1
|
Wu K, Qi S, Wang Z. Visual Detection of Chlorpyrifos by DNA Hydrogel-Based Self-Actuated Capillary Aptasensor Using Nicking Enzyme-Mediated Amplification. ACS Sens 2025; 10:1889-1897. [PMID: 40068121 DOI: 10.1021/acssensors.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The abuse of chlorpyrifos (CPF), an organophosphorus pesticide, poses significant health risks to humans. Therefore, rapid and accurate detection of residual CPF is crucial to human health due to its high risk in trace amounts. Herein, we developed a simple aptasensor that combines a DNA hydrogel-based self-driven capillary with nicking enzyme-mediated amplification (NEMA), in which the NEMA is triggered through the interaction of the aptamer with CPF, and then amplified to produce a large number of single-stranded DNA that can destroy the three-dimensional structure of the DNA hydrogel. Due to the different degrees of collapse of the hydrogel membrane structure, different amounts of liquid are adsorbed into the capillary under the action of surface tension, thus realizing the naked eye detection of CPF. Under optimal conditions, the DNA hydrogel-based self-actuated capillary aptasensor can sensitively detect chlorpyrifos in the concentration range of 1 ng/L to 1 mg/L, with a detection limit of 1.73 pg/L. The advantages of the aptasensor are simple conditions, high sensitivity, and a large detection concentration range, and only a thermostat and simple operation are needed to achieve its excellent analytical performance. In addition, the developed self-actuated capillary aptasensor was successfully applied for the determination of CPF in apple, grape, cabbage, and peanut kernel.
Collapse
Affiliation(s)
- Kaiqing Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Li Y, Wang S, Li G, Zhang C, Zou L. A signal-on photoelectrochemical aptasensor based on WO 3/CdS heterojunction for the ultrasensitive detection of kanamycin. Bioelectrochemistry 2025; 161:108828. [PMID: 39317125 DOI: 10.1016/j.bioelechem.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO3/CdS heterojunction as photoactive material. Firstly, WO3/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components. In the presence of the target KANA, it is specifically recognized and captured by the aptamers. More importantly, KANA can act as a signal amplifier to enhance the photocurrent due to the oxidation of KANA by photogenerated holes. Therefore, a signal-on PEC aptasensor based on WO3/CdS heterojunction with high selectivity was obtained for the detection of KANA. Under optimized experimental conditions, the PEC aptasensor demonstrated a wide linear range of 10 pM to 400 nM, with a detection limit of 6.77 pM. Meanwhile, the designed PEC aptasensor had been successfully utilized for the analytical examination of milk, fish, serum, and water samples.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shiang Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chi Zhang
- (Department of Orthopedics) The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Chen Y, Mu Z, Zuo J, Qing M, Zhou J, Bai L. A novel aptasensor integrating the DNA rolling nanomachine and Tb/COF/KB as dual signal amplifiers for kanamycin detection in foods. Food Chem 2025; 464:141853. [PMID: 39509891 DOI: 10.1016/j.foodchem.2024.141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
A novel aptasensor for the detection of kanamycin (KNM) was developed based on dual signal amplification through nanomaterials and DNA rolling machines. Firstly, a composite consisting of the covalent organic framework (COF), ketjen black (KB) and toluidine blue (Tb), was synthesized for signal generation. Tb molecules were loaded into the composite and combined with AuNPs to serve as tracer label. Secondly, the wDNA-loaded Fe3O4 magnetic beads (wDNA@MBs) as the DNA walking legs, with cleavage by Mg2+-driven DNAzyme, the DNA walking legs can move along the sDNA-decorated MBs surface, converting the target KNM into numerous output DNA strand, achieving sensitive amplification. With a low detection limit of 0.66 fM and a wide linear dynamic range from 10 fM to 100 nM, this aptasensor showed good results in the detection of KNM in real samples. Therefore, we envision it can provide a useful method for KNM detection in actual samples.
Collapse
Affiliation(s)
- Yujie Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Min Qing
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Chuang WC, Chen CH, Duh TH, Chen YL. Fluorescent aptasensor based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification for detection of beta-amyloid oligomers in cerebrospinal fluid. Mikrochim Acta 2025; 192:70. [PMID: 39804483 DOI: 10.1007/s00604-024-06943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction. After evaluating the parameters of the aptasensor system, we selected Hairpin10, which has a 10-nucleotide extended sequence, as the hairpin sequence that interacts with AβO. The quantitative linear range of the proposed aptasensor is from 11.3 to 113 ng mL-1 in artificial cerebrospinal fluid (aCSF), and the detection limit was 7.29 ng mL-1. The present work realized the assay of AβO in aCSF with satisfactory quantitative results.
