1
|
Sun Z, Ji X, Lu S, Du J. Shining a light on environmental science: Recent advances in SERS technology for rapid detection of persistent toxic substances. J Environ Sci (China) 2025; 153:251-263. [PMID: 39855797 DOI: 10.1016/j.jes.2024.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 01/27/2025]
Abstract
Persistent toxic substances (PTS) represent a paramount environmental issue in the 21st century. Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts. This article presents a concise overview of the components of PTS, pertinent environmental regulations, and conventional detection methodologies. Additionally, we offer an in-depth review of the principles, development, and practical applications of surface-enhanced Raman scattering (SERS) in environmental monitoring, emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices. Recent progress in enhancing SERS sensitivity, improving selectivity, and practical implementations are detailed, showcasing innovative materials and methods. Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research.
Collapse
Affiliation(s)
- Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xunlong Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shaoyu Lu
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Sun Q, Chen X, Ran X, Yin Y, Lei X, Li J, Le T. From traditional to modern: Nanotechnology-driven innovation in mycotoxin sensing for Chinese herbal medicines. Talanta 2025; 288:127681. [PMID: 39938420 DOI: 10.1016/j.talanta.2025.127681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Mycotoxin contamination in Chinese herbal medicines (CHMs) is a pressing concern that jeopardizes their quality and safety, despite their widespread therapeutic use. Conventional detection methods are often limited by complexity, cost, and sensitivity, particularly in resource-limited settings. This gap in effective and efficient mycotoxin detection necessitates a comprehensive review that explores innovative solutions to enhance the safety and efficacy of CHMs. Advancements in nanomaterials and related advanced sensing techniques have emerged as a beacon of hope. Therefore, this review aims to fill the knowledge gap by providing a comprehensive overview of the latest developments in mycotoxin detection in CHMs, spotlighting the transformative role of nanomaterials and advanced sensing techniques. This review stands out for its in-depth exploration of functional nanomaterials across dimensions and their innovative applications in mycotoxin detection. Its innovation stems from a holistic approach that not only surveys current technologies but also charts a forward-looking path, emphasizing novel nanomaterial development, refined pretreatment, and advanced biosensing for on-site detection. It delves into the integration of nanomaterials with advanced sensing technologies, discussing the advantages and limitations of these approaches. A significant innovation of this review lies in the nuanced integration of nanomaterials with machine learning and artificial intelligence, revealing untapped potential for accuracy enhancement. Through this synthesis of knowledge, we hope to inspire further research and development in this critical area, ensuring the continued safe use of CHMs in traditional medicine practices.
Collapse
Affiliation(s)
- Qi Sun
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Xiang Chen
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xueyan Ran
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Yin
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Xianlu Lei
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Jianmei Li
- Institute of Intelligent Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Tao Le
- Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| |
Collapse
|
3
|
Tan R, OuBu Z, Zhou Q, Mu J, Yi C, Luo X. Bicycled Hairpin Assembly-Mediated SERS/Colorimetric Dual-Mode Sensor for the Detection of Dexamethasone in Milk and Pork. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40308171 DOI: 10.1021/acs.jafc.5c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The presence of dexamethasone (DEX) residues and the illegal addition of DEX to food have garnered widespread public concern over recent decades. Based on the bicycled hairpin assembly (BHA) mechanism and the catalytic oxidase effect of urchin-shaped Au-Ag alloy loaded with Pt nanoparticles (Au@Ag@Pt), an accurate and ultrasensitive surface-enhanced Raman scattering (SERS)/colorimetric dual-mode method for DEX detection is pioneered. When DEX is introduced into the sensor system, the BHA cycle begins. The Fe3O4 nanosphere loaded with Au nanoparticles (Fe3O4@Au) surface facilitates the anchoring of a large amount of Au@Ag@Pt, resulting in synergistic signal amplification and facile magnetic separation from the complex system. Finally, the collected product effectively catalyzes the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to the oxidized product, producing a strong SERS response, an ultraviolet-visible absorption signal, and color deepening. Our dual-mode platform achieves ultrasensitive detection of DEX, achieving a detection limit (LOD) of 6.61 × 10-17 M within the broad range of 10-16 to 10-9 M for SERS and a LOD of 8.81 × 10-13 and 6.98 × 10-13 M within the range of 10-12-10-5 M for the colorimetric method. Additionally, this platform shows high selectivity and satisfactory recovery rates for DEX in milk and pork samples, with recoveries of 92.3%-106.5% (RSDs <8.35%) for SERS and 95.2%-107.6% (RSDs <8.81%) for colorimetric analysis. This study demonstrates that by combining the BHA amplification process with multifunctional Au@Ag@Pt and Fe3O4@Au substrates, the DEX content in actual food samples can be accurately determined using a dual-mode approach that combines the high sensitivity of SERS with the simplicity of colorimetric analysis.
Collapse
Affiliation(s)
- Rui Tan
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Ziji OuBu
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Qun Zhou
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Juan Mu
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Chenxi Yi
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| |
Collapse
|
4
|
Liu Z, Yang R, Chen H, Zhang X. Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing. Foods 2025; 14:1115. [PMID: 40238249 PMCID: PMC11989198 DOI: 10.3390/foods14071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Food safety is directly related to human health and has attracted intense attention all over the world. Surface-enhanced Raman scattering (SERS), as a rapid and selective technique, has been widely applied in monitoring food safety. SERS substrates, as an essential factor for sensing design, greatly influence the analytical performance. Currently, nanostructure-based SERS substrates have garnered significant interest due to their excellent merits in improving the sensitivity, specificity, and stability, holding great potential for the rapid and accurate sensing of food contaminants in complex matrices. This review summarizes the fundamentals of Raman spectroscopy and the used nanostructures for designing the SERS platform, including precious metal nanoparticles, metal-organic frameworks, polymers, and semiconductors. Moreover, it introduces the mechanisms and applications of nanostructures for enhancing SERS signals for monitoring hazardous substances, such as foodborne bacteria, pesticide and veterinary drug residues, food additives, illegal adulterants, and packaging material contamination. Finally, with the continuous progress of nanostructure technology and the continuous improvement of SERS technology, its application prospect in food safety testing will be broader.
Collapse
Affiliation(s)
| | | | | | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (R.Y.); (H.C.)
| |
Collapse
|
5
|
Awais M, Naqvi SMZA, Wei Z, Wu J, Arshad I, Raghavan V, Hu J. Exploring the applications for Abscissic acid (ABA) detection using perovskite derived opto-electronic sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125457. [PMID: 39579731 DOI: 10.1016/j.saa.2024.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The hormone abscisic acid (ABA) is crucial in the regulation of many physiological processes in plants, particularly in stress response and developmental control. Recent developments in detection methods utilizing opto-electronic sensors have enabled a more profound comprehension of the processes linked to plant hormones, namely ABA. The present work investigates the potential uses of opto-electronic sensors produced from tailored perovskite materials for the targeted detection of ABA. Modified perovskite substrates, which are characterized by their large surface area, intense Raman scattering, and great sensitivity, provide a distinct advantage in differentiating ABA from other interfering substances present in intricate plant media. Notwithstanding the advancements in these sophisticated detection methods, there is still a significant lack of knowledge on how the distinct opto-electronic characteristics of high-purity perovskite crystals impact their ability to detect ABA. This work aims to close this gap by a thorough investigation of the production, modification, and use of sensors based on perovskite materials. This study also intends to give a thorough analysis comparing the performance of perovskite substrates with traditional substrates, with a specific focus on important characteristics including efficiency, specificity, and sensitivity. Furthermore, the objective of this study is to evaluate the capacity of perovskite substrates to surpass the constraints of conventional detection techniques, namely in terms of sensitivity and interference from competing matrix components. The objective of this work is to make novel contributions to the design and optimization of opto-electronic sensors based on perovskite materials, with the goal of achieving more accurate and dependable detection of ABA. Consequently, this could facilitate the advancement of specialized diagnostic instruments for monitoring plant hormones, so enabling the use of enhanced agricultural techniques and effective stress management in plants.
