1
|
Xie F, Qin Z, Luo Y, He Z, Chen Q, Cai J. Synergistically engineered starch-based composite films: Multifunctional platforms integrating quaternary ammonium chitosan and anthocyanins for intelligent food monitoring and sustainable packaging. Food Chem 2025; 478:143560. [PMID: 40049123 DOI: 10.1016/j.foodchem.2025.143560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 04/06/2025]
Abstract
This study introduces a starch-based composite film integrated with quaternary ammonium chitosan (QCS) and Lycium ruthenicum anthocyanins (LRA) via a facile casting method, designed for intelligent food packaging. The influences of varying concentrations of QCS and/or LRA on water sensitivity, mechanical attributes, UV transmittance, antioxidant capacity, antibacterial performance, and pH-responsive characteristics were meticulously examined. The optimized film demonstrated a tensile strength of ∼0.68 MPa, a contact angle of ∼123.69°, and ABTS radical scavenging efficiency exceeding 80 %. The film exhibited pH-responsive color changes from pink to green across a pH range of 2-12, alongside excellent UV-blocking and antibacterial properties. Shrimp preservation experiments revealed a 16-h shelf-life extension, coupled with real-time freshness monitoring. These findings put forward an exceedingly promising approach to the promotion of starch-based films boasting diverse functionalities in the realm of intelligent food packaging, signifying a stride in this domain.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiqin Qin
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yajie Luo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qianqian Chen
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
2
|
Wang H, Li C, Li Y, Gao J, Leng X, Huang D. Preparation, physicochemical characterization and functional properties of selenium nanoparticles stabilized by polysaccharides from the seeds of Plantago asiatica L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3582-3592. [PMID: 39956988 DOI: 10.1002/jsfa.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Selenium nanoparticles (SeNPs), comprising a novel selenium element with higher bioactivity, easily aggregate into large black monomeric selenium particles. In the present study, polysaccharides from the seeds of Plantago asiatica L. (PLP) was used as a template and morphology/particle size modifier to synthesize selenium nanoparticles. The preparation process of SeNPs stabilized by PLP was optimized, and its antioxidant and immunological activities were investigated. RESULTS The optimal preparation conditions of PLP-SeNPs were a reaction temperature of 60°C, a reaction time of 1.5 h, a PLP concentration of 0.04 mg · mL-1 and a Na2SeO3/Vc molar ratio of 1:5. Stable spherical PLP-SeNPs with a particle size of 78.39 ± 2.15 nm were prepared through this process. The PLP-SeNPs complex at a concentration of 32 μg · mL-1 demonstrated scavenging activities against 1,1-diphenyl-2-picrylhydrazyl radicals, hydroxyl radicals and 2,2'-azinobis-(3-ethyl-benzothiazolin-6-sulfonic acid) diammonium salt radicals of up to 49.49 ± 2.58%, 60.99 ± 2.49% and 42.07 ± 1.76%, respectively. The PLP-SeNPs complex significantly increased the activation of RAW264.7 cells through improving phagocytosis, reactive oxygen species levels, and the secretion of tumor necrosis factor-α and interleukin-10. CONCLUSION The present study lays a theoretical foundation for the development of food-borne SeNPs and the exploration of their application in functional foods, which will help to promote the high-value utilization of P. asiatica L., and also has an important guiding significance for the healthy development of selenium-enriched functional food industry. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
4
|
Jia X, He K, Cai L, Liu Y, Li H, Dong X, He M, Zhang L, Le G, Wang S, Chen J. Coaxially fabricated electrospinning near-infrared light-responsive nanofibrous membranes for combating drug-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138106. [PMID: 40199072 DOI: 10.1016/j.jhazmat.2025.138106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Nowadays, the rapid emergence of drug-resistant bacteria has posed a global threat to the public health, leading to increased cost of environmental hygiene and healthcare treatment, which urges the development of safe and efficient antibacterial strategies. Here, coaxially fabricated electrospun nanofibrous membrane (ENMs) consisted of quercetin (Qu) stabilized selenium nanoparticles (Qu@SeNPs) and electro-synthesized molybdenum disulfide (MoS2) nanosheets were facilely formed as core/shell structure with polyvinyl alcohol (PVA) and α-Lipoic acid (LA) as cross-linker. The obtained ENMs formed by core-shell PVA/MoS2/LA/Qu@SeNPs (PMLQS) showed good air permeability and near-infrared-light photothermal responsiveness to kill bacteria efficiently. Moreover, the obtained ENMs resembling extracellular matrix-like properties showed superior biocompatibility with negligible development toxicity of zebrafish. The antibacterial experiments indicated that the produced PMLQS fibrous membrane exhibited more pronounced bactericidal activity against Gram-positive (G+) Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) as compared to that of Gram-negative (G-) Escherichia coli (E. coli). Furthermore, transcriptomic analysis revealed MRSA inactivation by PMLQS ENMs involved disruption of ion transport, antioxidant system, carbohydrate metabolism and energy metabolism. Notably, the MRSA ADI pathway was also blocked supporting the minimized antibiotic resistance development. Therefore, the constructed near-infrared light-responsive PMLQS nanofibrous membrane held promise in tackling drug-resistant bacteria with enormous environmental and biomedical utilizations.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kaiting He
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Dong
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Min He
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shoulin Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Dai W, Song X, Wang R, He W, Yin J, Nie S. Mechanism exploration of intestinal mucus penetration of nano-Se: regulated by polysaccharides with different functional groups and molecular weights. J Control Release 2025; 379:524-536. [PMID: 39809422 DOI: 10.1016/j.jconrel.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery. The mucus penetration of SeNPs is highly associated with interactions between SeNPs and mucin (the structural component of mucus). In this study, we selected four polysaccharides with different functional groups and molecular weights, i.e. chitosan oligosaccharide (COS), chitosan (CS), chitosan quaternary ammonium salt (HACC), and carboxymethyl cellulose (CMC) as templates to modify SeNPs. Then we systematically explored the non-covalent interactions between polysaccharides stabilized nano-Se (PS-SeNPs) and mucin, determined and examined mucus penetration behavior and mechanism of different PS-SeNPs by coarse-grained molecular dynamics simulations, both in vitro and in vivo. It could be observed that penetration of PS-SeNPs depends on their distinct surface properties and mucus pH conditions. COS-SeNPs with short oligosaccharide chains accumulated and bridged with mucin, hindering its mucus penetration at pH 7.4. While HACC-SeNPs with NH3+ and N+ exhibited high binding affinity with mucin, inducing its mucus penetration. The negatively charged CMC-SeNPs diffused freely in mucus due to their electrostatic-repelled interaction and hydrophobic interaction with mucin. This study establishes a theoretical foundation for precise application of SeNPs in oral administration and offers valuable insights into the precise utilization of polysaccharides as tailored carriers of nanoparticles in mucus-covered tissues.