Collapse
Affiliation(s)
- Wan-Chen Chuang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, 621301, Chia-Yi, Taiwan
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yen-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
5
|
Liu M, Liu L, Du M, Li Q, Wu S, Su S, Jian N, Wu Y, Wang Y. A fluorescent platform integrated with a "one-pot" nicking endonuclease signal amplification and magnetic separation for simultaneous detection of tumor markers. Talanta 2025; 282:127011. [PMID: 39383727 DOI: 10.1016/j.talanta.2024.127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Although Enzyme-linked immunosorbent assay (ELISA) has been widely used for biomedical research, simultaneous sensitive and cost-effective detection of multiple biomarkers is challenging. Herein, we proposed a "one-pot" nicking endonuclease signal amplification (NESA)-based fluorescent aptasensor for simultaneous detection of carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). Firstly, two aptamers were synchronously immobilized on the surface of magnetic nanoparticles (MNPs) by coupling with two complementary DNA (cDNA). CEA and AFP specifically recognized the aptamers and then the released cDNA (ssDNA) from the double-strands (dsDNA) triggers NESA, further breaking two detection probes which were labeled with the fluorescent dye (FAM and ROX) and its quencher (BHQ1 and BHQ2) at the same time. Then, the fluorescence signal of FAM and ROX were restored separately. The results indicated that the fluorescence intensity at the emission wavelength of 518 nm and 610 nm had a positive correlation with CEA and AFP concentrations, respectively. Under the optimum conditions, wider liner range of 1-500 ng mL-1 to CEA and 5-800 ng mL-1 to AFP of this fluorescent aptasensor were successfully obtained, achieving a detection limit of CEA and AFP were 0.7 ng mL-1 and 2 ng mL-1, respectively. Hence, it turned out that the aptasensor strategy can be a promising candidate for developing a newly fluorescence assay for the simultaneous quantitative detection of multiple tumor markers in matrix samples by changing the corresponding sequences of aptamer and fluorescent signal probe, which has great potential for the screening of early cancer.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Mengsi Du
- Clinical Nutrition Department, Kaifeng People's Hospital, Henan, Kaifeng, 475002, China
| | - Qilong Li
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Shiqi Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Shengxiang Su
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Ningge Jian
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Peng Y, Wu M, Liu M, Wu Y. An all-in-one enzyme-free fluorescent aptasensor integrating localized catalyzed hairpin assembly for sensing antibiotics in food with improved detection efficiency. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7816-7822. [PMID: 39429163 DOI: 10.1039/d4ay01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Enzyme-free signal amplification fluorescent aptasensors depending on multi-component freely diffusing probes have become indispensable tools for antibiotic detection in food, but they suffer from low detection efficiency and tedious operation steps. Herein, an all-in-one enzyme-free fluorescent aptasensor integrating localized catalyzed hairpin assembly (L-CHA) was designed for antibiotic detection with improved detection efficiency. In the designed aptasensor, a double-stranded DNA reactant containing an antibiotic aptamer and a primer as well as two paired hairpin DNA reactants were immobilized on one spatial-confinement DNA scaffold (that is a DNA tetrahedron). Upon addition of the target antibiotic kanamycin, the activated primer initiated L-CHA, generating an amplified fluorescence signal. Compared with previously reported enzyme-free signal amplification fluorescent aptasensors, the designed aptasensor integrated the functions of target recognition, signal transduction, and L-CHA signal amplification into a single probe. In this all-in-one design, the reactants in this aptasensor were confined to a compact space for a higher local concentration, which improved detection efficiency. In particular, this aptasensor achieved sensitive detection of kanamycin within 60 min with a low detection limit of 0.019 ng mL-1. Additionally, the designed aptasensor depended on a single probe rather than multi-component probes, leading to simplified operation steps. Furthermore, this aptasensor was employed for detecting kanamycin in spiked milk samples with recoveries of 96.00% to 108.60%, indicating an acceptable accuracy. Therefore, this L-CHA-based all-in-one enzyme-free fluorescent aptasensor offers a prospective tool for antibiotic detection in the field of food safety.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
| | - Min Wu
- Department of Public Health, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
7
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
8
|
Li Y, Zhang D, Zeng X, Liu C, Wu Y, Fu C. Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins. Molecules 2024; 29:3974. [PMID: 39203052 PMCID: PMC11356850 DOI: 10.3390/molecules29163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response. In this review, we focus on the progress of single-mode and dual-mode aptasensors in basic research and device applications over recent years. Furthermore, we also point out some problems in the current detection strategies, with the aim of stimulating future toxin detection systems for a transition toward ease of operation and rapid detection.
Collapse
Affiliation(s)
- Yangyang Li
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Dan Zhang
- School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Xiaoyuan Zeng
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cheng Liu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yan Wu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cuicui Fu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| |
Collapse
|
9
|
Dou S, Liu M, Wang H, Zhou S, Marrazza G, Guo Y, Sun X, Darwish IA. Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 275:126101. [PMID: 38631268 DOI: 10.1016/j.talanta.2024.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuxian Zhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Bao Y, Sang Y, Yan X, Hu M, Wang N, Dong Y, Wang L. A enzyme-free fluorescence quenching sensor for amplified detection of kanamycin in milk based on competitive triggering strategies. RSC Adv 2024; 14:19076-19082. [PMID: 38873552 PMCID: PMC11172409 DOI: 10.1039/d4ra01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
In this work, we constructed a FAM fluorescence quenching biosensor based on an aptamer competition recognition and enzyme-free amplification strategy. We design a competing unit consisting of an aptamer chain and a complementary chain, and a catalytic hairpin self-assembly (CHA) unit consisting of two hairpins in which the complementary chain can trigger the catalytic hairpin self-assembly. In the initial state, the aptamer chain is combined with the complementary chain, the catalytic hairpin self-assembly unit is inhibited, the FAM fluorescence group was far away from the BHQ1 quenching group, and the fluorescence is turn-on. In the presence of kanamycin, the aptamer chain recognizes kanamycin and doesn't form double chains, resulting in the free complementary chain triggering hairpin 1 (H1), and then H1 triggering hairpin 2 (H2), FAM fluorophore is close to the BHQ1 quenching group, and the fluorescence is off-on. When H1 and H2 form a cyclic reaction, enzyme-free amplification is achieved and there is significant output of the fluorescence signal. Therefore, the biosensor has good performance in detecting kanamycin, the detection line is 54 nM, the linear range is 54 nM-0.9 μM, and it can achieve highly selective detection of kanamycin. Kanamycin residue may cause serious harm to human health. The high sensitivity detection of kanamycin is urgent, so this project has a great application potential for food detection.
