (only in 1.5 min). The fluorescence imprinted sensor provided a rapid detection method for DBP in the linear response concentration range of 0.05-18.0 μM with a low detection limit of 1.6 nM. Compared with previous fluorescence imprinted sensor, it behaved faster response speed and lower detection limit for determination of DBP. The fluorescence imprinted sensor was used to detect DBP in real samples successfully with satisfied recoveries of 97.2-106.4%, suggesting a potential application in food analysis.
Collapse
Affiliation(s)
- Shan Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Shu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
Song C, Shao Y, Yue Z, Hu Q, Zheng J, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Anal Chim Acta 2021; 1176:338772. [PMID: 34399894 DOI: 10.1016/j.aca.2021.338772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Shao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Zeyi Yue
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Qingkun Hu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China.
| |
Collapse
|
37
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
YU Q, ZHANG L, ZHANG W, YANG J. [Preparation of covalent organic framework based on room temperature solution-suspension approach and its application to solid-phase microextraction of pyrethroids in tea]. Se Pu 2021; 39:349-356. [PMID: 34227754 PMCID: PMC9404039 DOI: 10.3724/sp.j.1123.2020.12012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Pyrethroids (PYs) have been widely used to control pests and prevent diseases in tea gardens. However, with the increasingly stringent pesticide testing standards in the import and export trade of tea, there is an urgent need for methods to detect trace amounts of PYs in tea. In this study, a covalent organic framework (COF) material TpBD with excellent thermal/chemical stability, high porosity, and a large specific surface area was prepared by a room-temperature solution-suspension approach (SSA). TpBD-coated solid phase microextraction (SPME) fibers were fabricated by coating the material on etched stainless-steel fibers by a simple physical coating method. The fibers were used in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS) to establish a highly sensitive method for the detection of PYs. The enrichment factors of this method for cyfluthrin, cypermethrin, flucythrinate, fenvalerate, and deltamethrin were 702-2687. The method showed low LODs (0.1-0.5 ng/L), wide linear ranges (0.2-800 ng/L), good linearities (correlation coefficients (R)≥0.9991) and acceptable repeatabilities (RSD≤11.0%, n=3). Green tea and oolong tea samples were analyzed using the developed method, and trace levels of the five PYs were successfully detected. The recoveries of the spiked PYs in the real green tea and oolong tea samples were in the range of 80.2%-109.5%. Experimental results showed that the established analytical method is suitable for the determination of PY pesticides in tea. Furthermore, the TpBD material was successfully prepared by the SSA method, demonstrating that the method has good universality and excellent potential for the simple synthesis of other COF materials.
Collapse
|
39
|
Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M. Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116208] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phthalates are multifunctional synthetic chemicals found in a wide array of consumer and industrial products, mainly used to improve the mechanical properties of plastics, giving them flexibility and softness. In the European Union, phthalates are prohibited at levels greater than 0.1% by weight in most food packaging. In the current study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was optimized, through the multivariate optimization process, and validated to evaluate the occurrence of four common phthalates, di-iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP), and 2,2,4,4-tetrabromodiphenyl (BDE), in different food packaging. The best extraction efficiency was achieved using the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber at 80 °C for 30 min. The validated method showed good linearity, precision (RSD < 13%), and recoveries (90.2 to 111%). The limit of detection (LOD) and of quantification (LOQ) ranged from 0.03 to 0.08 µg/L and from 0.10 to 0.24 µg/L, respectively. On average, the phthalates concentration varied largely among the assayed food packaging. DIBP was the most predominant phthalate in terms of occurrence (71.4% of analyzed simples) and concentration (from 3.61 to 10.7 μg/L). BBP was quantified in only one sample and BDE was detected in trace amounts (<LOQ) in only two samples.