Collapse
Affiliation(s)
- Wanting Dai
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Rui Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Tao L, Guan C, Wang Z, Wang Y, Gesang Q, Sheng J, Dai J, Tian Y. Selenium Nanoparticles Derived from Moringa oleifera Lam. Polysaccharides: Construction, Stability, and In Vitro Antioxidant Activity. Foods 2025; 14:918. [PMID: 40231952 PMCID: PMC11941128 DOI: 10.3390/foods14060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Selenium nanoparticles (SeNPs) have drawn considerable attention to biomedicine, the food industry, and cosmetics due to their strong antioxidant potential and low toxicity. However, their poor stability limits broader applications. A promising strategy to overcome this limitation involves combining SeNPs with polysaccharides. In this study, selenium nanoparticles (MOLP-SeNPs) were synthesized using Moringa oleifera Lam. polysaccharide (MOLP) as a stabilizer and dispersant within a redox system comprising sodium selenite and ascorbic acid. The structural characteristics of the synthesized MOLP-SeNPs were analyzed using spectroscopy. Additionally, their thermal and storage stability was evaluated, and their antioxidant activity was explored through simulated digestion in vitro and a HepG2 cell oxidative stress model. The results demonstrated that well-dispersed, zero-valent MOLP-SeNPs showing a mean particle size of 166.58 nm were synthesized successfully through an MOLP-to-sodium selenite ratio of 2.8:3 at pH 7.3 and 35 °C. The MOLP-SeNPs exhibited excellent stability during preparation. In simulated in vitro digestion and H2O2-induced oxidative stress experiments on HepG2 cells, MOLP-SeNPs displayed strong free radical scavenging capacity while improving antioxidant activity. Cellular experiments deeply revealed that pretreatment with MOLP-SeNPs significantly improved cell viability and provided a pronounced protective effect against oxidative damage. In conclusion, MOLP-SeNPs represent a novel antioxidant with promising applications in food and biomedicine.
Collapse
Affiliation(s)
- Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chunhua Guan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Quzheng Gesang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.T.); (C.G.); (Z.W.); (Y.W.); (Q.G.); (J.S.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Institute of Technology, Pu’er University, Pu’er 665000, China
| |
Collapse
|
7
|
Guo K, Yang X, Wang J, Chang W, Liu S, Zhang S, Zhang T, Yan H, Yan Y, Wang J, Chen X, Yu C, Wang G, Zhao P. Synthesis and Bioactivity of Selenium Nanoparticles From Tussilago farfara L. Polysaccharides: Antioxidant Properties and MCF-7 Cell Inhibition. Chem Biodivers 2025:e202402677. [PMID: 39912214 DOI: 10.1002/cbdv.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The present study reports the synthesis of selenium nanocomplexes (Se-TFPs) using purified polysaccharides from Tussilago farfara L. (coltsfoot). It evaluates its structural characteristics, physicochemical properties, and inhibitory effects of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. The influence of processing conditions on nanoparticle size and stability at 25°C was assessed using particle size and zeta potential measurements. The Se-TFPs were synthesized by optimizing the processing conditions via response surface methodology, yielding nanoparticles with a selenium (Se)-to-polysaccharide mass ratio of 1:13.5, a Se-to-ascorbic acid molar ratio of 1:4.5, a selenite concentration of 10.7 mM, and a reaction time of 4.4 h. The resulting Se-TFPs had an average particle size of 107.2 nm and a zeta potential of -35.1 mV. Structural and physicochemical analyses confirmed successful nanoparticle formation. Compared to TFPs, Se-TFPs exhibited significantly enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radicals, and superoxide anion radicals. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, flow cytometry, and cell cycle apoptosis analysis revealed that Se-TFPs effectively inhibited MCF-7 cell proliferation at the S phase, with an IC50 value of 119.62 µg/mL.