Collapse
Affiliation(s)
- Yangyinchun Bao
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Yidan Sang
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Xuemei Yan
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Mengyang Hu
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Na Wang
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Yafei Dong
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
- College of Computer Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| | - Luhui Wang
- College of Life Science, Shaanxi Normal University Xi'an Shaanxi 710119 PR China
| |
Collapse
|
11
|
Xue P, Peng Y, Wang R, Wu Q, Chen Q, Yan C, Chen W, Xu J. Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era. Crit Rev Food Sci Nutr 2024; 65:2473-2488. [PMID: 38659323 DOI: 10.1080/10408398.2024.2343413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.
Collapse
Affiliation(s)
- Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qian Wu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, P. R. China
| |
Collapse
|
12
|
Zheng L, Li Q, Deng X, Guo Q, Liu D, Nie G. A novel electrochemiluminescence biosensor based on Ru(bpy) 32+-functionalized MOF composites and cycle amplification technology of DNAzyme walker for ultrasensitive detection of kanamycin. J Colloid Interface Sci 2024; 659:859-867. [PMID: 38218089 DOI: 10.1016/j.jcis.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
An electrochemiluminescence (ECL) sensing platform for ultrasensitive and highly selective detection of kanamycin (KANA) was developed based on the prepared Ru(bpy)32+-functionalized MOF (Ru@MOF) composites by hydrothermal synthesis and Ag+-dependent DNAzyme. In this sensor, the stem-loop DNA (HP) with the ferrocene (Fc) was used as substrate chain to quench the ECL emission generated by the Ru@MOF. Using the specific recognition effect between KANA and the KANA aptamer (Apt) and the DNAzyme dependence on Ag+, the KANA aptamer as the pendant strand of the DNAzyme was assembled on Ru@MOF/GCE with the aptamer. When both Ag+ and KANA were present simultaneously, KANA specifically was binded to KANA aptamer as a pendant chain. Subsequently, Ag+-dependent DNAzyme walker continuously cleaved the HP chain and released the modified end of Fc to restore the ECL signal of Ru@MOF composites, thus achieving selective and ultrasensitive detection of KANA. The constructed KANA biosensor exhibits a wide detection range (30 pM to 300 μM) accompanied by a low detection limit (13.7 pM). The KANA in seawater and milk samples are determined to evalute the practical application results of the sensor. This ECL detection strategy could be used for detecting other similar analytes and has broad potential application in biological analysis.
Collapse
Affiliation(s)
- Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qing Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xukun Deng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qingfu Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
13
|
Wang X, Yuwen X, Lai S, Li X, Lai G. Enhancement of telomerase extension via quadruple nucleic acid recycling to develop a novel colorimetric biosensing method for kanamycin assay. Anal Chim Acta 2024; 1287:342139. [PMID: 38182400 DOI: 10.1016/j.aca.2023.342139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Colorimetric biosensors have important value for antibiotic residue testing. However, many previous methods were constructed based on the optical density change of certain unstable single-colored products with poor discrimination for visual measurements. Moreover, their low extinction coefficients usually result in low sensitivity of biosensors. In addition, many conventional signal amplification strategies often involve sophisticated nanomaterial preparation, inconvenient multi-step assay manipulation and limited signal amplification ability. Therefore, the development of new colorimetric biosensing strategies with excellent visual discrimination, high sensitivity and convenient manipulation is highly desirable. RESULTS We designed a target recycling accelerated cascade DNA walking amplification mechanism to trigger a telomerase extension-related enzymatic reaction, and developed a novel colorimetric biosensing strategy for kanamycin (Kana) assay. The target recycling was induced by an exonuclease III-assisted aptamer recognition reaction, which could also trigger the successive DNA walking at the streptavidin (SA)- and magnetic bead (MB)-based tracks. This not only caused the quantitative exposure of the telomeric substrate primers on MB surfaces but also released another strand to accelerate the SA-based DNA walking. By using the telomerase extension product to link numerous alkaline phosphatases and induce the plasmonic property change of gold nanobipyramids (Au NBPs), a colorimetric signal output strategy was constructed. This method could be applied for the high-resolution visual screening of Kana, and it also showed a very low detection limit of 17.6 fg mL-1 for assaying Kana over a wide, five-order-magnitude linear range. SIGNIFICANCE The quadruple nucleic acid recycling-enhanced telomerase extension resulted in the ultrahigh sensitivity of the method and also excluded the sophisticated manipulations involved in conventional biosensing strategies. The multiple enzyme catalysis-induced plasmonic property change of Au NBPs realized the stable and multicolor visual signal transduction. Together with its low cost, simple operation, high selectivity, excellent repeatability, and reliable performances, this method exhibits great potential for use in practical applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Shanshan Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
14
|
Liu M, Dou S, Vriesekoop F, Geng L, Zhou S, Huang J, Sun J, Sun X, Guo Y. Advances in signal amplification strategies applied in pathogenic bacteria apta-sensing analysis-A review. Anal Chim Acta 2024; 1287:341938. [PMID: 38182333 DOI: 10.1016/j.aca.2023.341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 01/07/2024]
Abstract
Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shouyi Dou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Frank Vriesekoop
