1
|
Yu H, Wang H, Liang X, Liu J, Jiang C, Chi X, Zhi N, Su P, Zha L, Gui S. Telomere-to-telomere gap-free genome assembly provides genetic insight into the triterpenoid saponins biosynthesis in Platycodon grandiflorus. HORTICULTURE RESEARCH 2025; 12:uhaf030. [PMID: 40224331 PMCID: PMC11992332 DOI: 10.1093/hr/uhaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 04/15/2025]
Abstract
Platycodon grandiflorus has been widely used in Asia as a medicinal herb and food because of its anti-inflammatory and hepatoprotective properties. P. grandiflorus has important clinical value because of the active triterpenoid saponins in its roots. However, the biosynthetic pathway of triterpenoid saponins in P. grandiflorus remains unclear, and the related genes remain unknown. Therefore, in this study, we assembled a high-quality and integrated telomere-to-telomere P. grandiflorus reference genome and combined time-specific transcriptome and metabolome profiling to identify the cytochrome P450s (CYPs) responsible for the hydroxylation processes involved in triterpenoid saponin biosynthesis. Nine chromosomes were assembled without gaps or mismatches, and nine centromeres and 18 telomere regions were identified. This genome eliminated redundant sequences from previous genome versions and incorporated structural variation information. Comparative analysis of the P. grandiflorus genome revealed that P. grandiflorus underwent a core eudicot γ-WGT event. We screened 211 CYPs and found that tandem and proximal duplications may be crucial for the expansion of CYP families. We outlined the proposed hydroxylation steps, likely catalyzed by the CYP716A/72A/749A families, in platycodin biosynthesis and identified three PgCYP716A, seven PgCYP72A, and seven PgCYP749A genes that showed a positive correlation with platycodin biosynthesis. By establishing a T2T assembly genome, transcriptome, and metabolome resource for P. grandiflorus, we provide a foundation for the complete elucidation of the platycodins biosynthetic pathway, which consequently leads to heterologous bioproduction, and serves as a fundamental genetic resource for molecular-assisted breeding and genetic improvement of P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Haixia Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiao Liang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chao Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiulian Chi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| |
Collapse
|
2
|
Han S, Luo Z, Bao S, Xiao Z, Xu W, Xie T, Shi C, Wang J, Shan J. Effects of excessive Platycodon grandiflorus root on gut microbiota and host co-metabolism in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119577. [PMID: 40058476 DOI: 10.1016/j.jep.2025.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus root, is a widely used herb in East Asia for treating respiratory diseases, but research on its oral safety is limited. AIM OF THE STUDY This study examines the potential adverse gastrointestinal reactions resulting from excessive consumption of Platycodon grandiflorus root (PR) and its effects on gut microbiota and host co-metabolism. MATERIALS AND METHODS This study evaluated the effects of different doses (1.5, 4.5, and 7.5 g/kg/day) of PR on ICR mice through gavage. Select the 7.5 g/kg/day dosage group and the control group to assess intestinal morphology and conduct histopathological studies. Examine inflammation-related factors and tight junction proteins using WB, qPCR, and ELISA. Additionally, perform 16S rDNA sequencing and metabolomic analyses to evaluate changes in gut microbiota and endogenous metabolites. Finally, the clearance of gut microbiota with antibiotics, the effects of excessive PR on mice were investigated. RESULTS Excessive intake of PR can lead to mortality in mice, as well as symptoms such as intestinal flatulence and slowed intestinal transit, suggesting the occurrence of chronic intestinal pseudo-obstruction accompanied by endotoxemia. It altered both α-diversity and β-diversity in the gut microbiota of mice, with increased relative abundances of Pseudomonadota, Verrucomicrobiota, Escherichia-Shigella, Akkermansia, Bacteroides, and Klebsiella, closely linked to intestinal obstruction and bacterial overgrowth. Excessive intake of PR also resulted in metabolic disturbances in mice, particularly in the levels of metabolites such as bate-hydroxybutyrate, 5,6-dihydrouracil, uridine, isoleucine, mannitol, bate-alanine, L-cysteine, L-tyrosine, and orotic acid, which may provide insights into the side effects associated with excessive consumption of PR. Clearing the gut microbiota significantly mitigated adverse effects on the intestines and restored metabolite levels. CONCLUSIONS This study demonstrates that excessive PR induces gut microbiota and metabolic disruption in normal mice, with the overgrowth of Gram-negative bacteria releasing LPS that impair smooth muscle contraction, leading to adverse effects such as chronic intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- Shasha Han
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shihang Bao
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zihan Xiao
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Xu
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Shi
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; College of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Gao P, Li X, Ding J, Peng B, Munir M, Liu F, Chao L, Li C, Wang L, Ma J, Zhang G. Antiviral and Immune Enhancement Effect of Platycodon grandiflorus in Viral Diseases: A Potential Broad-Spectrum Antiviral Drug. Molecules 2025; 30:831. [PMID: 40005144 PMCID: PMC11858313 DOI: 10.3390/molecules30040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Traditional Chinese medicine offers potential therapeutic options for viral infections. Platycodon grandiflorus (PG) is a perennial herb known for its efficacy in treating respiratory infections, including asthma, cough, and bronchitis, making it a key focus in antiviral drug research. The purpose of the study is to provide a basis for functional studies on PG and generate new insights for treating viral diseases. METHODS Research articles from 1990 to 2024 related to PG and viruses were obtained from databases, such as PubMed, Web of Science, and Science Direct, and systematically analysed. RESULTS PG demonstrates inhibitory effects on viruses such as severe acute respiratory syndrome coronavirus and porcine reproductive and respiratory syndrome virus by blocking various stages of viral proliferation or activating the host immune system. It also reduces inflammation through NF-κB, PI3K/AKT, MAPK, and other signalling pathways, enhancing T cell and macrophage function and increasing host immunity. PG exhibits diverse pharmacological effects with promising clinical applications for antiviral and immune modulation. Given its medicinal significance, PG holds substantial potential for further exploration and development. CONCLUSION PG, due to its antiviral, anti-inflammatory, and immune-boosting properties, can be used as an antiviral drug.
Collapse
Affiliation(s)
- Pei Gao
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou 450002, China;
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Xinshan Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Jianlei Ding
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Bosen Peng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA14YW, UK
| | - Fei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Limin Chao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Chengfei Li
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Li Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou 450002, China;
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
- School of Advanced Agricultural Science, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Han X, Zhang Y, Zhang F, Li X, Meng Y, Huo J, Chen M, Liu F, Wang W, Wang N. Network pharmacology and phytochemical composition combined with validation in vivo and in vitro reveal the mechanism of platycodonis radix ameliorating PM2.5-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118829. [PMID: 39278295 DOI: 10.1016/j.jep.2024.118829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodonis radix (PR), the root of Platycodon grandiflorus (Jacq.) A. DC., is a traditional Chinese medicine recognized for its dual role as both a medicinal and dietary substance, exhibiting significant anti-inflammatory properties. It is frequently utilized in the treatment of lung diseases. However, the molecular mechanisms by which PR exerts its effects in the treatment of acute lung injury (ALI) remain unclear. AIM OF THE STUDY This study presents a novel strategy that integrates network pharmacology, molecular docking, untargeted metabolomics analysis and experimental validation to investigate the molecular mechanisms through which PR treats ALI. MATERIALS AND METHOD Initially, the bioactive components of PR, along with its targets and pathways in the treatment of ALI, were identified using network pharmacology. Following this, preliminary validation was conducted through molecular docking. The active ingredients in the aqueous extract of PR were characterized using HPLC-MS. Finally, in vivo and in vitro experiments were performed to further validate the findings from the network pharmacology. RESULTS A total of 14 bioactive components and 156 effective targets were identified using the TCMSP, DisGeNET, Genecard, OMIM databases and Venny 2.1.0. Protein-protein interaction (PPI) analysis revealed 22 core targets including TP53, AKT1, STAT3 and JUN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these targets primarily participate in the regulation of cellular apoptosis, lung cancer and inflammatory pathways. Molecular docking demonstrated that four bioactive components exhibited strong affinities with their respective docking targets. LC-MS analysis confirmed that the aqueous extract of PR contained 87 components, including two active ingredients identified through network pharmacology and molecular docking. Preliminary validation was conducted in mice with ALI induced by acute PM2.5 exposure, revealing that the aqueous extract of PR reduced inflammatory factor levels in bronchoalveolar lavage fluid, enhanced antioxidant capacity in lung tissue, and decreased lung cell apoptosis in PM2.5-exposed mice. Notably, PR alleviated PM2.5-induced ALI through the STAT3, JUN, and AKT1 signaling pathways. Similarly, the results of in vitro intervention experiments further confirmed that the aqueous extract of PR protected pulmonary epithelial cells against PM2.5 exposure through activating AKT1 sinalling pathway, and inhibiting STAT3 and JUN signalling pathways. CONCLUSION This study identifies the active components of PR and elucidates the molecular mechanisms by which PR alleviates ALI, specifically by inhibiting the phosphorylation levels of STAT3 and c-JUN, or by activating the phosphorylation level of AKT1. These results provide a foundational basis for the application of PR in the treatment or prevention of lung injuries induced by particulate matter.
Collapse
Affiliation(s)
- Xianlei Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fan Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanli Meng
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan, 2501011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan, 2501011, China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
5
|
Zhong YH, Wu XW, Zhang XY, Zhang SW, Feng Y, Zhang XM, Xu BB, Zhong GY, Huang HL, He JW, Zeng JX, Liang J. Intestinal microbiota-mediated serum pharmacochemistry reveals hepatoprotective metabolites of Platycodonis Radix against APAP-induced liver injury. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124395. [PMID: 39644824 DOI: 10.1016/j.jchromb.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The urgent need for new medications that regulate CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB activities is paramount for the treatment of drug-induced liver injury (DILI), particularly from acetaminophen (APAP). Previous studies have suggested that platycosides of Platycodonis Radix exhibits hepatoprotective properties against APAP-induced liver injury (AILI), and their serum metabolites may be the effective agents. As the identify the serum metabolites of platycosides is a huge challenge, the mechanism whether platycosides exert effects through the serum metabolites regulating those targets still remain unclear. In this study, we propose a novel method termed intestinal microbiota-mediated serum pharmacochemistry (IMSP) to identify the serum metabolite profile of platycosides, using deglycosylated platycosides as template molecules. Our results identified a total of 44 prototype platycosides in the total platycosides fraction of Platycodonis Radix (PF). In rat serum, we identified 12 prototype platycosides and 45 metabolites derived from the 44 platycosides. Furthermore, our findings indicate that all 44 platycosides can enter the serum in the form of metabolites. The presence of these metabolites in serum is closely related to their oral bioavailability and the content of the prototypes. The in vivo animal experiments showed that the PF possessed significant anti-AILI effects and CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65 regulation activities. And the in vitro cell experiments and molecular docking analyses further demonstrated that the hepatoprotective effects were mainly ascribed to the serum metabolites, which regulating targets of CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65. Additionally, the activities of these metabolites are closely associated with their structures. In summary, the IMSP method significantly enhances the ability to identify platycoside metabolites in serum, reveals that all platycosides may contribute to anti-AILI activity through their metabolites, PF and some of these metabolites are promising candidate compounds for developing new medications with anti-AILI effects for the first time.