Collapse
Affiliation(s)
- Ke Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xinxin Yang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jin Wang
- Shaanxi Province Institute of Product Quality Supervision and Inspection, Xi'an, China
| | - Wei Chang
- Shaanxi Province Institute of Product Quality Supervision and Inspection, Xi'an, China
| | - Simei Liu
- Shaanxi Kangruian Group Pharmaceutical Co. Ltd, Xi'an, Shaanxi, China
| | - Siqi Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Tingting Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Hao Yan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yafeng Yan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jie Wang
- Shaanxi Kangruian Group Pharmaceutical Co. Ltd, Xi'an, Shaanxi, China
| | - Xiping Chen
- Shaanxi Kangruian Group Pharmaceutical Co. Ltd, Xi'an, Shaanxi, China
| | - Churong Yu
- College of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Guoquan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Peng Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
8
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2025; 14:e2401523. [PMID: 39205539 PMCID: PMC11834378 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ana I. Matos
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jacopo Chiaro
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Carmine D'Amico
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Risto Koivula
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Maria Manuela Gaspar
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Helena F. Florindo
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
9
|
Ahmed NA, Abdelrazek EM, Salaheldin H. Optimization of the physiochemical synthesis parameters of the Se/CMC nanocomposite: Antibacterial, antioxidant, and anticancer activity. Int J Biol Macromol 2024; 283:137765. [PMID: 39557256 DOI: 10.1016/j.ijbiomac.2024.137765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium nanoparticles (Se NPs) have gained growing significance due to their remarkable therapeutic qualities, decreased toxicity, enhanced bioavailability, and biocompatibility compared to other selenium compounds. Se NPs were synthesized using ascorbic acid (AA) and carboxymethyl cellulose (CMC) as reducing and capping agents, respectively. This was carried out by optimizing the physiochemical preparation parameters (e.g., precursor salt concentration, AA concentration, temperature, and pH). Characterization of the optimized Se/CMC nanocomposite sample was conducted using several techniques including UV-Vis spectroscopy, FT-IR, X-ray XRD, TEM, SEM, EDX, DLS, and Zeta potential. The UV-Vis spectra results indicate that the synthesized Se/CMC nanocomposite exhibits a most prominent surface plasmon resonance (SPR) peak at λmax = 270 nm. The diameter of the synthesized Se/CMC nanocomposite varied between 100 and 500 nm as observed in TEM images, and as verified by the DLS technique. Moreover, the Z-potential evaluated for the Se/CMC nanocomposite using the most optimal synthesis conditions was -21.8 ± 4.48 mV. The results obtained showed that Se/CMC nanocomposite had a more significant impact on Gram-negative clinical bacterial isolates (23 ± 0.97 mm) than Gram-positive (22 ± 0.95 mm). Additionally, the synthesized nanocomposite showed a highly antioxidant activity (83 %) of inhibition DPPH free radicals results using DPPH assay. Also, the fabricated Se/CMC nanocomposite has good anticancer activity (168 μg/mL) against the liver HepG2 cell line using MTT assay. Hence, the Se/CMC nanocomposite that was prepared has promising prospects in the field of healthcare owing to its enhanced capacity as an antioxidant, anticancer, and antibacterial agent.
Collapse
Affiliation(s)
- Naglaa A Ahmed
- Biophysics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - E M Abdelrazek
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Hosam Salaheldin
- Biophysics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
10
|
Chu W, Liu P, Zhang Z, Wu D, Li W, Chen W, Li Z, Wang W, Yang Y. Preparation, characterization and cytotoxic activity of selenium nanoparticles stabilized with a heteropolysaccharide isolated from Sanghuangporus vaninii residue. Carbohydr Polym 2024; 343:122468. [PMID: 39174129 DOI: 10.1016/j.carbpol.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/24/2024]
Abstract
Selenium nanoparticles (SeNPs) possess unique features with excellent bioavailability and bioactivity, but the poor stability limits its application. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitation. Herein, a heteropolysaccharide (SVL-3) with an average molecular weight of 2.428 × 104 Da was purified from the fruiting body residue of Sanghuangporus vaninii after soaking in sorghum wine, which was composed of fucose, galactose, glucose, fructose and 3-O-methyl-galactose. The main chain of SVL-3 was composed of →6)-α-3-MeO-Galp-(1→, →4)-α-D-Galp-(1→, →2,6)-β-D-Glcp-(1 → and →3)-α-D-Glcp-(1→, and the branched chain was composed of →4)-α-D-Xylp-(1 → and α-L-Fucp-(1→. For enhancing bioactivity of SVL-3 and stability of SeNPs, SVL-3-functionalized SeNPs (SVL-3-SeNPs) was prepared, which contained 45.31 % polysaccharide and 48.49 % selenium. SVL-3-SeNPs maintained an emphatic stability over 28 days at 4 °C and pH 6-8, and exhibited a higher cytotoxic effect on MCF-7 cells than SVL-3 and SeNPs. The inhibitory effect of SVL-3-SeNPs on the cancer cells may be associated with the mechanisms by inducing S-phase arrest, triggering apoptosis and elevating the protein levels of Cytochrome c, Caspases and cleaved caspases 3 and 9. These results indicated that SeNPs modified by S. vaninii polysaccharides can be utilized as a potential material for targeted antitumor drugs.
