1
|
Yang W, Li X, Zhang M, Wang Q, Wang Y, Yu S, Dang R, Wang X, Yang Z, Fan S, Wu H, Wei B. N/O co-doping porous biomass carbon constructed electrochemical sensor for universal and sensitive detection to mycotoxins. Food Chem 2025; 475:143397. [PMID: 39956074 DOI: 10.1016/j.foodchem.2025.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Mycotoxin contamination poses a great threat to food safety and human health. Thus, universal and sensitive detection of mycotoxins is urgently needed. Herein, N/O co-doped porous biomass carbon was synthesized from rice straw as a novel electrode modification material for fabricating an electrochemical sensor for mycotoxin detection. The fabricated sensor exhibited excellent universality in the detection of aflatoxin B1, aflatoxin G1, aflatoxin G2, aflatoxin M1, zearalenone, and deoxynivalenol. The limits of detection were ca. 0.5689, 0.0504, 0.0274, 0.6141, 0.0781, and 0.0512 fg·mL-1, respectively. The dynamic linear range was spanned from 0.001 to 1000 pg·mL-1. The biomass carbon-based electrochemical sensor also demonstrated accurate and rapid performance in detecting mycotoxins in real samples, with all recoveries near 100 %. Density functional theory calculation confirmed that the adsorption of mycotoxins by porous carbon changed the charge distribution of the electrode surface, which is the potential working mechanism of the designed electrochemical sensor for high sensitivity mycotoxin detection. The results indicated that the high sensitivity of the fabricated electrochemical sensor makes it suitable for the fast and accurate detection of mycotoxins in grain and feed products.
Collapse
Affiliation(s)
- Wei Yang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Xiaonan Li
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China; Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China
| | - Mengjie Zhang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Qi Wang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China
| | - Yajun Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Susu Yu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Ruhua Dang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Xinru Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Zheng Yang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Suhua Fan
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Hai Wu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| |
Collapse
|
2
|
Xuan Z, Ye J, Ni B, Cui H, Li L, Chen J, Qin Y, Pan Q, Liu H, Wang S. Immunomagnetic metal-organic frameworks based coupling-free and extraction-free sensitive detection of aflatoxin B 1 in peanut oils. Food Chem 2025; 474:143203. [PMID: 39921973 DOI: 10.1016/j.foodchem.2025.143203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Conventional AFB1 detection methods are hindered by cumbersome pretreatment procedures, primarily due to the lack of new sample pretreatment materials and technologies. This work developed a novel coupling-free synthesis strategy for the immunomagnetic metal-organic frameworks (IMMOFs), focusing on its effective and promising application in the extraction-free detection of AFB1. By coupling with UPLC-FLD, a sensitive quantification detection method for AFB1 was developed, exhibiting a linear range of 0.5 to 20 μg/kg and a detection limit of 0.1 μg/kg. The spiked recoveries at three concentrations ranged from 90.3 % to 97.9 %, with RSDs of less than 6 %. Moreover, the established method was successfully employed for analyzing AFB1 in naturally contaminated peanut oil samples, with results further confirmed by the traditional immunoaffinity column (IAC) method. This study provides an effective extraction-free detection technique for AFB1 that addresses the limitations of the traditional methods.
Collapse
Affiliation(s)
- Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Hua Cui
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China
| | - Yao Qin
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Quan Pan
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.
| |
Collapse
|
3
|
Yao L, Hu Y, Yang X, Yu S, Xu L, Chen W, Tu J, Cheng Y, Xu Z. Stable Magnetic Relaxation Switch Sensor Based on Fe 3O 4@Gel for Ultrafast Detection of Cd 2. ACS Sens 2025; 10:2802-2811. [PMID: 40247758 DOI: 10.1021/acssensors.4c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
To overcome the dual challenges of signal instability and prolonged detection in conventional magnetic relaxation switching (MRS) systems, a novel Fe3O4-encapsulated alginate hydrogel nanocomposite (Fe3O4@Gel) sensor was designed for rapid screening of the cadmium ion. Compared with the traditional Fe3O4-based sensors, the Fe3O4 was embedded in the gel network framework to avoid magnetic field-induced aggregation, which helped to improve the stability of MRS. On the other hand, compared with MRS based on gel, the Fe3O4 accelerated the relaxation process of water molecules inside the gel, obtaining a fast detection time of the sensor within 38 s, which is one-fifth of the detection time of the traditional magnetic relaxation switch sensor with pure hydrogel of 191 s. Mechanistically, target-induced immunocomplex formation modulates alkaline phosphatase activity, triggering cascade enzymatic reactions that precisely regulate hydrogel swelling dynamics. This stimuli-responsive behavior translates quantitative Cd2+ concentrations into reproducible transverse relaxation time (T2) signal shifts (R2 = 0.987), achieving sub-ppt sensitivity (6 pg/mL) across linearity (0.01-10 ng/mL). Practical validation in complex matrices demonstrated 96.62%-109.97% spike recoveries. This multifunctional nanoplatform establishes a new paradigm for high-fidelity, field-deployable hazard screening in complex systems.
Collapse
Affiliation(s)
- Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 23009, China
| | - Yudie Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xingyu Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 23009, China
| | - Jia Tu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 23009, China
- CTC. (Anhui) Topway Testing Services Co., Ltd., Xuan Cheng 242099, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| |
Collapse
|
4
|
Zhu X, He Y, Xie X, Zhang B, Wang J, Shen H, Liu Y, Ji H, Zhu H. MOF-engineered Cu 2O nanozymes with boosted peroxidase-like activity for colorimetric-fluorescent dual-mode detection of deoxynivalenol. Mikrochim Acta 2025; 192:320. [PMID: 40274648 DOI: 10.1007/s00604-025-07140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The development of a high sensitivity biosensor for the detection of highly toxic deoxynivalenol (DON) is vital for human health and food security. In this work, by integrating metal-organic frameworks (MOF) with cubic Cu2O nanoparticles (Cu2O@MOF), the nanocomposite achieved a 4.8-fold increase in specific surface area compared to pristine Cu2O, which synergistically enhanced its peroxidase-like (POD) activity through optimized substrate affinity and accelerated charge transfer. Consequently, based on the marriage properties of POD activity and fluorescence signal from Cu2O@MOF nanoparticles and carbon dots (CDs), a colorimentric-fluorescent dual-mode biosensor was constructed for DON detection. Concurrently, the competitive binding of DON with immobilized antigens on Cu2O@MOF-CDs results in antibody displacement, leading to progressive reduction of captured probes with increasing DON concentrations, thereby inducing proportional attenuation in both colorimetric and fluorescence signal intensities. Under the optimum conditions, the established biosensor achieved a detection limit of 0.0018 ng/mL for DON. Furthermore, the prepared dual-mode biosensor was successfully applied to detect DON in tap water, wheat and corn, demonstrating its practical utility for real-world applications. Overall, this work not only advances nanozyme design through MOF-mediated interface engineering but also provides a rapid, accurate, and field-deployable strategy for monitoring mycotoxins in complex matrices.