Collapse
Affiliation(s)
- Muhammad Awais
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Syed Muhammad Zaigham Abbas Naqvi
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Zhang Wei
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Junfeng Wu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Ifzan Arshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060 China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Sun D, Liu T, Yao Y, Kong D, Liu C, Ye H, Zhang Q, Li S, Li Y, Shi Q. A core-satellite self-assembled SERS aptasensor used for ultrasensitive detection of AFB 1. Mikrochim Acta 2025; 192:190. [PMID: 40009200 DOI: 10.1007/s00604-025-07040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
A surface-enhanced Raman scattering (SERS) aptasensor was developed using gold nanostars (Au NSs) and Fe3O4@Au nanoparticles (NPs) for the highly sensitive detection of aflatoxin B1 (AFB1). Au NSs were modified by the Raman reporter 4-aminothiophenol (PATP) and then coupled with cDNA to act as the capture probes (Au NSs@PATP-cDNA). Fe3O4@Au NPs were modified with the AFB1 aptamer (AFB1 Apt) and used as signal probes (Fe3O4@Au NPs-AFB1 Apt). The SERS peak of PATP at 1078 cm-1 was used for quantitative analysis. When the core-satellite nanostructures (Fe3O4@Au NPs-AFB1 Apt/cDNA-Au NSs@PATP) were self-assembled by oligonucleotide hybridization, the SERS intensity was significantly enhanced. When AFB1 was present, AFB1 Apt specifically binds to AFB1, causing the Fe3O4@Au NPs-AFB1 Apt and Au NSs@PATP-cDNA to dissociate, resulting in a decrease in the SERS intensity measured after magnetic separation. Under optimal conditions, the limit of detection (LOD) of AFB1 can be reduced to 0.24 pg/mL. This is attributed to the high affinity of AFB1 Apt, excellent magnetic separation characteristics, and multiple SERS hotspots. The assay has been validated to perform well in recovery and accuracy by evaluating spiked samples (rice, corn, and wheat) and positive samples (corn, brown rice, and wheat).
Collapse
Affiliation(s)
- Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Tao Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Yiran Yao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
7
|
Zhang D, Chen X, Lin J, Jiang S, Fan M, Liu N, Huang Z, Wang J. Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring. Anal Chem 2025; 97:4101-4110. [PMID: 39854732 DOI: 10.1021/acs.analchem.4c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance. Next-generation flow cytometry is commonly used for CPC detection but is not performed in routine clinical practice because it requires expensive instruments, is costly, and time-consuming. This study introduces a cost-effective, rapid surface-enhanced Raman spectroscopy (SERS) assay leveraging gold-deposited magnetic nanoparticles and plasmonic nanoparticles functionalized with anti-CD138 and anti-CD38 antibodies for detecting CPCs in peripheral blood samples. A portable optical device was used for signal recording, enhancing the potential for point-of-care applications. The developed assay is highly sensitive and specific, capable of detecting as few as one or two cells. The application of machine learning algorithms to SERS signal analysis yielded area under the curve values ranging from 0.90 to 0.95, demonstrating excellent performance in differentiating multiple myeloma patients from healthy donors. This SERS method provides a sensitive and accessible way for CPC detection, showing significant potential for multiple myeloma diagnosis, treatment monitoring, and prognosis prediction.
Collapse
Affiliation(s)
- Dechun Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xianling Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Jia Lin
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Center of Translational Hematology, Fuzhou, Fujian 350001, China
| | - Shiyan Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Nenrong Liu
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
8
|
Zhang Z, Wu C, Zhao Z. Detection of Aflatoxin B1 in Wheat Based on Nucleic Aptamer Chemiluminescence Sensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:988. [PMID: 40006217 PMCID: PMC11859183 DOI: 10.3390/s25040988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
In this study, we developed a low-cost, high-sensitivity chemiluminescence competitive aptamer sensor for the detection of aflatoxin B1 (AFB1) in wheat samples. The optical fiber sensor was self-made, and it utilized biotin and streptavidin (SA) link aptamer and horseradish peroxidase (HRP) for the chemiluminescence detection, achieving competitive assay between the AFB1 and AFB1 antigen. We adjusted the experimental conditions of the sensor base on the date of optimization of the experimental conditions and chose coated antigens on the surface of carboxyl magnetic particles. Under conditions optimized by testing key parameters, the assay results showed that the chemiluminescence intensity and AFB1 concentration demonstrated a strong linear relationship (R2 = 0.995), the dynamic range was from 0.1 to 10 ng/mL with a detection limit of 0.09 ng/mL, and the aptamer exhibited good specificity and anti-interference ability. Testing the wheat samples showed that the spiked recovery rate ranged from 79.19% to 113.21%. The sensor possesses characteristics of low detection limits, simple manufacturing methods, and affordability, providing a novel solution for the development of low-cost and high-sensitivity AFB1 detection equipment.
Collapse
Affiliation(s)
| | | | - Zhike Zhao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.Z.); (C.W.)