Collapse
Affiliation(s)
- Wenqi Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Institute of Biological products CO., LTD, Shanghai 200050, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
11
|
Layek B. A Comprehensive Review of Xanthan Gum-Based Oral Drug Delivery Systems. Int J Mol Sci 2024; 25:10143. [PMID: 39337626 PMCID: PMC11431853 DOI: 10.3390/ijms251810143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthan gum (XG) is an exopolysaccharide synthesized by the aerobic fermentation of simple sugars using Xanthomonas bacteria. It comprises a cellulosic backbone with a trisaccharide side chain connected to alternative glucose residues in the main backbone through α (1→3) linkage. XG dissolves readily in cold and hot water to produce a viscous solution that behaves like a pseudoplastic fluid. It shows excellent resistance to enzymatic degradation and great stability throughout a broad temperature, pH, or salt concentration range. Additionally, XG is nontoxic, biocompatible, and biodegradable, making it a suitable carrier for drug delivery. Furthermore, the carboxylic functions of pyruvate and glucuronic acid offer a considerable opportunity for chemical modification to meet the desired criteria for a specific application. Therefore, XG or its derivatives in conjunction with other polymers have frequently been studied as matrices for tablets, nanoparticles, microparticles, and hydrogels. This review primarily focuses on the applications of XG in various oral delivery systems over the past decade, including sustained-release formulations, gastroretentive dosage forms, and colon-targeted drug delivery. Source, production methods, and physicochemical properties relevant to drug delivery applications of XG have also been discussed.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
12
|
Salah M, Elkabbany NAS, Partila AM. Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species. Sci Rep 2024; 14:20523. [PMID: 39227447 PMCID: PMC11372082 DOI: 10.1038/s41598-024-69730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
A recent scientific investigation has shown promising results of selenium nanoparticles (SeNPs) for the anticancer and antimicrobial activities. This study aims to evaluate the effects of PVP SeNPs on bacterial strains, including Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). Also, its antitumor activity against the MRC-5 carcinoma cell line. SeNPs were prepared via gamma irradiation using PVP as a capping agent, and their size and morphological structure were determined using HRTEM. The size of the SeNPs ranged from 36 to 66.59 nm. UV-vis spectra confirmed the formation of SeNPs, while FTIR measurement confirmed a change in the PVP structure after adding selenium nanoparticles. The highest effect was reported on HepG2 by an IC50 with a value of 8.87 µg/ml, followed by HeLa, PC3, MCF-7, and Caco2 cell lines, respectively. Furthermore, ZOI reached 36.33 ± 3.05 mm. The best value of the minimum inhibitory concentration (MIC) was 0.313 µg/ml. Scanning electron microscope (SEM) imaging against bacteria showed deformations and distortions in their structures. Transmission electron (TEM) revealed ultrastructure changes in treated bacteria because of the free radicals that made cytotoxicity which confirmed by Electron spin resonance (ESR).
Collapse
Affiliation(s)
- M Salah
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Nesreen A S Elkabbany
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Abir M Partila
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt.
| |
Collapse
|
13
|
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection. Drug Resist Updat 2024; 76:101102. [PMID: 38936006 DOI: 10.1016/j.drup.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.
Collapse
Affiliation(s)
- Qingyue Bu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yangyang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yunqing Deng
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| | - Ligeng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Peng K, Yue L, Song X, Zhang Q, Wang Y, Cui X. Preparation, characterization and evaluation of microwave-assisted synthesized selenylation Codonopsis pilosula polysaccharides. Int J Biol Macromol 2024; 273:133228. [PMID: 38897504 DOI: 10.1016/j.ijbiomac.2024.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In this work, the selenylation Codonopsis pilosula polysaccharide (Se-CPPS) were synthesized using an optimized microwave-assisted method. Then, physicochemical properties, including molecular weight, particle size, valence state of selenium, antioxidant capacity, release mechanism of selenium under gastrointestinal conditions, as well as their effects on HT-29 cell viability were comprehensively investigated. The results demonstrated that Se-CPPS with the highest selenium content (21.71 mg/g) was synthesized using 0.8% nitric acid concentration under microwave conditions of 90 min at 70 °C. FTIR and XPS analysis revealed that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, with a valence state of either 0 or +4. In vitro investigations on antioxidant activity and selenium release capacity indicated that selenization not only enhanced the antioxidant activity of CPPS but also endowed Se-CPPS with robust selenium release capability in simulated gastric digestion. The effects of Se-CPPS on HT-29 cells was further investigated by CCK-8 method. The results showed that the selenide modification effectively reduced the toxicity of Na2SeO3 and enhanced the viability of CPPS. The findings of this study offer valuable methodological guidance for the synthesis of Se-polysaccharides with superior functional properties.