- Department of Food, Land and Agribusiness Management, Harper Adams University, Newport, United Kingdom
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shuxian Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
15
|
Zhao Z, Li Z, Huang J, Deng X, Jiang F, Han RPS, Tao Y, Xu S. A portable intelligent hydrogel platform for multicolor visual detection of HAase. Mikrochim Acta 2024; 191:101. [PMID: 38231363 DOI: 10.1007/s00604-024-06181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Hyaluronidase (HAase) is an important endoglycosidase involved in numerous physiological and pathological processes, such as apoptosis, senescence, and cancer progression. Simple, convenient, and sensitive detection of HAase is important for clinical diagnosis. Herein, an easy-to-operate multicolor visual sensing strategy was developed for HAase determination. The proposed sensor was composed of an enzyme-responsive hydrogel and a nanochromogenic system (gold nanobipyramids (AuNBPs)). The enzyme-responsive hydrogel, formed by polyethyleneimine-hyaluronic acid (PEI-HA), was specifically hydrolyzed with HAase, leading to the release of platinum nanoparticles (PtNPs). Subsequently, PtNPs catalyzed the mixed system of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 to produce TMB2+ under acidic conditions. Then, TMB2+ effectively etched the AuNBPs and resulted in morphological changes in the AuNBPs, accompanied by a blueshift in the localized surface plasmon resonance peak and vibrant colors. Therefore, HAase can be semiquantitatively determined by directly observing the color change of AuNBPs with the naked eye. On the basis of this, the method has a linear detection range of HAase concentrations between 0.6 and 40 U/mL, with a detection limit of 0.3 U/mL. In addition, our designed multicolor biosensor successfully detected the concentration of HAase in human serum samples. The results showed no obvious difference between this method and enzyme-linked immunosorbent assay, indicating the good accuracy and usability of the suggested method.
Collapse
Affiliation(s)
- Zhe Zhao
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhixin Li
- Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiahui Huang
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Fan Jiang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Ray P S Han
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Yingzhou Tao
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Shaohua Xu
- Cancer Research Center& Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
16
|
He Z, Zhang J, Liu M, Meng Y. Polyvalent aptamer scaffold coordinating light-responsive oxidase-like nanozyme for sensitive detection of zearalenone. Food Chem 2024; 431:136908. [PMID: 37573743 DOI: 10.1016/j.foodchem.2023.136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
An efficient aptasensor was developed for the colorimetric determination of zearalenone (ZEN) based on polyvalent aptamer scaffold and light-responsive oxidase-like nanozyme. The sensitivity and efficiency of the development method were significantly improved owing to rich aptamers and signal labels (3, 4-dihydroxybenzoic acid, PCA) packed in the scaffold. The scaffold integrated functions of target recognition, surface immobilization and signal transduction. The photoresponsive nanoenzyme of TiO2-PCA was formed by PCA coordinated with Ti (IV) on the surface of TiO2. TiO2-PCA catalyzed dissolved oxygen rather than H2O2 to generate colorimetric signal by stimulating the chromogenic substrate, which made the assay greener and safer. The detection limit of colorimetric mode was 0.0087 ng/mL and the satisfactory recoveries 92.00 %-111.00 % were achieved in spiked food samples. This strategy opens new horizons for sensitive detection of small molecule hazards and promises to be a powerful tool for safeguarding food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jinxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Mei Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, China.
| | - Yonghong Meng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710119, China
| |
Collapse
|
17
|
Pang L, Pi X, Zhao Q, Man C, Yang X, Jiang Y. Optical nanosensors based on noble metal nanoclusters for detecting food contaminants: A review. Compr Rev Food Sci Food Saf 2024; 23:e13295. [PMID: 38284598 DOI: 10.1111/1541-4337.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Song H, Khan M, Yu L, Wang Y, Lin JM, Hu Q. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads. Anal Chem 2023; 95:13385-13390. [PMID: 37622311 DOI: 10.1021/acs.analchem.3c03163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The development of liquid crystal (LC)-based sensors with superior performances such as high portability, excellent stability, great convenience, and remarkable sensitivity is highly demanded. This work proposes a new strategy for constructing the LC-based sensor using enzyme-linked dual-functional nucleic acid (d-FNA) on magnetic beads (MBs). The detection of kanamycin (KA) is demonstrated as a model. Acetylcholinesterase (AChE) is assembled onto the KA aptamer-modified MBs with a d-FNA strand that consists of an AChE aptamer and the complementary sequence of a KA aptamer. As the specific recognition of KA by its aptamer triggers the release of AChE from the MBs, the myristoylcholine (Myr) solution after incubation with the MBs causes the black image of the LCs due to the formation of the Myr monolayer at the aqueous/LC interface. Otherwise, in the absence of KA, AChE is still decorated on the MBs and causes the hydrolysis of Myr. Therefore, a bright image of LCs is obtained. The detection of KA is successfully achieved with a lower detection limit of 48.1 pg/mL. In addition, a thin polydimethylsiloxane (PDMS) layer-coated glass and a portable optical device are used to improve the stability and portability of the LC-based sensor to advance potential commercial applications. Furthermore, the detection of KA in milk with a portable device is demonstrated, showing the potential of the proposed enzyme-linked LC-based sensor.