| |
Collapse
|
9
|
Wang Y, Zhao Y, Jin Y, Wang Y, Xiao G, Baeyens J, Su H. Double detection of mycotoxins based on aptamer induced Fe 3O 4@TiO 2@Ag Core - Shell nanoparticles "turn on" fluorescence resonance energy transfer. Food Chem 2025; 464:141601. [PMID: 39413601 DOI: 10.1016/j.foodchem.2024.141601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Multiple and sensitive mycotoxin detection is an essential early-warning mechanism for safeguarding human health, and preserving the environment. We synthesized a turn-on Fluorescence Resonance Energy Transfer (FRET) aptamer sensor based on the unique fluorescence quenching and substrate recognition characteristics of Ag NTs (energy receptors) and aptamer modified Fe3O4@TiO2 NP (energy donor) to detect multiple toxins using a single diagnostic approach. The addition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) resulted in a change in fluorescence intensity at 510 and 650 nm, which can be employed for simultaneous recognition with detection limits of 0.94 ng·mL-1 (R2 = 0.997) and 0.54 ng·mL-1 (R2 = 0.995). The aptasensors have been successfully applied for the determination of AFB1 and OTA in grain and oil samples with high recovery rates. The approach provides novel possibilities for the development of sensitive and selective aptasensors with potential applications in aptamer-recognized multifunctional biosensing.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yaoqiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Ashiagbor K, Jayan H, Yosri N, Amaglo NK, Zou X, Guo Z. Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables. Food Chem 2025; 463:141394. [PMID: 39326308 DOI: 10.1016/j.foodchem.2024.141394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Fruits and vegetables with pesticide residues pose a serious public health risk. Since 2022, 3 million people worldwide have been poisoned by pesticides annually, with a 20 % fatality rate. This review provides an overview of current research on detecting pesticide residues in produce, focusing on the potential of SERS-based aptasensor. These sensors offer improved efficiency and accuracy in pesticide analysis, ensuring the safety of fruits and vegetables. The review also discusses essential techniques for efficient aptamer production, highlighting their advantages and disadvantages. It emphasizes the benefits and challenges of using SERS-based aptasensor, particularly the need for enhanced anti-interference capabilities and the development of intelligent sensors for on-site detection without extensive sample preparation. This comprehensive review is a great resource that can help with future developments in pesticide residue analysis, food safety, and consumer health protection in contemporary agriculture.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Xue S, Gao L, Yin L, El-Seedi HR, Abolibda TZ, Zou X, Guo Z. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124991. [PMID: 39163773 DOI: 10.1016/j.saa.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The contamination of mycotoxins poses a serious threat to global food security, hence the urgent need for simultaneous detection of multiple mycotoxins. Herein, two SERS nanoprobes were synthesized by embedded SERS tags (4-mercaptopyridine, 4MPy; 4-mercaptobenzonitrile, TBN) into the Au and Ag core-shell structure, and each was coupled with the aptamers specific to ochratoxin A (OTA) and zearalenone (ZEN). Meanwhile, a rigid enhanced substrate Indium tin oxide glass/AuNPs/Graphene oxide (ITO/AuNPs/GO) was combined with aptamer functionalized Au@AgNPs via π-π stacking interactions between the aptamer and GO to construct a surface-enhanced Raman spectroscopy (SERS) aptasensor, thereby inducing a SERS enhancement effect for the effective and swift simultaneous detection of both OTA and ZEN. The presence of OTA and ZEN caused signal probes dissociation, resulting in an inverse correlation between Raman signal intensity (1005 cm-1 and 2227 cm-1) and the concentrations of OTA and ZEN, respectively. The SERS aptasensor exhibited wide linear detection ranges of 0.001-20 ng/mL for OTA and 0.1-100 ng/mL for ZEN, with low detection limits (LOD) of 0.94 pg/mL for OTA and 59 pg/mL for ZEN. Furthermore, the developed SERS aptasensor demonstrated feasible applicability in the detection of OTA and ZEN in maize, showcasing its substantial potential for practical implementation.
Collapse
Affiliation(s)
- Shanshan Xue
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingbo Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
12
|
Tao J, Wang Y, Zhai W, Wang M. A core-shell AuNRs@BUT-16 nanocomposite for enhancement SERS detection and efficient removal of deoxynivalenol. J Adv Res 2025; 67:15-23. [PMID: 38237769 PMCID: PMC11725096 DOI: 10.1016/j.jare.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Deoxynivalenol (DON) is widely found in grains and poses a serious threat to human health, so there is an urgent need to develop methods for its simultaneous removal and detection. The novel metal organic framework (MOF) material BUT-16 has a high adsorption capacity (79.8%) for DON. Meanwhile, surface-enhanced Raman spectroscopy (SERS) has been widely used for rapid detection of analytes. OBJECTIVES The aim of this work is to prepare a material that can be used for enhancement SERS detection and efficient removal of DON. METHODS AuNRs@BUT-16 was prepared by in-situ solvothermal method and characterized using a series of characterization tools. AuNRs@BUT-16 was used as an adsorbent and SERS substrate for the removal and detection of DON, and some factors affecting the adsorption and SERS detection were investigated. The adsorption mechanism between DON and AuNRs@BUT-16 was investigated using molecular docking. The proposed SERS method was used to detect DON contamination in real samples. RESULTS The prepared core-shell AuNRs@BUT-16 showed a synergistic effect in improving DON adsorption and SERS response. 97.6 % of DON was removed by AuNRs@BUT-16 in aqueous solution, and 70 % in 80 % methanol. The pre-enrichment effect of BUT-16 could trap more DON molecules in the "hot spots" of AuNRs, thus the proposed SERS sensor based on AuNRs@BUT-16 substrate displayed outstanding SERS response and the limit of detection of DON was 3.87 × 10-3 μg/mL. Molecular docking revealed that hydrogen bond and π-alkyl interaction were the main reasons for high affinity between BUT-16 and DON, and Au-O bonds facilitated the adsorption of DON on AuNRs. CONCLUSIONS AuNRs@BUT-16 with superior enrichment and SERS detection capabilities has been used for simultaneous removal and SERS detection of DON, and it also has great potential to realize sensitive and selective detection and removal of DON in multiple disciplines.
Collapse
Affiliation(s)
- Jing Tao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yudan Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
13
|
Li Y, Yu H, Liu D, Luo S, Gao X, Zhang L, Sun J. Aflatoxins in dried chilli products in Gansu Province and health risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:352-359. [PMID: 39229719 DOI: 10.1080/19393210.2024.2386281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
In order to understand the status of aflatoxin contamination in dried chilli products in Gansu Province and the risk of dietary exposure, a total of 106 samples of dried chilli products from farmers' markets and supermarkets in 14 prefecture-cities of Gansu Province were collected and analysed by isotope dilution liquid chromatography-tandem mass spectrometry. The results showed that the detection rate of aflatoxin in dried chilli products in Gansu Province was 30.2%, and the average level was 1.57 μg/kg. The detection rates of dried chillies, paprika, and chilli powders were 16.7%, 43.6%, and 46.2%, respectively. The detection rates of aflatoxin in dried chilli products from shops and farmers' markets were 22.5% and 40.0%, respectively. The dietary exposure of AFB1 was 0.0001 μg/kg bw/day, and the MOE calculated from its average concentration was 305.
Collapse
Affiliation(s)
- Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Haiying Yu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Deng Liu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Shan Luo
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiangna Gao
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Lin Zhang
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| |
Collapse
|
14
|
Guo L, Zhang J, Bao Y, Zhang Y, Zhang D, Ma X, Zhang J. Label-free and highly sensitive detection of aflatoxin B 1 by Ag IANPs via surface-enhanced Raman spectroscopy. Food Chem 2024; 458:140231. [PMID: 38959803 DOI: 10.1016/j.foodchem.2024.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.