Collapse
Affiliation(s)
- Kaitao Peng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Linqing Yue
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - XiaoXiao Song
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
15
|
Li T, Liu L, Zhu K, Luo Y, Huang X, Dong Y, Huang J. Biomimetic MicroRNAs-Selenium-Nanocomposites for Targeted and Combined Hyperlipidemia Therapy. Adv Healthc Mater 2024; 13:e2400064. [PMID: 38457693 DOI: 10.1002/adhm.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Hyperlipidemia is considered as a high-risk factor for leading to coronary heart disease. MicroRNA-148a-3p (miR-148a-3p) inhibitor is a potential therapeutic target to bind low-density lipoprotein cholesterol receptors (LDLR) for decreasing the levels of low-density lipoprotein cholesterol in plasma. However, the therapeutic effects are not ideal in the clinical translation of nucleic acids treatment, owing to the short circulation time in vivo. Therefore, a platelet membrane (PM) cloaks Se nanoparticles (SeNPs) delivery system with chitosan (CS) modifies and miR-148a-3p inhibitors encapsulated is designed (PM/CS-SeNPs/miR). The PM/CS-SeNPs/miR shows a uniform shell-core structure with a particle size of ≈90 nm. Co-delivering miR-148a-3p inhibitors and Se effectively alleviate hyperlipidemia via LDLR pathway and Toll-Like Receptor 4 (TLR-4)/NF-κB signaling pathway, respectively. Furthermore, coated by PM, PM/CS-SeNPs/miR successfully prolong circulation time to 48 h in vivo and quickly target to liver with no toxicity. This dual combination therapy with miRNAs and Se based on nanoparticles targeted delivery presents a high-performance strategy for precise hyperlipidemia treatment.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yun Luo
- Nutrition Research Center, Shanghai Primerna Biotechnology Co., Ltd, Shanghai, 201600, China
| | - Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
16
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
17
|
Sentkowska A, Konarska J, Szmytke J, Grudniak A. Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs. Molecules 2024; 29:1686. [PMID: 38675506 PMCID: PMC11052002 DOI: 10.3390/molecules29081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Selenium is an essential trace element for the proper functioning of the human body. In recent years, great attention has been paid to selenium nanoparticles (SeNPs) due to their potential for medicinal applications. In this study, herbal extracts were used in the green synthesis of SeNPs. The influence of herbal species, the ratio of the reagents, and post-reaction heating on the antibacterial and antioxidant properties of obtained SeNPs were investigated. The relationship between these properties and the physical parameters of obtained nanoparticles (e.g., size, shape) was also studied. It has been proven that SeNPs showed higher antioxidant and antibacterial properties in comparison to herbal extracts taken for their synthesis. Heating of the post-reaction mixture did not affect the SeNP size, shape, or other studied properties.
Collapse
Affiliation(s)
| | - Julia Konarska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| | - Jakub Szmytke
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| | - Anna Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| |
Collapse
|
18
|
Shao Z, Jiang X, Lin Q, Wu S, Zhao S, Sun X, Cheng Y, Fang Y, Li P. Nano‑selenium functionalized chitosan gel beads for Hg(II) removal from apple juice. Int J Biol Macromol 2024; 261:129900. [PMID: 38316329 DOI: 10.1016/j.ijbiomac.2024.129900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano‑selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China; Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
| |
Collapse
|
19
|
Ge YM, Xue Y, Zhao XF, Liu JZ, Xing WC, Hu SW, Gao HM. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. Int J Biol Macromol 2024; 254:127971. [PMID: 37944720 DOI: 10.1016/j.ijbiomac.2023.127971] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Developing efficient and safe antibacterial agents to inhibit pathogens including Physalospora piricola and Staphylococcus aureus is of great importance. Herein, a novel compound composed of Rosa roxburghii procyanidin, chitosan and selenium nanoparticle (RC-SeNP) was bio-synthesized, with the average diameter and zeta potential being 84.56 nm and -25.60 mV, respectively. The inhibition diameter of the RC-SeNP against P. piricola and S. aureus reached 18.67 mm and 13.13 mm, and the maximum scavenging activity against DPPH and ABTS reached 96.02% and 98.92%, respectively. Moreover, the RC-SeNP completely inhibited the propagation P. piricola and S. aureus on actual apples, suggesting excellent in vivo antimicrobial capacity. The transcriptome analysis and electron microscope observation indicated that the antibacterial activity would be attributed to adhering to and crack the cell walls as well as damage the cytomembrane and nucleus. Moreover, the RC-SeNP effectively maintained the vitamin C, total acid, and water contents of red bayberry, demonstrating potential application for fruit preservation. At last, the RC-SeNP showed no cell toxicity and trace selenium residual dose (0.03 mg/kg on apple, 0.12 mg/kg on red bayberry). This study would enlighten future development on novel nano-bioantibacterial agents for sustainable agriculture.
Collapse
Affiliation(s)
- Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu Xue
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xue-Fang Zhao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Wan-Chuan Xing
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Shi-Wei Hu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hui-Min Gao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
20
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
21
|
Abadi B, Khazaeli P, Forootanfar H, Ranjbar M, Ahmadi-Zeidabadi M, Nokhodchi A, Ameri A, Adeli-Sardou M, Amirinejad M. Chitosan-sialic acid nanoparticles of selenium: Statistical optimization of production, characterization, and assessment of cytotoxic effects against two human glioblastoma cell lines. Int J Pharm 2023; 637:122884. [PMID: 36966981 DOI: 10.1016/j.ijpharm.2023.122884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
According to the favorable antitumor properties of selenium, this study aimed to design a novel form of selenium nanoparticles (Se NPs) functionalized with chitosan (Cs) and sialic acid to assess their antitumor effects on the human glioblastoma cell lines (T98 and A172). Se NPs were synthesized in the presence of chitosan and ascorbic acid (Vc) and the synthesis conditions were optimized using response surface methodology. Se NPs@Cs were obtained with a monoclinic structure with an average diameter of 23 nm under the optimum conditions (reaction time = 30 min, chitosan concentration = 1 % w/v, Vc/Se molar ratio = 5). To modify Se NP@Cs for glioblastoma treatment, sialic acid was used to cover the surface of the NPs. Sialic acid was successfully attached to the surface of Se NPs@Cs, and Se NPs@Cs-sialic acid were formed in the size range of 15-28 nm. Se NPs@Cs-sialic acid were stable for approximately 60 days at 4 ℃. The as-synthesized NPs exerted inhibitory effects on T98 greater than 3 T3 > A172 cells in a dose- and time-dependent manner. Additionally, sialic acid ameliorated the blood biocompatibility of Se NPs@Cs. Taken together, sialic acid improved both the stability and biological activity of Se NPs@Cs.