Collapse
Affiliation(s)
- Yuan-Han Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-Wa Wu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xin-Yu Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shou-Wen Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Feng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xue-Mei Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bing-Bing Xu
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330046, China
| | - Guo-Yue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hui-Liang Huang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jin-Xiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
6
|
Wang J, Yan X, Wang W, Wang S, Jiang H, Zhu X, Li Z, Cai D, Xia Y. Rab21-Targeted Nano Drug Delivery System-Based FFPG for Efficient Paclitaxel Delivery to Inhibit Lung Cancer Progression. Pharmaceutics 2025; 17:94. [PMID: 39861741 PMCID: PMC11768108 DOI: 10.3390/pharmaceutics17010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Platycodon grandiflorus (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from Platycodon grandiflorus (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy. Methods: The FFPG-Lip-PTX NDDS was prepared by electrostatic adsorption. Dynamic light scattering, zeta potential, and transmission electron microscopy were used for physical characterization. The release behavior of the NDDS was simulated by dialysis. The uptake of the NDDS was observed by confocal microscopy and flow cytometry. Cytotoxicity, apoptosis, migration, and invasion experiments were used to evaluate the anti-tumor ability of the NDDS in vitro. The penetration and inhibition of tumor proliferation were further analyzed via a 3D tumor sphere model. Finally, in vivo biological distribution and pharmacodynamic experiments verified the targeting and anti-tumor ability of the FFPG-Lip-PTX NDDS. Results: FFPG-Lip-PTX possessed a homogeneous particle size distribution, high encapsulation efficiency, and stability. In vitro experiments confirmed that FFPG promoted the uptake of the NNDS by tumor cells and enhanced cytotoxicity. It also increased the anti-tumor effect by promoting cell apoptosis and inhibiting invasion and metastasis. The same conclusion was obtained in 3D tumor spheres. In vivo experiments exhibited that FFPG-lips-PTX showed more significant lung cancer-targeting activity and anti-tumor effects. Conclusions: In this study, a novel lung-targeted NDDS is proposed to enhance the therapeutic effect of chemotherapy drugs on lung cancer.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Xueying Yan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Wenfei Wang
- Bio-Pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Hongxiang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Xinhua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Zhehui Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| | - Defu Cai
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yonggang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China; (J.W.); (X.Y.); (S.W.); (H.J.); (X.Z.); (Z.L.)
| |
Collapse
|
7
|
Lei J, Cao XW, Li PF, Zhao J, Wang FJ. Platycodin D reduces PD-L1 levels by inhibiting LXR-β activity and combines with nintedanib to enhance the tumor-killing effect of T cells. FEBS Lett 2024; 598:3053-3070. [PMID: 39428320 DOI: 10.1002/1873-3468.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Most tumors are resistant to programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) checkpoint inhibitors, which may be due to impaired antigen presentation resulting from the downregulation of major histocompatibility complex class I (MHC-I) expression on tumor cells. We observed that platycodin D (PD), polygalacin D, and platycodin D2, which are plant-derived triterpenoid saponins, significantly reduced PD-L1 levels. RNA sequencing and the PharmMapper database analysis identified liver X receptor β (LXR-β) as a potential PD target. Further studies showed that PD reduces PD-L1 levels by binding to LXR-β and inhibiting LXR-β activity. Coadministration of PD and nintedanib, known to upregulate MHC-I expression, enhanced tumor recognition and killing by T cells. This study provides new insights into PD applications and mechanisms.
Collapse
Affiliation(s)
- Jin Lei
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Xue-Wei Cao
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., Dongyang, China
| | - Peng-Fei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., Dongyang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
8
|
Feng Z, Wang K, Huang J, Liu Z, Fu J, Shi J, Ma X, Li L, Wu Q. Exploration of the Active Components and Mechanism of Jiegeng (Platycodonis Radix) in the Treatment of Influenza Virus Pneumonia Through Network Pharmacology Analysis and Experimental Verification. Chem Biol Drug Des 2024; 104:e70007. [PMID: 39523498 DOI: 10.1111/cbdd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to explore the pathogenesis of platycodin D and luteolin, which are both active components in Jiegeng (Platycodonis Radix), in the treatment of influenza virus pneumonia through network pharmacology analysis combined with experimental verification. The bioactive components of Jiegeng (Platycodonis Radix) were screened by TCMSP and literature mining, and the results were standardized via the UniProt database. The action targets for the disease were identified from databases including OMIM, GeneCards, TTD, DisGeNET, and PharmGKB. Then, the visualized key target regulatory network and protein-protein interaction (PPI) network for the active components were established using Cytoscape3.7.1 software. The findings were illustrated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The intervention concentrations of platycodin D and luteolin were screened by the CCK8 method, and the important signaling pathways of platycodin D and luteolin for treating influenza virus pneumonia were verified by RT-qPCR and Western blot tests. From data mining, 89 common drug-disease targets were screened out, and five major active components of Jiegeng (Platycodonis Radix), including platycodin D and luteolin, were obtained. Besides, 11 therapeutic targets including IL-17, IL-6, TNF-α, JUN, and MAKP1 were identified by PPI network analysis. GO and KEGG enrichment analyses showed that the pathways most related to the mechanisms of Jiegeng (Platycodonis Radix) against influenza virus pneumonia included the TNF and IL-17 signaling pathways and apoptosis. In vitro experiments demonstrated that the model group exhibited a notable elevation in mRNA levels of IL-6, IL-17, TNF-α, JUN, MAPK1, and the IL-17/-acting protein ratio, as compared to the control group (p < 0.05). In contrast to the model group, the IL-6, IL-17, TNF-α, JUN, MAPK1 mRNA expression levels, and the IL-17 protein ratio in both the platycodin D group and luteolin group were considerably decreased (p < 0.05). Combined with network pharmacology and experimental verification, this study revealed that platycodin D and luteolin in Jiegeng (Platycodonis Radix) may treat influenza virus pneumonia by regulating inflammation through the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Zhiying Feng
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kangyu Wang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawang Huang
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuolin Liu
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingmin Fu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianing Shi
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyue Ma
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiong Wu
- Department of Traditional Chinese Medicine, College of Humanities and Management, Changsha, Hunan, China
| |
Collapse
|
9
|
Li W, Zhang Y, Zhao S, Zhao X, Xie J. Efficient enrichment and characterization of triterpenoid saponins from Platycodon grandiflorus roots. J Chromatogr A 2024; 1735:465332. [PMID: 39241405 DOI: 10.1016/j.chroma.2024.465332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Platycodon grandiflorum roots (PGR), a widely recognized edible herbal medicine, are extensively used in traditional Chinese medicine for respiratory ailments. PGR are rich in bioactive compounds, particularly triterpenoid saponins, which possess significant pharmaceutical properties, including anti-inflammatory, antifungal, and antioxidant activities. Despite their recognized bioactivity, the purification and enrichment processes of triterpenoid saponins remain underexplored. This study aimed to optimize the extraction and purification of triterpenoid saponins from PGR to enhance resource utilization and minimize waste. Our method involved n-butanol extraction and macroporous adsorption resin, yielding four extracts with varying saponins contents. Qualitative analysis using LC-MS identified 8 triterpenoid saponins across the extracts. Further fragmentation analysis delineated characteristic ion patterns and cleavage pathways for these compounds. Quantitative analysis demonstrated that the separation and purification process effectively increased the triterpenoid saponins content, with the highest levels obtained through 30 % ethanol elution. Notably, the absence of Platycodin D in the 30 % ethanol eluate highlighted potential variations due to the origin, processing, and purification methods. These findings provide theoretical support for the development and utilization of triterpenoid saponins in PGR.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Li W, Zhang Y, Cao Y, Zhao X, Xie J. Protective effects and regulatory mechanisms of Platycodin D against LPS-Induced inflammatory injury in BEAS-2B cells. Int Immunopharmacol 2024; 139:112782. [PMID: 39074416 DOI: 10.1016/j.intimp.2024.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Platycodin D (PLD), a major bioactive component of triterpene saponins found in Platycodon grandiflora, is renowned for its anti-inflammatory and antioxidant properties. This study aims to explore the protective effects and regulatory mechanisms of PLD in an LPS-induced inflammation injury model of BEAS-2B cells. Initially, PLD was identified from Platycodon grandiflora extracts utilizing UPLC-Q-TOF-MS/MS technology. The effects of PLD on the viability, morphology, ROS levels, and inflammatory factors of LPS-induced BEAS-2B cells were then investigated. The results showed that PLD significantly alleviated LPS-induced oxidative stress and inflammatory injury. Further analysis revealed that PLD positively influenced apoptosis levels, mitochondrial morphology, and related gene expression, indicating its potential to mitigate LPS-induced apoptosis and alleviate mitochondrial dysfunction. Using molecular docking technology, we predicted the binding sites of PLD with mitochondrial autophagy protein. Gene expression levels of autophagy-related proteins were measured to determine the impact of PLD on mitochondrial autophagy. Additionally, the study examined whether the mitochondrial autophagy agonists rapamycin (RAPA) could modulate the upregulation of inflammasome-related factors NLRP3 and Caspase-1 in LPS-induced BEAS-2B cells. This was done to evaluate the regulator mechanisms of PLD in pulmonary inflammatory injury. Our findings suggest that PLD's mechanism of action involves the regulation of mitochondrial autophagy, which in turn modulates inflammatory responses.