Collapse
Affiliation(s)
- Liming Guo
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jie Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ying Bao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yi Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Dexu Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiangyu Ma
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jiadong Zhang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Mineral Salt Resource, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
15
|
Tang C, He Y, Yuan B, Li L, Luo L, You T. Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods. Compr Rev Food Sci Food Saf 2024; 23:e70062. [PMID: 39530609 DOI: 10.1111/1541-4337.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018-2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Yi He
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Bingzheng Yuan
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Libo Li
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
| | - Lijun Luo
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Tianyan You
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Klein H, Cohen R, Mani KA, Feldbaum RA, Ben-Haim A, Zelinger E, Nirala NR, Muthukumar D, Domb AJ, Shtenberg G, Mechrez G. Soft surface-enhanced Raman scattering sensing platform based on an oil-in-water emulsion stabilized by silver nanoparticles. Colloids Surf B Biointerfaces 2024; 245:114278. [PMID: 39369477 DOI: 10.1016/j.colsurfb.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Pickering emulsions are excellent candidates for developing soft biosensors utilized for detecting native biomolecules such as peptides and proteins through the Surface-Enhanced Raman Spectroscopy (SERS) transduction mechanism. Here, we have developed a SERS sensor based on oil-in-water Pickering emulsions stabilized by Ag nanoparticles (Ag-NPs) with the Raman active molecule (4-Aminothiphenol, 4ATP) adsorbed to their surface. The structural properties and composition of the Pickering emulsion were tuned to meet the demands of the maximal optical response. Our results show that the obtained SERS signals of the main studied Pickering emulsion (water: oil ratio 7:3, 1 wt% Ag-NPs) outperformed colloidal dispersions with the same Ag-NPs concentration by 10-fold at any studied content of 4ATP. The superior optical response of the Pickering emulsion compared to the colloidal dispersion can thus pave the way for the detection of a large variety of analytes at high sensitivity by a soft sensing device. This study innovates by comparing the SERS signals of Raman-active Ag-NPs when they are assembled at the oil/water interface of an emulsion to the case where the NPs are individually dispersed in the medium. The findings shed light on the edit value of utilizing Raman-active Pickering stabilizers for biosensing applications.
Collapse
Affiliation(s)
- Hagai Klein
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel
| | - Avital Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Einat Zelinger
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Narsingh R Nirala
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Abraham J Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
| |
Collapse
|
17
|
Gao X, Liu Y, Wei J, Wang Z, Ma X. A facile dual-mode SERS/fluorescence aptasensor for AFB 1 detection based on gold nanoparticles and magnetic nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124268. [PMID: 38603962 DOI: 10.1016/j.saa.2024.124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.
Collapse
Affiliation(s)
- Xueying Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ying Liu
- Henan Province Food and Salt Industry Inspection Research Institute, Zhengzhou, Henan 450003, China
| | - Jinxiang Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
20
|
Wang Y, Jing Y, Cao J, Sun Y, Guo K, Chen X, Li Z, Shi Q, Hu X. Application of Surface-Enhanced Raman Spectroscopy Combined with Immunoassay for the Detection of Adrenoceptor Agonists. Foods 2024; 13:1805. [PMID: 38928747 PMCID: PMC11202903 DOI: 10.3390/foods13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Rapid, sensitive, and accurate detection of adrenoceptor agonists is a significant research topic in the fields of food safety and public health. Immunoassays are among the most widely used methods for detecting adrenoceptor agonists. In recent years, surface-enhanced Raman spectroscopy combined with immunoassay (SERS-IA) has become an effective technique for improving detection sensitivity. This review focuses on the innovation of Raman reporter molecules and substrate materials for the SERS-IA of adrenoceptor agonists. In addition, it also investigates the challenges involved in potentially applying SERS-IA in the detection of adrenoceptor agonists. Overall, this review provides insight into the design and application of SERS-IA for the detection of adrenoceptor agonists, which is critical for animal-derived food safety and public health.
Collapse
Affiliation(s)
- Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Yubing Jing
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Jinbo Cao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yingying Sun
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Kaitong Guo
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiujin Chen
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Zhaozhou Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Xiaofei Hu
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
21
|
Xue S, Yin L, Gao S, Zhou R, Zhang Y, Jayan H, El-Seedi HR, Zou X, Guo Z. A film-like SERS aptasensor for sensitive detection of patulin based on GO@Au nanosheets. Food Chem 2024; 441:138364. [PMID: 38219369 DOI: 10.1016/j.foodchem.2024.138364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Patulin (PAT) commonly contaminates fruits, posing a significant risk to human health. Therefore, a highly effective and sensitive approach in identifying PAT is warranted. Herein, a SERS aptasensor was constructed based on a two-dimensional film-like structure. GO@Au nanosheets modified with SH-cDNA were employed as capture probes, while core-shell Au@Ag nanoparticles modified with 4-MBA and SH-Apt were utilized as signal probes. Through the interaction between capture probes and signal probes, adjustable hotspots were formed, yielding a significant Raman signal. During sensing, the GO@Au-cDNA competitively attached to Au@AgNPs@MBA-Apt, resulting in an inverse relationship between PAT levels and SERS intensity. The acquired results exhibited linear responses to PAT within the range of 1-70 ng/mL, with a calculated limit of detection of 0.46 ng/mL. In addition, the SERS aptasensor exhibited satisfactory recoveries in apple samples, which aligned closely with HPLC. With high sensitivity and specificity, this method holds significant potential for PAT detection.
Collapse
Affiliation(s)
- Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Ge B, Huang J, Qin H, Zhao S, Yang F, Wang M, Liang P. MOF-derived multi-"hotspot" 3D Au/MOF-808 (Zr) nanostructures as SERS substrates for the ultrasensitive determination of thiram. Mikrochim Acta 2024; 191:308. [PMID: 38714541 DOI: 10.1007/s00604-024-06384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/10/2024]
Abstract
A convenient self-assembly method is proposed for synthesis of 3D Au/MOF-808 (Zr) composite nanostructures with a cerium metal-organic framework loaded with gold nanoparticles. We combine adsorption properties of MOF materials with surface plasmon resonance of noble metals to construct hotspot-dense 3D Au/MOF-808 (Zr) SERS substrates, by using a two-step method of solvothermal and reduction reactions. The results show that optimal SERS substrates are obtained from a volume ratio of gold nanoparticles to MOF-808 (Zr) solution of 4:1 and a self-assembly time of 2 h. Rhodamine 6G (R6G) is used as a molecular probe to characterize and analyze SERS properties of substrates of 3D Au/MOF-808 (Zr) prepared under the optimal process conditions, where the substrates are capable to detect R6G concentrations down to 10-10 M with a relative standard deviation of 8.81%. Finally, we applied the SERS substrates of 3D Au/MOF-808 (Zr) to the detection of pesticide thiram, and establish a quantitative determination method. 3D Au/MOF-808 (Zr) provides a sensitive detection of thiram in lake water by SERS with a detection limit of 1.49 × 10-9 M. Application tests show that a SERS enhancement factor of the MOF-based SERS substrates for the detection of thiram can be significantly increased to 5.91 × 105. Thus, the above results indicate that such substrate has high sensitivity, good adsorption, homogeneity, and reproducibility, which can be extended for sensitive detection of pesticide residues in food and environment.