Collapse
Affiliation(s)
- Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangchun He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Huifu Ji
- Tobacco College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Mei C, Deng J, Li J, Jiang H. Intermediate data fusion improves the accuracy of near-infrared spectroscopy and Raman spectroscopy for the detection of aflatoxin B1 in peanuts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126216. [PMID: 40222234 DOI: 10.1016/j.saa.2025.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
This study developed a convolutional neural network (CNN) model based on feature-level data fusion for quantitatively detecting aflatoxin B1 (AFB1) in peanuts. Using a portable near-infrared (NIR) spectrometer and a Raman spectrometer, NIR and Raman spectra were collected from peanut samples with varying levels of fungal contamination. The spectral data were then enhanced and preprocessed, and individual CNN models were constructed for each type of spectrum. Building on the single-spectrum models, data-level and feature-level fusion of the NIR and Raman spectra were performed, and corresponding CNN models were developed for the quantitative detection of AFB1 in peanuts. Experimental results demonstrated that the CNN models with data fusion significantly improved detection performance and generalization ability compared to single-spectrum CNN models, particularly those using feature-level fusion. The feature-level fusion CNN model yielded the best performance, with a root mean square error of prediction of 19.7787 μg·kg-1, a prediction correlation coefficient of 0.9836 for test set 1 (containing augmented spectra), and 0.9890 for test set 2 (containing only raw spectra), with a relative prediction deviation of 7.6506. Overall, this study demonstrated the superiority of data fusion and the feasibility of applying CNNs in spectral detection, providing a reference for quantitatively detecting mycotoxins.
Collapse
Affiliation(s)
- CongLi Mei
- College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310048, PR China
| | - Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Xing K, Peng S, Liu M, Long L, Yu S, Yao L, Zhang J, Chen M, Cheng Y, Xu Z. Tuning the Fe II/Fe III ratio by substituent regulation to enhance the peroxidase-like activity of metal-organic frameworks for sensitive biosensing. Analyst 2025; 150:1518-1522. [PMID: 40110687 DOI: 10.1039/d4an01448k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Here, electron-donating and electron-withdrawing substituents were introduced into MIL-88 (Fe) to regulate the electronic properties of the substituents. Benefiting from the influence of electron transfer and adsorption, the electron-donating (-NH2) substituent could significantly enhance the peroxidase-like activity of MIL-88 (Fe) due to the lowest energy change in the rate-determining step.
Collapse
Affiliation(s)
- Keyu Xing
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Siyao Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Mengting Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Lingli Long
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Shaoyi Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Li Yao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, Hunan, China
| |
Collapse
|
7
|
Jiao S, Wu L, Jiang H, Zhang S, Han Y, Huang H. A review on SERS-based techniques for mycotoxin detection: From construction to application. Trends Analyt Chem 2025; 184:118120. [DOI: 10.1016/j.trac.2024.118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Lushaj E, Bordin M, Akbar K, Liccardo L, Barroso‐Martín I, Rodríguez‐Castellón E, Vomiero A, Moretti E, Polo F. Highly Efficient Solar-Light-Driven Photodegradation of Metronidazole by Nickel Hexacyanoferrate Nanocubes Showing Enhanced Catalytic Performances. SMALL METHODS 2025; 9:e2301541. [PMID: 38368269 PMCID: PMC11843405 DOI: 10.1002/smtd.202301541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics. Ni-HCF nanocubes are fully characterized and their optical and electrochemical properties are investigated. Preliminary tests are also carried out to photocatalytically remove metronidazole (MDZ), an antibiotic that is difficult to degrade and has become a common contaminant as it is widely used to treat infections caused by anaerobic microorganisms. Under simulated solar light, Ni-HCF displays substantial photocatalytic activity, degrading 94.3% of MDZ in 6 h. The remarkable performance of Ni-HCF nanocubes is attributeto a higher ability to separate charge carriers and to a lower resistance toward charge transfer, as confirmed by the electrochemical characterization. These achievements highlight the possibility of combining the performance of earth-abundant catalysts with a renewable energy source for environmental remediation, thus meeting the requirements for sustainable development.
Collapse
Affiliation(s)
- Edlind Lushaj
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
| | - Matteo Bordin
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
| | - Kamran Akbar
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
| | - Letizia Liccardo
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
| | - Isabel Barroso‐Martín
- Department of Inorganic ChemistryCrystallography and MineralogyFaculty of SciencesUniversity of MalagaCampus de TeatinosMalaga29071Spain
| | - Enrique Rodríguez‐Castellón
- Department of Inorganic ChemistryCrystallography and MineralogyFaculty of SciencesUniversity of MalagaCampus de TeatinosMalaga29071Spain
| | - Alberto Vomiero
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
- Division of Materials ScienceDepartment of Engineering Sciences and MathematicsLuleå University of TechnologyLuleå97187Sweden
| | - Elisa Moretti
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVia Torino 155Venezia30172Italy
- European Centre for Living Technology (ECLT)Ca’ Bottacin, Dorsoduro 3911, Calle CroseraVenice30124Italy
| |
Collapse
|
9
|
Wang L, Zhang M, Zhang M, Sun Z, Ni Z, Yin Y, Wu D, Yuan Q. Construction of carbon-doped iron-based nanozyme for efficient adsorption and degradation to synergistic removal of aflatoxin B 1. Colloids Surf B Biointerfaces 2024; 245:114297. [PMID: 39378705 DOI: 10.1016/j.colsurfb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The multifunctional composites Fe3O4/GO/NH2-MIL-53(Fe) with excellent adsorption-degradation performance was prepared for the removal of Aflatoxin B1 (AFB1). The adsorption function of Fe3O4/GO/NH2-MIL-53(Fe) was based on the large specific surface area and abundant adsorption sites. The degradation function of Fe3O4/GO/NH2-MIL-53(Fe) was based on the activation of H2O2 by the catalytic active center formed by the coordination of metal ions and oxygen-containing groups in the system, resulting in hydroxyl radicals (·OH), superoxide anion radicals (O2-) and singlet oxygen (1O2). The adsorption of nanozyme accelerated the degradation reaction process, and the adsorption site was further exposed as the degradation process progressed. The synergistic effect realized the efficient removal of AFB1. Construction of Fe3O4/GO/NH2-MIL-53(Fe) as the carbon-doped iron-based nanozyme provided novel approaches of the removal for risks control of AFB1. Accompanied by the AFB1 adsorption, the advanced oxidation of nanozyme to the AFB1 degradation provided a promising way for the synergistic removal of AFB1.