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yuxin Cao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Ji YJ, Kang MH, Kim GS, Kim HD, Jang GY. Platycodon grandiflorum exhibits anti-neuroinflammatory potential against beta-amyloid-induced toxicity in microglia cells. Front Nutr 2024; 11:1427121. [PMID: 39171113 PMCID: PMC11335668 DOI: 10.3389/fnut.2024.1427121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background/objectives Platycodon grandiflorum (PG) is used in traditional oriental medicine to treat several ailments. Methods The study investigated the anti-inflammatory and neuroprotective effects of PGW (P. grandiflorum) extract in Aβ25-35-induced inflammation in BV2 microglia cells. Result PGW demonstrated significant inhibition of nitric oxide (NO) production, with reductions of 30.4, 36.7, and 61.2% at concentrations of 50, 100, and 200 μg/mL, respectively. Moreover, PGW effectively suppressed the production of pro-inflammatory cytokines IL-1β and IL-6 and exhibited significant inhibitory activity against TNF-α at 200 μg/mL. Furthermore, PGW treatment mitigated apoptosis in Aβ-induced BV2 cells by modulating the mitochondrial apoptosis pathway, regulating Bcl-2 family protein synthesis, and inhibiting caspase activation. Mechanistically, PGW attenuated the activation of the MAPK (JNK, ERK, p38) pathway induced by Aβ, showing a concentration-dependent decrease in phosphorylation levels of these proteins. Additionally, PGW inhibited the NF-κB pathway activation by reducing the phosphorylation levels of p65 and IκBα in a concentration-dependent manner. Conclusion PGW demonstrated anti-inflammatory and neuroprotective effects in Aβ-induced neuronal cells, suggesting its potential as a therapeutic agent for neuroinflammatory associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Min Hye Kang
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| |
Collapse
|
12
|
Zhang L, Wang X, Zhang J, Liu D, Bai G. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. CHINESE HERBAL MEDICINES 2024; 16:327-343. [PMID: 39072195 PMCID: PMC11283231 DOI: 10.1016/j.chmed.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
Collapse
Affiliation(s)
- Lanying Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Xinrui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Gang Bai
- Nankai University, Tianjin 300353, China
| |
Collapse
|
13
|
Liu M, Wang Z, Qin C, Cao H, Kong L, Liu T, Jiang S, Ma L, Liu X, Ren W, Ma W. Cloning, Expression Characteristics of Farnesyl Pyrophosphate Synthase Gene from Platycodon grandiflorus and Functional Identification in Triterpenoid Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11429-11437. [PMID: 38738769 DOI: 10.1021/acs.jafc.3c09293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Platycodon grandiflorus is a medicinal plant whose main component is platycodins, which have a variety of pharmacological effects and nutritional values. The farnesyl pyrophosphate synthase (FPS) is a key enzyme in the isoprenoid biosynthesis pathway, which catalyzes the synthesis of farnesyl diphosphate (FPP). In this study, we cloned the FPS gene from P. grandiflorus (PgFPS) with an ORF of 1260 bp, encoding 419 amino acids with a deduced molecular weight and theoretical pI of 46,200.98 Da and 6.52, respectively. The squalene content of overexpressed PgFPS in tobacco leaves and yeast cells extract was 1.88-fold and 1.21-fold higher than that of the control group, respectively, and the total saponin content was also increased by 1.15 times in yeast cells extract, which verified the biological function of PgFPS in terpenoid synthesis. After 48 h of MeJA treatment and 6 h of ethephon treatment, the expression of the PgFPS gene in roots and stems reached its peak, showing a 3.125-fold and 3.236-fold increase compared to the untreated group, respectively. Interestingly, the expression of the PgFPS gene in leaves showed a decreasing trend after exogenous elicitors treatment. The discovery of this enzyme will provide a novel perspective for enhancing the efficient synthesis of platycodins.
Collapse
Affiliation(s)
- Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chen Qin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huiyan Cao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tingxia Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154002, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
14
|
Yang T, Zhao X, Sun Q, Zhang Y, Xie J. Elucidating the anti-inflammatory activity of platycodins in lung inflammation through pulmonary distribution dynamics and grey relational analysis of cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117706. [PMID: 38176670 DOI: 10.1016/j.jep.2024.117706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodonis Radix (PR) is a traditional herbal remedy used to prevent and treat lung inflammation, and platycodins are speculated to be the major active constituents. However, concrete experimental verification for this assertion remains absent thus far. AIM OF THE STUDY This study aims to compare the pulmonary distribution dynamics of five platycodins and analyze their effects on cytokines. Through the grey relational analysis (GRA) between pulmonary active components and cytokines, the study ascertains platycodins as the potential effective component against lung inflammation. MATERIALS AND METHODS A rat lung inflammation model was created using lipopolysaccharides (LPS). Pulmonary distribution dynamics were analyzed via LC-MS/MS. Cytokine changes and distribution patterns in lung tissues were studied by multi-factor reagent kit. GRA was applied to determine correlations between pulmonary components and cytokines. Finally, the anti-inflammatory properties of platycodins were further studied using LPS-induced BEAS-2B cells in vitro. RESULTS The results showed that five platycodins (Platycodin D, Platycodin D3, Deapio Platycodin D, 3-O-β-D-Glucopyranosyl Platycodigenin, and Platycodigenin) featured fast absorption rate, short time to peak, and slow metabolism rate. The pulmonary distribution dynamics were significantly affected within 2 h after LPS modeling. At the same time, PR altered the relationships among different cytokines induced by LPS stimulation, particularly inflammatory cytokines IL-6 and IFN-γ. The GRA results indicated good correlation between the pulmonary distribution dynamics of the five platycodins components and the changing patterns of cytokine levels, with Platycodin D3 contributing the most. Additionally, Platycodin D3 exhibited a protective role against LPS-induced inflammation by reducing the production of pro-inflammatory mediators such as IL-1β, IL-8, and ROS, as well as increasing the expression of the anti-inflammatory mediator IL-10. CONCLUSIONS Platycodins are the main anti-inflammatory agents in PR and there is a good correlation with cytokines. This contributes to the anti-pneumonia effect of PR.
Collapse
Affiliation(s)
- Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaotong Zhao
- Chemistry of Department, Cleveland State University, Cleveland, OH, 44115, USA
| | - Qing Sun
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
15
|
Mando Z, Al Zarzour RH, Alshehade S, Afzan A, Shaari K, Hassan Z, Mahror N, Zakaria F. Terpenoids and Triterpenoid Saponins: Future Treatment for Depression. CURRENT TRADITIONAL MEDICINE 2024; 10. [DOI: 10.2174/2215083809666230223121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 02/28/2025]
Abstract
Background:
Depression is a crippling mental disorder with high prevalence around the
world. The available clinical antidepressants have been effective to a certain degree, and different
side effects have limited their application. This leads to the necessity of finding new treatments.
Herbal plants are a substantial source of new drug leads. Terpenoid compounds are secondary metabolites
representing an enormous category of structures found commonly in plants either as aglycones
or attached to sugar moieties. These phytochemicals have been extensively studied for their
various biological effects, and several have been investigated for potential therapeutic effects in the
treatment of depression.
Aim:
This review aims to highlight the current knowledge on some terpenoids and triterpenoid
saponins as potential antidepressant agents and their mechanisms of action, which may provide a
better understanding of the potential antidepressant-like effects of these compounds and lead to the
development of auspicious molecules with high efficiency and low side effects for depressive disorders
treatment.
Methods:
A total of 16 plants containing antidepressant agents are reviewed in this article. 9 terpenoids
and 23 triterpenoid saponins compounds have been reported to becommonly found in plant
extracts, indicating potential use for depression. To enhance the datum of this review, the mechanism
of action for the candidate compounds has been predicted via functional enrichment analysis.
Results:
The behavioural and neurochemical effects, as well as the possible mechanisms of action,
have been evaluated in rodents by different predictive models of depression, mainly the acute
stress models of the forced swimming test (FST) and tail suspension test (TST). The involved
mechanisms include enhancing monoamine neurotransmitters, ameliorating brain-derived neurotrophic
factor (BDNF), and normalizing the hypothalamus-pituitary-adrenal (HPA) axis. Preclinical
studies support the potential antidepressant activities of some terpenoid compounds. Furthermore,
the functional enrichment analysis has confirmed the previous pre-clinical findings and predicted
further mechanisms of action, including cellular calcium ion homeostasis, cellular response
to dopamine, endocrine resistance, and regulating GABAergic, serotonergic, glutamatergic, and
dopaminergic synapse, bedsides neurotransmitter reuptake.
Conclusion:
Terpenoids and triterpenoid saponins provide a large number of natural compounds.
This review sheds light on terpenoids and triterpenoid saponins compounds with antidepressantlike
activity and their potential mechanisms of action. However, more evaluations are required to
confirm that these compounds are promising for discovering antidepressant drugs.