Collapse
Affiliation(s)
- Biaobiao Ge
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Feng Yang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Li X, Hu J, Zhang D, Zhang X, Wang Z, Wang Y, Chen Q, Liang P. Realization of qualitative to semi-quantitative trace detection via SERS-ICA based on internal standard method. Talanta 2024; 271:125650. [PMID: 38277967 DOI: 10.1016/j.talanta.2024.125650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) can quickly identify molecular fingerprints and has been widely used in the field of rapid detection. However, the non-uniformity inherent in SERS substrate signals, coupled with the finite nature of the detection object, significantly hampers the advancement of SERS. Nowadays, the existing mature immunochromatographic assay (ICA) method is usually combined with SERS technology to address the defects of SERS detection. Nevertheless, the porous structure of the strip will also affect the signal uniformity during detection. Obviously, a method using SERS-ICA is needed to effectively solve signal fluctuations, improve detection accuracy, and has certain versatility. This paper introduces an internal standard method combining deep learning to predict and process Raman data. Based on the signal fluctuation of single-antigen SERS-ICA test strip, the double-antigen SERS-ICA test strip was constructed. The full spectrum Raman data of double-antigen SERS-ICA test strip was normalized by the sum of two characteristic peaks of internal standard molecules, and then processed by deep learning algorithm. The Relative Standard Deviation (RSD) of Raman data of bisphenol A was compared before and after internal standard normalization of double-antigen SERS-ICA test strip. The RSD processed by this method was increased by 3.8 times. After normalization, the prediction accuracy of Root Mean Square Error (RMSE) is improved by 2.66 times, and the prediction accuracy of R-square (R2) is increased from 0.961 to 0.994. The results showed that RMSE and R2 were used to comprehensively predict the collected data of double-antigen SERS-ICA test strip, which could effectively improve the prediction accuracy. The internal standard algorithm can effectively solve the challenges of uneven hot spots and poor signal reproducibility on the test strip to a certain extent, so as to improve the semi-quantitative accuracy.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Jiaqi Hu
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China; EEE Department, Southern University of Science and Technology, Shenzhen, 518055, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiubin Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Zhetao Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Yufeng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, 310018, Hangzhou, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| |
Collapse
|
24
|
Dong S, Zhu Z, Shi Q, He K, Wu J, Feng J. Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe 3O 4@Pt and Au@Ag nanoparticles for the determination of acetamiprid. Mikrochim Acta 2024; 191:289. [PMID: 38683210 DOI: 10.1007/s00604-024-06351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm-1 is in relation to the concentration of acetamiprid in the range 2.25 × 10-9-2.25 × 10-5 M, and the calculated limit of detection (LOD) was 2.87 × 10-10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.
Collapse
Affiliation(s)
- Sa Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Zixin Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiuyun Shi
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kangli He
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianwei Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Awais M, Naqvi SMZA, Wei Z, Wu J, Arshad I, Raghavan V, Khan SU, Hu J. Functionalized Single Crystal Perovskite Materials for SERS and Their Potential Detection Applications. J Fluoresc 2024:10.1007/s10895-024-03716-7. [PMID: 38613710 DOI: 10.1007/s10895-024-03716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Recent advances in detection and diagnostic tools have improved understanding and identification of plant physiological and biochemical processes. Effective and safe Surface Enhanced Raman Spectroscopy (SERS) can find objects quickly and accurately. Raman enhancement amplifies the signal by 1014-1015 to accurately quantify plant metabolites at the molecular level. This paper shows how to use functionalized perovskite substrates for SERS. These perovskite substrates have lots of surface area, intense Raman scattering, and high sensitivity and specificity. These properties eliminate sample matrix component interference. This study identified research gaps on perovskite substrates' effectiveness, precision, and efficiency in biological metabolite detection compared to conventional substrates. This article details the synthesis and use of functionalized perovskites for plant metabolites measurement. It analyzes their pros and cons in this context. The manuscript analyzes perovskite-based SERS substrates, including single-crystalline perovskites with enhanced optoelectronic properties. This manuscript aims to identify this study gap by comprehensively reviewing the literature and using it to investigate plant metabolite detection in future studies.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| | - Zhang Wei
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Junfeng Wu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Ifzan Arshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Sami Ullah Khan
- Department of Mathematics, Namal University, Talagang Road, Mianwali, 42250, Pakistan
| | - Jiandong Hu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| |
Collapse
|
26
|
Logan N, Cao C, Freitag S, Haughey SA, Krska R, Elliott CT. Advancing Mycotoxin Detection in Food and Feed: Novel Insights from Surface-Enhanced Raman Spectroscopy (SERS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309625. [PMID: 38224595 DOI: 10.1002/adma.202309625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/17/2024]
Abstract
The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.
Collapse
Affiliation(s)
- Natasha Logan
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Simon A Haughey
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rudolf Krska
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Christopher T Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Khong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
27
|
Zhang W, Zhang D, Wang P, Li X, Wang Z, Chen Q, Huang J, Yu Z, Guo F, Liang P. Development of a SERS aptasensor for the determination of L-theanine using a noble metal nanoparticle-magnetic nanospheres composite. Mikrochim Acta 2024; 191:158. [PMID: 38409501 DOI: 10.1007/s00604-024-06245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
An ultrasensitive surface-enhanced Raman spectroscopy (SERS) aptamer sensor (aptasensor) using a noble metal nanoparticle-magnetic nanospheres composite was developed for L-theanine detection. It makes use of Fe3O4@Au MNPs and Au@Ag NPs embedded with the Raman reporter 4-mercaptobenzoic acid (4MBA). Au@4MBA@Ag NPs modified by aptamer and Fe3O4@Au MNPs modified by cDNA created the aptasensor with the strongest Raman signal of 4MBA through the specific binding of the aptamer. With the preferred binding of L-theanine aptamer to L-theanine, Au@4MBA@Ag NPs were released from Fe3O4@Au MNPs, causing a linear decrease in SERS intensity to achieve the SERS detection of the L-theanine. The SERS peak of 4MBA at 1078 cm-1 was used for quantitative determination. SERS intensity showed a good log-linear relationship within the range 10-10 to 10-6 M of L-theanine. The aptasensor has a high selectivity for L-theanine compared with other twelve tested analytes. Hence, this aptasensor is a promising analytical tool for L-theanine detection. The developed method was applied to the analysis of real samples, demonstrating excellent performance. The comparison with the standard liquid chromatography mass spectrometry method showed an error within 20%.