Collapse
Affiliation(s)
- Banafshe Abadi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, Coral Springs, FL, USA; Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Amirinejad
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Constructing Selenium Nanoparticles with Enhanced Storage Stability and Antioxidant Activities via Conformational Transition of Curdlan. Foods 2023; 12:foods12030563. [PMID: 36766092 PMCID: PMC9914686 DOI: 10.3390/foods12030563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are among the emerging selenium supplements because of their high bioactivity and low toxicity. However, bare SeNPs are prone to activity loss caused by aggregation and sedimentation. This study aims to stabilize SeNPs with curdlan (CUR), a polysaccharide, to maintain or even enhance their biological activity. Herein, the stable SeNPs were constructed via the unique conformational transition of CUR induced by alkali-neutralization (AN) pretreatment. The physicochemical properties and structures of the prepared SeNPs were characterized by dynamic light scattering (DLS), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and free-radical-scavenging activity assays. The results show that most SeNPs are stabilized within the triple helix of CUR that has been pretreated with high-intensity AN treatment. These amorphous, small-sized (average size was 53.6 ± 17.7 nm), and stabilized SeNPs have significantly enhanced free-radical-scavenging ability compared to the control and can be well-stabilized for at least 240 days at 4 °C. This work indicates that CUR, as a food additive, can be used to well-stabilize SeNPs by AN pretreatment and provides a facile method to prepare and enhance the stability and bioactivity of SeNPs via triple-helix conformational transition.
Collapse
|
23
|
Selenium Nanoparticles Synergistically Stabilized by Starch Microgel and EGCG: Synthesis, Characterization, and Bioactivity. Foods 2022; 12:foods12010013. [PMID: 36613229 PMCID: PMC9818717 DOI: 10.3390/foods12010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium (Se) is a chemical element essential to human health because of its bioactive properties, including antioxidative, anticancer, and immunomodulating activities. Despite the high therapeutic potential of Se, its intrinsic properties of poor stability, a narrow therapeutic window, and low bioavailability and bioactivity have limited its clinical applications. Selenium nanoparticles (SeNPs) exhibit lower toxicity and higher bioactivity than other Se forms. Herein, we report a green method for the preparation of monodisperse SeNPs with starch microgel (SM) and epigallocatechin gallate (EGCG) through Se-O bonds and polysaccharide-polyphenol interactions (namely, SM-EGCG-SeNPs). SM-EGCG-SeNPs showed higher stability, bioactivities, and cytotoxicity than SeNPs and SM-SeNPs at the equivalent dose. SM-EGCG-SeNPs induced the apoptosis of cancer cells via the activation of several caspases and reactive oxygen species overproduction. This work proposes a facile method for the design and potentiation of structure-bioactive SeNPs via polysaccharide-polyphenol interactions.
Collapse
|
24
|
Gao F, Liu H, Han H, Wang X, Qu L, Liu C, Tian X, Hou R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front Pharmacol 2022; 13:1058480. [PMID: 36438830 PMCID: PMC9682150 DOI: 10.3389/fphar.2022.1058480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
Berberidis radix polysaccharide (BRP) extracted as capping agents was applied to prepare BRP-selenium nanoparticles (BRP-SeNPs) in the redox reaction system of sodium selenite and ascorbic acid. The stability and characterization of BRP-SeNPs were investigated by physical analysis method. The results revealed that BRP were tightly wrapped on the surface of SeNPs by forming C-O⋯Se bonds or hydrogen bonding interaction (O-H⋯Se). BRP-SeNPs presented irregular, fragmented and smooth surface morphology and polycrystalline nanoring structure, and its particle size was 89.4 nm in the optimal preparation condition. The pharmacologic functions of BRP-SeNPs were explored in vitro and in vivo. The results showed that BRP-SeNPs could heighten the cell viabilities and the enzyme activity of GSH-Px and decrease the content of MDA on H2O2-induced AML-12 cells injury model. In vivo tests, the results displayed that BRP-SeNPs could increase the body weight of mice, promote the enzyme activity like SOD and GSH-Px, decrease the liver organ index and the hepatic function index such as ALT, AST, CYP2E1, reduce the content of MDA, and relieve the proinflammation factors of NO, IL-1β and TNF-α in CCl4-induced mice injury model. Liver tissue histopathological studies corroborated the improvement of BRP-SeNPs on liver of CCl4-induced mice. The results of Western blot showed that BRP-SeNPs could attenuate oxidant stress by the Nrf2/Keap1/MKP1/JNK pathways, and downregulate the proinflammatory factors by TLR4/MAPK pathway. These findings suggested that BRP-SeNPs possess the hepatoprotection and have the potential to be a green liver-protecting and auxiliary liver inflammation drugs.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huimin Liu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hao Han
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Huang Q, Lin W, Yang XQ, Su DX, He S, Nag A, Zeng QZ, Yuan Y. Development, characterization and in vitro bile salts binding capacity of selenium nanoparticles stabilized by soybean polypeptides. Food Chem 2022; 391:133286. [PMID: 35640344 DOI: 10.1016/j.foodchem.2022.133286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The paper presents the positive effect of soybean polypeptides (SP) on the stability and the potential hypolipidemic effect of selenium nanoparticles (SeNPs). After preparing SeNPs, SP with different molecular weight were introduced to stabilize SeNPs. We found that the SP with molecular weight >10 kDa (SP5) had the best stabilizing effect on SeNPs. We inferred that the steric resistance resulting from the long chains of SP5 protected SeNPs from collision-mediated aggregation, and the electrostatic repulsions between SP5 and SeNPs also played a positive role in stabilizing SeNPs. The as-prepared SP5-SeNPs were spherical, amorphous and zero valent. It was proved that SeNPs were bound with SP5 through O- and N- groups in SP5, and the main forces were hydrogen bonds and van der Waals forces. The bile salts binding assay showed that the SP5-SeNPs exhibited a high binding capacity to bile salts, which indicated their potential in hypolipidemic application.