Collapse
Affiliation(s)
- Le Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mengyue Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manyu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zifu Ni
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang 453001, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Jing W, Yang Y, Shi Q, Xu J, Xing G, Dai Y, Liu F. Nanozymes sensor array for discrimination and intelligent sensing of phenolic acids in food. Food Chem 2024; 450:139326. [PMID: 38615530 DOI: 10.1016/j.foodchem.2024.139326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Although nanozymes sensor arrays have the potential to recognize multiple target substances simultaneously, they currently rarely identify phenolic acids in food due to limited catalytic performance and complex preparation conditions of nanozymes. Here, inspired by the structure of polyphenol oxidase, we have successfully prepared a novel gallic acid-Cu (GA-Cu) nanozyme with laccase-like activity. Due to the different catalytic efficiency of GA-Cu nanozymes towards six common phenolic acids, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six phenolic acids within a concentration range from 1 to 100 μM. This method avoids the creation of numerous sensing units. Notably, the successful discrimination of six phenolic acids in samples of juice, beer, and wine has been achieved by the sensor array. Finally, aided by smartphones, a portable technique has been devised for the detection of phenolic acids.
Collapse
Affiliation(s)
- Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qihao Shi
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Jiahao Xu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Guanjie Xing
- Tangshan Key Laboratory of Photoelectric Conversion Materials, Tangshan Normal University, No.156 of Jianshe North Road, Lubei District, Tangshan 063002, Hebei Province, PR China
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
11
|
Zhou Y, Wei Y, Zhang J, Shi X, Ma L, Yuan R. Highly Specific Aptamer-Antibody Birecognized Sandwich Module for Ultrasensitive Detection of a Low Molecular Weight Compound. Anal Chem 2024; 96:11326-11333. [PMID: 38953527 DOI: 10.1021/acs.analchem.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Zhou
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuying Wei
- Guangxi Zhuang Autonomous Region Grain and Oil Quality Inspection Center, Nanning 530031, P. R. China
| | - Jia Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Lu J, Bai Y, Wang X, Huang P, Liu M, Wang R, Zhang H, Wang H, Li Y. Sensitive, Semiquantitative, and Portable Nucleic Acid Detection of Rabies Virus Using a Personal Glucose Meter. ACS OMEGA 2024; 9:26058-26065. [PMID: 38911722 PMCID: PMC11191140 DOI: 10.1021/acsomega.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Rabies is a zoonotic infection with the potential to infect all mammals and poses a significant threat to mortality. Although enzyme-linked immunosorbent tests and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been established for rabies virus (RABV) detection, they require skilled staff. Here, we introduce a personal glucose meter (PGM)-based nucleic acid (NA-PGM) detection method to diagnose RABV. This method ensures sensitive and convenient RABV diagnosis through hybridization of reverse transcription-recombinase aided amplification (RT-RAA) amplicons with probes labeled with sucrose-converting enzymes, reaching a detection level as low as 6.3 copies/μL equivalent to 12.26 copies. NA-PGM allows for the differentiation of RABV from other closely related viruses. In addition, NA-PGM showed excellent performance on 65 clinical samples with a 100% accuracy rate compared with the widely adopted RT-qPCR method. Thus, our developed NA-PGM method stands out as sensitive, semiquantitative, and portable for RABV detection, showcasing promise as a versatile platform for a wide range of pathogens.
Collapse
Affiliation(s)
| | | | - Xuejin Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Pei Huang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Meihui Liu
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Ruijia Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Dai S, Xing K, Jiao Y, Yu S, Yang X, Yao L, Jia P, Cheng Y, Xu Z. A novel magnetic resonance tuning-magnetic relaxation switching sensor based on Gd-MOF/USPIO assembly for sensitive and convenient aflatoxin B1 detection. Food Chem 2024; 443:138537. [PMID: 38309027 DOI: 10.1016/j.foodchem.2024.138537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/24/2023] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxin B1 (AFB1) can accumulate in different organs or tissues and seriously harm humans. Traditional magnetic relaxation switching (MRS) sensors have relatively low sensitivity, but are complex to use. Rapid small-trace molecule analysis in complex samples is challenging. In this study, we used a gadolinium-based metal-organic framework (Gd-MOF) and ultra-small superparamagnetic iron oxide (USPIO) assembly to develop a magnetic resonance tuning-magnetic relaxation switching (MRET-MRS) sensor to improve conventional MRS sensor sensitivity and simplify operational steps in complex samples. Importantly, the local magnetic field generated by USPIO interfered with Gd-MOF electron spin fluctuation and directly affected dipole-dipole interactions between Gd electrons and water molecules, thus rendering relaxation signal changes more sensitive. The sensitivity (0.54 pg mL-1) was 833 times more sensitive than that of a conventional MRS sensor (0.45 ng mL-1). Finally, a convenient one-step detection approach can be achieved by mixing antigen/antibody functionalized Gd-MOF/USPIO and target samples.
Collapse
Affiliation(s)
- Shiqin Dai
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Keyu Xing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Yanna Jiao
- Technology Center of Changsha Customs District, Changsha 410116, Hunan, China
| | - Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Xingyu Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Pei Jia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China; School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China.
| |
Collapse
|
14
|
Yu S, Jia P, Xing K, Yao L, Chen M, Ding L, Huang J, Cheng Y, Xu Z. Novel Immunosensor Based on Metal Single-Atom Nanozymes with Enhanced Oxidase-Like Activity for Capsaicin Analysis in Spicy Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12832-12841. [PMID: 38785419 DOI: 10.1021/acs.jafc.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Capsaicin (CAP) is a primary indicator for assessing the level of pungency. Herein, iron-based single-atom nanozymes (SAzymes) (Fe/NC) with exceptional oxidase-like activity were used to construct an immunosensor for CAP analysis. Fe/NC could imitate oxidase actions by transforming O2 to •O2- radicals in the absence of hydrogen peroxide (H2O2), which could avoid complex operations and unstable results. By regulating the Fe atom loads, an optimal Fe0.7/NC atom usage rate could improve the catalytic activity (Michaelis-Menten constant (Km) = 0.09 mM). Fe0.7/NC was integrated with goat antimouse IgG by facile mix incubation to develop a competitive enzyme-linked immunosorbent assay (ELISA). Our Fe0.7/NC immunosensing platform is anticipated to outperform the conventional ELISA in terms of stability and shelf life. The proposed immunosensor provided color responses across 0.01-1000 ng/mL CAP concentrations, with a detection limit of 0.046 ng/mL. Fe/NC may have potential as nanozymes for CAP detection in spicy foods, with promising applications in food biosensing.