Collapse
Affiliation(s)
- Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - De Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoming Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Zhetao Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jie Huang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Lian S, Li X, Lv X. Density Functional Theory Study on the Interaction between Aflatoxin B1/M1 and Gold Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1804-1816. [PMID: 38183291 DOI: 10.1021/acs.langmuir.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aflatoxin M1 (AFM1) and its precursor, Aflatoxin B1 (AFB1), are highly pathogenic and mutagenic substances, making the detection and sensing of AFB1/M1 a long-standing focus of researchers. Among various detection techniques, surface-enhanced Raman spectroscopy (SERS) is considered an ideal method for AFB1/M1 detection due to its ability not only to enhance characteristic frequencies but also to detect shifts in these frequencies with high repeatability. Therefore, we employed density functional theory in conjunction with surface-enhanced Raman spectroscopy to investigate the interaction between AFB1/M1 and a Au substrate in the context of the SERS effect for the first time. To predict the potential binding sites of AFB1/M1 and Au within the SERS effect, we performed calculations on the molecular electrostatic potential of AFB1/M1. Considering the crucial role of the binding energy in molecular docking studies, we computed the binding energy between two molecules interacting with Au at different binding sites. The molecular frontier orbitals and related chemical parameters of AFB1/M1 and "molecular-Au" complexes were computed to elucidate the alterations in AFB1/M1 molecules under the SERS effect. Subsequently, the theoretical Raman spectra of AFB1/M1 and the complexes were compared and analyzed, enabling determination of the adsorption conformation of AFB1/M1 on the gold surface based on SERS surface selection rules. These findings not only provide a deeper understanding of the interaction mechanism between molecules and substrates in the SERS effect but also offer theoretical support for developing novel aflatoxin SERS sensors.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Cao H, Liang D, Tang K, Sun Y, Xu Y, Miao M, Zhao Y. SERS and MRS signals engineered dual-mode aptasensor for simultaneous distinguishment of aflatoxin subtypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132810. [PMID: 37871438 DOI: 10.1016/j.jhazmat.2023.132810] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
The accurate monitoring of aflatoxin subtypes is vitally important for food safety. Herein, a dual-mode aptasensor with surface-enhanced Raman scattering (SERS) and magnetic relaxation switching (MRS) signals is developed for the detection of aflatoxin B1, B2 and M1 (i.e. AFB1, AFB2 and AFM1). Au-Ag Janus NPs and Au-mushroom NPs are prepared and show intense and non-interfering SERS peaks without the additional modification of Raman molecules, and are utilized as SERS nanotags for the distinguishment of AFB1 and AFB2. Fe3O4@Au NPs functionalized by AFM1 aptamers are applied as MRS nanoprobes for the monitoring of AFM1. Aptamers engineered SERS nanotags and MRS nanoprobes are assembled, and show strong SERS performances and high transverse relaxation time (T2). AFB1, AFB2 and AFM1 induce the separation of SERS nanotags from the assemblies and the dispersion of Fe3O4@Au NPs, resulting in the decrease of SERS signals at 1278 cm-1 and 1000 cm-1 as well as the reduction of T2 values. The dual-mode but three kinds of detection signals don't interfere with each other and exhibit a significant linear relationship with the concentration of targets. This platform provides a high throughput monitoring strategy for the simultaneous analysis of different subtypes of mycotoxin.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Kaizhen Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yu Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yinjuan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
30
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
33
|
Xu CX, Song P, Yu Z, Wang YH. Surface-enhanced Raman spectroscopy as a powerful method for the analysis of Chinese herbal medicines. Analyst 2023; 149:46-58. [PMID: 37966012 DOI: 10.1039/d3an01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Chinese herbal medicines (CHMs) derived from nature have received increasing attention and become more popular. Due to their diverse production processes, complex ingredients, and different storage conditions, it is highly desirable to develop simple, rapid, efficient and trace detection methods to ensure the drug quality. Surface-enhanced Raman spectroscopy has the advantages of being time-saving, non-destructive, usable in aqueous environments, and highly compatible with various biomolecular samples, providing a promising analytical method for CHM. In this review, we outline the major advances in the application of SERS to the identification of raw materials, detection of bioactive constituents, characterization of adulterants, and detection of contaminants. This clearly shows that SERS has strong potential in the quality control of CHM, which greatly promotes the modernization of CHM.
Collapse
Affiliation(s)
- Cai-Xia Xu
- Hangzhou Gongshu Hospital of Integrated Traditional and Western Medicine, NO.57 Sandun Road, Gongshu District, Hangzhou, Zhejiang 310011, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
34
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
35
|
Wu Z, Sun DW, Pu H. CRISPR/Cas12a and G-quadruplex DNAzyme-driven multimodal biosensor for visual detection of Aflatoxin B1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123121. [PMID: 37579713 DOI: 10.1016/j.saa.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/16/2023]
Abstract
Aflatoxin B1 (AFB1) contamination severely threatens human and animal health, it is thus critical to construct a strategy for its rapid, accurate, and visual detection. Herein, a multimodal biosensor was proposed based on CRISPR/Cas12a cleaved G-quadruplex (G4) for AFB1 detection. Briefly, specific binding of AFB1 to the aptamer occupied the binding site of the complementary DNA (cDNA), and cDNA then activated Cas12a to cleave G4 into fragments. Meanwhile, the intact G4-DNAzyme could catalyze 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form colourimetric/SERS/fluorescent signal-enhanced TMBox, and the yellow solution produced by TMBox under acidic conditions could be integrated with a smartphone application for visual detection. The colourimetric/SERS/fluorescent biosensor yielded detection limits of 0.85, 0.79, and 1.65 pg·mL-1, respectively, and was applied for detecting AFB1 in peanut, maize, and badam samples. The method is suitable for visual detection in naturally contaminated peanut samples and has prospective applications in the food industry.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
36
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
37
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
38
|
Wang C, Xu G, Wang W, Ren Z, Zhang C, Gong Y, Zhao M, Qu Y, Li W, Zhou H, Li YQ. Bioinspired hot-spot engineering strategy towards ultrasensitive SERS sandwich biosensor for bacterial detection. Biosens Bioelectron 2023; 237:115497. [PMID: 37390642 DOI: 10.1016/j.bios.2023.115497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) sandwich biosensors have received tremendous attention in early diagnosis of bacterial infections. However, efficiently engineering nanoscale plasmonic hots pots (HS) towards ultrasensitive SERS detection still remains challenging. Herein, we propose a bioinspired synergistic HS engineering strategy to construct ultrasensitive SERS sandwich bacterial sensor (named USSB), by coupling bioinspired signal module and plasmonic enrichment module to synergistically boost the number and intensity of HS. The bioinspired signal module is based on dendritic mesoporous silica nanocarrier (DMSN) loaded with plasmonic nanoparticles and SERS tag, while magnetic Fe3O4 nanoparticles coated with Au shell are employed in plasmonic enrichment module. We demonstrate that DMSN effectively shrank nanogaps between plasmonic nanoparticles to improve HS intensity. Meanwhile, plasmonic enrichment module contributed to plenty of additional HS inside and outside individual "sandwich". Ascribing to the boosted number and intensity of HS, the constructed USSB sensor exhibits ultrahigh detection sensitivity (7 CFU/mL) and selectivity towards model pathogenic bacteria of Staphylococcus aureus. Remarkably, the USSB sensor enables fast and accurate bacterial detection in real blood samples of septic mice, achieving early diagnosis of bacterial sepsis. The proposed bioinspired synergistic HS engineering strategy opens up a new direction for constructing ultrasensitive SERS sandwich biosensors, and may promote their advancing applications in the early diagnosis and prognosis of devastating diseases.