Collapse
Affiliation(s)
- Haoyang Song
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
19
|
Xin FF, Song P, Fang KM, Wang ZG, Wang AJ, Mei LP, Feng JJ. Label-free "signal-off" PEC aptasensor for determination of kanamycin based on 3D nanoflower-like FeIn 2S 4/CdS Z-scheme heterostructures. Mikrochim Acta 2023; 190:351. [PMID: 37580613 DOI: 10.1007/s00604-023-05942-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Highly photoactive 3D nanoflower-like FeIn2S4/CdS heterostructures were synthesized by hydrothermal treatment and low-temperature cation exchange. The FeIn2S4/CdS displayed 14.5 times signal amplification in contrast to FeIn2S4 alone. It was applied as a photoactive substrate to construct a label-free photoelectrochemical (PEC) aptasensor for ultrasensitive determination of kanamycin (KAN). Under the optimal conditions, the constructed PEC aptasensor displayed a wide linear range (5.0 × 10-4 ~ 5.0 × 101 ng mL-1) and a low detection limit (S/N = 3) of 40.01 fg mL-1. This study provides some constructive insights for preparation of advanced photoactive materials and exhibits great potential for quantitative determination of antibiotics in foods and environmental samples.
Collapse
Affiliation(s)
- Fang-Fang Xin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ke-Ming Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
20
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
21
|
Chen J, Shi G, Yan C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162279. [PMID: 36801336 DOI: 10.1016/j.scitotenv.2023.162279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
On-site and cost-effective monitoring of antibiotic residue in water samples using a ubiquitous device that is readily available to the general public is a big challenge. Herein, we developed a portable biosensor for kanamycin (KAN) detection based on a glucometer and CRISPR-Cas12a. The aptamer-KAN interactions liberate the trigger C strand, which can initiate the hairpin assembly to produce numerous double-stranded DNA. After recognition by CRISPR-Cas12a, Cas12a can cleave the magnetic bead and invertase-modified single-stranded DNA. After magnetic separation, the invertase can convert sucrose into glucose, which can be quantified by a glucometer. The linear range of the glucometer biosensor is from 1 pM to 100 nM and the detection limit is 1 pM. The biosensor also exhibited high selectivity and the nontarget antibiotics had no significant interference with KAN detection. The sensing system is robust and can work in complex samples with excellent accuracy and reliability. The recovery values were in the range of 89-107.2 % for water samples and 86-106.5 % for milk samples. The relative standard deviation (RSD) was below 5 %. With the advantages of simple operation, low cost, and easy accessibility to the public, this portable pocket-sized sensor can realize the on-site detection of antibiotic residue in resource-limited settings.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
22
|
Han J, Ma P, Khan IM, Zhang Y, Wang Z. Study of binding mechanism of aptamer to kanamycin and the development of fluorescent aptasensor in milk detection. Talanta 2023; 260:124530. [PMID: 37116356 DOI: 10.1016/j.talanta.2023.124530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Aptasensors being versatile sensing platforms presented higher sensitivity toward target detection. However, lacking theoretical basis of recognition between most targets and their corresponding aptamers has impeded their applications. Herein, we conducted a study to explore the binding mechanism of aptamer to kanamycin (Kana) and developed rapid fluorescent aptasensing methods. Based on the fluorescence polarization results, base mutations were performed at different sites of the aptamer. The key binding nucleotides of Kana was identified as T7, T8, C13 and A15 by using isothermal titration calorimetry (ITC). The Kmut3 (2.18 μM) with lower dissociation constants (Kd), one-third of the native aptamer (6.91 μM), was also obtained. In addition, the lower K+ concentration and temperature were found to be conducive to Kana binding. Circular dichroism (CD) results revealed that the binding of Kana can trigger the change of base stacking force and helix force. On the aforementioned basis, a fluorescent sensor was designed with the native aptamer and Kmut3 as recognition elements. The comparison results proved that the Kmut3 presented a 3 times lower limit of detection of 59 nM compared to the native aptamer (148 nM). Notably, this developed aptasensor can be finished in 45 min and was convenient to operate.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China.
| |
Collapse
|
23
|
Wang Y, Zhai H, Guo Q, Zhang Y, Gao X, Yang Q, Sun X, Guo Y, Zhang Y. A dual-modal electrochemical aptasensor based on intelligent DNA Walker with cascade signal amplification powered by Nb.BbvCI for Pb 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160910. [PMID: 36528096 DOI: 10.1016/j.scitotenv.2022.160910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
As a unique nanomachine, DNA Walker can move continuously along a specific orbit to amplify signal. Therefore, based on DNA Walker and endonuclease assisted signal amplification strategy, a novel dual-mode visual electrochemical aptasensor was constructed for the detection of Pb2+. Ceric dioxide@mesoporous carbon (CeO2/CS)@AuNPs not only could improve the conductivity of sensing interface but also could fix the aptamer. DNA Walker moved on the surface of the electrode to realize the pairing with the Ag-γFe2O3/cDNA probe, forming a special base sequence that could be spliced by the Nb.BbvCI. Under the action of endonuclease Nb.BbvCI, the Ag-γFe2O3/cDNA probe was continuously sheared and the amount on the electrode was decreased to amplify the signal. Besides, the nanoenzyme of Ag-γFe2O3 could catalyze 3'3'5'5'-tetramethylbenzidine (TMB) to blue color realizing the visual detection of Pb2+. The sensor has been successfully applied to the visual and accurate rapid detection of Pb2+ in aquatic products. The fabricated method of the sensor open up a new way for visual and accurate the detection of environmental pollutants.