Collapse
Affiliation(s)
- Zaynab Mando
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | | | - Salah Alshehade
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Adlin Afzan
- Phytochemistry
Unit, Herbal Medicine Research Institute, Institute for Medical Research, National Institutes of Health, Shah Alam,
40170, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra
Malaysia, Serdang, 43400, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Penang,
Malaysia
| | - Norlia Mahror
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang,
11800, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| |
Collapse
|
16
|
Liang J, Li YG, Chai YQ, Zhang Y, Gao X, Zhu XH, Sun XZ, Wang WF, Kuang HX, Xia YG. Revealing the "Yin-Jing" mystery veil of Platycodon grandiflorum by potentiating therapeutic effects and lung-oriented guidance property. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117587. [PMID: 38104878 DOI: 10.1016/j.jep.2023.117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE: "Yin-Jing" medicine (YJM) has been widely used by both ancient and modern Chinese medicine practitioners during long-term clinical practice. However, it remains unclear how to best guide other medicines to the targeted organs in a traditional Chinese medicine (TCM) prescription. Here, in an attempt to explain the scientific connotation of the YJM property (YJMP) attributed to a basic TCM theory, Platycodon grandiflorum (PG) was chosen as a case study to reveal the mystery of YJMP theory. AIM OF THE STUDY The main purpose of this study is to employ modern chemical and molecular biology methods to confirm the "Yin-Jing" effect of PG, and further clarify its material basis and related possible mechanism. MATERIALS AND METHODS The ammonia-induced lung injury rat model was utilized to determine the optimal dosage of traditional prescription Hui Yan Zhu Yu decoction (HYZYD) using Wright Giemsa staining, HE staining, Masson staining, and TUNEL analysis. With the same way, PG was confirmed to have potentiating therapeutic effect (PTE) by comparison with HYZYD and [HYZYD-PG]. TMT proteomics was used to reveal the "Yin-Jing" mechanism of action. Western blot assay (WB) was employed for verification of differentially expressed proteins. Additionally, four non-crossing fragmentations (Fr. A-D) were characterized by RPLC/SEC-ELSD and HILIC-ESI--Q-OT-IT-MS techniques. The PTE and guidance property assays were utilized to evaluate "Yin-Jing" functions by a compatible combination of hydroxysafflor yellow A (HYA) using qPCR, FCM, WB, HPLC, high content cell imaging (HCI) and high-resolution live-cell imaging (HRLCI) techniques. RESULTS The HYZYD-M (medium dose group) significantly improved the lung injury level in a pneumonia model of rats. PG enhanced the therapeutic effect of HYZYD ascribed to Yin-Jing PTE functions. TMT proteomics revealed a category of differentially expressed proteins ascribed to Golgi-ER between HYZYD and [HYZYD-PG]. Fr. C (i.e., saponins) and Fr. D (i.e., lipids) were determined as therapeutic fragmentations via the LPS-induced A549 cell injury model; however, Fr. B (fructooligosaccharides and small Mw fructans) had no therapeutic effect. Further compatibility PTE assays confirmed Fr. B significantly improved efficiency by a combination of HYA. The guidance assays showed Fr. B could significantly increase the uptake and distribution of HYA into lung cells and tissues. HCI assays showed that Fr. B increased uptake of HYA accompanied by significant activation of Golgi-ER. Unlike Fr. B, HRLCI showed that Fr. A, C and D were not only unobvious activations of Golgi-ER but also insignificant facilitation of colocalizations between HYA and Golgi-ER. CONCLUSIONS Fr. B is believed to be a key YJMP material basis of PG attributed to Yin-Jing PTE with characteristic of lung-oriented guidance property, whereas another abound Fr. C was determined to have synergistic effects rather than Yin-Jing material basis.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Yan-Qun Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Xue Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Xi-Zhe Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
17
|
Ma JQ, Dong AB, Xia HY, Wen SY. Preparation methods, structural characteristics, and biological activity of polysaccharides from Platycodon grandiflorus. Int J Biol Macromol 2024; 258:129106. [PMID: 38161010 DOI: 10.1016/j.ijbiomac.2023.129106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Platycodon grandiflorus (P. grandiflorus), a traditional Chinese medicinal herb used for both medicine and food, has a long history of treating respiratory infections, bronchitis, pneumonia, and other lung-related diseases. The therapeutic effects of P. grandiflorus are attributed to its chemical components, including polysaccharides. Among these components, Platycodon grandiflorus polysaccharides (PGP) are recognized as one of the most important and abundant active ingredients, exhibiting various biological activities such as prebiotic, antioxidant, antiviral, anticancer, antiangiogenic, and immune regulatory properties. Incorporating the principles of traditional Chinese medicine, carrier concepts, and modern targeted drug delivery technologies, PGP can influence the target sites and therapeutic effects of other drugs while also serving as a drug carrier for targeted and precise treatments. Therefore, it is essential to provide a comprehensive review of the extraction, separation, purification, physicochemical properties, and biological activities of PGP. In the future, by integrating new concepts, technologies, and processes, further references and guidance can be provided for the comprehensive development of PGP. This will contribute to the advancement of P. grandiflorus in various fields such as pharmaceuticals, health products, and food.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Ao-Bo Dong
- Third Hospital of Baotou City, Baotou 014040, China
| | - Hong-Yan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China.
| |
Collapse
|
18
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
19
|
Liang J, Wang WF, Zhang Y, Chai YQ, Li YG, Jiang SL, Zhu XH, Guo YL, Wei Z, Sun XZ, Kuang HX, Xia YG. Fructooligosaccharides and fructans from Platycodon grandiflorum: Structural characterization, lung-oriented guidance and targetability. Carbohydr Polym 2024; 323:121457. [PMID: 37940316 DOI: 10.1016/j.carbpol.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Platycodon grandiflorum (PG) has been widely applied as a conductant drug by ancient and modern traditional Chinese medicine practitioners during long-term clinical practice. However, determining how to guide other medicines to the targeted lungs in traditional Chinese medicine (TCM) prescription remains unclear. An ethanol soluble fraction (Fr. B) was obtained by macroporous resin and 75 % ethanol precipitate. The components were unambiguously determined as fructooligosaccharides and small molecule weight (Mw) fructans according to HILIC-ESI--MS/MS, MS/MS and 1/2D NMR. We discovered that the Fr. B possesses the lung-oriented guidance and targetability by activating Golgi apparatus and endoplasmic reticulum (Golgi-ER) transport system. Rab21, a highly expressed transmembrane protein in the lungs, was found to be the core-affinity target of Fr. B which physically colocalized with the Golgi-ER and directly interacted with Rab21 to accelerate the uptake of extracellular therapeutic substances. The lung-oriented guidance and targetability of Fr. B was validated by the transient knockdown and overexpression of Rab21 considering dynamic observations of colocalization interactions among Fr. B, extracellular substances, and the Golgi-ER. Together, our results delineate a potential mechanism of Fr. B toward lung-oriented guidance and targetability via a direct targeting affinity of Rab21 and resulting collective stimulation of key Golgi-ER transport effectors for the acceleration of extracellular substances into the lungs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yan-Qun Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Zhen Wei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xi-Zhe Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
| |
Collapse
|
20
|
Ma J, Wen S, Dong A, Fan W, Kang Y. Gut Microbiome (Bacteria, Fungi, and Viruses) and HIV Infection: Revealing Novel Treatment Strategies. Mol Nutr Food Res 2023; 67:e2300566. [PMID: 37867202 DOI: 10.1002/mnfr.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Plenty of research on microbial-viral interactions has revealed that some commensal microorganisms in the gut, including bacteria, fungi, and viruses, can resist or promote viral infection, whereas other microorganisms are involved in pathogenicity. Therefore, the balance between commensal microorganisms and human organisms is a key factor for determining infection and disease progression, and commensal microorganisms have become a hot research area in the medical field. In this review, the compositional characteristics of gut microbiota (bacteria, fungi, and viruses) during HIV infection are reviewed and changes in gut microbiota among different HIV-infected populations are described. Furthermore, the latest progress of potential microbial therapeutic methods, including a) probiotics, prebiotics, and synbiotics, b) fecal microbiota transplantation (FMT), c) phage therapy, and d) antifungal strategy, microbial enzyme inhibition, and dietary therapeutics, is analyzed based on gut bacteria, fungi, and viruses in the field of HIV infection. This study aims to provide a useful reference for developing novel strategies for the prevention and treatment of HIV infection based on commensal microorganisms.
Collapse
Affiliation(s)
- Jieqiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shiyuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Aobo Dong
- Third Hospital of Baotou City, Baotou, China
| | - Weiping Fan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yongbo Kang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Hua Q, Tang L, Shui J, Liu Y, Zhang G, Xu X, Yang C, Gao W, Liao G, Liu Q, Liang H, Mo Q, Liang F, Guo J, Zhang Z. Effectiveness of kumquat decoction for the improvement of cough caused by SARS-CoV-2 Omicron variants, a multicentre, prospective observational study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155008. [PMID: 37651755 DOI: 10.1016/j.phymed.2023.155008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Kumquat decoction is a traditional Chinese medicine formula and has been widely used to alleviate the coronavirus disease 2019 (COVID-19)-related cough in China. However, the effectiveness and safety of kumquat decoction remain unclear. PURPOSE To assess the effectiveness and safety of kumquat decoction for COVID-19-related cough. STUDY DESIGN A multicentre, prospective observational study. METHODS We enrolled consecutive patients with mild-to-moderate COVID-19 from December 31, 2022, to January 3, 2023, during the Omicron phase in Yangshuo County, China. The primary outcome was the time from study baseline to sustained cough resolution by the last follow-up day on January 31, 2023. The effectiveness was evaluated by Cox proportional hazards models based on propensity score analyses. The secondary outcomes were the resolution of cough and other COVID-19-related symptoms by Days 3, 5, and 7. RESULTS Of 1434 patients, 671 patients were excluded from the analysis of cough resolution. Among the remaining 763 patients, 481 (63.04%) received kumquat decoction, and 282 (36.96%) received usual care. The median age was 38.0 (interquartile range [IQR] 29.0, 50.0) years, and 55.7% were women. During a median follow-up of 7.000 days, 68.2% of patients in the kumquat group achieved sustained cough resolution (93.77 per 1000 person-days) compared to 39.7% in the usual care group (72.94 per 1000 person-days). The differences in restricted mean survival time (RMST) (kumquat decoction minus usual care group) for cough resolution were -0.742 days (95% CI, -1.235 to -0.250, P = 0.003) on Day 7. In the main analysis using propensity-score matching, the adjusted hazard ratio (HR) for cough resolution (kumquat decoction vs. usual care group) was 1.94 (95% CI, 1.48 to 2.53, P < 0.001). Similar findings were found in multiple sensitivity analyses. In addition, the use of kumquat decoction was associated with the resolution of cough, and a stuffy nose on Days 5 and 7, as well as the resolution of sore throat on Day 7 following medication. CONCLUSION In this study among patients with COVID-19-related cough, receiving kumquat decoction was associated with an earlier resolution of cough symptoms.
Collapse
Affiliation(s)
- Qiaoli Hua
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Tang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jingwei Shui
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yuntao Liu
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China
| | - Ge Zhang
- Development Research Center of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaohua Xu
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China
| | - Chunyuan Yang
- Yangshuo County Centre for Disease Control and Prevention, 541900, China
| | - Wenjian Gao
- Yangshuo County Hospital of Traditional Chinese Medicine, 541900, China
| | - Guocheng Liao
- Yangshuo County Baisha Township Hospital, 541900, China
| | - Qingming Liu
- Yangshuo County Fuli Township Hospital, 541000, China
| | - Huilin Liang
- Yangshuo County Gaotian Township Hospital, 541000, China
| | - Qingkun Mo
- Yangshuo County Puyi Township Hospital, 541000, China
| | - Fangxiu Liang
- Yangshuo County Yangshuo Township Hospital, 541900, China
| | - Jianwen Guo
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhongde Zhang
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
22
|
Wang M, Pei S, Xie L, Li H, Tang S, Li Y, Chen Z, Liu S, Liu Z. An integrated approach based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, network pharmacology, and molecular docking to study the key effective compounds and mechanism of action of Platycodi Radix in the treatment of chronic obstructive pulmonary disease. J Sep Sci 2023; 46:e2300398. [PMID: 37688352 DOI: 10.1002/jssc.202300398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Platycodi Radix (PR) is a valuable herb that is widely used in the treatment of chronic obstructive pulmonary disease in clinics. However, the mechanism of action for the treatment of chronic obstructive pulmonary disease remains unclear due to the lack of in vivo studies. Our study established a novel integrated strategy based on ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry, network pharmacology, and molecular docking to systematically analyze the tissue distribution and active compounds of PR in vivo and the therapeutic mechanism of chronic obstructive pulmonary disease. First, tissue distribution studies have shown that the lung is the organ with the highest distribution of PR compounds. Subsequently, network pharmacology results showed that the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and mitogen-activated protein kinase signaling pathway were the critical mechanisms of PR against chronic obstructive pulmonary disease. Ultimately, molecular docking results showed that the key targets were stably bound to the corresponding active compounds of PR. Our study is of great significance for the screening of the key effective compounds and the study of the mechanism of action in traditional Chinese medicine and provides data to support the further development and utilization of PR.