Collapse
Affiliation(s)
- Chunni Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Zhiyuan Ren
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan, 250012, China
| | - Yuan Gong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China; Guizhou Children's Hospital, Zunyi, 563000, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China.
| |
Collapse
|
39
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023; 64:13093-13111. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Lv Y, Qi S, Khan IM, Dong X, Qin M, Yue L, Zhang Y, Wang Z. Concatenated dynamic DNA network modulated SERS aptasensor based on gold-magnetic nanochains and Au@Ag nanoparticles for enzyme-free amplification analysis of tetracycline. Anal Chim Acta 2023; 1270:341238. [PMID: 37311605 DOI: 10.1016/j.aca.2023.341238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/15/2023]
Abstract
Tetracycline (TC) poses a great threat to food and environmental safety due to its misuse in animal husbandry and aquaculture. Therefore, an efficient analytical method is needed for the detection of TC to prevent possible hazards. Herein, a cascade amplification SERS aptasensor for sensitive determination of TC was constructed based on aptamer, enzyme-free DNA circuits, and SERS technology. The capture probe and signal probe were obtained by binding DNA hairpins H1 and H2 to the prepared Fe3O4@hollow-TiO2/Au nanochains (Fe3O4@h-TiO2/Au NCs) and Au@4-MBA@Ag nanoparticles, respectively. The dual amplification of EDC-CHA circuits significantly facilitated the sensitivity of the aptasensor. Additionally, the introduction of Fe3O4 simplified the operation of the sensing platform due to its superb magnetic capability. Under optimal conditions, the developed aptasensor exhibited a distinct linear response to TC with a low limit of detection of 15.91 pg mL-1. Furthermore, the proposed cascaded amplification sensing strategy exhibited excellent specificity and storage stability, and its practicability and reliability were verified by TC detection of real samples. This study provides a promising idea for the development of specific and sensitive signal amplification analysis platforms in the field of food safety.
Collapse
Affiliation(s)
- Yan Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
41
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
42
|
Kuang J, Ju J, Lu Y, Chen Y, Liu C, Kong D, Shen W, Shi HW, Li L, Ye J, Tang S. Magnetic three-phase single-drop microextraction for highly sensitive detection of aflatoxin B 1 in agricultural product samples based on peroxidase-like spatial network structure. Food Chem 2023; 416:135856. [PMID: 36898338 DOI: 10.1016/j.foodchem.2023.135856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
In this work, a highly sensitive method for aflatoxin B1 (AFB1) detection was developed based on a peroxidase-like spatial network structure. The specific antibody and antigen of AFB1 were coated on a histidine-modified Fe3O4 nanozyme to form the capture/detection probes. Based on the competition/affinity effect, the spatial network structure was constructed by the probes, which could be rapidly (8 s) separated by a magnetic three-phase single-drop microextraction process. In this single-drop microreactor, the network structure was applied to catalyze a colorimetric 3,3',5,5'-tetramethylbenzidine oxidation reaction for AFB1 detection. The signal was amplified significantly due to the strong peroxidase-like ability of the spatial network structure and the enrichment effect of the microextraction. Thus, a low detection limit (0.034 pg/mL) was achieved. The matrix effect of real sample can be eliminated by the extraction approach, and the practicability of this method was proved by agricultural product samples analysis.
Collapse
Affiliation(s)
- Jingyu Kuang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Jiahe Ju
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yongli Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yitong Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
43
|
Hu J, Zhan C, Chen R, Liu Y, Yang S, He Y, Ouyang A. Study on qualitative identification of aflatoxin solution based on terahertz metamaterial enhancement. RSC Adv 2023; 13:22101-22112. [PMID: 37492508 PMCID: PMC10363712 DOI: 10.1039/d3ra02246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Aflatoxin is the main carcinogen that contaminates agricultural products and foods such as peanuts and corn. There are many kinds of aflatoxins, mainly including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). Different types of aflatoxins have different toxicity and different levels of contamination to agricultural products as well as food. Therefore, the rapid, non-destructive and highly sensitive qualitative identification of aflatoxin species is of great significance to maintain people's life and health. The conventional terahertz detection method can only qualitatively identify the samples at the milligram level, but it is not suitable for the qualitative analysis of trace samples. In this paper, a terahertz metamaterial sensor with "X" composite double-peak structure was designed based on electromagnetic theory to investigate the feasibility of THz-TDS technology based on a metamaterial sensor for the qualitative identification of trace aflatoxin B2, G1 and G2 solutions. Firstly, the terahertz transmission spectra of eight different concentrations of aflatoxin B2, G1 and G2 were collected respectively, and then the differences of terahertz transmission spectra of different aflatoxin species were investigated. Finally, the terahertz transmission spectra of aflatoxin B2, G1 and G2 solutions were modeled and analyzed using chemometric methods. It was found that there were significant differences in the transmission peak curves of different kinds of aflatoxin. Through the comparative analysis of different models, it was concluded that the prediction accuracy of the CARS-RBF-SVM model was the highest, and the accuracy of the calibration set reached 100%. 119 out of 120 predicted samples were correctly predicted, and the prediction accuracy was 99.17%. This study verified the feasibility of qualitative identification of trace aflatoxin B2, G1 and G2 solutions by a metamaterial sensor based on the "X" composite double-peak structure combined with THz-TDS technology, and provided a theoretical basis and a new detection method for the qualitative identification of trace aflatoxins. This will facilitate the rapid, non-destructive and highly sensitive qualitative detection of different kinds of aflatoxins in food and agricultural products. At the same time, this study has important implications for promoting the qualitative detection of other trace substances.
Collapse
Affiliation(s)
- Jun Hu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University Nanchang Jiangxi 330013 PR China +86-15797639706
| | - Chaohui Zhan
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University Nanchang Jiangxi 330013 PR China +86-15797639706
| | - Rui Chen
- Department of Optoelectronic Information Engineering, Zhejiang University Hangzhou 310027 China
| | - Yande Liu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University Nanchang Jiangxi 330013 PR China +86-15797639706
| | - Shimin Yang
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University Nanchang Jiangxi 330013 PR China +86-15797639706
| | - Yong He
- School of Mechanical Engineering, Zhejiang University Hangzhou 310027 China
| | - Aiguo Ouyang
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University Nanchang Jiangxi 330013 PR China +86-15797639706
| |
Collapse
|
44
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
45
|
Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Mikrochim Acta 2023; 190:255. [PMID: 37300603 DOI: 10.1007/s00604-023-05836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Aptamers are functional single-stranded oligonucleotide fragments isolated from randomized libraries by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), exhibiting excellent affinity and specificity toward targets. Compared with traditional antibody reagents, aptamers display many desirable properties, such as low variation and high flexibility, and they are suitable for artificial and large-scale synthesis. These advantages make aptamers have a broad application potential ranging from biosensors, bioimaging to therapeutics and other areas of application. However, the overall performance of aptamer pre-selected by SELEX screening is far from being satisfactory. To improve aptamer performance and applicability, various post-SELEX optimization methods have been developed in the last decade. In this review, we first discuss the key factors that influence the performance or properties of aptamers, and then we summarize the key strategies of post-SELEX optimization which have been successfully used to improve aptamer performance, such as truncation, extension, mutagenesis and modification, splitting, and multivalent integration. This review shall provide a comprehensive summary and discussion of post-SELEX optimization methods developed in recent years. Moreover, by discussing the mechanism of each approach, we highlight the importance of choosing the proper method to perform post-SELEX optimization.