Collapse
Affiliation(s)
- Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Pei Jia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Keyu Xing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Maolong Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Li Ding
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Jin Huang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China
| |
Collapse
|
15
|
Xu D, Zhang J, Luo Z, Zhao Y, Zhu Y, Yang H, Zhou Y. Ratiometric fluorescence and absorbance dual-model immunoassay based on 2,3-diaminophenazine and carbon dots for detecting Aflatoxin B1. Food Chem 2024; 439:138125. [PMID: 38061303 DOI: 10.1016/j.foodchem.2023.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
In this work, a dual-model immunoassay for detecting Aflatoxin B1 (AFB1) was developed based on 2,3-diaminophenazine (DAP) and carbon dots (CDs). Under the catalysis of horseradish peroxidase (HRP), the o-phthalylenediamine (OPD) was oxidized to DAP which had a yellow color and intense fluorescence. The color changes form colorless to yellow was used to design absorbance model immunoassay. Meanwhile, the absorption spectrum of DAP overlapped with the emission spectrum of CDs which caused the fluorescence of CDs to be quenched. The fluorescence changes of DAP and CDs were used to develop ratiometric fluorescence immunoassay. The dual-model immunoassay showed excellent sensitivity with the limits of detection (LODs) of 0.013 ng/mL for fluorescence mode and 0.062 ng/mL for absorbance mode. Meanwhile, both models exhibited great selectivity for AFB1. Additionally, the recovery rates suggested the proposed dual-model immunoassay had great potential in actual samples detection.
Collapse
Affiliation(s)
- Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Zhenzhen Luo
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
16
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
17
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Cao H, Liang D, Tang K, Sun Y, Xu Y, Miao M, Zhao Y. SERS and MRS signals engineered dual-mode aptasensor for simultaneous distinguishment of aflatoxin subtypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132810. [PMID: 37871438 DOI: 10.1016/j.jhazmat.2023.132810] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
The accurate monitoring of aflatoxin subtypes is vitally important for food safety. Herein, a dual-mode aptasensor with surface-enhanced Raman scattering (SERS) and magnetic relaxation switching (MRS) signals is developed for the detection of aflatoxin B1, B2 and M1 (i.e. AFB1, AFB2 and AFM1). Au-Ag Janus NPs and Au-mushroom NPs are prepared and show intense and non-interfering SERS peaks without the additional modification of Raman molecules, and are utilized as SERS nanotags for the distinguishment of AFB1 and AFB2. Fe3O4@Au NPs functionalized by AFM1 aptamers are applied as MRS nanoprobes for the monitoring of AFM1. Aptamers engineered SERS nanotags and MRS nanoprobes are assembled, and show strong SERS performances and high transverse relaxation time (T2). AFB1, AFB2 and AFM1 induce the separation of SERS nanotags from the assemblies and the dispersion of Fe3O4@Au NPs, resulting in the decrease of SERS signals at 1278 cm-1 and 1000 cm-1 as well as the reduction of T2 values. The dual-mode but three kinds of detection signals don't interfere with each other and exhibit a significant linear relationship with the concentration of targets. This platform provides a high throughput monitoring strategy for the simultaneous analysis of different subtypes of mycotoxin.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Kaizhen Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yu Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yinjuan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
19
|
Wu T, Hu G, Ning J, Yang J, Zhou Y. A photoluminescence strategy for detection nanoplastics in water and biological imaging in cells and plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132695. [PMID: 37804760 DOI: 10.1016/j.jhazmat.2023.132695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Nanoplastics exposure poses a significant threat to the environment and human health, and accurate measurement of nanoparticles in aqueous solutions remains challenging. In this work, we synthesized the cationic fluorescent probe 4-[1-Cyano- 2-[4-(Diethylamino)-2-hydroxyphenyl]ethenyl]-1-ethylpyridinium (PCP) through a straightforward procedure for the rapid and accurate detection and labeling of nanoplastics in aqueous solutions. PCP binds to nanoplastics through electrostatic and hydrophobic interactions with restricted intramolecular rotation and exhibits enhanced fluorescence emission. Using carboxylation-modified polystyrene nanoplastics as a model, PCP could accurately detect concentrations as low as 0.525 mg∙L-1 in aqueous solution and perform wash-free semi-quantitative direct observation. The method demonstrated good reproducibility and recovery in actual sample spiking experiments. In addition, PCP-labeled nanoplastics were successfully used to visualize the uptake and distribution of cells and Arabidopsis thaliana when exposed to different concentrations of nanoplastics. This work provides a simple and sensitive method for efficiently identify, track, and quantify nanoplastics without requiring additional pretreatment and complex instrumentation, making it an ideal tool for accurately quantifying nanoplastics in aqueous solutions and studying the biological interactions of nanoplastics.
Collapse
Affiliation(s)
- Tian Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jialu Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
20
|
Zheng X, Zhao Y, Zhang Y, Zhu Y, Zhang J, Xu D, Yang H, Zhou Y. Alkaline phosphatase triggered gold nanoclusters turn-on fluorescence immunoassay for detection of Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123317. [PMID: 37688875 DOI: 10.1016/j.saa.2023.123317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin which can cause a variety of diseases. Sensitive detection of OTA is significant for food safety. Herein, a feasible and sensitive immunoassay was established for OTA detection by alkaline phosphatase (ALP) triggered gold nanoclusters (AuNCs) turn-on fluorescence. The fluorescence of the AuNCs can be quenched by Cr6+ induced aggregation of AuNCs and the fluorescence resonance energy transfer (FRET) between AuNCs and Cr6+. Under the catalytic action of ALP-labelled IgG (IgG-ALP), the ascorbic acid 2-phosphate (AA2P) was hydrolyzed to ascorbic acid (AA) for the reducing of Cr6+ to Cr3+. As a result, the degrees of AuNCs aggregation and FRET were weakened and the fluorescence of AuNCs was turned on. The amount of OTA in the sample was negatively correlated with the amount of IgG-ALP captured by anti-OTA monoclonal antibody (McAb) in the microplate. In optimal conditions, the turn-on fluorescence immunoassay had a good linear range of 6.25-100 ng/mL, and the detection limit was 0.693 ng/mL. The recoveries of OTA from corn were 95.89%-101.08% for the fluorescence immunoassay. This work provided a feasible, sensitive and good selectivity fluorescence method for OTA detection.