Collapse
Affiliation(s)
- Qing Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Wei Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xin-Quan Yang
- Office of Science and Research, Guangzhou University, Guangzhou 510006, PR China
| | - Dong-Xiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden 01062, Germany
| | - Qing-Zhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Office of Science and Research, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
28
|
Yue L, Song X, Cui X, Zhang Q, Tian X, Yang X, Wu Q, Liu Y, Ruan R, Wang Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int J Biol Macromol 2022; 221:8-15. [PMID: 36075149 DOI: 10.1016/j.ijbiomac.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.
Collapse
Affiliation(s)
- Linqing Yue
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaojie Tian
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiuhua Yang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
29
|
Peng H, Shi S, Lu Z, Liu L, Peng S, Wei P, Yi T. HOCl-Activated Reactive Organic Selenium Delivery Platform for Alleviation of Inflammation. Bioconjug Chem 2022; 33:1602-1608. [PMID: 36018225 DOI: 10.1021/acs.bioconjchem.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium plays an important role in the biological system and can be used to treat various types of diseases. However, the current selenium delivery systems face the problems of low activity of released Se-containing compounds or nonspecific toxicity of reactive organic selenium donors in living systems. In response to these problems, we constructed a reactive organic selenium delivery platform by the activation of HOCl. Compared with prodrugs without activation capability, the hypochloroselenoite derivatives released from the present platform after activation displayed higher reactivity and could react with various nucleophiles to participate in specific life processes. Taking the selected compound (DHU-Se1) as an example, we found that it could alleviate the process of inflammation by blocking the polarization of macrophages from M0 to M1. Therefore, the development of this system is of great significance for expanding the application of selenium-containing compounds and treating related diseases.
Collapse
Affiliation(s)
- Hongying Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shi Shi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuxin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Gao X, Yao Y, Chen X, Lin X, Yang X, Ho CT, Li B, Chen Z. Lentinan-functionalized selenium nanoparticles induce apoptosis and cell cycle arrest in human colon carcinoma HCT-116 cells. Front Nutr 2022; 9:987807. [PMID: 36082027 PMCID: PMC9445625 DOI: 10.3389/fnut.2022.987807] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have gained extensive attention for their excellent biological activity and low toxicity. However, SeNPs are extremely liable to aggregate into non-bioactive or gray elemental selenium, which limits their application in the biomedicine field. This study aimed to prepare stable SeNPs by using lentinan (LNT) as a template and evaluate its anti-colon cancer activity. The average particle diameter of obtained lentinan-selenium nanoparticles (LNT-SeNPs) was approximately 59 nm and presented zero-valent, amorphous, and spherical structures. The monodisperse SeNPs were stabilized by LNT through hydrogen bonding interactions. LNT-SeNPs solution remained highly stable at 4°C for at least 8 weeks. The stability of LNT-SeNPs solution sharply decreased under high temperature and strong acidic conditions. LNT-SeNPs showed no obvious cytotoxic effect on normal cells (IEC-6) but significantly inhibited the proliferation of five colon cancer cells (HCT-116, HT-29, Caco-2, SW620, and CT26). Among them, LNT-SeNPs exhibited the highest sensitivity toward HCT-116 cells with an IC50 value of 7.65 μM. Also, LNT-SeNPs displayed better cancer cell selectivity than sodium selenite and selenomethionine. Moreover, LNT-SeNPs promoted apoptosis of HCT-116 cells through activating mitochondria-mediated apoptotic pathway. Meanwhile, LNT-SeNPs induced cell cycle arrest at G0/G1 phase in HCT-116 cells via modulation of cell cycle regulatory proteins. The results of this study indicated that LNT-SeNPs possessed strong potential application in the treatment of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Yanting Yao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xujie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaobing Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- *Correspondence: Bin Li,
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- Zhongzheng Chen,
| |
Collapse
|
31
|
Cao X, Xiong C, Zhao X, Yang S, Wen Q, Tang H, Zeng Q, Feng Y, Li J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int J Biol Macromol 2022; 210:600-613. [PMID: 35513095 DOI: 10.1016/j.ijbiomac.2022.04.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Delivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated. Moreover, a functional Pickering emulsion (PE) was presented using the SeNP-based surfactants. Results showed that high molecular weight-stabilized SeNPs had small particle size (54.72 nm) and great stability due to the hydrogen bonding between Se atoms and APSA. The "soft" particle-decorated SeNPs with interface activity formed a dense interfacial layer on the oil-water interface, which exhibited excellent antioxidant properties. The contents of lipid hydrogen peroxide (LH) and malondialdehyde (MDA) were significantly reduced by 88.7% and 63.4%. Overall, SeNPs stabilized by APSA have great application potential as an emulsifier and antioxidant in industrial field.