Collapse
Affiliation(s)
- Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Luyao Xie
- Chengdu Meishi International School, Chengdu, China
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shoufang Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuwen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry, Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
23
|
Li X, Chen S, Zeng J, Cai R, Liang Y, Chen C, Chen B, Li C. Database-aided UHPLC-Q-orbitrap MS/MS strategy putatively identifies 52 compounds from Wushicha Granule to propose anti-counterfeiting quality-markers for pharmacopoeia. Chin Med 2023; 18:116. [PMID: 37689743 PMCID: PMC10492348 DOI: 10.1186/s13020-023-00829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Wushicha Granule, an over-the-counter-drug (OTC) prescription, consists of 19 traditional Chinese herbals medicines (CHMs), such as Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao. The five however have not been effectively characterized by the quality-markers (Q-markers) system in current Pharmacopoeia. The study therefore established a novel database-aided ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry (UHPLC-Q-orbitrap MS/MS) strategy. The strategy has putatively identified 52 compounds from Wushicha Granule, mainly including flavonoids, saponins, alkaloid, lignins, and lactones. Especially, saponin "glycyrrhetinic acid" in the Granule was specifically identified as 18β-configuration (rather than 18α-configuration). Meanwhile, two pairs of isomers were fully discriminated, including vitexin vs isovitexin and daidzein vs 7,4'-dihydroxyflavone. 8β-Glycyrrhetinic acid, together with saponin saikosaponin A, alkaloid caffeine, lactone S-senkyunolide A, and lignin magnolol, were further studied using quantum chemical calculation, UV-vis spectra, and anti-counterfeiting validation experiment. In the validation experiment, they have successfully recognized 6 counterfeit Wushicha Granules, by means of a LC-MS equipped extraction software. Based on these results, 8β-glycyrrhetinic acid is recommended to replace the old Q-marker "glycyrrhetinic acid"; while saikosaponin A, caffeine, S-senkyunolide A, and magnolol are recommended as new Q-markers. These recommendations can not only recognize the counterfeits regarding Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao, but also prevent the possible safety-incident. All these will greatly improve the efficiency and specificity of current Pharmacopoeia.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shaoman Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingyuan Zeng
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rongxin Cai
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yilan Liang
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanbin Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Chunhou Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
24
|
Park SY, Kim KS, Lee WY, Kim CE, Lee S. Integrative Approach to Identifying System-Level Mechanisms of Chung-Sang-Bo-Ha-Hwan's Influence on Respiratory Tract Diseases: A Network Pharmacological Analysis with Experimental Validation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3024. [PMID: 37687271 PMCID: PMC10489874 DOI: 10.3390/plants12173024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Chung-Sang-Bo-Ha-Hwan (CSBHH) is an herbal prescription widely used to treat various chronic respiratory diseases. To investigate the system-level treatment mechanisms of CSBHH in respiratory tract diseases, we identified 56 active ingredients of CSBHH and evaluated the degree of overlap between their targets and respiratory tract disease-associated proteins. We then investigated the respiratory tract disease-related signaling pathways associated with CSBHH targets. Enrichment analysis showed that the CSBHH targets were significantly associated with various signaling pathways related to inflammation, alveolar structure, and tissue fibrosis. Experimental validation was conducted using phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells by analyzing the mRNA expression levels of biomarkers (IL-1β and TNF-α for inflammation; GSTP1, GSTM1, and PTEN for apoptosis) derived from network pharmacological analysis, in addition to the mucin genes MUC5AC and MUC2, to investigate the phlegm-expelling effect of CSBHH. The mRNA expression levels of these genes were consistent with network pharmacological predictions in a concentration-dependent manner. These results suggest that the therapeutic mechanisms of CSBHH in respiratory tract diseases could be attributed to the simultaneous action of multiple active ingredients in the herbal prescription.
Collapse
Affiliation(s)
- Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.-Y.P.); (W.-Y.L.)
| | - Kang-Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - Won-Yung Lee
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.-Y.P.); (W.-Y.L.)
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.-Y.P.); (W.-Y.L.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
25
|
Yang T, Zhao S, Yuan Y, Zhao X, Bu F, Zhang Z, Li Q, Li Y, Wei Z, Sun X, Zhang Y, Xie J. Platycodonis Radix Alleviates LPS-Induced Lung Inflammation through Modulation of TRPA1 Channels. Molecules 2023; 28:5213. [PMID: 37446875 DOI: 10.3390/molecules28135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the lungs. The aim of this study was to determine the TRPA1-targeted effects of PR against pulmonary inflammation and to investigate the affinity of PR constituents for TRPA1 and their potential mechanisms of action. Using a C57BL/6J mouse lipopolysaccharides (LPS) intratracheal instillation pneumonia model and advanced analytical techniques (UPLC-Q-TOF-MS/MS, molecular docking, immuno-fluorescence), five platycodins were isolated from PR, and the interaction between these platycodins and hTRPA1 was verified. Additionally, we analyzed the impact of platycodins on LPS-induced TRPA1 expression and calcium influx in BEAS-2B cells. The results indicated that PR treatment significantly reduced the severity of LPS-triggered inflammation in the mouse model. Interestingly, there was a mild increase in the expression of TRPA1 caused by PR in healthy mice. Among five isolated platycodins identified in the PR extract, Platycodin D3 (PD3) showed the highest affinity for hTRPA1. The interaction between platycodins and TRPA1 was verified through molecular docking methods, highlighting the significance of the S5-S6 pore-forming loop in TRPA1 and the unique structural attributes of platycodins. Furthermore, PD3 significantly reduced LPS-induced TRPA1 expression and calcium ion influx in BEAS-2B cells, substantiating its own role as an effective TRPA1 modulator. In conclusion, PR and platycodins, especially PD3, show promise as potential lung inflammation therapeutics. Further research should explore the precise mechanisms by which platycodins modulate TRPA1 and their broader therapeutic potential.
Collapse
Affiliation(s)
- Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuang Zhao
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yuan
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Fanjie Bu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhiyuan Zhang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianqian Li
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zilu Wei
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
26
|
Deng Z, Sheng F, Yang SY, Liu Y, Zou L, Zhang LL. A comprehensive review on the medicinal usage of Podocarpus species: Phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116401. [PMID: 36965543 DOI: 10.1016/j.jep.2023.116401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants of the Podocarpus species belong to the Podocarpaceae family and are largely distributed in the southern hemisphere. Beside the commercially and ecologically valuable, plants of the Podocarpus species are also used in traditional medicines in some countries for treating asthma, fever, venereal diseases, eye diseases, etc. AIM OF THE STUDY: In recent decades, the identities and pharmacological activities of phytochemicals extracted from Podocarpus plants have been widely studied. However, there have been no comprehensive and systematic reviews. This article aims to systematically review the latest research on the putative mechanisms underlying pharmacological actions of phytochemicals from the Podocarpus species, as well as to lay a foundation for promoting the development of plant resources from this genus, further drug research, and product development. MATERIALS AND METHODS A comprehensive search of PubMed, Google Scholar, Web of Science, Elsevier and CNKI databases was conducted using the keywords "Podocarpus", "traditional usage", "phytochemistry", "pharmacology", "nagilactone", etc. Related papers published among July 1964 to February 2023 were collected to summarize the research progress. All plant names were determined through the "The Plant List" (http://www.theplantlist.org/). RESULTS To date, 262 chemical constituents have been isolated and identified from 26 Podocarpus plants; among these, norditerpene bilactone is the main pharmacologically active component. Norditerpene bilactones are reported to have anti-cancer, anti-inflammatory, antioxidant, antibacterial, anti-tyrosinase, neuroprotective, anti-plasmodial, anti-mutagenic, and anti-atherosclerotic properties as well as other pharmacological activities, which support its traditional uses. CONCLUSION Extensive studies on phytochemistry and pharmacology of Podocarpus species lead to discovery of a series of hopeful leading compounds with unique chemical structure, especially the nor- and bis-norditerpenoid dilactones with four isoprene units. These compounds have been proved to possess various pharmacological activities. This review will provide a reference for further research and promote the idea of combining modern research with traditional medicinal applications of Podocarpus plants.
Collapse
Affiliation(s)
- Zhou Deng
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Si-Yu Yang
- College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yi Liu
- Department of Pharmacy, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, 610081, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China.