Collapse
Affiliation(s)
- Xiaolong Zheng
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yan Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China; College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
21
|
Tan G, Wang S, Yu J, Chen J, Liao D, Liu M, Nezamzadeh-Ejhieh A, Pan Y, Liu J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem 2024; 430:136934. [PMID: 37542961 DOI: 10.1016/j.foodchem.2023.136934] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Milk has a high nutritional value. However, milk is easily contaminated in the production, processing, and storage processes, which harms consumers' health. Therefore, the harmful substances' detection in milk is important. Metal-organic frameworks (MOFs) have proven high potential in food safety detection due to their unique porous structure, large effective surface area, large porosity, and structural tunability. This article systematically describes the detection mechanism of fluorescence, electrochemical, colorimetric, and enzyme-linked immunosorbent assay based on MOFs. The progress of the application of MOFs in the detection of antibiotics, harmful microorganisms and their toxins, harmful ions, and other harmful substances in milk in recent years is reviewed. The structural tunability of MOFs enables them to be functionalized, giving the ability to be applied to different detection methods or substances. Therefore, MOFs can be used as an advantageous sensing material for detecting harmful substances in the complex environment of milk.
Collapse
Affiliation(s)
- Guijian Tan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Sanying Wang
- Department of Pain, Dalang Hospital, Dongguan 523770, China
| | - Jialin Yu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jiahao Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| |
Collapse
|
22
|
Guo Q, Huang X, Huang Y, Zhang Z, Li P, Yu L. Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J Food Compost Anal 2024; 125:105795. [DOI: 10.1016/j.jfca.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
23
|
Yadoung S, Shimizu S, Hongsibsong S, Nakano K, Ishimatsu R. Dopamine as a polymerizable reagent for enzyme-linked immunosorbent assay using horseradish peroxidase. Heliyon 2023; 9:e21722. [PMID: 38027909 PMCID: PMC10654240 DOI: 10.1016/j.heliyon.2023.e21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
We demonstrate that dopamine can be used as a reagent for colorimetric enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase (HRP). Dopamine was able to be polymerized in the presence of HRP and H2O2, and black polydopamine was obtained after the enzymatic reaction. Because of the black color, the absorbance was significantly changed in the whole range of the visible light region. Here, an indirect competitive ELISA based on the polymerization of dopamine was performed to detect a fluoroquinolone antibiotic, enrofloxacin. The antibiotic is commonly used in livestock farming. The anti-antibiotics antibody was produced from egg yolk from chicken hens. In the visible range, sufficient absorbance changes of ∼0.4∼0.5 and a low background level for the ELISA response were obtained, and the 50 % inhibitory concentration value at 450 nm was determined to be 26 ppb. The performance of the indirect competitive ELISA based on the polymerization of dopamine was compared to that based on the oxidation of catechol because dopamine has a catechol skeleton. By the complex of HRP and H2O2, catechol can be oxidized to o-benzoquinone having a maximum absorption wavelength of 420 nm. It was shown that the absorbance change in the case of polydopamine was about 2.5 times higher than that of catechol, where the background levels were similar. This confirms that the polymerization of dopamine significantly enhanced the photosignal.
Collapse
Affiliation(s)
- Sumed Yadoung
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Shinichi Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Surat Hongsibsong
- Environmental Science Program, Faculty of Science, Chiang Mai University, 50200, Thailand
- School of Health Sciences Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Environmental, Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
24
|
Zhang J, Jiang L, Li H, Yuan R, Yang X. Construction of a SERS platform for sensitive detection of aflatoxin B1 based on CRISPR strategy. Food Chem 2023; 415:135768. [PMID: 36848834 DOI: 10.1016/j.foodchem.2023.135768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Aflatoxin B1, a pathogen in the aflatoxin family, has attracted much attention due to the harmfulness in production and life. However, the common methods like high performance liquid chromatography used for detection of AFB1 have deficiency in complicated pretreatment processes, and the purification effect is not ideal. Herein, a SERS platform based on CRISPR strategy was designed for sensitive detection of AFB1. By synthesizing core-shell nanoparticles embedded with Raman silent region dye molecules, Prussian blue (PB), the detection of the sensor reduced background interference and the SERS signal was calibrated. At the same time, the high-efficiency reverse cleavage activity of cas12a was used to convert non-nucleic acid targets into nucleic acid, so as to achieve the effect of sensitive detection of AFB1 with a detection limit of 3.55 pg/mL. This study provides a new thought for SERS detection of non-nucleic acid targets in the future.
Collapse
Affiliation(s)
- Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
25
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
26
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
27
|
Liu X, Song J, Zhang X, Huang S, Zhao B, Feng X. A highly selective and sensitive europium-organic framework sensor for the fluorescence detection of fipronil in tea. Food Chem 2023; 413:135639. [PMID: 36753784 DOI: 10.1016/j.foodchem.2023.135639] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/18/2022] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
A europium-based metal organic framework (Eu-TFPA-MOF) was used for the fluorescence detection of fipronil in green tea and oolong tea for the first time. The red fluorescence of Eu-TFPA-MOF could be quenched significantly by low concentration (0.24 mM) of fipronil, and the "turn off" process exhibited quick response time (2 min), high sensitivity and selectivity, low detection limits (4.4 nM) and wide linear range (0-0.15 mM). The mechanism of fluorescence quenching was mainly attributed to static quenching process and the competitive absorption of excitation energy. Besides, the spiked and recovery test indicated that Eu-TFPA-MOF could be used in the fluorescence detection of fipronil in real green tea and oolong tea sample and the process had the advantages of simple pretreatment and satisfactory recoveries (98.33-106.17 %). More importantly, a simple, portable and low-cost smartphone-assisted test strip were designed for the visual detection of fipronil in real tea samples. The detection platform will be beneficial for tea quality safety and human heath, and is expected to be applied in other agricultural product safety field.