Collapse
Affiliation(s)
- Yue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Hongguo Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255000, China; Shandong Province Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255000, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255000, China.
| |
Collapse
|
24
|
Li Y, Si Q, Liu C, Huang Z, Chen Q, Jiao T, Chen X, Chen Q, Wei J. Construction of a self-sufficient DNA circuit for amplified detection of kanamycin. Food Chem 2023; 418:136048. [PMID: 36996659 DOI: 10.1016/j.foodchem.2023.136048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Improper use of kanamycin can lead to trace kanamycin residues in animal-derived foods, which can pose a potential threat to public health. Isothermal enzyme-free DNA circuits have provided a versatile toolbox for detecting kanamycin residues in complicated food samples, yet they are always limited by low amplification efficiency and intricate design. Herein, we present a simple-yet-robust nonenzymatic self-driven hybridization chain reaction (SHCR) amplifier for kanamycin determination with 5800-fold sensitivity over that of the conventional HCR circuit. The analyte kanamycin-activated SHCR circuitry can generate numerous new initiators to promote the reaction and improve the amplification efficiency, thus achieving an exponential signal gain. With precise target recognition and multilayer amplification capability, our self-sustainable SHCR aptasensor facilitated the highly sensitive and reliable analysis of kanamycin in buffer, milk, and honey samples, thus holding great potential for the amplified detection of trace contaminants in liquid food matrices.
Collapse
|
25
|
Qi X, Zhang L, Wang X, Chen S, Wang X. A label-free colorimetric aptasensor based on an engineered chimeric aptamer and Au@FeP nanocomposites for the detection of kanamycin. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Li X, Jia M, Yu L, Li Y, He X, Chen L, Zhang Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem 2023; 402:134239. [DOI: 10.1016/j.foodchem.2022.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
27
|
Zhang Y, Hassan MM, Rong Y, Liu R, Li H, Ouyang Q, Chen Q. A solid-phase capture probe based on upconvertion nanoparticles and inner filter effect for the determination of ampicillin in food. Food Chem 2022; 386:132739. [PMID: 35334326 DOI: 10.1016/j.foodchem.2022.132739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Ampicillin (AMP) is commonly used to treat diseases caused by bacterial infections as a veterinary drug. However, the abuse of AMP can lead to residues in food and ultimately cause harm to humans. Thus, it is significant to construct a reliable system for AMP detection. Here, we developed an inner filter effect system based on a solid-phase capture probe and the catalysis of platinum nanoparticles (PtNPs) for AMP determination in food. In the presence of AMP, PDMS captured AMP then combined with aptamer-functionalized PtNPs, which catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine, resulting in upconversion fluorescence quenching. The results showed the fluorescence intensity of upconversion nanoparticles was related to AMP concentration (0.5-100 ng·mL-1) with an LOD of 0.32 ng·mL-1, which made quantification of AMP possible. The method also achieved a satisfactory recovery rate (96.89-112.92%) and can be used for AMP detection in food samples with selectivity and sensitivity.
Collapse
Affiliation(s)
- Yunlian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
28
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
29
|
Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022; 189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jingru Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
30
|
Zhao T, Chen Q, Wen Y, Bian X, Tao Q, Liu G, Yan J. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Food Chem 2022; 377:132072. [PMID: 35008020 DOI: 10.1016/j.foodchem.2022.132072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
We developed a rapid and sensitive colorimetric biosensor based on competitive recognition between kanamycin (KAN), magnetic beads-kanamycin (MBs-KAN) and aptamer and terminal deoxynucleotidyl transferase (TdT)-mediated signal amplification strategy. In the absence of KAN, aptamers recognize MBs-KAN. TdT can amplify oligonucleotides to the 3'-OH ends of aptamers, with biotin-dUTP being embedded in the long single stranded DNA (ssDNA). Then the assay produced visual readout due to the horseradish peroxidase (HRP)-catalyzed color change of the substrate after the linkage between biotin and streptavidin (SA)-HRP. In the presence of KAN, however, aptamers tend to bind free KAN rather than MBs-KAN. In this case, aptamers are isolated by magnetic separation, resulting in the failure of signal amplification and catalytic signals. This competitive colorimetric sensor showed excellent selectivity toward KAN with the limit of detection (LOD) as low as 9 pM. And recovery values were between 93.8 and 107.8% when spiked KAN in milk and honey samples.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Chen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Tao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
31
|
|
32
|
Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022; 94:6410-6416. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mengyu Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, USA
| | - Chao Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Wang H, Xie Y, Wang Y, Lai G. Target biorecognition-triggered assembly of a G-quadruplex DNAzyme-decorated nanotree for the convenient and ultrasensitive detection of antibiotic residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152629. [PMID: 34963603 DOI: 10.1016/j.scitotenv.2021.152629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The abuse of kanamycin (Kana) in many fields has led to increasing antibiotic pollution problems and serious threats to public health. Therefore, determining how to develop methods to realize the convenient detection of antibiotics in complicated environmental matrices is highly desirable. In this study, we utilized a target biorecognition-triggered hybridization chain reaction (HCR) assembly of a G-quadruplex DNAzyme (G-DNAzyme)-decorated nanotree to develop a novel homogeneous colorimetric biosensing method for the convenient and ultrasensitive detection of Kana antibiotic residues in real samples. Through the designed aptamer-recognition reaction, an Mg2+-dependent DNAzyme (MNAzyme) strand can be liberated. Thus, its catalyzed cleavage of the hairpin substrates anchored at a DNA nanowire will cause the assembled formation of an HCR-initiator; this process can be greatly amplified by the exonuclease III-assisted target recycling and the MNAzyme-catalyzed release of another MNAzyme strand. Based on the DNA-nanowire-accelerated HCR assembly of many G-DNAzyme-decorated DNA duplexes on the two sides of the nanowire, a DNA nanotree decorated by numerous G-DNAzymes will form to realize the ultrasensitive colorimetric signal output. Under the optimal conditions, this method exhibited a wide five-order-of-magnitude linear range and a very low detection limit of 28 fg mL-1. In addition, excellent selectivity, repeatability, and reliability were also demonstrated for this homogeneous bioassay method. These unique features along with its automatic manipulation and low assay cost show promise for practical applications.