Collapse
Affiliation(s)
- Xinyu Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chuang Xiong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
32
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
33
|
Chen Y, Stoll S, Sun H, Liu X, Liu W, Leng X. Stability and surface properties of selenium nanoparticles coated with chitosan and sodium carboxymethyl cellulose. Carbohydr Polym 2022; 278:118859. [PMID: 34973724 DOI: 10.1016/j.carbpol.2021.118859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023]
Abstract
The effect of polysaccharide coatings on the stability and release characteristics of selenium nanoparticles (SeNPs) was evaluated by comparing the characteristics of chitosan-coated SeNPs (CS-SeNPs) and sodium carboxymethyl cellulose-coated SeNPs (CMC-SeNPs). The release characteristics of SeNPs were investigated in storage conditions, gastrointestinal conditions, and free radical systems. CMC-SeNPs formed dimers or trimers, whereas CS-SeNPs were monodispersed but formed large aggregates in a pH range of 7.4-8.25. Upon 50 days of storage at 30 °C, both CMC-SeNPs and CS-SeNPs were converted to Se4+. SeNPs exhibited a lower release rate in simulated gastrointestinal conditions than in free radical systems. SeNPs release in ABTS and superoxide anion free radical systems followed the first-order and Korsmeyer-Peppas models, respectively, indicating that SeNP release is mainly governed by dissolution mechanisms. Additional studies are needed to examine the potential environmental effects and biological activity of the Se4+ released from SeNPs.
Collapse
Affiliation(s)
- Yuying Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Serge Stoll
- Department F. A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Liu
- Department F. A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Carl-Vogt 66, CH-1211 Geneva, Switzerland.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
34
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. NANOSCALE 2021; 13:15445-15463. [PMID: 34505619 DOI: 10.1039/d1nr03830c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Bart Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| |
Collapse
|
35
|
Ferro C, Florindo HF, Santos HA. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv Healthc Mater 2021; 10:e2100598. [PMID: 34121366 DOI: 10.1002/adhm.202100598] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is an essential element to human health that can be obtained in nature through several sources. In the human body, it is incorporated into selenocysteine, an amino acid used to synthesize several selenoproteins, which have an active center usually dependent on the presence of Se. Although Se shows several beneficial properties in human health, it has also a narrow therapeutic window, and therefore the excessive intake of inorganic and organic Se-based compounds often leads to toxicity. Nanoparticles based on Se (SeNPs) are less toxic than inorganic and organic Se. They are both biocompatible and capable of effectively delivering combinations of payloads to specific cells following their functionalization with active targeting ligands. Herein, the main origin of Se intake, its role on the human body, and its primary biomedical applications are revised. Particular focus will be given to the main therapeutic targets that are explored for SeNPs in cancer therapies, discussing the different functionalization methodologies used to improve SeNPs stability, while enabling the extensive delivery of drug-loaded SeNP to tumor sites, thus avoiding off-target effects.
Collapse
Affiliation(s)
- Cláudio Ferro
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Helena F. Florindo
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
36
|
Liu Y, Huang W, Han W, Li C, Zhang Z, Hu B, Chen S, Cui P, Luo S, Tang Z, Wu W, Luo Q. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Liu G, Yang X, Zhang J, Liang L, Miao F, Ji T, Ye Z, Chu M, Ren J, Xu X. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int J Biol Macromol 2021; 179:418-428. [PMID: 33676981 DOI: 10.1016/j.ijbiomac.2021.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
Lycium barbarum polysaccharides (LBP) with different molecular weights (LBP1, LBP2 and LBP3) of 92,441 Da, 7714 Da, and 3188 Da were used as stabilizers and capping agents to prepare uniformly dispersed selenium nanoparticles (SeNPs), and determined the storage stability. In addition, the anti-fatigue activity of LBP-decorated SeNPs with the best stability (LBP1-SeNPs) was estimated by using forced swimming test. The results showed that LBP1-SeNPs exhibited smaller particle size and more excellent stability than those of LBP2-SeNPs and LBP3-SeNPs when the storage time was extended to 30 days, and the average particle size was maintained at about 105.4 nm. The exhaustion swimming time of all tested dose groups of LBP1-SeNPs was significantly longer than the control group (p < 0.05), and the high-dose group among them was even obviously longer than the positive group (p < 0.05). The results of glycogen, blood urea nitrogen (BUN), blood lactic acid (BLA), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were further confirmed that LBP1-SeNPs could relieve fatigue by increasing the reserve of glycogen, enhancing antioxidant enzyme levels and regulating metabolic mechanism. These results demonstrated that LBP1-SeNPs could be developed as a potential anti-fatigue nutritional supplement.
Collapse
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xue Yang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Feng Miao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Tao Ji
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Zhiqiang Ye
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meng Chu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510540, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
38
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, De Rycke R, De Smedt S, Faridi-Majidi R, Braeckmans K, Fraire JC. Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Front Mol Biosci 2021; 8:639184. [PMID: 33959633 PMCID: PMC8093573 DOI: 10.3389/fmolb.2021.639184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Song X, Chen Y, Sun H, Liu X, Leng X. Physicochemical stability and functional properties of selenium nanoparticles stabilized by chitosan, carrageenan, and gum Arabic. Carbohydr Polym 2021; 255:117379. [DOI: 10.1016/j.carbpol.2020.117379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
|