Collapse
Affiliation(s)
- Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Junya Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Shijie Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Beibei Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
28
|
Facile immunochromatographic assay based on metal-organic framework-decorated polydopamine for the determination of hydrochlorothiazide adulteration in functional foods. Food Chem 2023; 406:135100. [PMID: 36470087 DOI: 10.1016/j.foodchem.2022.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Herein, a novel immunochromatographic assay (ICA) based on metal-organic framework-decorated polydopamine (MOF@PDA) was firstly developed for the determination of hydrochlorothiazide (HCTZ) adulteration in functional foods. The coupling rate of MOF@PDA carrier to HCTZ antibody was as high as 91.7 %. The detection limits of the developed MOF@PDA-ICA in functional tablets and capsules were 5.93 and 4.72 μg/kg, the linear ranges were 11.2-91.91 μg/kg and 9.11-86.78 μg/kg, respectively. The sensitivity was 27-fold higher than that of the reported ICA. The recovery was 82.5-116.6 %, and coefficient of variation was 6.9-14.2 %. The results can be achieved and analyzed in 8 min with the smartphone-based detection device. The parallel tests of 23 commercial functional tablets and capsules showed that the results of the MOF@PDA-ICA were consistent with that of the LC-MS/MS (R2 > 0.99). Therefore, our method is facile, sensitive, portable, and can provide a reliable technical mean for the detection of HCTZ adulteration in functional foods.
Collapse
|
29
|
Wang Y, Zhai H, Guo Q, Zhang Y, Gao X, Yang Q, Sun X, Guo Y, Zhang Y. A dual-modal electrochemical aptasensor based on intelligent DNA Walker with cascade signal amplification powered by Nb.BbvCI for Pb 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160910. [PMID: 36528096 DOI: 10.1016/j.scitotenv.2022.160910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
As a unique nanomachine, DNA Walker can move continuously along a specific orbit to amplify signal. Therefore, based on DNA Walker and endonuclease assisted signal amplification strategy, a novel dual-mode visual electrochemical aptasensor was constructed for the detection of Pb2+. Ceric dioxide@mesoporous carbon (CeO2/CS)@AuNPs not only could improve the conductivity of sensing interface but also could fix the aptamer. DNA Walker moved on the surface of the electrode to realize the pairing with the Ag-γFe2O3/cDNA probe, forming a special base sequence that could be spliced by the Nb.BbvCI. Under the action of endonuclease Nb.BbvCI, the Ag-γFe2O3/cDNA probe was continuously sheared and the amount on the electrode was decreased to amplify the signal. Besides, the nanoenzyme of Ag-γFe2O3 could catalyze 3'3'5'5'-tetramethylbenzidine (TMB) to blue color realizing the visual detection of Pb2+. The sensor has been successfully applied to the visual and accurate rapid detection of Pb2+ in aquatic products. The fabricated method of the sensor open up a new way for visual and accurate the detection of environmental pollutants.
Collapse
Affiliation(s)
- Yue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Hongguo Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China.
| |
Collapse
|
30
|
An Ultrasensitive Lateral Flow Immunoassay Based on Metal-Organic Framework-Decorated Polydopamine for Multiple Sulfonylureas Adulteration in Functional Foods. Foods 2023; 12:foods12030539. [PMID: 36766067 PMCID: PMC9914140 DOI: 10.3390/foods12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Herein, an ultrasensitive lateral flow immunoassay (LFIA), based on metal-organic framework-decorated polydopamine (PCN-224@PDA) was first established to detect multiple sulfonylureas (SUs) in functional foods. The PCN-224@PDA was synthesized using the one-pot hydrothermal method and covalently coupled with SUs antibodies, and the coupling rate was up to 91.8%. The detection limits of the developed PCN-224@PDA-LFIA for multiple SUs in functional teas and capsules were 0.22-3.72 μg/kg and 0.40-3.71 μg/kg, and quantification limits were 0.75-8.19 μg/kg and 1.03-9.08 μg/kg, respectively. The analytical sensitivity was 128-fold higher than that of similar methods reported so far. The recovery rates ranged from 83.8 to 119.0%, with coefficients of variation of 7.6-14.4%. The parallel analysis of 20 real samples by LC-MS/MS confirmed the reliability of the proposed method. Therefore, our work offers novel, ultrasensitive, and rapid technical support for on-site monitoring of SUs in functional foods.
Collapse
|
31
|
Aflatoxins: Source, Detection, Clinical Features and Prevention. Processes (Basel) 2023. [DOI: 10.3390/pr11010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The most potent mycotoxin, aflatoxins are the secondary metabolite produced by fungi, especially Aspergillus, and have been found to be ubiquitous, contaminating cereals, crops, and even milk and causing major health and economic issues in some countries due to poor storage, substandard management, and lack of awareness. Different aspects of the toxin are reviewed here, including its structural biochemistry, occurrence, factors conducive to its contamination and intoxication and related clinical features, as well as suggested preventive and control strategies and detection methods.
Collapse
|
32
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|
33
|
Liu F, Shi Z, Su W, Wu J. State of the art and applications in nanostructured biocatalysis. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2054727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Fengfan Liu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhihao Shi
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jiequn Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
34
|
MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods. Molecules 2022; 27:molecules27217511. [DOI: 10.3390/molecules27217511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Mycotoxins in food are hazardous for animal and human health, resulting in food waste and exacerbating the critical global food security situation. In addition, they affect commerce, particularly the incomes of rural farmers. The grave consequences of these contaminants require a comprehensive strategy for their elimination to preserve consumer safety and regulatory compliance. Therefore, developing a policy framework and control strategy for these contaminants is essential to improve food safety. In this context, sensing approaches based on metal-organic frameworks (MOF) offer a unique tool for the quick and effective detection of pathogenic microorganisms, heavy metals, prohibited food additives, persistent organic pollutants (POPs), toxins, veterinary medications, and pesticide residues. This review focuses on the rapid screening of MOF-based sensors to examine food safety by describing the main features and characteristics of MOF-based nanocomposites. In addition, the main prospects of MOF-based sensors are highlighted in this paper. MOF-based sensing approaches can be advantageous for assessing food safety owing to their mobility, affordability, dependability, sensitivity, and stability. We believe this report will assist readers in comprehending the impacts of food jeopardy exposure, the implications on health, and the usage of metal-organic frameworks for detecting and sensing nourishment risks.