Collapse
Affiliation(s)
- Haiyan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yujia Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
34
|
Wang L, Zhou H, Hu H, Wang Q, Chen X. Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety. Foods 2022; 11:544. [PMID: 35206017 PMCID: PMC8871106 DOI: 10.3390/foods11040544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Food safety issues are a worldwide concern. Pathogens, toxins, pesticides, veterinary drugs, heavy metals, and illegal additives are frequently reported to contaminate food and pose a serious threat to human health. Conventional detection methods have difficulties fulfilling the requirements for food development in a modern society. Therefore, novel rapid detection methods are urgently needed for on-site and rapid screening of massive food samples. Due to the extraordinary properties of nanozymes and aptamers, biosensors composed of both of them provide considerable advantages in analytical performances, including sensitivity, specificity, repeatability, and accuracy. They are considered a promising complementary detection method on top of conventional ones for the rapid and accurate detection of food contaminants. In recent years, we have witnessed a flourishing of analytical strategies based on aptamers and nanozymes for the detection of food contaminants, especially novel detection models based on the regulation by single-stranded DNA (ssDNA) of nanozyme activity. However, the applications of nanozyme-based aptasensors in food safety are seldom reviewed. Thus, this paper aims to provide a comprehensive review on nanozyme-based aptasensors in food safety, which are arranged according to the different interaction modes of ssDNA and nanozymes: aptasensors based on nanozyme activity either inhibited or enhanced by ssDNA, nanozymes as signal tags, and other methods. Before introducing the nanozyme-based aptasensors, the regulation by ssDNA of nanozyme activity via diverse factors is discussed systematically for precisely tailoring nanozyme activity in biosensors. Furthermore, current challenges are emphasized, and future perspectives are discussed.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Hong Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Haixia Hu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (L.W.); (H.Z.); (H.H.)
| |
Collapse
|
35
|
Zhai Y, Li Y, Hou Q, Zhang Y, Zhou E, Li H, Ai S. Highly sensitive colorimetric detection and effective adsorption of phosphate based on MOF-808(Zr/Ce). NEW J CHEM 2022. [DOI: 10.1039/d2nj00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF-808(Zr/Ce) has been successfully used for the sensitive and rapid detection of phosphate and phosphate removal by effective adsorption.
Collapse
Affiliation(s)
- Yuzhu Zhai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yuanhong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Enlong Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| |
Collapse
|
36
|
Wang H, Zhang C, An X, Li G, Ye B, Zou L. Signal-off photoelectrochemical aptasensor for kanamycin: Strand displacement reaction combines p-n competition. Anal Chim Acta 2021; 1181:338927. [PMID: 34556232 DOI: 10.1016/j.aca.2021.338927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
A"signal-off" photoelectrochemical aptasensor based on p-n type semiconductor competitive quenching effect and strand displacement reaction was constructed for the determination of kanamycin. Au NPs@MgIn2S4-graphene composite was used as n-type photoactive semiconductor material. In the presence of the kanamycin, strand displacement reaction was triggered and the p-type CuInS2 quantum dots labeled aptamer was introduced on the Au NPs@MgIn2S4-graphene surface. The CuInS2 quantum dots can competitive consume the electron donors (AA) and light energy of the PEC system, thus quenched the anodic photocurrent of Au NPs@MgIn2S4-graphene. The photocurrent decreased with the increase of kanamycin concentration. The linear range of kanamycin was 1.0 pM-10 μM, and the detection limit was 1.7 pM. In addition, the method can be used for the determination of kanamycin in milk and honey.
Collapse
Affiliation(s)
- Hanxiao Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xinan An
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
37
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
38
|
Shen M, Wang Y, Kan X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer-Fe 3O 4. J Mater Chem B 2021; 9:4249-4256. [PMID: 34008694 DOI: 10.1039/d1tb00565k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thrombin plays an essential role in blood coagulation and some physiological and pathological processes. The convenient, rapid, sensitive, and specific detection of thrombin is of great significance in clinical research and diagnosis. Herein, surface molecularly imprinted polymer (MIP) was modified on aptamer-functionalized Fe3O4 nanoparticles (MIP-aptamer-Fe3O4 NP) for thrombin colorimetric assay by taking advantage of the peroxidase-like activity of Fe3O4 NP. With the adsorption of thrombin into imprinted cavities, the exposed surface area of Fe3O4 NP decreased, causing a decrease in its peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the other hand, the reductive amino acids on the thrombin surface also impeded the oxidation of TMB. Both phenomena caused the light blue color of the sensing solution. Thus, a specifically sensitive colorimetric approach for the visual detection of thrombin was proposed with a linear range and limit of detection of 108.1 pmol L-1-2.7 × 10-5 mol L-1 and 27.8 pmol L-1, respectively. Moreover, due to the double recognition elements of MIP and aptamer, the prepared MIP-aptamer-Fe3O4 NP showed higher selectivity to thrombin than that based on only one recognition element. It is worth noting that no special property (e.g. electrochemical or fluorescence activity) of the template was required in this work. Thus, more template molecules can be easily, selectively, and sensitively detected based on the proposed MIP-aptamer-mimic enzyme colorimetric sensing strategy.