Collapse
|
41
|
Li J, Wang Z, Wang Q, Guo L, Wang C, Wang Z, Zhang S, Wu Q. Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples. J Chromatogr A 2021; 1641:461972. [PMID: 33611110 DOI: 10.1016/j.chroma.2021.461972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Design and synthesis of novel coatings for solid phase microextraction (SPME) is urgently needed for sample pretreatment. In this study, three hypercrosslinked polymers (HCPs) were constructed by the facile Friedel-Crafts alkylation reactions between tetraphenylethylene (TPE) and 1,4-bis(chloromethyl)benzene (BCMB), 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), and cyanuric chloride (CC), respectively. The newly-synthesized HCPs were employed as SPME coatings for the extraction of phthalate esters (PAEs). Various parameters influencing the SPME efficiencies, including extraction time and temperature, ionic strength, stirring rate, desorption temperature and time were optimized. Under the optimal conditions, low limits of detection (0.003-0.033 μg L - 1), wide linearity (0.01-10 μg L - 1) and good repeatability (4.1-9.3%) were achieved. The HCPs-based SPME method was successfully applied for the determination of eight PAEs in environmental water and bottled water samples with recoveries from 75.3% to 116%. This method provides a good alternative for monitoring trace level of PAEs in water samples.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhuo Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liying Guo
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
42
|
Pang YH, Huang YY, Shen XF, Wang YY. Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal Chim Acta 2021; 1142:99-107. [PMID: 33280708 DOI: 10.1016/j.aca.2020.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
In this work, electro-enhanced solid-phase microextraction (EE-SPME) and covalent organic framework (COF) were adopted to improve the extraction efficiency. A conductive COF synthesized of 2,6-diaminoanthraquinone (DQ) and 1,3,5-triformylphloroglucinol (TP) was in situ bonded to the stainless steel wire via facile solution-phase approach and used as the EE-SPME fiber coating to preconcentrate a typical endocrine disruptor bisphenol A (BPA). Compared with conventional SPME, the DQTP bonded fiber coupled with EE-SPME device exhibited higher extraction efficiency and achieved extraction equilibrium within 10 min. The proposed approach based on EE-SPME and gas chromatography coupled with flame ionization detector gave a linear range of 0.05-10 μg mL-1 and detection limit of 3 μg L-1 (S/N = 3) with good precision (<6.7%) and reproducibility (<7.1%) spiked with 0.1, 0.5, 1.0 μg mL-1 BPA. Quantitative determination of BPA in extracts of food packagings (mineral water bottles, milk boxes and milk tea cups) was achieved with recoveries from 88.6 to 118.0%.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
43
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
A carbon dots-based coating for the determination of phthalate esters by solid-phase microextraction coupled gas chromatography in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
46
|
Nano-optosensor based on titanium dioxide and graphene quantum dots composited with specific polymer for cefazolin detection. J Pharm Biomed Anal 2020; 193:113715. [PMID: 33130395 DOI: 10.1016/j.jpba.2020.113715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
An optosensor using nanocomposite probes was fabricated for the detection of trace cefazolin. The nanoprobes utilized the high affinity of titanium dioxide, the good optical properties of graphene quantum dots and the good selectivity of molecularly imprinted polymer. The integration of these materials produced a rapid, highly sensitive optosensor with excellent selectivity for cefazolin detection. The fluorescence intensity of the nanocomposite probes was quenched when cefazolin re-bound with the imprinted recognition cavities of the nanoprobes. The fabricated nanoprobe exhibited a good linearity for cefazolin from 0.10 to 10.0 μg L-1 with a limit of detection of 0.10 μg L-1. The imprinting factor of the nanoprobe was 10.6 and selectivity for cefazolin was not affected by the analogue structures of cephalexin, cefatriaxone, cephradine, cefaperazone and ceftazidime. This nano-optosensor probe successfully detected cefazolin in milk and recoveries were between 85.0 and 97.4 % with RSDs less than 5.0 %. The results of analysis with nano-optosensor were in good agreement with HPLC analysis. The fabrication strategy of the nanocomposite probe can be modified for the measurement of other toxic compounds.
Collapse
|
47
|
Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Anal Chim Acta 2020; 1134:50-57. [DOI: 10.1016/j.aca.2020.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|
48
|
Zheng J, Huang S, Tong Y, Wei S, Chen G, Huang S, Ouyang G. In-situ layer-by-layer synthesized TpPa-1 COF solid-phase microextraction fiber for detecting sex hormones in serum. Anal Chim Acta 2020; 1137:28-36. [PMID: 33153606 DOI: 10.1016/j.aca.2020.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/18/2023]
Abstract
The secretion disorder of sex hormones is the source that leads to the occurrence of many diseases such as polycystic ovarian syndrome (PCOS), hyperandrogenism and so on. There exist physiological changes in human body when slight fluctuations in concentrations of sex hormones happen. Therefore, it's of great significance for accurate detection of sex hormones in human body. In this work, TpPa-1 COF solid-phase microextraction (SPME) fiber was prepared using high-efficient in-situ synthesis strategy and coupled with HPLC-MS/MS to detect three sex hormones, including Progesterone (P), testosterone (T) and dehydroepiandrosterone (DHEA) in human serum. The thickness of the coating reached 7 μm within 2 h. Under the optimal conditions, the established method presented low limit of detections (LODs, ≤ 0.75 ng/mL), wide linear ranges (0.100-100 ng mL-1) and good reproducibility, and three sex hormones (T, P, DHEA) were successfully detected and quantified in human serum. In conclusion, the established SPME method presented high-efficient fiber preparation and good analytical performances of sex hormone detection, therefore was in great potential for application in clinical.
Collapse
Affiliation(s)
- Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China
| | - Shuyao Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China
| | - Yuanjun Tong
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China
| | - Songbo Wei
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China
| | - Guosheng Chen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China
| | - Siming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics, Sun Yat- Sen Memorial Hospital, Guangzhou, Guangdong, 510120, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, 510070, China.
| |
Collapse
|