Collapse
|
35
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Nanda Kumar D, Freidman I, Sionov E, Shtenberg G. Porous Silicon Fabry-Pérot Interferometer Designed for Sensitive Detection of Aflatoxin B1 in Field Crops. Food Chem 2022; 405:134980. [DOI: 10.1016/j.foodchem.2022.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
37
|
Li Y, Sun J, Huang L, Liu S, Wang S, Zhang D, Zhu M, Wang J. Nanozyme-encoded luminescent detection for food safety analysis: An overview of mechanisms and recent applications. Compr Rev Food Sci Food Saf 2022; 21:5077-5108. [PMID: 36200572 DOI: 10.1111/1541-4337.13055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13445-13463. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the concept of sustainable agriculture receiving increasing attention from humankind, nanozymes, nanomaterials with enzyme-like activity but higher environmental endurance and longer-term stability than natural enzymes, have enabled agricultural technologies to be reformative, economic, and portable. Benefiting from their multiple catalytic activities and renewable nanocharacteristics, nanozymes can shine in agricultural scenarios using enzyme engineering and nanoscience, acting as sustainable toolboxes to improve agricultural production and reduce the risk to agricultural systems. Herein, we comprehensively discuss the classifications of nanozymes applied in current agriculture, including peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, and laccase-like nanozymes, as well as their biocatalytic mechanisms. Especially, different applications of nanozymes in agriculture are deeply reviewed, covering crop protection and nutrition, agroenvironmental remediation and monitoring, and agroproduct quality monitoring. Finally, the challenges faced by nanozymes in agricultural applications are proposed, and we expect that our review can further enhance agricultural sustainability through nanozymology.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xiao Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
39
|
Xi L, Jiang C, Wang F, Zhang X, Huo D, Sun M, Dramou P, He H. Recent Advances in Construction and Application of Metal-Nanozymes in Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1661-1679. [PMID: 36183252 DOI: 10.1080/10408347.2022.2128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
Nanozymes, made of emerging nanomaterials, have similar activity to natural enzyme and exhibit promising applications in in the fields of environment, biology and medicine, and food safety science. In recent years, with the deep finding and research to nanozymes by researchers, its application in field of pharmaceutical analysis has emerged gradually, possessing great significance in drug safety evaluation and quality control. This review summarizes the construction of metal nanozymes, strategies to improve their performance and their application in pharmaceutical detection and analysis, especially in detection of target analytes consisting of small molecule medicine macromolecule, toxic and others, which proposes theoretical foundation for development of nanozymes in this field. At the same time, it also provides opportunities and challenges for the construction and application of new nanozymes.
Collapse
Affiliation(s)
- Liping Xi
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenrui Jiang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Fangqi Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaoni Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Dezhi Huo
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Meiling Sun
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
40
|
Arshad F, Mohd-Naim NF, Chandrawati R, Cozzolino D, Ahmed MU. Nanozyme-based sensors for detection of food biomarkers: a review. RSC Adv 2022; 12:26160-26175. [PMID: 36275095 PMCID: PMC9475342 DOI: 10.1039/d2ra04444g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Nanozymes have piqued the curiosity of scientists in recent years because of their ability to demonstrate enzyme-like activity combined with advantages such as high stability, inexpensive availability, robust activity, and tunable properties. These attributes have allowed the successful application of nanozymes in sensing to detect various chemical and biological target analytes, overcoming the shortcomings of conventional detection techniques. In this review, we discuss recent developments of nanozyme-based sensors to detect biomarkers associated with food quality and safety. First, we present a brief introduction to this topic, followed by discussing the different types of sensors used in food biomarker detection. We then highlight recent studies on nanozyme-based sensors to detect food markers such as toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, and drug residues. In the subsequent section, we discuss the challenges and possible solutions towards the development of nanozyme-based sensors for application in the food industry. Finally, we conclude the review by discussing future perspectives of this field towards successful detection and monitoring of food analytes.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The University of Queensland Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Faculty of Science, Universiti Brunei Darussalam Integrated Science Building Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
41
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
42
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
43
|
Porphyrin NanoMOFs as a catalytic label in a nanozyme-linked immunosorbent assay for Aflatoxin B1 detection. Anal Biochem 2022; 655:114829. [DOI: 10.1016/j.ab.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
44
|
A turn-off Eu-MOF@Fe 2+ sensor for the selective and sensitive fluorescence detection of bromate in wheat flour. Food Chem 2022; 382:132379. [PMID: 35152023 DOI: 10.1016/j.foodchem.2022.132379] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/07/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022]
Abstract
A new europium metal-organic framework (Eu-MOF) was prepared by simple hydrothermal method. The product exhibited intense red fluorescence, long fluorescence lifetime (0.454 ms) and excellent fluorescence stability. The fluorescence titration result showed that Fe3+ could completely quench the fluorescence of Eu-MOF, while the fluorescence quenching effect of Fe2+ or bromate was negligible. Considering the strong oxidizing property of bromate, a "turn off" Eu-MOF@Fe2+ sensor toward bromate was designed by generating Fe3+ due to the redox reaction. The results showed that the sensor displayed a wide linear range (0-0.2 mM), high sensitivity (LOD = 3.7 × 10-6 mol/L), good selectivity and resistant to possible interferences in real four sample. Furthermore, the detection mechanism was investigated by PXRD, XPS and UV-Vis methods. More importantly, the Eu-MOF@Fe2+ sensor was further applied to detect bromate in wheat flour with satisfactory recovery (95.30%-104.38%) and accuracy (RSD < 2.85%). These results suggest that Eu-MOF@Fe2+ can be used as a potential sensor to detect bromate in food industry.
Collapse
|
45
|
Wang LJ, Chen ZW, Ma TZ, Qing J, Liu F, Xu Z, Jiao Y, Luo SH, Cheng YH, Ding L. A novel magnetic metal-organic framework absorbent for rapid detection of aflatoxins B 1B 2G 1G 2 in rice by HPLC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2522-2530. [PMID: 35708023 DOI: 10.1039/d2ay00167e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a core-shell-structured magnetic metal-organic framework (MMOF) composite material (Fe3O4@UiO-66-NH2) was synthesized by the solvothermal method. It was employed as a new absorbent in combination with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the simultaneous detection of four aflatoxins (AFs) in rice. This method could shorten the pre-processing time by exploiting the advantageous characteristics of magnetic cores. The impurity was removed quickly. The effects of extraction solution, extraction time, adsorbent types, and amount of adsorbent on the extraction rate of target compounds were optimized. Under optimized conditions, AFs were validated and showed a good linear relationship within the 0.375-20 μg kg-1 concentration range (r2 > 0.9992). The limit of detection (LOD) was 0.0188-0.1250 μg kg-1 and the limit of quantification (LOQ) was 0.0375-0.3750 μg kg-1. At three spiking levels (0.375, 2, and 10 μg kg-1), the average recovery values for the four AFs ranged from 85.1% to 111.0%. The relative standard deviation ranged from 3.4% to 7.7%. The new method proved to be simple, fast, efficient, and suitable for the determination of AFs in rice samples.