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
27
|
Zhang JT, Xie LY, Shen Q, Liu W, Li MH, Hu RY, Hu JN, Wang Z, Chen C, Li W. Platycodin D stimulates AMPK activity to inhibit the neurodegeneration caused by reactive oxygen species-induced inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116294. [PMID: 36804201 DOI: 10.1016/j.jep.2023.116294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) was considered to be a neurodegenerative disease that caused cognitive impairment. Reactive Oxidative stress (ROS) was considered to be one of a major cause of the onset and progression of AD. Platycodin D (PD), a representative saponin from Platycodon grandiflorum, has conspicuous antioxidant activity. However, whether PD could protect nerve cell against oxidative injury remains unknown. AIM OF STUDY This study investigated the regulatory effects of PD on neurodegeneration caused by ROS. To determine whether PD could play its own antioxidant role in neuronal protection. MATERIALS AND METHODS First, PD(2.5, 5 mg/kg) ameliorated the memory impairment induced by AlCl3 (100 mg/kg) combined with D-galactose (D-Gal) (200 mg/kg) in mice, using the radial arm maze (RAM) test, and neuronal apoptosis in the hippocampus was evaluated by hematoxylin and eosin staining (HE). Next, the effects of PD (0.5, 1, and 2 μM) on okadaic-acid (OA) (40 nM) -induced apoptosis and inflammation of HT22 cells were investigated. Mitochondrial ROS production was measured by fluorescence staining. The potential signaling pathways were identified through Gene Ontology enrichment analysis. The role of PD in regulating AMP-activated protein kinase (AMPK) was assessed using siRNA silencing of genes and an ROS inhibitor. RESULTS In vivo, PD improved memory in mice, and recovered the morphological changes of brain tissue and nissl bodies. In vitro experiment, PD increased cell viability (p < 0.01; p < 0.05;p < 0.001), decreased apoptosis (p < 0.01), reduced excessive ROS and MDA, rised SOD and CAT content(p < 0.01; p < 0.05). Morover, it can block the inflammatory response caused by ROS. Be important, PD strengthen antioxidant ability by elevating AMPK activation both in vivo and in vitro. Furthermore, molecular docking suggested a good likelihood of PD-AMPK binding. CONCLUSION AMPK activity is vital for the neuroprotective effect of PD, suggesting that PD may be a potential pharmaceutical agent to treat ROS-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Li-Ya Xie
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
28
|
Zhang JT, Xie LY, Shen Q, Liu W, Li MH, Hu RY, Hu JN, Wang Z, Chen C, Li W. Platycodin D stimulates AMPK activity to inhibit the neurodegeneration caused by reactive oxygen species-induced inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116294. [DOI: https:/doi.org/10.1016/j.jep.2023.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
29
|
Zhong YH, Liang J, Qin Q, Wang YJ, Peng YM, Zhang T, Liu FY, Zhang XY, He JW, Zhang SW, Zhong GY, Huang HL, Zeng JX. The activities and mechanisms of intestinal microbiota metabolites of TCM herbal ingredients could be illustrated by a strategy integrating spectrum-effects, network pharmacology, metabolomics and molecular docking analysis: Platycodin D as an example. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154831. [PMID: 37094423 DOI: 10.1016/j.phymed.2023.154831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The intestinal microbiota plays a key role in understanding the mechanism of traditional Chinese medicine (TCM), as it could transform the herbal ingredients to metabolites with higher bioavailability and activity comparing to their prototypes. Nevertheless, the study of the activity and mechanism of microbiota metabolites reported by the published literature still lacks viable ways. Hence a new strategy is proposed to solve this issue. PURPOSE A new strategy to study the activity and mechanism of intestinal microbiota metabolites of TCM herbal ingredients by integrating spectrum-effect relationship, network pharmacology, metabolomics analysis and molecular docking together was developed and proposed. METHOD Platycodin D (PD) and its microbiota metabolites with antitussive and expectorant effect were selected as an example for demonstration. First, the PD and its microbiota metabolites with important contribution to antitussive and/or expectorant effects were screened through spectrum-effect relationship analysis. Second, network pharmacology and metabolomics analysis were integrated to identify the upstream key targets of PD and its microbiota metabolites as well as the downstream endogenous metabolites. Finally, the active forms of PD were further confirmed by molecular docking. RESULTS Results showed that PD was an active ingredient with antitussive and/or expectorant effects, and the active forms of PD were its microbiota metabolites: 3-O-β-d-glucopyranosyl platycodigenin, 3-O-β-d-glucopyranosyl isoplatycodigenin, 7‑hydroxyl-3-O-β-d-glucopyranosyl platycodigenin, platycodigenin and isoplatycodigenin. In addition, those microbiota metabolites could bind the key targets of PAH, PLA2G2A, ALOX5, CYP2C9 and CYP2D6 to exert antitussive effects by regulating four metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, glycerophospholipid metabolism and linoleic acid metabolism. Similarly, they could also bind the key targets of PLA2G1B, ALOX5, CYP2C9 and CYP2D6 to exert expectorant effect by regulating two pathways of glycerophospholipid metabolism and linoleic acid metabolism. CONCLUSION The proposed strategy paves a new way for the illustration of the activities and mechanisms of TCM herbal ingredients, which is very important to reconcile the conundrums of TCM herbal ingredients with low oral bioavailability but high activity.
Collapse
Affiliation(s)
- Yuan-Han Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qian Qin
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yu-Jie Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yi-Ming Peng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ting Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Fang-Yuan Liu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xin-Yu Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shou-Wen Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guo-Yue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hui-Lian Huang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jin-Xiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
30
|
Zhang LL, Sheng F, Yang Y, Hu YF, Li W, Huang GY, Wu MY, Gong Y, Zhang P, Zou L. Integrative transcriptomics and proteomics analyses to reveal the therapeutic effect and mechanism of Buxue Yimu Pills in medical-induced incomplete abortion rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116113. [PMID: 36581165 DOI: 10.1016/j.jep.2022.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medical abortions using mifepristone and misoprostol have been approved in many countries for early pregnancy loss. Despite its high success rate, this medication regimen can result in incomplete abortion, which is responsible for endometrial damage, prolonged uterine bleeding, abdominal pain, etc. Buxue Yimu Pills (BYP) is a famous Chinese medicine prescription that is widely used in the field of gynecology and obstetrics for treating patients with postpartum complications. However, the therapeutic effect and mechanism of BYP remain to be explored. AIM OF THE STUDY This study aimed to clarify the therapeutic effect and mechanism of action of BYP in postpartum complications using mifepristone and misoprostol-induced incomplete abortion in rats. MATERIALS AND METHODS Experimental medical-induced incomplete abortion model rats were constructed using mifepristone and misoprostol, and further treated with saline or BYP by intragastric administration. Detailed information regarding the changes in mRNA and protein levels in the uterine tissues of rats regulated by BYP was illustrated by RNA sequencing (RNA-seq) analysis and quantitative proteomics analysis. The differentially expressed genes and proteins were further subjected to Gene Ontology (GO) and pathway enrichment analyses and further verified using quantitative Real-time PCR (qRT-PCR) analysis and western blot assay. RESULTS BYP administration markedly alleviated the increase in serum prostaglandin F2α (PGF2α) and expression of PGF2α receptor (PGF2αR) in uterine tissues and inhibited the decrease in serum chorionic gonadotrophin (CG). Compared with the model group, 674 genes were upregulated and 344 genes were downregulated by BYP administration; 108 proteins were upregulated and 48 proteins were downregulated by BYP administration. qRT-PCR analysis of the uterine tissues showed that BYP treatment reversed the variation tendency of genes, including Mmp7, Mmp14, Timp2, Col6a4, Jak2, Wnt7a, and Mylk compared with the model group. Western blot analysis showed that BYP administration affected PKCδ, Collagen VI, MMP7, TIMP2, MLCK, and p-MLC protein levels. CONCLUSION BYP administration facilitated uterine recovery in medical-induced incomplete abortion rats, and this therapeutic effect involved various targets and biological processes, including the TIMP2/MMP7 and MLCK/p-MLC signaling pathways, etc.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yong Yang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Guo-Ying Huang
- Department of Pharmacy, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Peng Zhang
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China.
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China.
| |
Collapse
|
31
|
Lee DJ, Choi JW, Kang JN, Lee SM, Park GH, Kim CK. Chromosome-Scale Genome Assembly and Triterpenoid Saponin Biosynthesis in Korean Bellflower (Platycodon grandiflorum). Int J Mol Sci 2023; 24:ijms24076534. [PMID: 37047506 PMCID: PMC10095269 DOI: 10.3390/ijms24076534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Platycodon grandiflorum belongs to the Campanulaceae family and is an important medicinal and food plant in East Asia. However, on the whole, the genome evolution of P. grandiflorum and the molecular basis of its major biochemical pathways are poorly understood. We reported a chromosome-scale genome assembly of P. grandiflorum based on a hybrid method using Oxford Nanopore Technologies, Illumina sequences, and high-throughput chromosome conformation capture (Hi-C) analysis. The assembled genome was finalized as 574 Mb, containing 41,355 protein-coding genes, and the genome completeness was assessed as 97.6% using a Benchmarking Universal Single-Copy Orthologs analysis. The P. grandiflorum genome comprises nine pseudo-chromosomes with 56.9% repeat sequences, and the transcriptome analysis revealed an expansion of the 14 beta-amylin genes related to triterpenoid saponin biosynthesis. Our findings provide an understanding of P. grandiflorum genome evolution and enable genomic-assisted breeding for the mass production of important components such as triterpenoid saponins.
Collapse
|
32
|
Shin KC, Oh DK. Biotransformation of Platycosides, Saponins from Balloon Flower Root, into Bioactive Deglycosylated Platycosides. Antioxidants (Basel) 2023; 12:antiox12020327. [PMID: 36829886 PMCID: PMC9952785 DOI: 10.3390/antiox12020327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Platycosides, saponins from balloon flower root (Platycodi radix), have diverse health benefits, such as antioxidant, anti-inflammatory, anti-tussive, anti-cancer, anti-obesity, anti-diabetes, and whitening activities. Deglycosylated platycosides, which show greater biological effects than glycosylated platycosides, are produced by the hydrolysis of glycoside moieties in glycosylated platycosides. In this review, platycosides are classified according to the chemical structures of the aglycone sapogenins and also divided into natural platycosides, including major, minor, and rare platycosides, depending on the content in Platycodi radix extract and biotransformed platycosides. The biological activities of platycosides are summarized and methods for deglycosylation of saponins, including physical, chemical, and biological methods, are introduced. The biotransformation of glycosylated platycosides into deglycosylated platycosides was described based on the hydrolytic pathways of glycosides, substrate specificity of glycosidases, and specific productivities of deglycosylated platycosides. Methods for producing diverse and/or new deglycosylated platycosides are also proposed.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
33
|
Liu Y, Zhang Q, Wang Y, Xu P, Wang L, Liu L, Rao Y. Enrichment of Wheat Bread with Platycodon grandiflorus Root (PGR) Flour: Rheological Properties and Microstructure of Dough and Physicochemical Characterization of Bread. Foods 2023; 12:foods12030580. [PMID: 36766109 PMCID: PMC9914062 DOI: 10.3390/foods12030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Platycodon grandiflorus (Jacq.) A.DC. root (PGR) flour is well known for its medical and edible values. In order to develop nutritionally fortified products, breads were prepared using wheat flour, partially replaced with PGR flour. The rheological properties and microstructure of dough and the physicochemical characterization of bread were investigated. Results showed that lower level of PGR addition (3 and 6 g/100 g) would improve the baking performance of breads, while the higher level of PGR addition (9 g/100 g) led to smaller specific volume (3.78 mL/g), increased hardness (7.5 ± 1.35 N), and unpalatable mouthfeel (21.8% of resilience and 92.6% of springiness) since its negative effect on the viscoelasticity and microstructure of dough. Moreover, sensory evaluation analysis also showed that the PGR3 and PGR6 breads exhibited a similar flavor to the control bread, but the 9 g/100 g addition of PGR provided bread with an unpleasant odor through its richer volatile components. As expected, the phenolic content and antioxidant capacity of bread increased significantly (p < 0.05) as PGR flour was added to the bread formulation. The total phenolic content (TPC) ranged from 14.23 to 22.36 g GAE/g; thus, DPPH• and ABTS•+ scavenging capacity increased from 10.44 and 10.06 μg Trolox/g to 14.69 and 15.12 μg Trolox/g, respectively. Therefore, our findings emphasized the feasibility of PGR flour partially replacing wheat flour in bread-making systems.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qian Zhang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuhan Wang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pingkang Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Luya Wang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lei Liu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Lanzhou 730099, China
- Correspondence: (L.L.); (Y.R.); Tel./Fax: +86-028-87720552 (L.L.)