Collapse
Affiliation(s)
- Hong Yu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yun Deng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xueqing Geng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
46
|
Lie J, Huang J, You R, Lu Y. Preparation and Application of Magnetic Molecularly Imprinted Plasmonic SERS Composite Nanoparticles. Crit Rev Anal Chem 2023; 54:2940-2959. [PMID: 37289486 DOI: 10.1080/10408347.2023.2219322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are used as artificial antibody materials. MMIPs have attracted a great deal of interest because of their low cost, wide practicality, predetermination, stability and their ability to achieve rapid separation from complex sample environments by the action of external magnetic field. MMIPs can simulate the natural recognition of entities. They are widely used because of their great advantages in terms of high selectivity. In this review article, the preparation methods of Fe3O4 NPs and a detailed summary of the commonly used methods for amination modification of Fe3O4 NPs are introduced, preparation of Ag NPs of different sizes and Au NPs of various shapes and preparation methods of magnetic molecularly imprinted plasmonic SERS composite nanoparticles such as Fe3O4@Ag NPs, Fe3O4/Ag NPs, Fe3O4@Au NPs, Fe3O4/Au NPs, Fe3O4@Au/Ag NPs and Fe3O4@Ag@Au NPs are main summarized. In addition, preparation process and the current application of MMIPs prepared from magnetic molecularly imprinted plasmonic SERS composite nanoparticles incorporating different functional monomers in a nuclear-satellite structure are also presented. Finally, the existing challenges and future prospects of MMIPs in applications are discussed.
Collapse
Affiliation(s)
- Jiansen Lie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiali Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
47
|
Lv M, Pu H, Sun DW. Preparation of Fe 3O 4@UiO-66(Zr)@Ag NPs core-shell-satellite structured SERS substrate for trace detection of organophosphorus pesticides residues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122548. [PMID: 36947914 DOI: 10.1016/j.saa.2023.122548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been revived and developed with the introduction of metal-organic frameworks (MOFs), while more valuable properties of MOFs for SERS substrates remain largely unexplored. This work constructed a new SERS substrate Fe3O4@UiO-66(Zr)@Ag nanoparticles (FUAs) with excellent SERS detection sensitivity, uniformity, reproducibility and stability, exhibiting a high Raman enhancement factor (5.62 × 106), low limit of detection (LOD, 2.11 × 10-11 M) and RSD (12.41 %) for 4-NBT, and maintaining 81 % SERS activity within 60 days. The FUAs took full advantage of the strong affinity of UiO-66(Zr) for organophosphorus pesticides (OPs) to realize trace OPs detection. The LODs of phoxim, triazophos and methyl parathion in apple juice were 0.041, 0.021 and 0.0031 mg/L, respectively, with good linearities ranging from 0.02 or 0.1-50 mg/L, meeting the requirements of the food control standards, indicating that the potentials and prospects of the FUAs SERS substrate for trace detecting OPs in foods.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
48
|
Hu J, Zhan C, Wang Q, Shi H, He Y, Ouyang A. Research on highly sensitive quantitative detection of aflatoxin B2 solution based on THz metamaterial enhancement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122809. [PMID: 37276639 DOI: 10.1016/j.saa.2023.122809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Food such as cereal crops, oil crops and dairy products are very easy to produce highly toxic and carcinogenic aflatoxins during inappropriate storage. Therefore, it is of great significance to achieve rapid, non-destructive and highly sensitive detection of aflatoxin. A terahertz metamaterial sensor with "X" compound double-peak structure is designed based on electromagnetic theory to realize highly sensitive detection of aflatoxin B2 solution. It is found that the amplitude of the transmission peak of the terahertz transmission spectrum of aflatoxin B2 (AFB2) solution around 1.2 THz and 2.0 THz gradually decreased with the increase of the concentration of aflatoxin B2 solution, and the frequency of the transmission peak gradually shifted to high frequency with the increase of the concentration of aflatoxin B2 solution, hence a full concentration model was established. And a strategy of first classifying concentration intervals and then building a grouped quantitative model was proposed. The Limit of Detection (LOD) of the interval sub-model of low and medium concentration of aflatoxin B2 solution has been greatly improved with the LOD of the optimal grouping model was 7.28 × 10-11 mg/ml, 4.19 × 10-9 mg/ml and 1.22 × 10-7 mg/ml, respectively. This research verifies the feasibility of terahertz metamaterial sensor based on "X" composite double-peak structure combined with THz-TDS technology for highly sensitive detection of aflatoxin B2 solution. And it provides a new rapid, non-destructive and highly sensitive detection of aflatoxin in food.
Collapse
Affiliation(s)
- Jun Hu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China.
| | - Chaohui Zhan
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Qiu Wang
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Hongyang Shi
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Yong He
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Aiguo Ouyang
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
49
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Jiang Y, Liu Y, Yang J. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags. J Colloid Interface Sci 2023; 634:651-663. [PMID: 36549213 DOI: 10.1016/j.jcis.2022.12.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering (SERS) sandwich strategy biosensing platform has been established for simultaneously detecting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Fe3O4@SiO2-Au nanocomposites (NCs) with varying amounts of Au nanocrystals were prepared, and the effect of interparticle gaps on SERS activity was studied by finite-difference time-domain (FDTD) method. The optimal magnetic SERS-active substrates (FS-A5) were functionalized with the specific aptamers to act as capture probes. Meanwhile, graphene oxide-Au nanostars (GO-Au NSs) decorated with Raman reporters and aptamers were used as SERS tags. The loading density of Au NSs on GO was tuned to change the number of SERS active sites. In this proposal, E. coli and S. aureus were first captured by capture probes and then bound with SERS tags to form a sandwich-like structure, which caused enhanced electromagnetic field because of the dual enhancement strategy. Under optimal conditions, SERS platform could detect E. coli and S. aureus simultaneously, and the detection limit was as low as 10 cfu/mL. Our sandwich assay-based dual-enhanced SERS platform provides a new idea for simultaneously detecting multiple pathogens with high selectivity and sensitivity, and thus will have more hopeful prospects in the field of food safety.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
50
|
Zhang M, Guo X, Wang J. Advanced biosensors for mycotoxin detection incorporating miniaturized meters. Biosens Bioelectron 2023; 224:115077. [PMID: 36669289 DOI: 10.1016/j.bios.2023.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Advanced biosensors, considered as emerging technologies, are capable of accurate, quantitative and real-time analysis for point-of-care testing (POCT) applications. Moreover, the integrating of miniaturized meters into these advanced biosensors makes them ideally appropriate for portable, sensitive and selective detection of biomolecules. Miniaturized meters including PGMs (personal glucose meters), thermometer, pressuremeter, pH meter, etc. are the most accurate devices and wide availability in the market, exhibiting a promising potential towards detection of small molecule mycotoxins. In this article, we introduce and analyze the recent advancements for sensing of mycotoxins measured by handheld meters since the first report in 2012. Furthermore, limitations and challenges for versatile meters application against mycotoxins in food matrix are highlighted. By overcoming the bottleneck problems, we believe the miniaturized meters-based biosensor platform will provide great possibilities for mycotoxins analysis and launch them to the market.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaodong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China.
| |
Collapse
|