Collapse
Affiliation(s)
- Ling-Juan Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Zhi-Wei Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Teng-Zhou Ma
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China.
| | - Jiang Qing
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China.
| | - Fang Liu
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Shi-Hua Luo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
46
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
47
|
Songca SP. Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. Int J Mol Sci 2022; 23:4638. [PMID: 35563029 PMCID: PMC9100627 DOI: 10.3390/ijms23094638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Nanozymes are synthetic nanoparticulate materials that mimic the biological activities of enzymes by virtue of their surface chemistry. Enzymes catalyze biological reactions with a very high degree of specificity. Examples include the horseradish peroxidase, lactate, glucose, and cholesterol oxidases. For this reason, many industrial uses of enzymes outside their natural environments have been developed. Similar to enzymes, many industrial applications of nanozymes have been developed and used. Unlike the enzymes, however, nanozymes are cost-effectively prepared, purified, stored, and reproducibly and repeatedly used for long periods of time. The detection and identification of pathogens is among some of the reported applications of nanozymes. Three of the methodologic milestones in the evolution of pathogen detection and identification include the incubation and growth, immunoassays and the polymerase chain reaction (PCR) strategies. Although advances in the history of pathogen detection and identification have given rise to novel methods and devices, these are still short of the response speed, accuracy and cost required for point-of-care use. Debuting recently, nanozymology offers significant improvements in the six methodological indicators that are proposed as being key in this review, including simplicity, sensitivity, speed of response, cost, reliability, and durability of the immunoassays and PCR strategies. This review will focus on the applications of nanozymes in the detection and identification of pathogens in samples obtained from foods, natural, and clinical sources. It will highlight the impact of nanozymes in the enzyme-linked immunosorbent and PCR strategies by discussing the mechanistic improvements and the role of the design and architecture of the nanozyme nanoconjugates. Because of their contribution to world health burden, the three most important pathogens that will be considered include viruses, bacteria and fungi. Although not quite seen as pathogens, the review will also consider the detection of cancer cells and helminth parasites. The review leaves very little doubt that nanozymology has introduced remarkable advances in enzyme-linked immunosorbent assays and PCR strategies for detecting these five classes of pathogens. However, a gap still exists in the application of nanozymes to detect and identify fungal pathogens directly, although indirect strategies in which nanozymes are used have been reported. From a mechanistic point of view, the nanozyme technology transfer to laboratory research methods in PCR and enzyme-linked immunosorbent assay studies, and the point-of-care devices such as electronic biosensors and lateral flow detection strips, that is currently taking place, is most likely to give rise to no small revolution in each of the six methodological indicators for pathogen detection and identification. While the evidence of widespread research reports, clinical trials and point-of-care device patents support this view, the gaps that still exist point to a need for more basic research studies to be conducted on the applications of nanozymology in pathogen detection and identification. The multidisciplinary nature of the research on the application of nanozymes in the detection and identification of pathogens requires chemists and physicists for the design, fabrication, and characterization of nanozymes; microbiologists for the design, testing and analysis of the methodologies, and clinicians or clinical researchers for the evaluation of the methodologies and devices in the clinic. Many reports have also implicated required skills in mathematical modelling, and electronic engineering. While the review will conclude with a synopsis of the impact of nanozymology on the detection and identification of viruses, bacteria, fungi, cancer cells, and helminths, it will also point out opportunities that exist in basic research as well as opportunities for innovation aimed at novel laboratory methodologies and devices. In this regard there is no doubt that there are numerous unexplored research areas in the application of nanozymes for the detection of pathogens. For example, most research on the applications of nanozymes for the detection and identification of fungi is so far limited only to the detection of mycotoxins and other chemical compounds associated with fungal infection. Therefore, there is scope for exploration of the application of nanozymes in the direct detection of fungi in foods, especially in the agricultural production thereof. Many fungal species found in seeds severely compromise their use by inactivating the germination thereof. Fungi also produce mycotoxins that can severely compromise the health of humans if consumed.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
48
|
Du R, Yang X, Jin P, Guo Y, Cheng Y, Yu H, Xie Y, Qian H, Yao W. G-quadruplex based biosensors for the detection of food contaminants. Crit Rev Food Sci Nutr 2022; 63:8808-8822. [PMID: 35389275 DOI: 10.1080/10408398.2022.2059753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.
Collapse
Affiliation(s)
- Rong Du
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Suzhou, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Cai Q, Yin T, Ye Y, Jie G, Zhou H. Versatile Photoelectrochemical Biosensing for Hg 2+ and Aflatoxin B1 Based on Enhanced Photocurrent of AgInS 2 Quantum Dot-DNA Nanowires Sensitizing NPC-ZnO Nanopolyhedra. Anal Chem 2022; 94:5814-5822. [PMID: 35380040 DOI: 10.1021/acs.analchem.1c05250] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eliminating false positives or negatives in analysis has been a challenge. Herein, a phenomenon of polarity-switching photocurrent of AgInS2 quantum dot (QD)-DNA nanowires reversing nitrogen-doped porous carbon-ZnO (NPC-ZnO) nanopolyhedra was found for the first time, and a versatile photoelectrochemical (PEC) biosensor with a reversed signal was innovatively proposed for dual-target detection. NPC-ZnO is a photoactive material with excellent PEC properties, while AgInS2 QDs as a photosensitive material match NPC-ZnO in the energy level, which not only promotes the transfer of photogenerated carriers but also switches the direction of PEC current. Furthermore, in order to prevent spontaneous agglomeration of AgInS2 (AIS) QDs and improve its utilization rate, a new multiple-branched DNA nanowire was specially designed to assemble AgInS2 QDs for constructing amplified signal probes, which not only greatly increased the load of AgInS2 QDs but also further enhanced the photoelectric signal. When the target Hg2+-induced cyclic amplification process generated abundant RDNA, the DNA nanowire signal probe with plenty of QDs was linked to the NPC-ZnO/electrode by RDNA, generating greatly amplified polarity-reversed photocurrent for signal "ON" detection of Hg2+. After specific binding of the target (aflatoxin B1, AFB1) to its aptamer, the signal probes of AIS QD-DNA nanowires were released, realizing signal "OFF" assay of AFB1. Thus, the proposed new PEC biosensor provides a versatile method for detection of dual targets and also effectively avoids both false positive and negative phenomena in the assay process, which has great practical application potential in both environmental and food analysis.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuhang Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
50
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|