| | - Yu Rao
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Correspondence: (L.L.); (Y.R.); Tel./Fax: +86-028-87720552 (L.L.)
| |
Collapse
|
34
|
Luo Z, Xu W, Yuan T, Shi C, Jin T, Chong Y, Ji J, Lin L, Xu J, Zhang Y, Kang A, Zhou W, Xie T, Di L, Shan J. Platycodon grandiflorus root extract activates hepatic PI3K/PIP3/Akt insulin signaling by enriching gut Akkermansia muciniphila in high fat diet fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154595. [PMID: 36610135 DOI: 10.1016/j.phymed.2022.154595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Increasing hepatic insulin signaling is found to be an important mechanism of Platycodon grandiflorus root to alleviate metabolic syndrome (MetS) symptoms such as insulin resistance, obesity, hyperlipidemia and hepatic steatosis, but the details are not yet clear. Since the main constituents of Platycodon grandiflorus root were hard to be absorbed by gastrointestinal tract, getting opportunity to interact with gut microbiota, we speculate the gut microorganisms may mediate its effect. PURPOSE Our work aimed to confirm the critical role of gut microbes in the intervention of Platycodon grandiflorus root extract (PRE) on MetS, and investigate the mechanism. METHODS Biochemical analyses, glucose tolerance test and hepatic lipidomics analysis were used to evaluate the anti-MetS effect of PRE on high fat diet (HFD) fed mice. Perform 16S rDNA analysis, qPCR analysis and in vitro co-incubation experiment to study its effect on gut microbes, followed by fecal microbiota transplantation (FMT) experiment and antibiotics intervention experiment. Also, the effect of Akkermansia muciniphila treatment on HFD mice was investigated. RESULTS PRE alleviated lipid accumulation and insulin resistance in HFD mice and remodeled the fecal microbiome. It also increased the gene expression of colonic tight junction proteins, alleviated metabolic endotoxemia and inflammation, so that reduced TNF-α induced hepatic JNK-dependent IRS-1 serine phosphorylation and the impairment of PI3K/PIP3/Akt insulin signaling pathway. A. muciniphila was one of the most significantly enriched microbes by PRE treatment, and its administration to HFD mice showed similar effects to PRE, repairing the gut barrier and activating hepatic PI3K/PIP3/Akt pathway. Finally, anti-MetS effect of PRE could be delivered to FMT recipients, and PRE could not further attenuate MetS in gut microbiota depleted mice. CONCLUSION We demonstrated for the first time that PRE alleviated MetS in a gut microbiota dependent manner, and found activation of hepatic insulin signaling mediated by gut A. muciniphila was a potential mechanism of it.
Collapse
Affiliation(s)
- Zichen Luo
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianjie Yuan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianzi Jin
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chong
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianjian Ji
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Lin
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianya Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- UC Davis Genome Center, NIH West Coast Metabolomics Center, Davis, CA, 95616, United States
| | - An Kang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
35
|
Li J, Yu H, Liu M, Chen B, Dong N, Chang X, Wang J, Xing S, Peng H, Zha L, Gui S. Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2022; 17:2089473. [PMID: 35730590 PMCID: PMC9225661 DOI: 10.1080/15592324.2022.2089473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesState Key Laboratory of Dao-Di, Beijing, Hebei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of traditional Chinese medicine resources, Anhui University of Chinese Medicine, Hefei, Anhui, China
- CONTACT Liangping Zha College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, Anhui, China
- Shuangying Gui College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, Chinai
| |
Collapse
|
36
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
37
|
Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154422. [PMID: 36087526 DOI: 10.1016/j.phymed.2022.154422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1β, and activation of the AMPK pathway. CONCLUSION This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
38
|
Yau LF, Huang H, Tong TT, Bai LB, Zhu GY, Hou Y, Bai G, Jiang ZH. Characterization of deglycosylated metabolites of platycosides reveals their biotransformation after oral administration. Food Chem 2022; 393:133383. [DOI: 10.1016/j.foodchem.2022.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
|
39
|
Zhang J, Li Y, Li Y, Li Y, Gong X, Zhou L, Xu J, Guo Y. Structure, selenization modification, and antitumor activity of a glucomannan from Platycodon grandiflorum. Int J Biol Macromol 2022; 220:1345-1355. [PMID: 36087750 DOI: 10.1016/j.ijbiomac.2022.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
Platycodon grandiflorum is consumed popularly as a nutritional and healthy plant in East Asia, which has multiple medicinal functions. As an exploration to elucidate the beneficial ingredients, an acetylated glucomannan (PGP40-1) was purified from P. grandiflorum. Structural analysis showed that PGP40-1 was composed of →4)-β-Manp-(1→, →4)-β-Glcp-(1→, →6)-β-Glcp-(1→, and terminal α-Glcp-(1→. PGP40-1 was found to possess weak antitumor activity in vitro, which was thus modified to afford a selenized polysaccharide (Se-PGP40-1) by the HNO3/Na2SeO3 method. Se-PGP40-1 showed significant antitumor activity in cell and zebrafish models, which could inhibit tumor proliferation and migration by inducing cell apoptosis and blocking angiogenesis. The research not only clarifies the ingredients of P. grandiflorum with high economical value, but also affords a potential antitumor agent originating from the plant polysaccharide.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuejun Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
40
|
Chang A, Pei WH, Li SY, Wang TM, Song HP, Kang TG, Zhang H. Integrated metabolomic and transcriptomic analysis reveals variation in the metabolites and genes of Platycodon grandiflorus roots from different regions. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:982-994. [PMID: 35726458 DOI: 10.1002/pca.3153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Platycodon grandiflorum root (PG), a popular traditional Chinese medicine, contains considerable chemical components with broad pharmacological activities. The complexity and diversity of the chemical components of PG from different origins contribute to its broad biological activities. The quality of southern PG is superior to that of northern PG, but the mechanisms underlying these differences remain unclear. OBJECTIVES In order to study variation in the differentially accumulated metabolites (DAMs), differentially expressed genes (DEGs), as well as their interactions and signalling pathways among PG from Anhui and Liaoning. METHODS The metabolomes based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the transcriptome based on high-throughput sequencing technology were combined to comprehensively analyse PGn and PGb. RESULTS A total of 6515 DEGs and 83 DAMs from the comparison of PG from Anhui and Liaoning were detected. Integrated analysis of metabolomic and transcriptomic data revealed that 215 DEGs and 57 DAMs were significantly enriched in 48 pathways according to KEGG pathway enrichment analysis, and 15 DEGs and 10 DAMs significantly enriched in the main pathway sesquiterpenoid and triterpenoid and phenylpropanoid biosynthesis might play a key role in complex response or regulatory processes. CONCLUSION Differences in PG from southern and northern China might thus stem from differences in environmental factors, such as precipitation, light duration, and humidity. The results of our study provide new insight into geographic variation in gene expression and metabolite accumulation and will enhance the utilisation of PG resources.
Collapse
Affiliation(s)
- An Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Drug Administration, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wen-Han Pei
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Si-Yu Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tian-Min Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui-Peng Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ting-Guo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
41
|
Lei J, Zhao J, Long MYC, Cao XW, Wang FJ. In addition to its endosomal escape effect, platycodin D also synergizes with ribosomal inactivation protein to induce apoptosis in hepatoma cells through AKT and MAPK signaling pathways. Chem Biol Interact 2022; 364:110058. [PMID: 35872048 DOI: 10.1016/j.cbi.2022.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Efficient endosomal escape after cellular uptake is a major challenge for the clinical application of therapeutic proteins. To overcome this obstacle, several strategies have been used to help protein drugs escape from endosomes without affecting the integrity of the cell membrane. Among them, some triterpenoid saponins with special structures were used to greatly enhance the anti-tumor therapeutic effect of protein toxins. Herein, we demonstrated that platycodin D (PD), polygalacin D (PGD) and platycodin D2 (PD2) from Platycodonis Radix significantly enhanced the ability of MHBP (a type I ribosome-inactivating protein toxin MAP30 fused with a cell-penetrating peptide HBP) to induce apoptosis in hepatoma cells. Based on the results of co-localization of endocytosed EGFP-HBP with a lysosomal probe and Galectin-9 vesicle membrane damage sensor, we demonstrated that PD, PGD and PD2 have the ability to promote endosomal escape of endocytic proteins without affecting the integrity of the plasma membrane. Meanwhile, we observed that cholesterol metabolism plays an important role in the activity of PD by RNA-seq analysis and KEGG pathway enrichment analysis, and confirm that PD, PGD and PD2 enhance the anti-tumor activity of MHBP by inducing the redistribution of free cholesterol and inhibiting the activity of cathepsin B and cathepsin D. Finally, we found that PD synergized with MHBP to induce caspase-dependent apoptosis through inhibiting Akt and ERK1/2 signaling pathways and activating JNK and p38 MAPK signaling pathways. This study provides new insights into the application of PD in cancer therapy and provides efficient and promising strategies for the cytosolic delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jin Lei
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng-Yi-Chen Long
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
42
|
Zhang LL, Sheng F, He Y, Yang Y, Hu YF, Li W, Li P, Wu MY, Gong Y, Zhang Y, Zou L. Buxue Yimu Pills improve angiogenesis and blood flow in experimental zebrafish and rat models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115002. [PMID: 35065249 DOI: 10.1016/j.jep.2022.115002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buxue Yimu Pills (BYP) is a well-known traditional Chinese medicine prescription which is clinical used in gynecology and obstetrics, and is documented to exhibit therapeutic potential to defective angiogenesis and impaired blood flow. AIM OF THE STUDY This study aimed to investigate the effects and biological mechanisms of BYP in improvement of defective angiogenesis and impaired blood flow which represent major health issues associated with various diseases including postpartum or abortion complications. MATERIALS AND METHODS In this study, VEGFR tyrosine kinase inhibitor II (VRI) was used to establish blood vessel loss model in Tg(fli-1a:EGFP) zebrafish embryos. Blood vessel loss was calculated, and quantitative real-time PCR (qRT-PCR) assay was performed to detect gene expression. Mifepristone and misoprostol were applied to construct a medical-induced incomplete abortion rats model. Whole blood viscosity indexes, hemorheology and coagulation function of the rats were investigated. Immunohistochemistry analysis was used for evaluation of the uterine tissues. RESULTS BYP treatment significantly promoted angiogenesis as evidenced by the restoration of VRI-induced blood vessel loss in zebrafish embryos. BYP treatment effectively reversed VRI-induced down-regulation of the VEGFRs (Kdr, Kdrl and Flt1). Furthermore, BYP administration significantly suppressed the increase of whole blood viscosity indexes, and remarkably shortened the levels of prothrombin time and activated partial thromboplastin time in the medical-induced incomplete abortion rats, indicating the improvement of hemorheology and coagulation function. Immunohistochemistry analysis suggested that BYP administration increased the expression level of VEGFR2 in uterus tissues of the rats. CONCLUSION BYP exhibits therapeutic effects in promoting angiogenesis and blood circulation, and mitigating blood stasis, supporting its clinical application for postpartum or abortion complications.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yong Yang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| |
Collapse
|
43
|
Gu Y, Wei L, Liu Y, Luo Y, Tan T. Rapid identification of chemical constituents in Yinqiao Powder using ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with data filtering strategy. Biomed Chromatogr 2022; 36:e5392. [PMID: 35491476 DOI: 10.1002/bmc.5392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
Yinqiao Powder is a classic and effective prescription for the treatment of many kinds of pneumonia in China. To date, the chemical constituents had not been uncovered. Comprehensive identification of chemical constituents provided a structure basis to discover the potential anti-pneumonia ingredients in Yinqiao Powder. In this paper, ultra-high performance liquid chromatography coupled to quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) analysis with diagnostic product ions and neutral loss filtering strategy were established and applied for the comprehensive chemical profiling of Yinqiao Powder, which simplified structure elucidation of chemical constituents in Yinqiao Powder. A total of 124 compounds, including 8 C6-C2 glucoside conjugates, 28 iridoid glycosides, 14 lignans, 21 phenylethanol glycosides, 20 triterpenoid saponins, 9 chlorogenic acids and 24 flavonoids were rapidly identified in Yinqiao Powder, and 32 of them were characterized by comparing their MS/MS data and retention time with reference standards. The results indicated that UHPLC-QTOF-MS/MS method coupled with data filtering strategy was feasible and rational to identify the complex chemical constituents of Yinqiao Powder, which would be conducive to discover the active ingredients of Yinqiao Powder for the treatment of pneumonia and establish its quality standard.