Collapse
Affiliation(s)
- Mingmei Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
39
|
Chen J, Sun N, Chen H, Zhang Y, Wang X, Zhou N. A FRET-based detection of N-acetylneuraminic acid using CdSe/ZnS quantum dot and exonuclease III-assisted recycling amplification strategy. Food Chem 2021; 367:130754. [PMID: 34384983 DOI: 10.1016/j.foodchem.2021.130754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 01/22/2023]
Abstract
N-acetylneuraminic acid (Neu5Ac) is widely spread in many biologically significant glycans of mammals, commonly as a terminal α-glycoside. It is of great significance to develop analytical techniques for detection of Neu5Ac. Herein, a high-sensitive fluorescent biosensor for Neu5Ac has been developed based on FRET between CdSe/ZnS quantum dots (QDs) and BHQ2, as well as exonuclease III (Exo III)-assisted recycling amplification strategy. Employing the specially designed three-level FRET systems and fluorescent signal recovery mechanism, together with five-step recycling signal amplification chain reactions, an ultralow detection limit of 24 fM was achieved. Meanwhile, good linear response ranges within 0.2-12.5 pM and 12.5-1000 pM were founded. The assay has excellent performance in real sample detection, and thus offers great potential for detection of sialic acids modified glycans/lipids in the fields of medical diagnosis and food testing.
Collapse
Affiliation(s)
- Jinri Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nan Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
40
|
Qin C, Hu C, Yu A, Lai G. Fe 3O 4@polydopamine and Exo III-assisted homogeneous biorecognition reaction for convenient and ultrasensitive detection of kanamycin antibiotic. Analyst 2021; 146:1414-1420. [PMID: 33404555 DOI: 10.1039/d0an02187c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein, we report a Fe3O4@polydopamine (PDA) nanocomposite and exonuclease III (Exo III)-assisted homogeneous fluorescence biosensing method for ultrasensitive detection of kanamycin (Kana) antibiotic. A hairpin DNA containing the Kana-aptamer sequence (HP) was first designed for the highly specific biorecognition of the target analyte. Because of the aptamer biorecognition-induced structural change of HP and the highly effective catalyzed reaction of Exo III, a large amount of fluorophore labels were released from the designed fluorescence DNA probe. During the homogeneous reaction process, the Exo III-assisted dual recycling significantly amplified the fluorescence signal output. Moreover, the excessive probes were easily adsorbed and separated by the Fe3O4@PDA nanocomposite, which decreased the background signal and increased the signal-to-noise ratio. These strategies result in the excellent analytical performance of the method, including a very low detection limit of 0.023 pg mL-1 and a very wide linear range of six orders of magnitude. In addition, this method has convenient operation, excellent selectivity, repeatability and satisfactory reliability, and does not involve the design and utilization of complicated DNA sequences. Thus, it exhibits a promising prospect for practical applications.
Collapse
Affiliation(s)
- Chuanying Qin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Cong Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
41
|
Man Y, Ban M, Li A, Jin X, Du Y, Pan L. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem 2021; 354:129578. [PMID: 33756331 DOI: 10.1016/j.foodchem.2021.129578] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022]
Abstract
A microfluidic colorimetric biosensor was developed using thiolated polystyrene microspheres (SH-PSs) for aggregating of gold nanoparticles (AuNPs), a novel hose-based microvalve for controlling the flow direction, and a smartphone imaging APP for monitoring colorimetric signals. Aptamer-PS-cysteamine conjugates were used as detection probes and reacted with Salmonella in samples. Complementary DNA - magnetic nanoparticle (cDNA - MNP) conjugates were used as capture probes, reacted with the free aptamer-PS-cysteamine conjugates. AuNPs were aggregated on the surface of Salmonella-aptamer-PS-cysteamine conjugates, resulting in a visible color change in the detection chamber, which indicating different concentrations of Salmonella. The limit of detection was low to 6.0 × 101 cfu/mL. The microfluidic biosensor exhibited a good specificity. It was evaluated by analyzing salad samples spiked with Salmonella. The recoveries ranged from 91.68% to 113.76%, which indicated its potential application in real samples.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| | - Meijing Ban
- School of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Yuanfang Du
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. P.R. China, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
42
|
Luan Y, Wang N, Li C, Guo X, Lu A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics (Basel) 2020; 9:E787. [PMID: 33171809 PMCID: PMC7695002 DOI: 10.3390/antibiotics9110787] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
Antibiotic abuse is becoming increasingly serious and the potential for harm to human health and the environment has aroused widespread social concern. Aminoglycoside antibiotics (AGs) are broad-spectrum antibiotics that have been widely used in clinical and animal medicine. Consequently, their residues are commonly found in animal-derived food items and the environment. A simple, rapid, and sensitive detection method for on-site screening and detection of AGs is urgently required. In recent years, with the development of molecular detection technology, nucleic acid aptamers have been successfully used as recognition molecules for the identification and detection of AGs in food and the environment. These aptamers have high affinities, selectivities, and specificities, are inexpensive, and can be produced with small batch-to-batch differences. This paper reviews the applications of aptamers for AG detection in colorimetric, fluorescent, chemiluminescent, surface plasmon resonance, and electrochemical sensors for the analysis in food and environmental samples. This study provides useful references for future research.
Collapse
Affiliation(s)
- Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Nan Wang
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Xiaojun Guo
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| |
Collapse
|