Collapse
Affiliation(s)
- Yongzhe Gu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lele Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yue Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang, China
| |
Collapse
|
44
|
Platycodin D Alleviates High-Glucose-Aggravated Inflammatory Responses in Oral Mucosal Cells by PI3K/mTOR Pathway. COATINGS 2022. [DOI: 10.3390/coatings12040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Oral mucosal diseases account for an increasing proportion of hμMan diseases. Among the many common risk factors that cause oral diseases and systemic diseases, dietary factors, especially high sugar, are particularly prominent. Exhibiting therapeutic potential in treating certain inflammation-related diseases, platycodin D (PD) has been known to possess anti-inflammatory benefits in cases of cytokine-induced inflammation, a fact that has been widely docμMented. However, there are few studies about PD in the oral mucosal disease. Investigating the effect of PD on high-glucose (HG)-induced inflammatory responses in oral mucosal cells was the endeavor of this study. The results revealed that HG induced cell mortality, promoted activity of inflammatory factor (TNF-α, IL-1β, IL-6, and IL-8), and increased ROS production in oral mucosal cells. Interestingly, PD obviously alleviated HG-induced oral mucosal cells inflammatory response. Simultaneously, the expressions of PI3K and mTOR were inhibited by PD. In addition, the activation of PI3K and mTOR decreased the protective effect of PD on oral mucosal cells. To conclude, the PI3K/mTOR signaling pathway was found to be inactivated, thereby restraining the activation of the full immune cell by inhibition of the pro-inflammatory cytokines, as revealed by the results indicating the prevention of the HG-induced inflammation response by PD.
Collapse
|
45
|
Chan KW, Chow TY, Yu KY, Feng Y, Lao L, Bian Z, Wong VT, Tang SCW. Effectiveness of Integrative Chinese-Western Medicine for Chronic Kidney Disease and Diabetes: A Retrospective Cohort Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:371-388. [PMID: 35168474 DOI: 10.1142/s0192415x2250015x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes and chronic kidney disease (CKD) are pandemic, requiring more therapeutic options. This retrospective cohort evaluated the effectiveness, safety profile and prescription pattern of a pilot integrative medicine service program in Hong Kong. Data from 38 patients with diabetes and CKD enrolled to receive 48-week individualized add-on Chinese medicine (CM) were retrieved from the electronically linked hospital database. A 1:1 cohort was generated with patients from the same source and matched by propensity score. The primary outcomes are the change of estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR) analyzed by analysis of covariance and mixed regression model adjusted for baseline eGFR, age, gender, duration of diabetes history, history of hypertension, diabetic retinopathy, and the use of insulin and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker. The rate of adverse events and the change of key biochemical parameters were analyzed. After a median of 51 weeks, patients who received add-on CM had stabilized eGFR (difference in treatment period: 0.74 ml/min/1.73m2, 95% CI: -1.01 to 2.50) and UACR (proportional difference in treatment period: 0.95, 95% CI: 0.67 to 1.34). Add-on CM was associated with significantly preserved eGFR (Inter-group difference: 3.19 ml/min/1.73m2, 95%CI: 0.32 to 6.06, [Formula: see text] 0.030) compared to standard care. The intergroup ratio of UACR was comparable (0.70, 95% CI: 0.45 to 1.08, [Formula: see text] 0.104). The result is robust in sensitivity analysis with different statistical methods, and there was no interaction with CKD stage and UACR. The rate of serious adverse events (8.1% vs. 18.9%, [Formula: see text] 0.174), moderate to severe hyperkalemia (8.1% vs. 2.7%, [Formula: see text] 0.304) and hypoglycemia (13.5% vs. 5.4%, [Formula: see text] 0.223), and the levels of key biochemical parameters were comparable between groups. The top seven most used CMs contained two classical formulations, namely Liu-wei-di-huang-wan and Si-jun-zi-tang. Individualized add-on CM was associated with significant kidney function preservation and was well tolerated. Further randomized controlled trials using CM prescriptions based on Liu-wei-di-huang-wan and Si-jun-zi-tang are warranted.
Collapse
Affiliation(s)
- Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tak Yee Chow
- Hong Kong Association for Integration of Chinese-Western Medicine, Hong Kong SAR, P. R. China
| | - Kam Yan Yu
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China.,Virginia University of Integrative Medicine, Fairfax, Virginia, USA
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Vivian Taam Wong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China.,Hong Kong Association for Integration of Chinese-Western Medicine, Hong Kong SAR, P. R. China
| | - Sydney Chi-Wai Tang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
46
|
Li Q, Yang T, Zhao S, Zheng Q, Li Y, Zhang Z, Sun X, Liu Y, Zhang Y, Xie J. Distribution, biotransformation, pharmacological effects, metabolic mechanism and safety evaluation of Platycodin D:A comprehensive review. Curr Drug Metab 2022; 23:21-29. [PMID: 35114917 DOI: 10.2174/1389200223666220202090137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Platycodonis Radix (Jiegeng), the dried root of Platycodon grandiflorum, is a traditional herb used as both medicine and food. Its clinical application for the treatment of cough, phlegm, sore throat, pulmonary and respiratory diseases has been thousands of years in China. Platycodin D is the main active ingredient in Platycodonis Radix, which belongs to the family of pentacyclic triterpenoid saponins because it contains an oleanolane type aglycone linked with double sugar chains. Modern pharmacology has demonstrated that Platycodin D displays various biological activities, such as analgesics, expectoration and cough suppression, promoting weight loss, anti-tumor and immune regulation, suggesting that Platycodin D has the potential to be a drug candidate and an interesting target as a natural product for clinical research. In this review, the distribution and biotransformation, pharmacological effects, metabolic mechanism and safety evaluation of Platycodin D are summarized to lay the foundation for further studies.
Collapse
Affiliation(s)
- Qianqian Li
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Shuang Zhao
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Qifeng Zheng
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, 44115, USA
| | - Zhiyuan Zhang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Xiuyan Sun
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yan Liu
- Department of Pharmacy, Weifang People\'s Hospital, Weifang, 261041, People's Republic of China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| |
Collapse
|
47
|
Active microbial metabolites study on antitussive and expectorant effects and metabolic mechanisms of platycosides fraction of Platycodonis Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123171. [DOI: 10.1016/j.jchromb.2022.123171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
|
48
|
Huang W, Lan L, Zhou H, Yuan J, Shui Miao, Mao X, Hu Q, Ji S. Comprehensive profiling of Platycodonis radix in different growing regions using liquid chromatography coupled with mass spectrometry: from metabolome and lipidome aspects. RSC Adv 2022; 12:3897-3908. [PMID: 35425426 PMCID: PMC8981106 DOI: 10.1039/d1ra08285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. is widely cultivated across the south and north of China. Its root, Platycodonis radix, is commonly used as a vegetable, functional food, and traditional herbal medicine with various biological benefits. It is critical to fully clarify the chemical composition of Platycodonis radix for the sake of the food industry and traditional herb markets. In this study, a strategy of metabolome and lipidome profiling based on ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS) was developed to reveal the overall chemical composition of Platycodonis radix. IN particular, comprehensive lipidome profiling was first performed for Platycodonis radix, in which 170 lipid molecular species including 55.9% glycerophospholipids, 31.2% glycerolipids, and 12.9% sphingolipids were identified. Platycodonis radix from two major production regions in China, Inner Mongolia and Anhui province, were collected and analyzed by the MS based approach combined with multivariate statistical analysis from both the metabolome and lipidome aspects. This study threw focus on the profiling investigations of Platycodonis radix from different growing regions and provided new potential in the lipidome analysis of medicinal food.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University Shanghai 201203 PR China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| |
Collapse
|
49
|
Prasad HSN, Ananda A, Lohith T, Prabhuprasad P, Jayanth H, Krishnamurthy N, Sridhar M, Mallesha L, Mallu P. Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|